
DAT116 (Mixed-signal system design)
Lab 4: Continuous-time filter design

Lars Svensson
larssv@chalmers.se

Version 3.1, December 3, 2018

1 Introduction

In this lab session, you will design an active low-pass filter according to a given
specification. You will use MATLAB to select a filter transfer function and then
simulate the filter in Cadence to verify its functionality and to investigate the
effects of component inaccuracies.

You will find that instructions for this lab are less detailed than for the previous
ones. You will be required to use the MATLAB documentation to determine
what command sequences to use.

2 Preparation

Operations required in this session have in many cases occurred also in previous
sessions. In those cases, descriptions are quite brief. You may need to refer to
previous lab PMs for details.

We will refer to the classical filter functions: the Butterworth, Chebyshev, and
elliptical (Cauer) filters. These are well described in the Wanhammar filter text-
book (as listed in the reading list and available as an eBook in the library).

We will use functions from the MATLAB Signal Processing Toolbox. In particu-
lar, we will use functions from the category Digital and Analog Filters. Find the
corresponding section of the MATLAB documentation and study the functions
butter and buttord in particular.

1

DAT116, Lab 4, Version 3.1 2

The filter section presented in section 5 can be used to implement a wide range
of pole values. You will need to calculate component values starting from pole
values; we will derive the necessary formulas in advance, in class, but you will
need to insert values into the formulas during the lab session.

3 Filter order

Your first task is to find a transfer function1 which meets the low-pass filter
specification illustrated in figure 1.

-

6

�� �� �� �� �� �� �� ��

−2

��������������������������0

��

��

��

��

��

��

��

��

5

��
��
��
��
��
��
��
��
��
��

9.5

��������−35

|A| [dB]

f [kHz]

Figure 1: Low-pass filter magnitude specification.

• Launch MATLAB and select a working directory for this lab. Make sure
MATLAB’s search path includes your own directory for .m files.

• Use the buttord function to determine the necessary order for a Butter-
worth filter to meet the specifications in figure 1. (Don’t leave out the extra
argument ’s’ which specifies a time-continuous filter! Beware of the use of
frequency vs. angular frequency!)

1In this lab, we will only consider the “classical” filter transfer functions. These are intended
for “boxy” specifications like the one given here, and are well-supported by tools and literature.

DAT116, Lab 4, Version 3.1 3

• Repeat the operation for the other classical filters (the two Chebyshev types
and the elliptical type). You will most easily find the necessary documenta-
tion by following links from the butter page (especially from the See Also
section at the end).

The implementation style we will employ (see Section 5 below) is only usable
for all-pole transfer functions. Thus, we should choose the transfer-function type
which has no zeros (except at infinity) and allows the lowest-order implementa-
tion. Which one is this?

4 Transfer function selection

As you have seen during preparations, the MATLAB function butter constructs
a Butterworth transfer function given a cutoff frequency and a filter order. Similar
functions exist for the other classical filter types; these functions can return arrays
of polynomial coefficients, or (equivalently) pole and zero arrays, depending on
the number of output arguments. (Note: you cannot use the same parameter list
for the different filter-design functions; refer to the documentation for each case!)

• Using the filter order arrived at above, generate a transfer function of the
chosen type to meet the given specifications, and save it in pole-zero form.

Poles and zeros can be plotted with the provided function splane (which is
modeled on the function zplane which is included with MATLAB). The .m file
is available on the PingPong page.

• Plot poles and zeros of the transfer function using splane. Save the plot
for your lab report.

The figure-1 filter specification was given as limits on the magnitude function.
In order to compare the filter frequency response with the specification, we need
to calculate the magnitude of the transfer function as a function of frequency.
MATLAB provides the function freqs for this purpose. Somewhat inconve-
niently, freqs requires the filter specification to be in the polynomial-coefficient
form rather than in the pole-zero form.

• Generate the transfer function again as above, but this time, save it in the
polynomial-coefficients form.

DAT116, Lab 4, Version 3.1 4

• Use the freqs function to generate a plot of the filter magnitude response.
Zoom into the plot to verify that the original specifications are fulfilled.
Generate plots for your lab report.

5 Circuit implementation

The selected transfer function must now be implemented in circuit form. We will
use a cascade of filter sections which each implement one complex-conjugate pole
pair. A literature search will find myriad ways to implement such a second-order
section. We have chosen one particularly simple form, based on the Sallen-Key
topology2 but with a variable gain which allows Q-value adjustment. The circuit
in question is available in the dat116 library under the name sk, and is shown
in figure 2.

Figure 2: The sk cell implements a two-pole transfer function. Two identical
resistors and two identical capacitors determine the pole frequency; the gain of a
non-inverting amplifier sets the Q value.

