
DAT116 (Mixed-signal system design)
Lab 0: MATLAB and Simulink primer/refresher

Lars Svensson
lars.svensson@chalmers.se

Version 1.8, November 5, 2018

1 Introduction

The lab series in this course will be based in part on the simulation package
Simulink, which is developed and marketed by The Mathworks1. Simulink, in
turn, is implemented on top of the software package MATLAB, which you will
also use during the labs. Lab 0 is intended as an introduction to this software
system. You may already be familiar with MATLAB and Simulink; but even
then, a refresher may be in order before the real work begins.

MATLAB may be described as a scripting language for numerical work, which
also includes numerous library functions for almost any computation. It allows
rapid interactive development of data processing tasks and experiments and also
offers an abundance of plotting and visualization functions.

Simulink is more specialized: it presents the user with a graphical area where
function blocks can be placed and connected in a drag-and-drop fashion, and
then allows detailed control of the simulation of the system represented by the
interconnected blocks. In order to stay focused on the modeled systems rather
than on the modeling environment, we will use a very small subset of the MAT-
LAB/Simulink system.

It will not be necessary to develop MATLAB code to complete the labs. In
case you decide to take advantage of MATLAB’s scripting features anyway (a
very good idea, as you may then easily run variants of your experiments during
debugging), make sure that you save your scripts in a file that can be loaded and
run from the MATLAB command line (it is also possible to type commands into

1http://www.mathworks.com

1



DAT116, Lab 0, Version 1.8 2

the interpreter line by line).

The MATLAB system includes a code editor, which is launched when you open
a MATLAB code file from within the system. (In case you prefer to use Emacs,
an elisp file containing a major editing mode for MATLAB can be downloaded
from the course PingPong pages. If you have yet another preference, let us know
what we might do to facilitate its use with MATLAB.)

Please note that labs 1 and upwards require written lab reports to be prepared,
including Simulink and MATLAB plots; you need to make sure that you can
easily transfer text and diagrams from the simulation system to the document
preparation application of your choice (LaTeX, Word, LibreOffice, Google Docs,
Pages, etc). Also, make sure that you can generate PDF files from your document
preparation application, as this is the only accepted format for all submissions.

The 2018 installment of the lab PMs assumes release R2017b of the software,
which is based on MATLAB version 9.3.0.713579 . None of the tasks depends
on a certain version of MATLAB or Simulink; but if you use other versions, you
may find that window panes, menus, libraries, and documentation are arranged
somewhat differently.

2 Preparation

This PM points to several parts of the MATLAB documentation, which you will
need to go through to prepare for the lab. Your lab assistant will assume that
you are familiar with the contents. Look for sections marked “Preparation” in
the text below.

3 Launch MATLAB

• Launch MATLAB. A main application window with several panes will pop
up. In addition to the main command pane (center), you may find a com-
mand history pane at bottom right, a browsing pane for the current direc-
tory at top left, a file preview pane at bottom left, and a workspace window
at top right. (The window layout may be modified via the Layout menu,
which is available at the top of the MATLAB window.)

• A documentation browser window may also pop up immediately; if it does
not, call it up with Help→Documentation .



DAT116, Lab 0, Version 1.8 3

The documentation window allows easy browsing and searching though the very
extensive documentation of the system. Use this documentation to investigate
the capabilities of MATLAB and Simulink! Note: the same name may denote
a MATLAB function as well as a Simulink block, and overloading is sometimes
used to extend function definitions to new argument types. Make sure that you
are referring to the right part of the documentation!

Unless you are already a proficient MATLAB user, you will need an introduction
to the system and the notation used.

Preparation task 1.

Find the MATLAB section in the documentation browser, and se-
lect Getting Started with MATLAB. Read at least the tutorials
labeled Desktop Basics, Matrices and Arrays, and 2-D and

3-D Plots.

Many of the plots we will use in the labs will be created by pre-defined commands.
You will, however, also need to generate other simple plots of MATLAB array
values.

• In MATLAB, create a vector a with ten elements, containing the integers 1
through 10. Make sure you know how to do this without using an explicit
for loop.

• Next, create another vector b, also with ten elements, with each element
containing the square of the element in a with the same index. Again, do
not use a for loop; it is doable with one assignment.

• Create a plot of b with respect to a. Add a title, labels on the axes, and
a legend. (How to accomplish this task should be clear once you have
read the introductory material indicated above; additional information you
might need may be found in the documentation system.)

The MATLAB plot window offers a tool bar with several tools for reformatting,
zooming, exporting, etc.

• Find out how to export a plot into a format accepted by the document
preparation system of your choice, and verify that you can import them
into a document.



DAT116, Lab 0, Version 1.8 4

• Verify that you can output a PDF file from your document preparation
system, and that the plot appears therein without artifacts.

One more step of preparation is needed.

