
10-1

10
Design Closure

10.1 Introduction .. 10-1
Evolution of the Design Closure Flow • Introduction of
Design Constraints

10.2 Current Practice .. 10-13
Concept Phase • Logic Design • Floorplanning
• Logic Synthesis • Placement • Logic/Placement
Refinement • Introduction of Clocks • Postclocking
Optimizations • Routing • Postrouting Optimization
and Final Signoff

10.3 The Future of Design Closure 10-28
Power-Limited Performance Optimization • Design for
Variability

10.4 Conclusion .. 10-30

10.1 Introduction

Design closure is the process by which a VLSI design is modified from its initial description to meet a
growing list of design constraints and objectives. This chapter describes the common constraints in VLSI
design, and how they are enforced through the steps of a design flow.

Every chip starts off as someone’s idea of a good thing: “If we can make a part that performs function
X, we will all be rich!” Once the concept is established, someone from marketing says “In order to make
this chip and sell it profitably, it needs to cost $C and run at frequency F.” Someone from manufacturing
says “In order to make this chip’s targets, it must have a yield of Y%.” Someone from packaging says “And
it has to fit in the P package and dissipate no more than W watts.” Eventually, the team generates an exten-
sive list of all the constraints and objectives that need to be met in order to manufacture a product that
can be sold profitably. The management then forms a design team, consisting of chip architects, logic
designers, functional verification engineers, physical designers, and timing engineers, and tasks them to
create the chip to these specifications. Other chapters in this book have dealt with the details of each spe-
cific step in this design process (e.g., static timing analysis, placement, routing, etc.). This chapter looks
at the overall design closure process, which takes a chip from its initial design state to the final form in
which all of its design constraints are met.

We begin the chapter by briefly introducing a reference design flow. We then discuss the nature and
evolution of design constraints. This is followed by a high-level overview of the dominant design closure
constraints that currently face a VLSI designer. With this background we present a step-by-step walk-
through of a typical design flow for application-specific integrated circuits (ASICS) and discuss the ways in

Peter J. Osler
IBM Systems and Technology Group
Essex Junction, Vermont

John M. Cohn
IBM Systems and Technology Group
Essex Junction, Vermont

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 1

© 2006 by Taylor & Francis Group, LLC

which design constraints and objectives are handled at each stage. We will conclude with some thoughts
on future design closure issues.

10.1.1 Evolution of the Design Closure Flow

Designing a chip used to be a much simpler task. In the early days of VLSI, a chip consisted of a few thou-
sand logic circuits which performed a simple function at speeds of a few MHz. Design closure at this
point was simple: if all of the necessary circuits and wires “fit,” the chip would perform the desired func-
tion. Since that time, the problem of design closure has grown orders of magnitude more complex.
Modern logic chips can have tens to hundreds of millions of logic elements switching at speeds of several
GHz. This improvement has been driven by the Moore’s law of scaling of technology which has intro-
duced a whole host of new design considerations. As a result, a modern VLSI designer must simultane-
ously consider the performance of his/her chip against a list of dozens of design constraints and objectives∗

including performance, power, signal integrity, reliability, and yield. We will discuss each of these design
constraints in more detail in Section 10.1.2. In response to this growing list of constraints, the design clo-
sure flow has evolved from a simple linear list of tasks to a very complex, highly iterative flow such as the
following simplified ASICS design flow:

1. Concept phase: The functional objectives and architecture of a chip are developed.
2. Logic design: [1] The architecture is implemented in a register transfer level (RTL) language, then

simulated to verify that it performs the desired functions.
3. Floorplanning: The RTL of the chip is assigned to gross regions of the chip, input/output (I/O) pins

are assigned and large objects (arrays, cores, etc.) are placed.
4. Synthesis: [2] The RTL is mapped into a gate-level netlist in the target technology of the chip.
5. Placement: [3] The gates in the netlist are assigned to nonoverlapping locations on the chip.
6. Logic/placement refinement: [4,5] Iterative logical and placement transformations to close per-

formance and power constraints.
7. Clock insertion: Balanced buffered clock trees are introduced into the design.
8. Routing (or wiring): [6] The wires that connect the gates in the netlist are added.
9. Postwiring optimization: [7–10] Remaining performance, noise, and yield violations are removed;

final checking is done.

We will use this reference flow throughout the chapter to illustrate points about design closure.† The pur-
pose of the flow is to take a design from concept phase to working chip. The complexity of the flow is a
direct result of the addition and evolution of the list of design closure constraints. To understand this evo-
lution it is important to understand the life cycle of a design constraint. In general, design constraints
influence the design flow via the following five-stage evolution:

1. Early warnings: Before chip issues begin occurring, academics and industry visionaries make dire
predictions about the future impact of some new technology effect.

2. Hardware problems: Sporadic hardware failures start showing up in the field due to the new effect.
Postmanufacturing redesign and hardware re-spins are required to get the chip to function.

10-2 EDA for IC Implementation, Circuit Design, and Process Technology

†See Chapter 2, Volume 1 of this handbook for a good overview of the entire design flow.

∗ The distinction between constraints and objectives is straightforward: a constraint is a design target that must be
met in order for the design to be considered successful. For example, a chip may be required to run at a specific fre-
quency in order to interface with other components in a system. In contrast, an objective is a design target where more
(or less) is better. For example, yield is generally an objective, which is maximized to lower manufacturing cost. For
the purposes of this chapter, the distinction between constraints and objectives is not all that important and we will
use the words interchangeably.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 2

© 2006 by Taylor & Francis Group, LLC

3. Trial and error : Constraints on the effect are formulated and used to drive postdesign checking.
Violations of the constraint are fixed manually.

4. Find and repair : Large number of violations of the constraint drives the creation of automatic
postdesign analysis and repair flows.

5. Predict and prevent : Constraint checking moves earlier in the flow using predictive estimations of
the effect. These drive optimizations to prevent violations of the constraint.

A good example of this evolution can be found in the coupling noise constraint. In the mid-1990s (180 nm
node), industry visionaries were describing the impending dangers of coupling noise long before chips were
failing [11]. By the mid-late 1990s, noise problems were cropping up in advanced microprocessor designs.
By 2000, automated noise analysis tools were available and were used to guide manual fix-up [12]. The total
number of noise problems identified by the analysis tools identified by the flow quickly became too many
to correct manually. In response, CAD companies developed the noise avoidance flows that are currently in
use in the industry [13].

At any point in time, the constraints in the design flow are at different stages of their life cycle. At the
time of this writing, for example, performance optimization is the most mature and is well into the fifth
phase with the widespread use of timing-driven design flows. Power- and defect-oriented yield optimiza-
tion is well into the fourth phase; power supply integrity, a type of noise constraint, is in the third phase;
circuit-limited yield optimization is in the second phase, etc. A list of the first-phase impending con-
straint crises can always by found in the International Technology Roadmap for Semiconductors (ITRS)
[14] 15-year-outlook technology roadmaps.

As a constraint matures in the design flow, it tends to work its way from the end of the flow to the begin-
ning. As it does this, it also tends to increase in complexity and in the degree that it contends with other con-
straints. Constraints tend to move up in the flow due to one of the basic paradoxes of design: accuracy vs.
influence. Specifically, the earlier in a design flow a constraint is addressed, the more flexibility there is to
address the constraint. Ironically, the earlier one is in a design flow, the more difficult it is to predict com-
pliance. For example, an architectural decision to pipeline a logic function can have a far greater impact on
total chip performance than any amount of postrouting fix-up. At the same time, accurately predicting the
performance impact of such a change before the chip logic is synthesized, let alone placed or routed, is very
difficult. This paradox has shaped the evolution of the design closure flow in several ways. First, it requires
that the design flow is no longer composed of a linear set of discrete steps. In the early stages of VLSI it was
sufficient to break the design into discrete stages, i.e., first do logic synthesis, then do placement, then do
routing. As the number and complexity of design closure constraints has increased, the linear design flow
has broken down. In the past, if there were too many timing constraint violations left after routing, it was
necessary to loop back, modify the tool settings slightly, and reexecute the previous placement steps. If the
constraints were still not met, it was necessary to reach further back in the flow and modify the chip logic
and repeat the synthesis and placement steps. This type of looping is both time consuming and unable to
guarantee convergence i.e., it is possible to loop back in the flow to correct one constraint violation only to
find that the correction induced another unrelated violation.

To minimize the requirement for frequent iteration, the design flow has evolved to use the concept of vari-
able detail accuracy in which estimates of downstream attributes, e.g., wire length and gate area, are used to
drive upstream optimization of timing and power dissipation. As the design evolves, these approximations
are refined and used to drive more precise optimizations. In the limit, the lines that separate two sequential
steps such as synthesis and placement can be removed to further improve downstream constraint estimates.
In today’s most advanced design closure flows, the lines between once-discrete steps have been blurred to the
point that steps such as synthesis, placement, and routing can be simultaneously co-optimized [4]. The evo-
lution from discrete stand-alone design steps to integrated co-optimizations has had a profound influence
on the software architecture of design closure systems. Modern design closure suites are composed of three
major components: a central database, a set of optimization engines, i.e., logic optimization, placement, and
wiring, and a set of analysis engines, i.e., static timing analysis, power analysis, noise analysis, etc. The central
database manages the evolving state of the design. The optimization engines modify the database directly,
while the analysis engines track incremental changes in the database and report back on the results. By

Design Closure 10-3

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 3

© 2006 by Taylor & Francis Group, LLC

allowing a certain degree of independence between optimization engines and analysis tools, this data-driven
architecture greatly simplifies the addition of new design constraints or the refinement of existing ones. More
detail on data-driven design closure architectures can be found in the chapter on design flows [15].