2http://en.wikipedia.org/wiki/Sallen-Key topology

DAT116, Lab 4, Version 3.1 5

• Launch Cadence. Launch the Library Manager and select the dat116

library.

• Open the schematic view of sk and inspect the contents. How are the
resistor values determined?

A good way to verify your understanding of the sk parameter handling is to
include one instance of the circuit in a test bench cell and perform an AC simu-
lation.

• Create or select a work library for this lab. In this library, create a schematic
view of a test bench cell. Include an instance of sk. Connect a 10-kΩ
resistance from the sk output to ground, and a vsin source from the input
to ground. Save the schematic view.

• Since the sk behavior is defined by verilogams code (in op1), a config

view is needed for simulation. Create a config view for the test bench,
following the same procedure as in Lab 2.

• Launch the Analog Design Environment (ADE L), and set the simulator
to ams.

• Carry out a few AC simulation frequency sweeps with different parameter
combinations for sk. As you saw during preparations, the parameter gain

should be strictly lower than 3! Compare the results with your expectations.
Make plots for your report.

You are now equipped to implement a filter according to the specification in
figure 1, using a cascade of sk stages.

• Construct a filter according to the specifications in figure 1. Use one sk cell
for each complex-conjugated pole pair. Real-valued poles (if any) may be
implemented as simple RC links. The overall gain will be larger than 0 dB
and should be compensated for with a resistive divider at the output. Save
a plot of your filter circuit for your report.

• Set up and run an AC analysis to verify your implementation. Use a loga-
rithmic sweep for the frequency. You will want a high frequency resolution
at the edges of the transition band; start out with 100 points per frequency
decade. With an AC magnitude of 1 for the input signal, the output mag-
nitude directly gives the filter magnitude function with no further calcula-
tions.

DAT116, Lab 4, Version 3.1 6

In the specification, the passband and stopband attenuations were given in deci-
bels, so the simulated magnitude function should be plotted in the same way for
easy comparison. We have seen previously (in Lab 2) how to do that using the
Calculator tool. The same procedure should be followed here.

• Generate a plot of the magnitude function of your filter, on a dB scale and
with a logarithmic frequency axis. Zoom in on the passband and stopband
edges to check that the specification is fulfilled (if necessary for confidence,
increase the number of points per decade and resimulate). Save plots for
report.

6 Component inaccuracies

Simulations in the previous section have assumed that all component values are
accurate. In practice, accuracies vary widely with the implementation technology.
Circuits built with discrete components on PCBs are likely to be more accurate
than on-chip implementations; for the latter case, ratios of component values
may be significantly more accurate than absolute values. To be viable, a filter
implementation must meet the specifications even with inaccurate component
values.

We will now use the Monte-Carlo capabilities of the Cadence system to investigate
the influence of filter component inaccuracy. The first step is to replace the sk

implementation with a version which supports randomization of resistances and
capacitances.

• Find the sk1 cell in the dat116 library. Inspect its schematic and verify
that the topology corresponds to that of the sk cell.

• Select one of the resistances in sk1 and open its property dialog (with [q]).
Observe the presence of a value for the Model Name parameter, and make
note of that name. Dismiss the dialog and close the sk1 schematic.

• Create another filter test bench like the previous one, but using sk1 cells
rather than sk cells. Set the cell parameters to the values you used previ-
ously. Check and save the new test bench schematic.

The ADE L interface does not support Monte-Carlo simulation; thus it is nec-
essary to launch a more complete simulator interface.

DAT116, Lab 4, Version 3.1 7

• In the schematics window, select Launch→ADE XL. Create a new adexl

view for your filter testbench design. The schematics window changes to a
tabbed window showing the ADE XL welcome screen; the menu bars etc
also change to reveal a rich set of tools (we will only use a small subset of
these). Verify that your schematic is still present in the original tab before
returning to the adexl tab. Note that the available controls and menus
change with the selected tab.

Find the Data View pane, in the top left part of the window, and the item
Tests therein. Loosely speaking, a “test” is a (set of) simulation(s) together
with evaluation criteria for the simulation results. In this lab, evaluation will be
manual, so we can make do with a very simple test.

• Expand the Tests item by clicking on the + sign. Next, click on the emerg-
ing item Click to add test. A design-selection dialog window opens.
Verify that the library and cell name correspond to your filter test bench
cell, and click OK.

The other new window, ADE XL Test Editor, is very similar to the ADE
L windows that you used previously, and the interaction is also similar. One
difference from the ADE L tool is that the Run button has been renamed Debug

Test; its intended use is to run a single simulation before embarking on the whole
Monte-Carlo set.

• In the test editor window, set up an AC analysis with the same parameters
as above, and arrange for the node voltages to be plotted and saved.

You will control the statistical component value distributions with a simple text
file. A template file, variations.scs, should have been copied into your work
directory when you launched Cadence.