• If you didn’t do so already, designate a directory in your file hierarchy where
your lab files will be kept. Change to this directory in MATLAB (either
by browsing in the top left pane, or by a cd command in the command
pane). If you launch MATLAB from the command line, the initial working
directory will be the one from which MATLAB was started.

4 Launch Simulink

• Launch Simulink from within MATLAB by clicking on the Simulink icon
in the toolbar. A “wizard”-style “start page” appears, letting you choose
among several project templates.

Here and in the rest of this course, we will use a fixed time step in our simulations.

• Locate the icon titled Fixed-step in the category Simulink (you may have
to expand the “Show more” tag to find it) and click the icon. A simulation
model window named untitled will appear. This window shows an empty
graphical area, where you will construct your model.

• In the simulation model window, select View→Library Browser. A
Simulink Library Browser window will (eventually) appear.

The libraries include all simulation blocks installed with Simulink. Each icon
in the library window represents a collection of Simulink blocks and of other
collections. Double-clicking on an icon will display the selected collection in
place of the top-level one.

• Open some Simulink library collection windows. Also, double-click on some
block icons (with an appearance distinct from the collection icons); a dia-
log box with block parameters appears, although the parameter fields are
greyed out. Close these dialogs after inspecting them.



DAT116, Lab 0, Version 1.8 5

Preparation task 2.

Just as you did for MATLAB, you need to read and digest some
Simulink introductory material. Find the Getting Started with

Simulink section under the Simulink heading in the documenta-
tion browser. Under Tutorials, read the material under Create
Simple Model.

5 Create a model

In Simulink, you create a simulation model by instantiating and connecting sys-
tem blocks from the libraries2. You will use the empty model window which is
still named untitled. As a first step, save your empty model with a suitable
name (such as lab0).

• In the model window, select

File→Save As. . .

and give the name lab0 in the dialog. Observe how a file lab0.slx appears
in the directory browser pane of the MATLAB window, and how the window
title changes to lab0.

You will now add a signal source and a signal sink to your model.

• In the Simulink library window, double-click on the Sources icon to open
the Sources collection. Locate the Sine Wave block and drag it into the
lab0 window. A copy of the block icon appears in the lab0 window3.

• Double-click on the Sine Wave block in lab0. As before, a parameter dialog
opens, but this time the parameter fields are not greyed out (as your copy
is a local instance of the block, it is possible to modify the parameters). For
the top two parameters, choose Time based and Use simulation time,

2It is also possible to build up models hierarchically, and to code models in MATLAB, ADA,
FORTRAN, C, or C++. We will stay simple in this course.

3Also, an inline shortcut dialog offers an opportunity to give a value to one block parameter.
In this case, we will want to set more than one block parameter before running a simulation;
but you may find this feature useful later.



DAT116, Lab 0, Version 1.8 6

and make sure that the checkbox marked Interpret vector parameters
as 1-D at the bottom of the page is checked. Ignore the other parameters
for now. Click OK to close the parameter dialog.

• Next, add a Scope from the Sinks collection to the lab0 model window.

• Connect the two blocks by clicking close to the visible terminal on one of
the blocks and dragging to the terminal on the other block. A wire with a
direction arrow should appear, connecting the two blocks.

• Save your model again, by File→Save.

6 Run simulation

It should now be possible to simulate the small model you just defined.

• In the model window, do:

Simulation→Run

A beep will indicate that simulation has completed.

• Next, double-click on the Scope icon. If the simulation was successful, an
oscilloscope-like Scope window opens, in which the sine wave is shown.

The sine wave parameters in the display should correspond to those of the Sine

Wave block. You will now modify these parameters to verify the correspondence.

• Open the parameter dialog for the sinewave generator. Modify the Ampli-
tude and Bias parameters, click OK, and re-run the simulation.

• Verify that the sinewave displayed in the Scope window changes in corre-
spondence with the parameter changes.

It is now time to modify the frequency of the sine wave.

• Open the Sine Wave parameter dialog again and set the Frequency4 pa-
rameter to 10. Save your model and re-run the simulation. Does the
sinewave display change in the way you expected it to?

4Really the angular frequency, ω.



DAT116, Lab 0, Version 1.8 7

• Zoom in on the scope signal, using the magnifier symbols in the menubar
of the Scope window. What is the timestep used in the plotting of the sine
wave?

In order to minimize runtimes for large simulations, Simulink will always use
the longest timestep it believes it can get away with. To avoid artifacts such as
the one presently seen in the Scope window, Simulink must be forced to use a
smaller timestep.

• In the lab0 window, do:

Simulation→Model Configuration Parameters

A new dialog window opens, allowing you to control myriad aspects of the
simulation (including the start and stop times).