The evolution of chip timing constraints provides a good overall illustration of a constraint’s movement
up the flow. In the first integrated circuits, analyzing performance consisted of summing the number of
blocks in each path. After a couple of technology generations, hardware measurements began to show that
this simple calculation was becoming less accurate. In response, performance analysis tools were extended
to take into consideration that not all gates have the same delay. This worked for a time, until measured
hardware performance again began to deviate from prediction. It was clear that gate output loading was
beginning to become a factor. The performance analysis flow was modified to include a factor that modi-
fied the delay of a gate based on the total input capacitances of the downstream gates it drove. As perform-
ance increased further, wire delay started to gain in importance. Wire-length measures were used to calculate
total wire capacitive load, which was converted into a delay component. As performance increased further,
wire resistance became a factor in all interconnect, so delays were approximated using a simple, single-pole
Elmore delay model. In the early 1990s, it was observed that the Elmore approximation was a poor predic-
tor of wire delay for multi-sink wires, so more complex moment matching [16] methods were introduced.
As timing analysis matured further, it became increasingly difficult to correct all of the timing constraint
problems found after routing was complete. As the flow matured from find and repair to predict and prevent,
it became increasingly important to accurately predict total wire delay as part of a timing-driven design flow.
Crude models of wire delay were added to placement, in order to shorten preferentially wires on critical
paths [3]. The first placement-based wire delay models used gross estimates of total wire length such as cal-
culating the bounding box of all pins on a wire. As interconnect delay grew in importance, such nonphysi-
cal wire-length estimates proved to be poor predictors of actual wire delay. Delay estimates based on
Steiner-tree approximation of routed wire topologies were introduced to predict delay better. As intercon-
nect delay increased further, it became necessary to push wire-length calculation even further back into pre-
placement logic synthesis. Initially, this was done using simple wireload models, which assigned average wire
length based on estimates of placed block size. Eventually this too proved too inaccurate for high-perform-
ance logic. By the late-1990s, placement-driven synthesis [4] was introduced to bias logic synthesis based on
predictions of critical wire length. As the handling of timing constraints matured, it also began to contend
more with other constraints. During the early days of design closure, chip-timing problems could be miti-
gated by increasing the drive strength of all circuits on a slow path. Doing this, however, increases active
power and increases the chance of coupling noise onto adjacent wires. These design trade-offs are discussed
in the context of the actual design closure flow in the chapter on design flows [15].

We will now shift our focus to learn more about the specific design constraints that are facing chip
designers. Armed with this, we will then begin a detailed walk-through of a typical design closure flow.

10.1.2 Introduction of Design Constraints

Chip designers face an ever-growing list of design constraints, which must be met for the design to be suc-
cessful. The purpose of the design closure flow is to move the design from concept to completion while
eliminating all constraint violations. This section will briefly introduce the current taxonomy of design
closure constraints, objectives and considerations, and discuss the impact and future trends for each. For
the sake of this discussion we will divide the constraint types into economic, realizability, performance,
power, signal integrity, reliability, and yield.

10.1.2.1 Economic Constraints

While not explicitly technical, the economic constraints governing design closure are perhaps the most
important constraints of all. Economic constraints pertain to the overall affordability and marketability
of a chip. Economic constraints include design cost, time to market, and unit cost.

● Design-cost constraints govern the nonrecurring expense (NRE) associated with completing a design.
This includes the cost of the skilled resources needed to run the design flow, the cost of any test

10-4 EDA for IC Implementation, Circuit Design, and Process Technology

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 4

© 2006 by Taylor & Francis Group, LLC

hardware and additional design passes which occur due to errors. These costs also include the amor-
tized cost of facilities, computer resources, design software licenses, etc., which the team needs to com-
plete the task. Design cost can be traded off against other design constraints such as performance and
power because increased effort and skill generally will yield better optimization. Missing a design cost
estimate can be a very serious problem as cost overruns generally come out of projected profit.

● Time-to-market (TTM) constraints govern the schedule of a design project. This includes the time
required for development, manufacturing, and any additional hardware re-spins necessary to yield
a functional and manufacturable part in sufficient volumes to meet the customer’s requirements.
Time-to-market cost can be traded off against other design constraints such as performance and
power because, like increased design effort, increased design time generally yields better optimiza-
tion albeit at the expense of design cost. Missing a time-to-market constraint can imply missing a
customer deadline or market window. In competitive market segments, being late to market can
mean the difference between huge profits and huge losses.

● Unit-cost constraints govern the cost of each manufactured chip. This includes the cost of the chip
itself accounting for any yield loss, the package, the cost of the module assembly, and the cost of
all testing and reliability screens. Unit cost is a strong function of chip die size, chip yield, and
package cost. This can be traded off against design cost and time to market by allowing additional
effort to optimize density, power, and yield. Missing a unit-cost constraint can make a chip non-
competitive in the marketplace.

10.1.2.2 Realizability Constraints

The most basic constraint of VLSI design is “does the chip fit and does it work?” These “realizability” con-
straints pertain to the basic logical correctness of the chip. Realizability constraints include area con-
straints, routability constraints, and logical correctness constraints.

● Area constraints are one of the most basic constraints of any VLSI design, i.e., does the chip “fit” in
the desired die size and package? To fit, the total area required by the sum of the chip’s circuitry plus
additional area required for routing must be less than the total useable area of the die. The die size
and package combination must also support the type and number of I/O pins required by the design.
Because silicon area and package complexity are major components of chip cost, minimizing die size
and package complexity is a major goal in cost-sensitive designs. The implication of mis-predicting
capacity can be great. If the required area is over-estimated, die utilization is low and the chip costs
more than it should. If the required area is underestimated, the design must move to a larger die size
or more complex package, which implies more cost and additional design time.

● Routability constraints ensure that the resulting placement can be completely connected legally by
a router. The impact of mis-predicting routability can impact average wire length, which can, in
turn, affect timing. If routability is compromised enough, the designers must manually route the
overflows that could not be routed automatically. In the worst case, mis-predicting routability can
require that the chip be bumped up to a larger die size at great impact to cost and schedule. The
challenges of this problem have been growing due to a number of factors such as increasing gate
count, increased complexity of metallurgy, including complex via stack rules and multiple wire
widths and heights, manufacturability constraints, and increased interrelations between perform-
ance and routing. However, the addition of extra routing layers and improvements to routing tech-
nology have alleviated this problem to some extent. Routability problems can be mitigated by
adding additional area for routing, which contends with chip area constraints.

● Logical correctness constraints ensure that the design remains logically correct through all manipula-
tions used by design closure. Modern design closure flows make significant use of local logical trans-
formations such as buffering, inversions, logic cloning, and retiming to meet performance
constraints. As these logical transformations have become more complex, there is an increased oppor-
tunity for introducing errors. To ensure that logical correctness is maintained, modern flows use
equivalence checking to verify that the design function remains unchanged after each design closure
step. Obviously, the impact of failing this constraint is that the chip no longer functions as intended.

Design Closure 10-5

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 5

© 2006 by Taylor & Francis Group, LLC

10.1.2.3 Performance Constraints/Objectives

Once we ensure that the design will fit and is logically correct, the primary function of design closure is
to ensure that the chip performance targets are met. Traditionally, chip timing has received the most focus
as a design objective. Performance constraints can be divided into late- and early-mode timing constraints.

● Late-mode timing establishes the longest delay, or critical path, through all paths which sets the max-
imum speed a chip can run. Late-mode timing considerations can either be a constraint, i.e., the chip
must run at least as fast as x, or they can be a design objective, i.e., the faster this chip runs the bet-
ter. Late-mode timing constraints are enforced by comparing late-mode static timing [17] results
against desired performance targets and clock cycle time. Late-mode timing constraints violations
are removed by decreasing the gate or interconnect delay along critical paths. Gate delays can be
reduced by decreasing logic depth, increasing gate drive strength, increasing supply voltage, or sub-
stituting gates with low threshold (low Vt) logic. Interconnect delay can be reduced by decreasing
wiring length, adding buffers, or widening wires. Late-mode timing constraint violations can also
be resolved by allowing more time for a path to evaluate through the addition of useful clock skew.
Meeting the late-mode timing constraint for all paths is becoming increasingly difficult due to the
combination of increasing chip complexity and clock speeds, combined with an increasingly pro-
nounced “roll-off” of technology performance scaling. Both device performance and interconnect
performance are failing to keep pace with the decade-long Moore’s law improvement rate. More
worrisome is that, as illustrated in Figure 10.1, interconnect performance is scaling even more
slowly than gate performance. In fact, increases in wiring resistance are beginning to cause reverse
scaling in which the relative interconnect delay actually increases with each new technology node.
This implies more design closure effort in additional buffering and multi-cycle pipelining of long
signals. Optimizations for late-mode timing constraints on one path may contend with late-mode
timing constraints on other paths. For example, increasing the gate size to reduce delay on one crit-
ical path may increase gate load on another critical path. Late-mode timing optimizations also con-
tend with power optimization. Most techniques used to optimize late-mode timing, e.g., gate sizing,
buffering, and low-threshold logic substitution increase total chip power.
The impact of missing a late-mode timing constraint is that the chip is slower than required. In
most designs, missing the late-mode timing constraints implies increasing the cycle time of a
machine. This may imply that the system specification must be renegotiated, or at worst case,
redesigned at great cost of money and time. In some rare cases however, the final timing objectives
may be negotiable, i.e., one may be able to sell a slower microprocessor for less money.

10-6 EDA for IC Implementation, Circuit Design, and Process Technology

0.5

Technology generation (µm)

15

20

25

30

35

40

10

15

20

25

30

35

40

45
Gate delay Net RC / L

0.130.180.250.35

FIGURE 10.1 Interconnect and gate delay scaling trends.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 6

© 2006 by Taylor & Francis Group, LLC

● Early-mode timing constraints are designed to prevent a path from being too fast to be correctly cap-
tured by the capture clock. Unlike late-mode timing constraints, early-mode timing is always a con-
straint and never an objective. A single early-mode constraint violation means that the chip will not
function at any speed. Early-mode timing issues are difficult to estimate early in the design flow.
They generally must be analyzed and corrected after final clock routing is added to the design. At
this point, static timing can be used to verify hold tests to ensure that the final logic state analyzed
is stable before the capture clock fires. This testing must account for possible clock skew induced by
manufacturing variations. It is necessary to run static timing over multiple process corners, e.g., fast
wiring with slow logic, fast logic with slow wiring, to predict these cases correctly. Poor control of
clock overlap can also give rise to a large number of early-mode timing violations. Early-mode tim-
ing violations are removed by adding delay elements such as buffers to fast paths. By adding cir-
cuitry, early-mode constraints contend with capacity, power, and late-mode timing constraints.

10.1.2.4 Power Constraints/Objectives

Power dissipation can either be a constraint, i.e., the chip must consume no more than x Watts, or it can
be a design objective, i.e., the less power this chip uses, the longer the battery will last. As chip geometries
have scaled, total chip power has become an increasingly important design closure constraint. Power can
be divided into two types: active power and static power.

● Active power is dissipated through the charging and discharging of the capacitance of the switching
nodes. Active power is proportional to the sum of 1—

2FSCV 2 of all switching signals on a chip, where
F is the clock frequency, S the switching factor, i.e., the average fraction of clock cycles in which the
signal switches, C the total capacitive load presented by logic fanout and interconnect, and V the
supply voltage. Active power increases due to higher chip logic densities, increased switching speeds,
and a slowdown in voltage scaling due to limits on scaling gate oxide thickness. Active power can be
lowered by decreasing gate size, decreasing switched wire load, and decreasing switching frequency
or duty cycle via clock gating. Reducing gate size to reduce active power contends directly with per-
formance optimization, which gives rise to the essential power/performance trade-off.