• Inspect variations.scs in a text editor. Component parameters are de-
clared at the top. The model name used for the resistor in sk1 reappears
in the template file; the model definition includes one of the component
parameters. A statistics block specifies Gaussian distributions for the
parameter values. We will reinspect these values later; for now, just close
the file.

For the variations to be applied, we must arrange for the file to be included with
the simulator netlist.

DAT116, Lab 4, Version 3.1 8

• In the Test Editor window, select Setup→Model Libraries. . . Click
in an empty field under the heading Global Model Files in order to add
variations.scs to the list (you may enter the full file-system path, starting
with a /, or call up a browser with the button marked . . . to the right of
the field). Ensure that the check mark is set for the new entry. Click OK
to exit the dialog.

When all this is done, it is finally possible to test the simulation setup.

• Click Debug Test to execute a single simulation run. Dismiss the warning
about this being a debug run. Eventually a plot window will open to show
the same magnitude function as before.

Once the test simulation performs as expected, it is time to move on to the actual
Monte-Carlo runs. These are controlled from the main tabbed window with the
adexl view.

• In the ADE XL window, select the adexl tab.

• From the main menu bar at the top of the window, select Run→Monte
Carlo Sampling. . . A control panel opens to let you decide on specific
parameters for the Monte Carlo runs. Under Statistical Variation,
select Mismatch; under Sampling Method, select Random and 50 points; and
under Other Options, make sure to check Save Data to Allow Family

Plots. Finally, click OK to start the Monte Carlo runs. Progress is shown
in the History pane in the lower left corner of the ADE XL window.

• When the Monte Carlo run set has completed, select the Results sub-tab
in the adexl tab. Find and click the “plot all waveforms” button near the
middle of the command/menu bar in the Results pane. Families of curves
appear in the graph window for each of the signals selected for plotting.

• In the same way as before, use the Calculator functions to generate a plot
of the curve families on a dB scale.

• Inspect the plot and compare the curves with the specifications shown in
figure 1. Zoom in on the edges of passband and stopband. Most likely, you
will find that some of your curves violate the specification. Save plots for
your report.

Above, we chose Mismatch for the Statistical Variation control. This alter-
native means that each actual component value is to be independently selected

DAT116, Lab 4, Version 3.1 9

according to a Gaussian distribution centered on the nominal design value. In
addition to this “small-scale” variation, many implementation technologies suffer
from a larger-scale variation correlated across all components in the same circuit;
the ratio of two component values in the same filter will not be affected by such
variations. (Recall the rglob variation of Lab 2.)

Reopen the file variations.scs. The file specifies two categories of varia-
tions, labeled mismatch and process. The process specification models chip-
to-chip variations; here, the capacitance variations have been especially empha-
sized3. The Statistical Variation alternative All will apply these large chip-
to-chip capacitance variations in addition to the small-scale variations applied by
Mismatch.

• Again select Run→Monte Carlo Sampling. . . in the ADE XL window.
Change the value for Statstical Variation to All and rerun the Monte
Carlo set. Create a dB-scaled plot as above. Comment on the qualitative
appearance of the new curve family. Save a plot for your report.

• Zoom in on the passband and stopband edges as before. Save plots for
report. Compare the result with those of the previous simulation; discuss.

These simulations have been intended to illustrate how to estimate the influence
of component variations in filter design. The approach shown here does not cover
all the issues, though. In particular, we have applied variations only to the pas-
sive filter components. Amplifier parameters may vary even more; but in circuits
such as this one, the negative feedback ensures that overall performance is not
significantly affected by such variations (as was illustrated in Lab 2). Addition-
ally, any output voltage divider or other level-adapting circuits would also have
limited precision; several parameter variations may show correlations; etc. With
time and effort, it is possible to cover such more complex cases as well.

7 Wrap-up

After completing this lab session, you are supposed to be able to do the following:

• Use the MATLAB filter-design tools to select a transfer function to meet a
simple specification.

3This has been done for illustration only; a real semiconductor process may have very
different statistical properties.

DAT116, Lab 4, Version 3.1 10

• Create a cascade implementation of a transfer function using predefined
filter stage topologies.

• Use Cadence Spectre simulations to verify that the filter implementation
meets the specification.

• Use Monte-Carlo simulation to estimate the influence of component inac-
curacy on a filter design.

Reflection question:

• The Monte-Carlo simulation results illustrate that even though a filter is
designed to certain specifications, limited component precision may cause
bad yield: many of the manufactured filters will fail to meet the original
specs. What can we do at the design stage to improve the expected yield?
How would such improvements influence the cost?

• Steep filters have poles close to the imaginary axis in the s plane. You have
seen that the positions of such poles can be sensitive to component inaccu-
racies, and that large deviations from the intended magnitude function can
result. How can you use this knowledge when selecting the sample rate in
a data acquisition system?

