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2.1 Introduction

In this chapter, we describe the design process, its major stages, and how electronic design automation
(EDA) tools fit into these processes. We also examine the interfaces between the major integrated circuit
(IC) design stages as well as the kind of information — both abstractions upwards, and detailed design
and verification information downward — that must flow between stages. We assume Complementary
Metal Oxide Semiconductor (CMOS) is the basis for all technologies.

We will illustrate with a continuing example. A company wishes to create a new system on chip (SoC). The
company assembles a product team, consisting of a project director, system architects, system verification engi-
neers, circuit designers (both digital and analog), circuit verification engineers, layout engineers, and manufac-
turing process engineers. The product team determines the target technology and geometry as well as the
fabrication facility or foundry. The system architects initially describe the system-level design (SLD) through a
transaction-level specification in a language such as C��, SystemC, or Esterel. The system verification engineers
determine the functional correctness of the SLD through simulation. The engineers validate the transaction pro-
cessing through simulation vectors. They monitor the results for errors. Eventually, these same engineers would
simulate the process with an identical set of vectors through the system implementation to see if the specifica-
tion and the implementation match. There is some ongoing research to check this equivalence formally.

The product team partitions the SLD into functional units and hands these units to the circuit design
teams. The circuit designers describe the functional intent through a high-level design language (HDL).
The most popular HDLs are Verilog and VHDL. SystemVerilog is a new language, adopted by the IEEE,
which contains design, testbench, and assertion syntax. These languages allow the circuit designers to
express the behavior of their design using high-level functions such as addition and multiplication. These
languages allow expression of the logic at the register transfer level (RTL), in the sense that an assignment
of registers expresses functionality. For the analog and analog mixed signal (AMS) parts of the design,
there are also high-level design languages such as Verilog-AMS and VHDL-AMS. Most commonly, circuit
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designers use Simulation Program with Integrated Circuit Emphasis (SPICE) transistor models and
netlists to describe analog components. However, high-level languages provide an easier interface
between analog and digital segments of the design and they allow writing higher-level behavior of the
analog parts. Although the high-level approaches are useful as simulation model interfaces, there remains
no clear method of synthesizing transistors from them. Therefore, transistor circuit designers usually
depend on schematic capture tools to enter their data.

The design team must consider functional correctness, implementation closure (reaching the priori-
tized goals of the design), design cost, and manufacturability of a design. The product team takes into
account risks and time to market as well as choosing the methodology. Anticipated sales volume can
reflect directly on methodology; whether it is better to create a fully custom design, semicustom design,
use standard cells , gate arrays, or a field programmable gate array (FPGA). Higher volume mitigates the
higher cost of fully custom or semicustom design, while time to market might suggest using an FPGA
methodology. If implementation closure for power and speed is tantamount, then an FPGA methodol-
ogy might be a poor choice. Semicustom designs, depending on the required volume, can range from
microprocessor central processor units (CPUs), digital signal processors (DSPs), application-specific
standard parts (ASSP) or application-specific integrated circuits (ASIC). In addition, for semicustom
designs, the company needs to decide whether to allow the foundry to implement the layout, or whether
the design team should use customer owned tools (COT). We will assume that our product team chooses
semicustom COT designs. We will mention FPGA and fully custom methodologies only in comparison.

In order to reduce cost, the product team may decide that the design warrants reuse of intellectual
property (IP). Intellectual property reuse directly addresses the increasing complexity of design as
opposed to feature geometry size. Reuse also focuses on attaining the goals of functional correctness. One
analysis estimates that it takes 2000 engineering years and 1 trillion simulation vectors to verify 25 mil-
lion lines of RTL code. Therefore, verified IP reuse reduces cost and time to market. Moreover, IP blocks
themselves have become larger and more complex. For example, the 1176JZ-S ARM core is 24 times larger
than the older 7TDI-S ARM core. The USB 2.0 Host is 23 times larger than the Universal Serial Bus (USB)
1.1 Device. PCI Express is 7.5 times larger than PCI v 1.1.

Another important trend is that SoC-embedded memories are an increasingly large part of the SoC
real estate. While in 1999, 20% of a 180-nm SoC was embedded memory, roadmaps project that by 2005,
embedded memory will consume 71% of a 90-nm SoC. These same roadmaps indicate that by 2014,
embedded memory will grow to 94% of a 35-nm SoC.