● Static or leakage power is related to current that leaks through a device channel or gate even when it
is turned off. Leakage power is increasing relative to active power due to the use of smaller active
FET gate geometries and thinner FET gate. Leakage power is a function of supply voltage, temper-

density trends by technology node. Static power can be mitigated by substituting in high threshold
(High Vt) logic, by lowering supply voltage, or by removing power to inactive portions of the chip
via power gating. Using High Vt logic and lowering supply voltage contends directly with perform-
ance optimization.

In high-performance applications such as server microprocessors, power constraints are generally
imposed by the amount of heat that a particular chip, system, and package combination can remove
before the chip temperature rises too high to allow proper function. In low-performance applications
such as consumer products, factors such as battery life, packaging, and cooling expense are the major lim-
its. Missing either an active or static power constraint can necessitate costly redesign of chip, package, or
system. In the worst case, it can render a chip unusable in its intended application.

10.1.2.5 Signal Integrity Constraints

Signal Integrity constraints prevent chip function from being disrupted by electrical noise. Signal integrity
constraints include power integrity constraints and coupling constraints.

● Power integrity constraints are used to ensure that the chip power supply is robust enough to limit
unacceptable supply voltage variations. As chip logic elements switch, current is sourced through
the chip power routing. The current must either come from off-chip or from the reserve capacity
provided by on-chip capacitance provided by the diffusion structures and routing attached to the
power bus and any decoupling capacitors (DCaps), which are structures added to provide small
reservoirs of charge to smooth out switching transients. A switching event with net current I, which

Design Closure 10-7

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 7

© 2006 by Taylor & Francis Group, LLC

ature, device threshold voltage and logical state. Figure 10.2 shows the active and leakage power

cannot be supplied by local DCaps, induces a voltage drop ∆V � IR � L dI/dT, as it flows through
the resistance R and the inductance L of the power supply routing. These components are depicted

affected by power bus resistance and average current flow, steady-state AC voltage drop, which is
affected primarily by intra-cycle current variation and local decoupling capacitance, and switching
response which is affected primarily by the switching current variation and package inductance.
When added together, the voltage drops induced by each switching event lead to potentially large

bution of the average or steady-state voltage drop across a single, large ASIC calculated by IBM’s
ALSIM tool. The resulting voltage fluctuations cause time-varying delays across a chip. If large
enough, these delay variations lead to late- or early-mode timing violations. Power voltage tran-
sients can also introduce disruptive electrical noise into sensitive analog circuitry. The relative mag-
nitude of power voltage variations has increased as chip total power and operating frequency have
increased, and supply voltages have decreased. Power supply integrity can be improved by increas-
ing the wire width, package power/ground pin count, and via count used for power supply routing.
Transient power integrity can be further improved by the judicious use of DCaps. These optimiza-
tions contend with capacity and routability constraints.

● Coupling constraints are used to ensure that inter-signal coupling noise does not disrupt chip timing
or logical function. Noise is always a design constraint as even a single violation is sufficient to render
a chip inoperable. Coupling noise occurs when a voltage transition on a noisy aggressor wire causes
current to be injected into an adjacent sensitive victim wire through the mutual capacitance of the two
wires. The injected current, ∆I, is proportional to C dV/dT, where C is the mutual capacitance and
dV/dT the time rate of change of the voltage transition. If the coupled signal exceeds the logic thresh-
old on the victim wire, an incorrect logic value or glitch is induced in the victim circuit as shown in

If not modeled correctly, this variation in delay can cause unexpected variations in chip performance. If these
delay variations are large enough, they can lead to improper operation. Coupling has increased markedly with
increased switching speeds, decreased supply voltage, decreased inter-wire spacing, and increased wire aspect
ratios. Coupling can be reduced by segregating noisy and sensitive wiring, increasing inter-wire spacing, and,
in extreme cases, by adding shielding wires. All of these optimizations contend with the routability constraint.

10-8 EDA for IC Implementation, Circuit Design, and Process Technology

0.01

Lpoly (µm)

1E-5

0.0001

0.001

0.01

0.1

1

10

100

1000

Industry trends

Subthreshold power

density – room temp

Active power
density

Subthreshold power

 density - 100C

10.1

FIGURE 10.2 Active and static power trends.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 8

© 2006 by Taylor & Francis Group, LLC

in Figure 10.3. The voltage drop breaks down roughly into three components: IR drop, which is

variations in supply voltage both in space and time. Figure 10.4 shows a map of the spatial distri-

Figure 10.5. If the victim wire is transitioning during the coupling event, its delay is affected.

10.1.2.6 Reliability Constraints

Once the basic performance targets are met, we need to ensure that the chip will function properly
through its required working life. Reliability concerns are related to processes that may allow a chip to
function correctly immediately after manufacture but may cause the chip to malfunction at some later
point in time. In the best case, this type of unexpected chip failure may present a costly inconvenience to
the customer. In other, more mission-critical functions such as automotive, avionics, or security, the
result of a malfunction can be a risk to life. There are many reliability factors that can affect the long-term
operation of a chip. Most fit into one of the three categories: device wear-out constraints, interconnect
wear-out constraints, and transient disruption constraints.

Design Closure 10-9

Package inductance

Power bus resistance
Decoupling capacitance

Block 1 Block 2

Supply noise

FIGURE 10.3 Power bus voltage drop components.

FIGURE 10.4 Power supply voltage drop map.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 9

© 2006 by Taylor & Francis Group, LLC

● Device wear-out constraints relate to mechanisms that can cause a gradual shift of electrical char-
acteristics of a chip’s transistors over time. Two common concerns are hot carrier injection (HCI)
and negative bias threshold instability (NBTI). HCI occurs when electrons in the channel of a
transistor are accelerated by the high electric field found near the drain of devices, which are on or
switching. These highly energetic electrons are injected into the gate oxide where they create elec-
tron or hole traps. Over time these traps lead to charge build-up in the gate, which effectively
causes a threshold voltage shift for the device. HCI is accelerated for devices, which have high
applied gate voltages, high switching activity, and drive large loads. NBTI is similar in effect, but
does not require high electric fields. It affects both switching and nonswitching devices. NBTI is
accelerated by high operating temperatures and can be induced during burn-in test. The effect of
these threshold shifting mechanisms is increasing over time due to the use of thinner gate oxides
and lower threshold voltages required by scaling. Shifting the threshold of devices has a direct
effect on the delay through a device. Delay can either increase or decrease with time depending on
the nature of the injected charge and the type of device. In time, the performance shift may be
large enough to cause the chip to malfunction. Device wear-out can be minimized by using the
lowest switching voltage necessary and reducing load capacitance on the outputs of high-slew sig-
nals, both of which must be traded off against performance.

● Interconnect wear-out constraints relate to mechanisms that can cause a gradual shift in the electri-
cal characteristics of chip interconnect with time. The principal mechanism is electro-migration
(EM). EM occurs when ballistic collisions between energetic electrons and the metal atoms in the
interconnect cause the interconnect atoms to creep away from their original position. This move-
ment of metal can thin wires to the point that their resistance increases or that they fail completely.
Like device wear-out, EM-induced wire wear-out can affect delay to the point that the chip begins
to malfunction. In the limit, EM can cause wires to completely open, which clearly changes the
function of the chip. Electromigration is accelerated by increased current densities. Additionally, the
new low-permittivity dielectric materials introduced to help performance have inferior thermal
characteristics. The result is an increase in wire self-heating, which further accelerates EM. EM
problems can be mitigated by widening high-current wires and lowering the loads on high duty-
cycle signals. These mitigations contend slightly with both routability and performance constraints.

● Transient disruption constraints relate to mechanisms which cause a sudden failure of devices or
interconnect. The two most common mechanisms are electro-static discharge (ESD) and soft error

10-10 EDA for IC Implementation, Circuit Design, and Process Technology

1v

0v

1v

0v

1v

0v

Fast switching neighbor

“aggressor”

Coupled “victim” Output noise pulse

Coupling capacitance

FIGURE 10.5 Coupling-induced logic glitch.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 10

© 2006 by Taylor & Francis Group, LLC

upset (SEU). ESD occurs when unacceptably high voltage is inadvertently presented to chip struc-
tures. This can occur either due to induced charge build-up during manufacturing or a postmanu-
facture ESD event. Induced charge build-up can be caused by certain manufacturing processes
which involve high electric fields that can induce charge on electrically isolated structures such as
transistor gates. If too much charge is induced, the resultant electric field can damage sensitive gate
oxides. Induced charge ESD is mitigated by insuring that all gate inputs are tied to at least one dif-
fusion connection. This allows a leakage path to ground, which prevents build-up of dangerously
high fields. In some cases, this requires the addition of special floating gate contacts.
Postmanufacture ESD events occur when high voltages are inadvertently applied to the chip I/O
by improper handling, installation, or grounding of equipment and cables. When an ESD event
occurs, the gate of any devices connected to the transient high voltage is destroyed due to the high
field induced in its gate oxide. In some cases, the wiring that connects the pin to the device may
also be destroyed due to the induced transient currents. Postmanufacture ESD events can be min-
imized by proper chip handling and by the addition of ESD diodes on all chip I/Os. These diodes
protect chip I/O by shunting high-voltage transients to ground.
Soft error upsets are recoverable events caused by high-energy charged particles which either orig-
inate from outer space or from nearby radioactive materials. The carriers induced by the charged
particle as it travels through the silicon substrate of the chip can disrupt the logic state of sensitive
storage elements. The amount of charge required to upset a logic gate is dependent on its critical
charge or Qcrit. As device structures shrink, the amount of charge required to cause logic upset is
decreasing. SEU is currently a concern for memory arrays and dynamic logic, though some pro-
jections show that standard logic latch structures might also soon be susceptible to particle-
induced soft errors. SEU is best addressed at the architecture level through the addition of logical
redundancy or error-correction logic, which is not a design closure step per se.