• Select the Solver panel and locate the field Solver options. Set the
Type to Fixed-step. Expand the field Additional options if necessary.
Locate the field Fixed-step size and set the value to 0.01, click Apply,
and re-run your simulation.

• Zoom in on the scope signal and verify that the new timestep accords with
your specification.

For most of the labs experiments, you will want to generate a precise number of
sine wave periods. We will now attempt to generate exactly 10 periods of a sine
wave in 10 seconds.

• Recall that y = sin(ω ·t). Calculate the value ω should have to yield exactly
10 periods in 10 seconds.

• Set the Frequency parameter for the sinewave to the ω value calculated
above. Rerun the simulation and verify that you got the intended number
of cycles.

• Note that MATLAB and Simulink understand many common constants
such as π. If you used a numeric approximation in the previous step, try
again, but use an expression including the literal pi; verify that the simu-
lation still runs and produces the right results.

Clearly, constant expressions can be used as parameter values in simulations.
Moreover, it is possible to use MATLAB variables in parameter value expressions.



DAT116, Lab 0, Version 1.8 8

• In the command pane in the MATLAB window, define the variable a with
a given value:

>> a = pi / 5

• Next, use the variable name a as the Frequency parameter for the sine
wave, and re-run the simulation. Does the scope waveform correspond to
your expectations?

7 Post-processing

The Scope block is a handy tool for a quick look at a signal. In the lab series,
however, we will often need to save the result of a simulation for later post-
processing in MATLAB.

There are several ways of saving a Simulink signal trace; circumstances will de-
termine which one to use. Here, we will use the To Workspace block from the
Sinks library collection (where we previously found the Scope block).

• Drag the To Workspace block from the Sinks window into your simulation
model window. Connect its input to the wire which already connects the
Sine Wave block with the Scope block.

• Open the parameter dialog for the new block. Replace the default name
with a recognizable one, such as foobar. Also, at the bottom of the dialog,
select the save format Structure With Time. (This option will ensure that
the time values are saved with the signal; the post-processing routines used
in the lab series rely on this format.) Click OK to close the dialog (note that
the variable name in the block icon changes!) and re-run the simulation.

• When the simulation is complete, note that the Workspace pane in the
MATLAB window now lists a variable foobar.

We provide some MATLAB functions which simplify viewing and analysis of the
Simulink results. The functions are provided in .m files which can be found on
the course PingPong page, together with a brief documentation sheet. These files
must be available in a known place for MATLAB to find them, and the directory
in question must be on MATLAB’s search path. The MATLAB function path is
available to inspect and set the search path.



DAT116, Lab 0, Version 1.8 9

• Download all the provided .m files, place them in a common directory and
prepend the directory name to the MATLAB search path. (Information on
how to use the path function is available in the MATLAB documentation
system.)

• Use the function sigview to display the signal which was saved to the
MATLAB workspace.

8 Spectra

So far, we have viewed and manipulated signals in the time domain only. Much
specification and verification of mixed-signal systems, however, is performed in
the frequency domain instead, using amplitude and especially power spectra. A
MATLAB function, sigspectrum, is provided to calculate and plot signal power
spectra5.

• Apply sigspectrum to the signal previously displayed by sigview above.
Does the plot conform to expectation?

The sigspectrum function should have warned you that it used only 512 data
points for the FFT (the signal length was less than 1024, and the FFT needs a
number of points that is a power of two; in case of a mismatch, sigspectrum
uses the trailing end of the signal, for reasons that will become clear later). This
means that the FFT was calculated on a signal which contained partial cycles of
the fundamental. A simple remedy is to let the value for the maximum simulation
time step size be 10/1024 rather than 0.01.

• Make this change6, save your model, re-run the simulation, and re-run
sigspectrum. It should now use 1024 points for the FFT (verify!). How
does the spectrum compare with the previous version? Why?

5There are many ways to estimate a signal spectrum; what is used here is a one-sided peri-
odogram. Refer to the MATLAB Signal Processing Toolbox or to a signal processing reference
book such as Proakis + Manolakis for much more information about spectrum estimation and
calculation.

6Use the actual expression 10/1024 rather than an approximation!



DAT116, Lab 0, Version 1.8 10

9 Wrap-up

After completing this lab session, you are expected to be able to carry out the
following tasks:

• Launch MATLAB and Simulink.

• Assign values to array elements in MATLAB and generate plots based on
these arrays.

• Set the MATLAB search path to include a directory where your user-defined
MATLAB functions are stored as .m-files.

• Create a new simulation model in Simulink and set its simulation parame-
ters and the parameters of the constituent Simulink blocks.

• Save results from a Simulink simulation to the MATLAB workspace for
further analysis.

• Examine and plot the spectra of the signals from a Simulink simulation.

• Transfer plots to the document production system of your choice (Word,
LibreOffice, Google Docs, LaTeX, Pages, etc) and generate PDF reports
including said plots.