10.1.2.7 Yield Constraints

For all its sophistication, semiconductor manufacturing remains an inexact science. Random defects and
parametric variations can be introduced at almost any step of manufacturing which can cause a chip not
to function as intended. The more the number of chips affected by manufacturing errors, the more the
chips that must be manufactured to guarantee a sufficient number of working chips. Mis-predicting yield
can require costly additional manufacturing, expensive delays, and possible product supply problems. In
this way, yield might be considered a cost-oriented design constraint. In many cases, though, maximizing
yield is considered an economic design objective. The two types of yield constraints that must be consid-
ered during design closure are defect-limited yield and circuit-limited yield:

● Defect-limited yield constraints relate to a product that is rendered faulty during manufacturing
due to foreign material defects or printability defects. Foreign material defects result either when
small bits of material accidentally fall on the chip surface or the mask reticule and interfere with
the proper creation of a chip structure. Printability defects result when local geometry, chip topog-
raphy, optical interference, or other manufacturing processes prevent correct printing of a desired
width or spacing. These defects may take the form of unintended shorts between adjacent struc-
tures, unexpected holes in insulating materials such as device gates, or unintended opens in a con-
ductor. Defect-limited yield can be improved by decreasing the amount of critical area, i.e., the
inter-geometry spacing which is less than or equal to the size of likely defects. Critical area can be
minimized by using relaxed or recommended design rules rather than minimum design rules wher-
ever density will allow. This additional spacing contends with capacity and routability constraints.

● Circuit-limited yield constraints relate to yield loss due to the effect of manufacturing variations on
chip performance. Despite advances in every phase of processing, there remain uncontrollable vari-
ations in the properties of the dimensions and materials of the finished product. These small varia-
tions cause identically designed devices or wires to have significantly different electrical
characteristics. The most-studied variation is across chip line-width variation (ACLV), which creates

Design Closure 10-11

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 11

© 2006 by Taylor & Francis Group, LLC

perturbations in the critical gate length of devices. ACLV has many causes including uneven etching
due to local shape density variations as well as lithographic distortions caused by optical interactions
between shape regions. As interconnect dimensions have shrunk, variations in wire delay are becom-
ing equally significant. Recent data showing interconnect delay on long, unbuffered nets as high as
�60% have been reported [18]. Large amounts of this variation are introduced by both lithographic
distortion and issues related to etch rate variations in processing steps such as chemical mechanical
polishing (CMP). Many trends are contributing to the growing concern on parametric yield includ-
ing increasingly deep subresolution lithography and increasingly complex manufacturing processes.
In addition, decreased device and interconnect dimensions contribute to the relative impact of vari-
ation. For example, decreased device channel dimensions give rise to micro-implant dopant varia-
tion in which the distribution of a countable number of implanted dopant ions creates small
differences in device thresholds. Similarly, gate oxides are approaching dimensions of only ten or so
atomic layers. In such small configurations, a change of just one atomic layer can induce a quantized
threshold voltage shift of nearly 10% as shown in Figure 10.6.
These parametric variations in turn give rise to statistical variations in design performance character-
istics such as delay and leakage power. Figure 10.7 shows a typical manufacturing distribution of a
large sample of performance screen ring oscillator (PSRO) circuits used to characterize the performance
of a microprocessor. In the example, the PSRO circuits in the left-most tail of the distribution repre-

10-12 EDA for IC Implementation, Circuit Design, and Process Technology

FIGURE 10.6 Gate oxide thickness variation.

25

20

15

10

5

0
8 10 12 18

Delay/stage

14 16

PSRO distributions

P
er

ce
nt

Too leaky Too slow

CLY

FIGURE 10.7 Ring oscillator performance distributions.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 12

© 2006 by Taylor & Francis Group, LLC

sent the fastest circuits, but these same circuits violate the leakage power constraint and must be dis-
carded. Similarly, the PSRO circuits on the right tail have low leakage, but they fail to meet the mini-
mum late-mode timing constraint and must also be scrapped. The portion of the distribution between
these two bounds is the circuit-limited yield.

These variations may be observable both when measuring the same device on different chips (inter-die) or
between identical devices on the same chip (intra-die). Both inter-die and intra-die variations cause the actual
performance of a given chip to deviate from its intended value. For example, Figure 10.8 illustrates inter-die
variations as measured using identical ring oscillators placed on each die on a 200-mm silicon wafer. Areas of
identical shading have identical frequency measurements. The total range of variation is 30%.

Parametric yield is emerging as a design closure constraint for structured logic. We will discuss how
this will affect the design closure flow in our discussion of the future of design closure in Section 10.3.

10.2 Current Practice

In this section, we will examine the design closure implications of each phase of the ASIC design flow

approximations that are made, and the trade-offs that can be made between constraints. We will also
explore the interactions — both forward and backward — between the phases.

10.2.1 Concept Phase

The concept phase concerns itself with setting the overall scope of a chip project. During the concept
phase, many aspects of the design are estimated: area, operating frequencies, voltages, power dissipation,
I/O count, wiring uplift to area, yield percentages, and requirements for special processing (such as

Design Closure 10-13

FIGURE 10.8 Wafer map of inter-die parametric variations.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 13

© 2006 by Taylor & Francis Group, LLC

(Figure 10.9). At each phase we will examine the design constraints that are addressed, estimations and

Embedded Dynamic RAM, analog circuits, or multiple threshold voltage [Vt] logic). All of these factors
are estimated and combined into a business case: the chip cost to manufacture, its yield, its design time,
its design cost, and its market price. Mis-estimating any of these factors can significantly impact the busi-
ness case — sometimes to the point of jeopardizing the entire project.

Many trade-offs are made during this phase. The design is still at an abstract state and as a result chang-
ing significant aspects is easy to do: changing die sizes, making the power design more robust, adding or
deleting RAMs or functional units to trade off power for speed, speed for area, and area for design time.
The challenge is to estimate characteristics of the design as accurately as possible with only an inexact
notion of what the design will eventually look like. The aspects of the design that need to be estimated are:

● Amount of logic : This is estimated based on a number of factors, including the size requirements
of large reused components, e.g., memory, embedded processors, I/O circuitry, arithmetic func-
tions, and other data-path functions. The amount of small gate-level glue or dust logic is estimated
by comparing with past designs, experience, and technology insights. From the logic count we can
accurately calculate required active logic area.

● Die size : This is derived from active logic by adding extra space for routing. First, a target place-
ment density is chosen. Then an uplift factor based on empirical rules of achievable wireability is

resulting value may be adjusted up based on the type of design, for example, a densely intercon-
nected structure such as a cross-bar switch will require additional routing area. Finally, the density
can be adjusted up or down by trading off design time. Higher densities can be achieved with extra

example, the die size of an extremely high pin-count design with simple logic functionality will be
defined by the I/O count.

● Defect-limited yield: This factor is calculated from logic count and die size. Yield prediction is based

technology information.

10-14 EDA for IC Implementation, Circuit Design, and Process Technology

Concept phase

Placement

Synthesis

Logic/placement
Refinement

Clock insertion

Wiring

Post wiring opt
& signoff

Logic design Floorplanning

FIGURE 10.9 The design closure flow.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 14

© 2006 by Taylor & Francis Group, LLC

applied to the chosen placement density. A typical wireability curve is shown in Figure 10.10. This

effort in manual placement. Finally the limiting factor in die size may be the number of I/Os, for

on empirical tables as in Figure 10.11, which take into consideration logic density, die size, and

● Performance: This is estimated by examining factors such as maximum logical path length, which
is in itself derived in the absence of an actual design by experience with similar designs, informa-
tion about technology parameters, a priori knowledge of the performance of embedded IPs,
required I/O rates, estimated interconnect delays based on projected die size, voltage, and power
limitations. Performance is a strong function of voltage, and as such the voltage is set to achieve
performance targets defined by system or marketing constraints.

● Power : Active power is estimated based on performance, voltage, technology parameters, and
empirical information about switching factors. Leakage power is estimated based on logic count,
technology parameters, and voltage. There are significant architectural levers that can affect the
power, for example, voltage or frequency scaling can be specified and significant sub-systems can
be identified as candidates for clock gating.

● Package: Once the power is known, the package can be determined — generally the cheapest pack-
age that supports the frequency of operation, power dissipation, I/O requirements, and mechani-
cal constraints.

● Unit cost: This is derived from yield, die size, and package calculations. Projected volumes from
marketing are also a factor in unit-cost calculations.

Design Closure 10-15

0

20

40

60

80

100

0 100 200 300 400

Area (mm2)

W
ir

ea
b

ili
ty

 (
%

)

FIGURE 10.10 Chip wireability curve.

0 1000 2000 3000 4000

Equivalent ASIC gates (Kckts)

W
F

T
 y

ie
ld

ASIC 0.35 µm

ASIC 0.6 µm

ASIC 0.5 µm

Custom 0.4 µm

Custom 0.35 µm

Custom 0.25 µm

ASIC 0.25 µm

1Q00 6SF

BIFET4S

Yield vs. ASIC equivalent Kcircuits

FIGURE 10.11 Yield vs. gate count plot.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 15

© 2006 by Taylor & Francis Group, LLC

In reality, the calculations are more complicated than this linear list implies. There are many trade-offs
that are made, for example, architectural accommodations that favor performance at the expense of
power and die size, such as adding additional arithmetic units to improve throughput. There are trade-
offs balancing areas for yield by adding redundancy, such as extra word lines on array structures or area
for reliability trade-offs by adding error-correction logic. Design effort is balanced against unit cost, or
time to market, or performance, or power. The calculations outlined above are made and revisited as dif-
ferent trade-off decisions are made.

Platform-based design, where a design is made up of one or more reused large components including
processors, integer, and floating-point arithmetic units, digital signal processors, memories, etc., allows
for a much higher degree of accuracy of these early estimates.

After all the trade-offs have been made, the product of the concept phase is an architectural specification
of the chip and a set of design constraints. These are fed forward to the floorplan and logic design phases.

10.2.2 Logic Design

The logic design phase involves implementing the register transfer logic (RTL) description of the chip
based on the concept phase architectural spec. First, the specification is mapped into a hierarchical RTL
structure in as clear and concise a fashion as possible and the details are filled in. Then the RTL is simu-
lated against a set of test cases to ensure compliance with the specs. Because logic design and floorplan-
ning are so intimately linked, the two steps generally proceed in parallel with each other.

There are three main design closure aspects that are dealt with during the logic design phase — per-
formance, power, and routability. Because the design is so easy to change at this phase, mitigations of
problems in these areas are easy to implement. However, it is difficult to measure any of these parameters
directly from the RTL, which has not yet been mapped to gates, and is not yet placed or routed. There are
some virtual prototyping tools that can provide quick but low-accuracy measurements based on either
table-based analysis of the RTL or a quick-and-dirty encapsulated pass through synthesis, placement, and
routing. In general, insight into a design’s performance, power consumption, and routability is fed back
to this phase from subsequent phases such as logic synthesis and placement.

The basic performance-improving RTL change involves identifying a set of critical paths, and modify-
ing the RTL in some way to reduce logic depth. Reducing the amount of logic in a path is done by ana-
lyzing the logical content of the path and identifying portions that are not required. Owing to the
hierarchical nature of design, there are often logical redundancies that can be removed by restructuring
the RTL hierarchy. It is also possible to improve performance via path balancing or retiming; moving logic
from one side of a long path’s source or capture latches or flip-flops to the other.

There is also significant leverage for mitigation of power issues at the RTL . Chip logic can be modi-
fied to use clock gating which saves active power by shutting off clock switching to idle portions of logic
or power gating, which saves both active and static power by switching off power to unused portions of
the design. Both clock and power gating require careful attention to ensure that gating signals are calcu-
lated correctly and arrive in time to allow logic to stabilize as it comes out of its idle state.

In addition to these logical transformations, power/performance trade-offs can be made by using fre-
quency scaling or voltage scaling. In frequency scaling, portions of the design that can run more slowly are
segregated into more power-efficient, lower-frequency clock domains while more performance-critical logic
is assigned to higher-frequency, and therefore higher power, domains. Voltage islands allow a similar
power/performance trade-off by assigning less performance-critical logic to a lower voltage “island.” Using
a lower supply voltage saves both active and static power at the cost of additional delay. Voltage islands also
require the addition of level shifting logic which must be added to allow logic level translation between cir-
cuits running at different voltages. The granularity of voltage islands need to be chosen carefully to ensure
that the benefits of their implementation outweigh their performance, area, and power overhead.

Routability can also be optimized during the logic design phase by identifying congested regions and
restructuring the RTL hierarchy such that either the congested regions are all in the same hierarchically
designed unit allowing for better logical optimization and placement, or in extreme cases the RTL can be
hand-instantiated and hand-placed. This is particularly useful in regular dataflow or “bit-stacked” logic.

10-16 EDA for IC Implementation, Circuit Design, and Process Technology

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 16

© 2006 by Taylor & Francis Group, LLC

Owing to the enormous amount of simulation time required to ensure logical correctness, logic design
is the most time-consuming phase of the design closure flow, and it happens in parallel with the rest of
the flow. At regular intervals, the RTL is brought into a consistent state and the rest of the design closure
flow is launched. The purpose of these trial runs is to give engineers responsible for subsequent steps
opportunities to tune their recipes, and provide feedback to the logic designers and floorplanners about
factors such as late paths and poor structure.

The product of this phase is a hierarchical RTL design and amended constraints. These are fed forward
to the final stages of floorplanning and the logic synthesis phase.

10.2.3 Floorplanning

The floorplanning phase prepares a design for the placement of the standard cell logic. Owing to their
tight linkage, this phase generally proceeds in parallel with the logic design phase. Design work at this
phase includes placing large objects, creating power grids and some portions of the clock distribution
logic, placing I/O cells and pads, and wiring the cells to the pads, and creating circuit rows in the remain-
ing areas for the placement of the “dust logic.” Large objects consist of I/O cells, Random Access Memory
(RAMs), Content Addressable Memory (CAMs), register arrays, large clock buffers, DCaps, and analog
circuits such as phase lock loops. In a hierarchical design, subcell pin locations are assigned as part of the
floorplan, as are restricted placement areas. This step also calculates rough load values for global nets,
which can be used to guide logic synthesis. Figure 10.12 shows the floorplan of a large ASIC design.

By establishing large object and I/O placement, floorplanning has a large impact on interconnect delay on
critical paths. As interconnect scaling continues to worsen, the importance of floorplanning is increasing. The
major design closure aspects that are treated in this phase are wireability, performance, power-supply
integrity, and power. The initial large-object placement is guided by insights about their interconnectivity and
expected participation in critical paths. The floorplan is refined based on feedback from subsequent steps, for

Design Closure 10-17

FIGURE 10.12 ASIC floorplan showing large objects.

CRC_7924_CH010.qxd 2/20/2006 4:34 PM Page 17

© 2006 by Taylor & Francis Group, LLC

example, insight into critical performance and congestion issues garnered from postplacement-phase global
wiring and timing runs.

Wireability is the primary design closure consideration dealt with during the floorplanning phase. The
placement of the large objects significantly affects the eventual congestion of the design. Sets of large objects
with a high degree of interconnection are placed close together, with central areas of reduced placement den-
sity defined to accommodate the high wiring load — the classic example of this is a cross-bar switch. Initially,
the large objects are placed based on a priori knowledge of design interconnectivity, or from insights about
connectivity garnered from floorplanning tools. There are a number of such tools that can provide assistance,
ranging from the simplest that give an abstract view of the large objects, the dust logic, and their intercon-
nectivity as in Figure 10.13, to virtual prototyping tools that do quick low-accuracy synthesis, placement, and
routing and give almost real-time feedback. Later in the design closure flow, feedback from the actual place-
ment and routing steps is used to adjust the location of the large objects to reduce congestion.

Performance problems are also addressed during the floorplanning phase. The key action is to place large
objects that have timing-critical connections close together. Initially this is done based on a priori knowl-
edge of the timing paths in the design. The floorplan is adjusted as either low-accuracy timing feedback from
virtual prototyping tools, or higher accuracy feedback from timing runs performed after placement and
global wiring become available. Floorplanning insights from these sources are used to drive restructuring of
the RTL back into the logic design phase to keep clock domains and critical logic closer together.

Power supply integrity can also be addressed during the floorplanning phase. DCaps are in general
placed to provide power supply isolation or specifically around particularly noisy elements, such as CAMs
and large clock drivers. Early power supply design is based on factors such as the location of chip power
pins, power requirements of large fixed objects, expected dust-logic densities, and locations and sizes of
voltage islands. Postplacement feedback is used to augment the power-supply design if necessary. If power
density is estimated to be too high in certain areas, the placement density in these areas may be reduced.

Power is addressed indirectly during floorplanning. The most important power optimization at this
stage is the planning of the voltage islands introduced in the logic design section. Each voltage island
requires the design and analysis of its own separate power supply and power pin routing.

10-18 EDA for IC Implementation, Circuit Design, and Process Technology

FIGURE 10.13 Interconnectivity and logic size visualization tool.

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 18

© 2006 by Taylor & Francis Group, LLC

During the floorplanning phase, there are a number of trade-offs that are made. Addition of DCaps or
lowered placement density regions can cause extra wire length, which impacts performance. Overdesign
in the power distribution can significantly affect routability, which again can impact performance.
Finding the right design points among all these factors can often take a number of iterations between
floorplanning, logic design, and the subsequent design closure flow steps.

Handoff from the floorplanning phase is a detailed floorplan, including large object placements, power
grids, move bounds, pin assignments, circuit rows, I/O wiring, and amended constraints. Handoff from
here goes to placement.

10.2.4 Logic Synthesis

The purpose of the logic synthesis step is to map the RTL description of the design to a netlist rendered
in library elements of the chosen technology meeting the performance targets with the fewest number of
gates.‡ The main design closure issues addressed in the phase are performance, power, and area. First, the
RTL is compiled into a technology independent netlist format. Then, this netlist is subjected to logical
analysis to identify and remove redundancies and balance cones of logic. Next, the optimized technology
independent netlist is mapped into technology-dependent gates, and finally, the technology dependent
netlist is timed and critical timing paths are corrected.

Because of the relative ease of running logic synthesis with different optimization targets, designers use
it to explore the design space and make the best performance, power, and area trade-offs for their design.
In order to achieve the area, power, and performance goals, logic synthesis applies a number of techniques
to the technology-mapped netlist. In order to do this, these factors need to be measured: logic area is
measured by adding up the sizes of the various gates; power is assumed to be a function of gate size —
reducing gate sizes reduces power. Measuring performance is more complicated, and the logic synthesis
is the first phase to rely heavily on static timing analysis. Since the placement of the dust logic has yet to
be defined, wire-load models, usually a function of fanout, chip size, and technology, are used to estimate
parasitic effects. There are subtle interactions between the wire-load-based parasitic estimation of the
logic synthesis phase and subsequent placement and logic/placement refinement phases. If the wire-load
models overestimate loading, then the power levels in the gates in the resulting design passed to place-
ment will be excessively large, with no real way to recover the over-design. However, if the parasitic esti-
mation is optimistic, then optimization in this phase will not focus on the correct problems. In general,
erring on the side of optimism produces better results, especially with the advent of truly effective timing
driven placement flows, to the point that many chips are now synthesized with zero-wire-load models for
local signals, and load estimates for global signals derived from the floorplanning step. Since the clock dis-
tribution circuitry has yet to be added, idealized clock arrival times are applied to launch and capture
clocks at latches. This step must also anticipate the impact of buffer insertion that will be performed dur-
ing and after placement to prevent interconnect delay from being over estimated.

There are a number of environmental factors that need to be set in synthesis to guide static timing,
such as voltage and temperature, based on information from the concept phase, guard banded for man-
ufacturing variation and reliability factors such as HCI and NBTI. Performance is measured using incre-
mental static timing analysis, and transforms that trade-off area, performance, and power applied. The
basic approach to easing power and area problems is reducing gate size via a global repowering step,
where all the gate sizes in the design are determined simultaneously. Then, critical paths are individually
timing-corrected using a slack-take-down approach — an ordered list of the critical paths is created, the
top path has one or more timing optimization transforms applied to it which moves the path “toward the
good” in the critical path list, and the process loops back to creating a new ordered list of bad paths, etc.

This slack-take-down is repeated until all paths meet the performance constraint or there are no more
optimizations that can be applied to the top critical path. The slack-take-down optimization scenario is

Design Closure 10-19

‡

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 19

© 2006 by Taylor & Francis Group, LLC

(see Figure 10.14).

For a full description of logic synthesis techniques see Chapter 2, Volume 2 of this handbook.

used extensively in the subsequent design closure phases. A short list of some of these optimizations used
to improve timing on the critical path includes:

● retiming where logic is moved across latch boundaries to balance the amount of logic between
latches;

● rewiring where timing critical signals are moved “later,” i.e., further toward the sinks in a cone of
logic to reduce the overall path delay;

● refactoring where a group of logic is mapped back into technology independent form and then
resynthesized to preferentially shorten the logic length of a critical path;

● cloning where a section of logic is replicated to allow logical fan-out to be divided over more driv-
ers; and

● repowering where a logic function is replaced by a similar function with higher drive strength
(repowering used the other way, to reduce gate sizes, is the work-horse transform for both area
reduction and power mitigation in the logic synthesis phase).

The first time that accurate gate count and timing are available in the logic synthesis phase is after tech-
nology mapping. Previous phases have all relied on gate-count and timing estimates. Surprises encoun-
tered when these numbers become available cause looping back to the floorplanning phase to reallocate
space due to excess logic, or to reposition floorplanned elements for performance reasons, or go back to
the logic design phase for various area and performance mitigations available in that phase.

The output of the logic synthesis phase is an area, performance, and power optimized technology-mapped
netlist. This is combined with the floorplan and the most recent updated list of constraints and passed on to
the placement phase.

10.2.5 Placement

The purpose of the placement phase is to assign locations to the logic that shortens timing-critical wires and
minimizes wiring congestion.§

Until recently, placers solved congestion and performance problems by creating a minimum-wire-length
placement — both min-cut or quadrisection placement techniques provide good results. As interconnect
delay has become more dominant, it has become necessary to make the placement flow more timing
driven. An effective timing-driven placement flow involves two placement passes: global placement and detail

10-20 EDA for IC Implementation, Circuit Design, and Process Technology

 Worst slack = −0.98
 Number of negative slack = 10
 Total tests = 11132

 |
−1.20 |
−1.00 | *
−0.80 |
−0.60 | *
−0.40 | *
−0.20 |
 0.00 |
 0.20 | *****
 0.40 | ******
 0.60 | *********
 0.80 | ***
 −−−−+−−−+−−−−+
 4 8 100

Freq

Cumu1

%

Cum%

0
2
0
4
4
0
0

479
607
814
292

0
2
2
6

10
10
10

489
1096
1910
2202

0.00
0.02
0.00
0.04
0.04
0.00
0.00
4.30
5.45
7.31
2.62

0.00
0.02
0.02
0.05
0.09
0.09
0.09
4.39
9.85

17.16
19.78

FIGURE 10.14 Timing-slack histogram.

§

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 20

© 2006 by Taylor & Francis Group, LLC

Figure 10.15 shows the placement of a small portion of a larger ASIC design.

For a full description of placement techniques see [3].

placement. Before the global placement, the design is preprocessed to remove artifacts such as buffers on
large-fanout nets, repeaters on long nets, scan and clock connections, which may bias the placement
improperly. Then, a timing-independent congestion-mitigation placement is run. Next, a series of timing
optimizations including gate sizing, buffer tree insertion and long wire buffering is performed. These opti-
mizations require only analysis of slew and capacitance violations. Resized gates and new buffers and
repeaters are added to the design without regard to legal placement constraints. The design is then timed
using ideal clocks and interconnect delay calculated from Steiner estimates of wire topology. The timing
problems that are identified are the “hard” problems that need to be fixed by the timing-driven detail place-
ment. A set of attraction factors or net weights are then calculated, that bias the placement engine to move
timing-critical objects closer together. These net weights are used to guide a second placement step on the
optimized design. Finally, scans are reconnected and N-well contacts are added.

A key point in this timing-driven flow is the stability of the placement algorithm — a small change in
the input to the placement engine, such as adding attractions between a small percentage of the objects
being placed, must generate a small change in the result. If this is not the case, although the timing-driven
placement will have pulled the timing-critical objects from the first placement closer together, a com-
pletely new set of timing problems will manifest. This same stability can help limit the disruption caused
by late engineering changes (EC) to chip logic.

Another key consideration in placement is design hierarchy. All of the previous design steps, i.e., con-
cept, logic design, floorplanning, and logic synthesis, rely on hierarchy to limit problem complexity. At
the placement stage it is possible to either keep the design hierarchy set at logic design, or flatten it. If the
hierarchy is kept, each hierarchical unit is placed separately, and then the units are combined to form the
chip. In flat design the borders between some or all logical hierarchies are dissolved and the flattened logic
is placed together. Generally, flattening a design allows significantly better optimization of performance
and power during placement and subsequent design steps and requires less manual effort. On the other
hand, retaining all or some of the hierarchy allows better parallelization of design effort, easier reuse of
design, and faster incorporation of design changes. In addition, hierarchy is a natural way to keep the
highest frequency portions of a design physically compact, which can help reduce clock skew. It should
be noted that some flat placement flows provide some form of move bounds mechanism to manage the

Design Closure 10-21

FIGURE 10.15 Logic placement.

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 21

© 2006 by Taylor & Francis Group, LLC

proximity of the most performance-critical circuits. The debate on advantages and disadvantages of flat
vs. hierarchy continues in the industry and is worthy of its own chapter.

The output from the placement phase is a placed, sized netlist including buffers, repeaters, and N-well
contacts which is passed to the logic/placement refinement phase.

10.2.6 Logic/Placement Refinement

The purpose of the logic/placement refinement phase is to apply placement, timing and congestion aware
transformations to the logic to correct performance and power problems left over from the placement
phase. The timing-driven flow outlined in the placement phase is excellent at localizing large numbers of
gates to solve general performance and routability problems. However, upon the exit from that phase,
there are performance-critical paths that need to be fixed individually. In addition, local power and
routability issues are considered while making these optimizations. This phase has two steps. First, elec-
trical problems such as slew limit exceptions at signal sink pins and capacitance limit exceptions at out-
put pins are corrected. These problems are fixed by gate sizing, buffering of large fan-out nets, and
repeater insertion. Second, the design is timed and optimized using the slack-take-down approach.

The timing environment for the second step includes using ideal clocks, worst-case timing rules, and
parasitics extracted from Steiner wires. Also, this is the first place in the design closure flow where useful
information about spatially dependent power-supply IR drop is available — this information is applied
to the timing model where it is used to adjust individual gate delays. Feedback from this analysis can be
used to guide redesign of the power supply routing.

The logic optimizations used in the second step are similar to the timing correction transforms men-
tioned in the logic synthesis phase; here they have been augmented to also consider assignment of loca-
tions to changed gates, impact to placement density, and wiring congestion. When logic is modified at
this step, its placement must be legalized to a legitimate nonoverlapping placement site. This generally
involves moving nearby logic as well, which can induce new timing or congestion constraint violations.
These new violations are queued to be optimized. The step is complete when no more resolvable viola-
tions exist. An important part of this phase is the tools infrastructure that allows for the incremental
analysis of timing and congestion caused by simultaneous changes to the logical netlist and the placement
[15]. As the placement changes, previously calculated interconnects delays are invalidated, and when new
timing values are requested, these values are recalculated using new Steiner estimates of routing topology.
To measure congestion, an incrementally maintained probabilistic congestion map is used.

Routability can be affected in a number of different ways in this phase. Congestion information is used
to assign lower placement densities in overly congested regions. As transforms are applied and logic
moves, it avoids these low-density regions, mitigating congestion. This can impact timing in that gates
that cannot be placed in their optimal locations due to placement density constraints, are placed further
away. Another method of congestion mitigation is via congestion avoidance buffer placement, guiding the

shows a postplacement chip routability map.
Power and area can be recovered at this stage with the application of gate resizing. Despite the fact that

the bulk placement is already done, reducing the gate sizes wherever possible provides for additional space
for subsequent changes and additions, and reduced power. Also, at this point there is enough accuracy in
the timing to do mixed threshold logic optimization. Mixed threshold logic gates have the same logical func-
tion and footprint of their standard threshold counterparts. They differ in their use of high or low thresh-
old transistors. High threshold logic can be used to reduce static power at the cost of increased delay —
off-critical-path standard-threshold-voltage gates can be replaced with their high-threshold-voltage equiv-
alents. These substitutions are done in a “least impact to timing” fashion, where the set of possible swaps
is generated, and the swap that degrades the overall timing of the chip the least is chosen. Then the set of
possible swaps is regenerated based on the new design and the function is repeated until there are no more
swaps that meet the criticality-plus-guardband specification. In contrast, low threshold logic can be used

10-22 EDA for IC Implementation, Circuit Design, and Process Technology

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 22

© 2006 by Taylor & Francis Group, LLC

routes that long nets take by placing the repeaters along those nets in less-congested regions. Figure 10.16

to decrease path delay on critical paths at the cost of increased power. Figure 10.17 shows a delay

comparison between low and standard threshold logic. These substitutions are done generally by sequen-
tially substituting logic on the most critical paths until all timing violations are resolved or until the
amount of low threshold logic exceeds some static power-limited threshold. Low-Vt substitutions can be
done at this phase or after clocking when more timing accuracy is available. Note that the introduction of
multiple threshold voltages has two main costs: the first is an additional mask per threshold voltage, and
the second is timing complexity associated with threshold-voltage mis-track.

The product of this phase is a timing-closed legally placed layout, which is passed to the introduction-of-
clocks phase.

10.2.7 Introduction of Clocks

the clock distribution logic of a large ASIC design. By this phase, the amount of design optimization that
can be accomplished is growing more limited. The main design closure issues dealt with in this phase are
performance, signal integrity, manufacturability, and power supply integrity. The first step in this phase
is the clustering of latches and the placement of the first-stage clock buffers to drive those clusters. Then,
the first-stage buffers are clustered and the process repeats recursively. The clock buffers are placed with
priority in the dust-logic regions, which causes dust logic to be moved out from under the buffers. After
the clock buffers have been placed, the clock wires are inserted into the design.

Managing skew in the clock trees is critically important. Any unplanned skew is deducted directly from
the cycle time. The buffers and wires in the clock distribution logic are carefully designed to provide as lit-
tle unplanned skew as possible. To provide low skew, a number of different clock topologies can be used,
including spines, H-trees, and grids. For many years zero skew was the optimization goal of clock design. In
a zero-skew clock, the clock signal arrives at every latch in a clock domain at precisely the same moment.
Recently, flows have begun using intentional or useful skew to further improve performance. By advancing
or delaying clocks to latches on the critical path where there is a significant difference between the slack of
the data-input and data-output signal, the cycle time of the design can be improved. Flow-based algorithms
are used to recalculate the useful skew targets for all the critical latches in the design. Implementation of a

Design Closure 10-23

FIGURE 10.16 Chip routability map.

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 23

© 2006 by Taylor & Francis Group, LLC

This phase inserts clock buffers and wires to implement the clock distribution logic. Figure 10.18 shows

skew schedule is done by clustering latches with similar skew targets, and delaying clock arrival times to them
by the addition of delay gates or extra wires. Calculating the skew schedule and then implementing it in this
phase can yield a significant cycle-time improvement. However, if this skew-schedule is fed back to the
logic-synthesis/placement/refinement phases, further gains in both performance and area can be realized.

Optimizing the clock for power is an important task, because a significant portion of a chip’s active
power is dissipated in the clock logic and routing. Clock buffers are tuned to ensure that the minimum
gate size is used to provide for clock slew and latency requirements. Since most clock power is dissipated

10-24 EDA for IC Implementation, Circuit Design, and Process Technology

0.7 0.8 0.9 1.0 1.1 1.2 1.3

Voltage (Vdd)

0

5

10

15

20

25

30

D
el

ay
 (

ps
)

Std. Vt Low Vt

FIGURE 10.17 Effect of low threshold logic on delay.

FIGURE 10.18 ASIC clock plan.

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 24

© 2006 by Taylor & Francis Group, LLC

in the last stage or leaves of the clock tree, particular care is applied to minimize leaf level clock wire
length. There are also interesting power trade-offs to be made around the way clock gating is handled in
a clock tree. Moving clock-gates as close to the root of the clock trees as possible allows for the greatest
amount of the clock tree to be turned off. However, there are generally both gated and nongated versions
of the same clock required. The farther up the clock tree the gates are moved, the greater the amount of
the design that must be spanned by both trees, which increases the total capacitance of the clock tree. At
some point, the added power savings of moving the clock further toward the root is offset by the extra
power burned in the additional capacitance of the second clock tree.

Transitions on clock wires have crisp edge rates, and as a result can cause coupling noise to adjacent
wires. In addition, sequential elements can be susceptible to noise on their clock inputs. As a result, clock
wires are sometimes shielded with parallel wires or given nonminimum spacing from adjacent wires to
protect against coupling noise and to reduce signal dependent clock jitter. The switching of high-power
clock buffers can also introduce significant power supply noise. To combat this, it is a good practice to
surround main clock buffers with a large number of DCaps.

As manufacturing variation has become worse, it has become increasingly important to do variation
aware clocking. Variation aware clocking techniques include the use of matched clock buffers, the use of
wider metal lines, and preferential use of thicker wiring layers. In sensitive cases, it is necessary to per-
fectly match the order of the layer and via usage of all paths to skew-sensitive latches. It is also helpful to
group latches which share critical timing paths on to the same branches of a clock tree. Timing can then
use common path pessimism removal (CPPR) to account for the improved skew tolerance derived from the
shared portion of the clock tree.

The output of this phase is a fully placed, presumably routable layout with fully instantiated and routed
clock trees. This is passed to the postclocking optimizations phase.

10.2.8 Postclocking Optimizations

The purpose of this phase is to clean up the performance problems caused by the introduction of the
clocks. There are two factors which drive the performance to degrade. First, the clock distribution logic
can now be timed fully using 2.5D or 3D extractions of the real clock wires. Up until this point, all tim-
ing has been done with idealized clocks. If the idealized clocks were assigned properly with guardbands
for skew, the introduction of the real clocks is fairly painless — only a few problems surface. The second
factor that drives the performance to change is the replacement of the logic under the clock buffers —
when the clock buffers are placed in the design, other logic is moved out from underneath them. The per-
formance problems introduced by these two factors are fixed by applying the same timing and placement
aware transforms that are applied in the logic/placement refinement phase.

In addition to fixing the performance problems caused by the introduction of the clocks, the added
accuracy of timing the real clock distribution logic in this phase allows for the correction of hold-time
problems. The workhorse hold-time fix is the introduction of delay gates between the launch and capture
latches. Sometimes the launch and capture clocks can be de-overlapped to eliminate hold-time violations.
Because this involves reworking the clock distribution logic, this is usually the option of choice only when
a large number of hold-time violations can be eliminated with a single change.

To analyze properly timing problems at this stage, and to ensure that any fixes inserted do not break other
timing paths, timing must be run on multiple timing “corners” simultaneously. The four standard corners
are: slow-process/worst-case-voltage-and-temperature, slow-process/best-case, fast-process/worst-case, and
fast-process/best-case. This requirement for multiple simultaneous timing runs further complicates the
infrastructure requirements of the design-closure tool flow. As variation effects become more pronounced,
this set of corners must be extended to include the possibility of process mis-tracking between device types
and interconnect layer characteristics. Recent work in variation-aware and statistical static timing analysis
provides much of the benefit of exhaustive corner analysis at much lower cost in tool run time [18].

Finally, in preparation for inevitable engineering changes, all empty spaces in the dust-logic regions of
the chip are filled with gate array-style “filler cells.” These cells provide unused transistors, which can be

Design Closure 10-25

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 25

© 2006 by Taylor & Francis Group, LLC

configured into logic gates by customizing one or more wiring layers. This technique can be used to
implement emergency fixes for design problems found late in the flow or after hardware has been built.
It is often possible to provide a patch to a design by rebuilding only one or two mask levels.

The output of the postclocking optimizations phase is a timing-closed clock instantiated presumably
routable netlist. This is passed to the routing phase.

10.2.9 Routing

The purpose of the routing phase is to add wires to the design.¶ By this phase, all of the main timing
objectives of the design should be met. It is very difficult for timing problems to be fixed in routing; rather
it is routing’s job to deliver on the “promises” made by the wire length and congestions estimates used in
synthesis, placement, and so on. There are three major design closure issues dealt with in this phase: per-
formance, signal integrity, and manufacturability. Routing is generally broken up into two steps: global
routing and detail routing. The goal of global routing is to localize all wires on the chip in such a way that
all the routing capacity and demands of the chip are roughly balanced. To do this, the chip is partitioned
into horizontal and vertical wiring tracks, where each track has some fixed capacity. Steiner wires are gen-
erated for all the nets, and these are laid into the tracks. Routability is optimized during global routing by
permuting the track assignments to flow excess capacity out of highly utilized tracks. At this step, the
wiring porosity of fixed objects is also analyzed to ensure correct calculation of routing capacity. As inter-
connect scaling worsens, it is becoming increasingly important to assign layer usage as well as track
assignments during global routing. Overestimating track and layer capacity can have large impacts on the
actual routed net length. The important performance-related design closure mitigation available during
global routing is the preferential routing of timing-critical nets, where preidentified timing-critical nets
are routed first, and to the extent possible will follow a direct path with the minimum number of jogs
between source and sinks. Coupling noise can also be addressed at this phase by forcing the global router
to segregate noisy and sensitive nets into different global routing tracks [19].

After the global routing step comes detail routing. In this step, the global routes are mapped into the
real wire resources on the chip. In this phase, the real wire topology is determined and all wire widths,
layer, via, and contact choices are made. As wires are added, wiring congestion increases and average wire
length goes up. To ensure that timing constraints are met, timing-critical signals are wired first. This gives
them access to the shortest wire length and preferred wiring layers. In addition, certain signals may be
assigned to be wired on specific layers or specific widths for electrical reasons. For example, long timing-
critical wires may be designed as wide wires on thick upper wiring layers to minimize resistance.
Particularly skew-sensitive situations such as busses or differential signals may require balanced routing in
which the lengths, topology, and layer usage of two or more skew-sensitive wires are matched. Wide
busses are often prewired to ensure that they have balanced delay.

In addition to managing performance, wiring must optimize for coupling noise. The detail router can
be guided to segregate noisy and sensitive nets [19], and to insert additional empty space between them
to further reduce coupling if needed. In some cases it may be necessary to route adjacent grounded shield-
ing nets to protect particularly sensitive signals, or to prevent interference by a particularly noisy signal.
Coupling issues on busses can be improved by using random Z-shaped routing to prevent overly long par-
allel wires. Inductance effects in large busses can be mitigated somewhat by the addition of interspaced
power or ground wires which serve as low-resistance current return paths.

Manufacturability can also be optimized during the routing phase. Routing can add redundant vias and
contacts to improve both reliability and yield. As interconnect variability becomes more important, rout-
ing can also add wide wires and matched vias and layers to manage back-end-of-the-line variability on sen-
sitive wires. Overall manufacturability can be further improved by adding extra fill shapes during routing
to ensure more uniform shapes density, which improves dimensional control during lithography and CMP.

10-26 EDA for IC Implementation, Circuit Design, and Process Technology

¶

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 26

© 2006 by Taylor & Francis Group, LLC

For a full description of routing techniques see [6].

If congestion estimates were inaccurate or other constraints such as coupling decreased routability, rout-
ing may not be able to embed all wires. The remaining wiring overflows must be manually embedded.

The output of the wiring phase is a wired legally placed netlist. This is passed to the postrouting opti-
mization phase.

10.2.10 Postrouting Optimization and Final Signoff

This phase deals with optimizing out the last problems using the most accurate analyses. The main design
closure issues dealt with in this phase are performance, signal integrity, yield, and reliability. At this point,
since the design is nearly finished, any changes that are made must be very local in nature.

Timing is now performed using fully extracted wires with real clocks. Any timing problems that occur
at this point are fixed with gate sizing, buffering, automatic or manual rerouting, and wire-widening.

Now that real wires are available, mutual capacitances can be extracted to drive noise analysis. Noise
analysis uses a simple model of coupling combined with analysis of possible logic switching windows
derived from timing to determine if adjacent wire switching will create timing violations or logic glitches.
If errors are found they may be fixed by reducing common run length, spreading wires, adding shields,
adding buffers, resizing gates to modify slew rates, and rerouting to segregate wires. Yield issues may also
be analyzed and corrected in a similar manner; wire-limited yield can be addressed at this stage by
increasing wire width, increasing inter-wire spacing or decreasing common run length between wires.

optical proximity processing and can interfere with wire uniformity.

Design Closure 10-27

FIGURE 10.19 ASIC chip routing.

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 27

© 2006 by Taylor & Francis Group, LLC

Figure 10.19 shows a section of a fully routed ASIC.

Yield can also be optimized via wire spreading (see Figure 10.20), though this processing can complicate

Any timing problems, coupling or yield constraint violations found at this point can be fixed manu-
ally or by automatic routing-based optimization, which uses the same logic, placement, and timing
optimization framework described in logic/placement refinement. In such an automated flow, wires with
constraint violations are deleted and queued for rerouting. Final closure is performed using transforma-
tions that adjust gate sizes, do minimal logic modification, and minimally adjust placement density on
the offending wire’s logical and physical neighbors.

In addition to these final optimizations, there are a number of final checks and optimizations that are
run on the design. One of these is ESD checking and optimization. The first of these is the floating gate
detection and the addition of any necessary floating gate contacts to ensure that all gates in the design elec-
trically connect to at least one diffusion. The second is wiring antenna detection and correction, which
remove any unterminated wiring segments that might be left in the design by previous editing. Antennas
can also cause ESD problems. Reliability checks are performed to ensure that no wire violates its electro-
migration limit and any wire that does is modified via wire-widening and load adjustment. Finally, design
rule checking and logical-to-physical verification are performed.

Final timing sign-off is performed using variation aware timing by checking the design against an
exhaustive set of process corners. This exhaustive checking tests the design for robustness to possible mis-
tracking between layers, device strengths, multiple supply voltages, etc. This guarantees conservatively
that the design will be manufacturable over the entire process window.

The product of this phase is a fully placed, routed, and manufacturable design, ready to be sent to the
mask house.∗∗

10.3 The Future of Design Closure

The next big challenges in design closure will be dealing with the increased importance of power-limited
performance optimization and the increased need to do design for variability.

10.3.1 Power-Limited Performance Optimization

Current design closure flows treat performance as the primary optimization objective, with constraints
such as power and area handled as secondary concerns. As both active and static power continue to
increase, the design flow will have to be modified to treat the power/performance trade-off as the primary

10-28 EDA for IC Implementation, Circuit Design, and Process Technology

FIGURE 10.20 Before and after wire spreading.

∗∗ It’s time to go home and have a beer!

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 28

© 2006 by Taylor & Francis Group, LLC

optimization objective. Because power is best addressed early in the flow, the most leverage will come
from advances in the concept and logic design phases. The most important design closure advances in
this area will need to be the creation of power-oriented design exploration and optimization flows. To
enable these flows, the industry will need to develop more accurate early power prediction techniques.

In the logic synthesis, placement, routing, and refinement stages, the flow will have to be modified to
manage the power impact of every optimization rather than sequentially optimizing for performance,
and then assessing the power impact. The flow will also have to be modified for more aggressive power
management design techniques including wider use of dynamic voltage scaling, and wider use of power
gating. Design closure flows will also need to be extended to handle emerging circuit-oriented power
management technique. These techniques are likely to include the use of new circuit families and
dynamic body bias, a technique that lowers static power by dynamically adjusting the gate to body bias.

10.3.2 Design for Variability

In Section 10.1.2.7, we mentioned the trend of increasing parametric variability for both devices and
wires as chip geometry continues to shrink. As this has occurred, the relative amount of performance
guardbanding has had to increase. This forced conservatism effectively reduces the amount of perform-
ance gain extractable from new technology nodes. As we move into 65-nm design and below, we are now
entering a phase in design closure where parametric variability is becoming a first-order optimization
objective. Design closure for variability can be addressed in two distinct ways. The first is design for man-
ufacturability (DFM); the second is by doing statistically driven optimization.

Design-for-manufacturability concerns have been slowly working their way into the design closure
flow. DFM optimizations involve constructively modifying the design to minimize sources of variability
in order to make the design more robust to manufacture variations. There are many constructive DFM
techniques, which have been or are currently being automated as part of the design closure flow. These
include:

Matching devices. Identical circuits tend to track each other better than dissimilar circuits in the face of
manufacturing variation. Design closure flows can exploit this by using identical buffering in skew-sen-
sitive circuits such as clocks.

Variation aware routing. Automatic routers are being modified to create more variation-tolerant rout-
ing. Optimizations include: the use of wide wires on variation-sensitive routing, the use of geometrically
balanced (i.e., matching topology, layer, and via usage) routing for critically matched signals, and the
design of maximum common subtrees to reduce process-induced delay variation in skew-sensitive routes
such as clocks.

Geometric regularity. Designs with a high degree of device and wiring regularity tend to have lower lev-
els of dimensional variation. This is because both optical lithography and etch processes such as CMP
respond better with uniform shapes densities. Regularity can be imposed at many levels of the design. At
the cell level, regularity can be achieved by placing all critical geometry such as transistor polysilicon gates
on a uniform grid. At a placement level, the flow can ensure that all gates see essentially uniform density
on critical polysilicon and contact layers. At a routing level, the flow can enforce a fixed routing grid and
uniform routing density through careful route planning and the selective addition of routing fill. New
regular design styles such as structured ASIC [20–22] are being introduced to reduce sensitivity to man-
ufacturing variation.

Adaptive circuit techniques. Chips will include greater number of adaptive variability management cir-
cuits. These circuits will either use automatic feedback or digital controls to “dial out” variability. For
example, adaptive control could be used to cancel a manufacturing-induced offset in a differential
receiver, or could be used to adjust out delay variation in a critical signals timing.

In addition to these constructive DFM techniques, a new paradigm for managing variability based on
the availability of new statistical static timing (SST) [18] is emerging. Previous static timing tools charac-
terized gate and wire delays based on specific parametric assumptions: i.e., best, worst, nominal; statistical
timing tools, in contrast, characterize delay using statistical delay distributions derived from measured

Design Closure 10-29

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 29

© 2006 by Taylor & Francis Group, LLC

hardware. Rather than calculating path delay as the sum of all the worst-case (or best-case) delays, statis-
tical timing calculates a probability distribution for delays. This distribution indicates the likelihood of a
given path having a specific delay. By calculating this measure for all paths, one can determine the per-
centage of manufactured chips that will run at a given speed. Calculating delay in this way avoids the
compounding conservatism of using the worst-case delay of all elements for the circuit. Combining sta-
tistical timing with an automatic design closure flow will allow designers to make yield vs. performance
trade-offs. By optimizing a design to an acceptable circuit-limited yield value rather than an exhaustive
set of worst/best-case parameters, a designer can greatly reduce the performance lost to over-design.
Though these techniques are still at the early stages of deployment, we are certain that DFM and statisti-
cal design will be the dominant themes in design closure for the next several years.

10.4 Conclusion

We have defined the design closure problem, and the current design closure constraints and how they
have evolved. We then explored how these constraints are addressed throughout the design flow. New
constraints will continue to evolve and the closure problem will continue to grow more complex and
more interesting.

Acknowledgments

The authors would like to acknowledge Dr. Leon Stok, Dr. Ruchir Puri, Dr. Juergen Koehl, and David
Hathaway for their helpful input and feedback on this chapter.

References

[1] Design and Verification Languages, chap. 14, this handbook, Vol. 1.
[2]
[3]
[4] Trevillyan, L., Kung, D., Puri, R., Reddy, L., and Kazda, M., An integrated design environment for

technology closure of deep-submicron IC designs, IEEE Design Test, 21, 14–22, 2004.
[5] Shenoy, N., Iyer, M., Damiano, R., Harer, K., Ma, H.-K., and Thilking, P., A Robust Solution to the

Timing Convergence Problem in High-Performance Design, International Conference on Computer,
Design, San Jose, CA, May, 1999, pp. 250–254, this handbook, vol.2.

[6]
[7]
[8]
[9]

[10]
[11] Shepard, K., and Narayanan, V., Noise in deep submicron digital design, ICCAD 1996, pp. 524–531.
[12] Shepard, K., Narayanan, V., and Rose R., Harmony: static noise analysis of deep submicron digital

integrated circuits, IEEE TCAD, pp. 1132–1150, August 1999.
[13] Shepard, K., and Narayanan, V., Conquering noise in deep-submicron digital ICs, IEEE Des. Test

Comput., 15, 51–62, 1998.
[14] International Technology Roadmap for Semiconductors, 2004 Update for Design.

[15]
[16] Pillage L.T., and R.A. Rohrer, Asymptotic waveform evaluation, IEEE Trans. Comput. Aided Des.

(1991 IEEE Best Paper Award), 352–366, 1990.
[17]
[18] Visweswariah C., Death, Taxes and Failing Chips, IEEE/ACM Design Automation Conference,

Anaheim, CA, June 2003, pp. 343–347.

10-30 EDA for IC Implementation, Circuit Design, and Process Technology

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 30

© 2006 by Taylor & Francis Group, LLC

Logic Synthesis, chap. 2, this handbook, vol.2.
Digital Layout Placement, chap. 5, this handbook.

Routing, chap. 8, this handbook, Vol. 2.

Noise Considerations in Digital IC’s, chap. 21, this handbook.
Design for Manufacturability in Nanometer Era, chap. 19, this handbook.

Design and Analysis of Power Supply Networks, chap. 20, this handbook, Vol. 2.

Design Rule Checking, chap. 17, this handbook, Vol. 2.

Design Flows, chap. 1, this handbook, Vol. 2.

Static Timing Analysis, chap. 6, this handbook, Vol. 2.

http://www.itrs.net/Common/2004Update/2004_01_Design.pdf

http://www.itrs.net

[19] Stohr, T., Alt, H., Hetzel, A., and Koehl, J., Analysis, Reduction and Avoidance of Cross Talk on VLSI
Chips, International Symposium on Physical Design, Monterey, CA, 1998 (ISPD98).

[20]
[21]
[22] Pileggi, L., Schmit, H., Strojwas, A.J., Gopalakrishnan, P., Kheterpal, V., Koorapaty, A., Patel, C.,

Proceedings of IEEE Design Automation Conference, Anaheim, CA, June 2003.
[23]

Design Closure 10-31

CRC_7924_CH010.qxd 2/20/2006 4:35 PM Page 31

© 2006 by Taylor & Francis Group, LLC

Power Analysis and Optimization from circuit to Register Levels, chap. 3, this hand book.

AMIs XpressArray structured ASIC: http://www.amis.com/asics/structured_asics/XPressArray.html

Rovner, V., and Tong, K.Y., Exploring Regular Fabrics to Optimize the Performance-Cost Trade-off,

eASIC http://www.easic.com/

http://www.easic.com
http://www.amis.com

	Table of Contents
	Chapter 10: Design Closure
	10.1 Introduction
	10.1.1 Evolution of the Design Closure Flow
	10.1.2 Introduction of Design Constraints
	10.1.2.1 Economic Constraints
	10.1.2.2 Realizability Constraints
	10.1.2.3 Performance Constraints/Objectives
	10.1.2.4 Power Constraints/Objectives
	10.1.2.5 Signal Integrity Constraints
	10.1.2.6 Reliability Constraints
	10.1.2.7 Yield Constraints

	10.2 Current Practice
	10.2.1 Concept Phase
	10.2.2 Logic Design
	10.2.3 Floorplanning
	10.2.4 Logic Synthesis
	10.2.5 Placement
	10.2.6 Logic/Placement Refinement
	10.2.7 Introduction of Clocks
	10.2.8 Postclocking Optimizations
	10.2.9 Routing
	10.2.10 Postrouting Optimization and Final Signoff

	10.3 The Future of Design Closure
	10.3.1 Power-Limited Performance Optimization
	10.3.2 Design for Variability

	10.4 Conclusion
	Acknowledgments
	References