Systems on chips typically contain one or more CPUs or DSPs (or both), cache, a large amount of
embedded memory and many off-the-shelf components such as USB, Universal Asynchronous Receiver-

differentiating part of the SoC contains the new designed circuits in the product.
The traditional semicustom IC design flow typically comprises up to 50 steps. On the digital side of

design, the main steps are functional verification, logical synthesis, design planning, physical implemen-
tation which includes clock-tree synthesis, placement and routing, extraction, design rules checking
(DRC) and layout versus schematic checking (LVS), static timing analysis, insertion of test structures, and
test pattern generation. For analog designs, the major steps are as follows: schematic entry, SPICE simu-
lation, layout, layout extraction, DRC, and LVS. SPICE simulations can include DC, AC, and transient
analysis, as well as noise, sensitivity, and distortion analysis. Analysis and implementation of corrective
procedures for the manufacturing process such as mask synthesis and yield analysis, are critical at smaller
geometries. In order to verify an SoC system where many components reuse IP, the IP provider may sup-
ply verification IP, monitors, and checkers needed by system verification.

There are three basic areas where EDA tools assist the design team. Given a design, the first is verifica-
tion of functional correctness. The second deals with implementation of the design. The last area deals
with analysis and corrective procedures so that the design meets all manufacturability specifications.
Verification, layout, and process engineers on the circuit design team essentially own these three steps.

2-2 EDA for IC Systems Design, Verification, and Testing

SPICE reportedly is an acronym for Simulation Program with Integrated Circuit Emphasis
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Transmitter (UART), Serial Advanced Technology Attachment (SATA), and Ethernet (cf. Figure 2.1). The



2.2 Verification

The design team attempts to verify that the design under test (DUT) functions correctly. For RTL designs,
verification engineers rely highly on simulation at the cycle level. After layout, EDA tools, such as equiva-
lence checking, can determine whether the implementation matches the RTL functionality. After layout, the
design team must check that there are no problem delay paths. A static timing analysis tool can facilitate this.
The team also needs to examine the circuit for noise and delay due to parasitics. In addition, the design must
obey physical rules for wire spacing, width, and enclosure as well as various electrical rules. Finally, the
design team needs to simulate and check the average and transient power. For transistor circuits, the design
team uses SPICE circuit simulation or fast SPICE to determine correct functionality, noise, and power.

meets the design intent. The verification engineers apply a set of vectors, called a testbench, to the design
through an event-driven simulator, and compare the results to a set of expected outputs. The quality of
the verification depends on the quality of the testbench. Many design teams create their testbench by sup-
plying a list of the vectors, a technique called directed test. For a directed test to be effective, the design
team must know beforehand what vectors might uncover bugs. This is extremely difficult since complex
sequences of vectors are necessary to find some corner case errors. Therefore, many verification engineers
create testbenches that supply stimulus through random vectors with biased inputs, such as the clock or
reset signal. The biasing increases or decreases the probability of a signal going high or low. While a purely
random testbench is easy to create, it suffers from the fact that vectors may be illegal as stimulus. For bet-
ter precision and wider coverage, the verification engineer may choose to write a constrained random
testbench. Here, the design team supplies random input vectors that obey a set of constraints.

The verification engineer checks that the simulated behavior does not have any discrepancies from the
expected behavior. If the engineer discovers a discrepancy, then the circuit designer modifies the HDL and
the verification engineer resimulates the DUT. Since exhaustive simulation is usually impossible, the
design team needs a metric to determine quality. One such metric is coverage. Coverage analysis consid-
ers how well the test cases stimulate the design. The design team might measure coverage in terms of
number of lines of RTL code exercised, whether the test cases take each leg of each decision, or how many
“reachable” states encountered.

Another important technique is for the circuit designer to add assertions within the HDL. These asser-
tions monitor whether internal behavior of the circuit is acting properly. Some designers embed tens of
thousands of assertions into their HDL. Languages like SystemVerilog have extensive assertion syntax based
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We first look at digital verification (cf. Figure 2.2). RTL simulation verifies that the DUT behavior



on linear temporal logic. Even for languages without the benefit of assertion syntax, tool-providers supply
an application program interface (API), which allows the design team to build and attach its own monitors.

The verification engineer needs to run a large amount of simulation, which would be impractical if not
for compute farms. Here, the company may deploy thousands of machines, 24/7, to enable the designer
to get billions of cycles a day; sometimes the machines may run as many as 200 billion cycles a day. Best
design practices typically create a highly productive computing environment. One way to increase
throughput is to run a cycle simulation by taking a subset of the chosen verification language which is
both synchronous and has a set of registers with clear clock cycles. This type of simulation assumes a uni-
formity of events and typically uses a time wheel with gates scheduled in a breadth first manner.

Another way to tackle the large number of simulation vectors during system verification is through
emulation or hardware acceleration. These techniques use specially configured hardware to run the sim-
ulation. In the case of hardware acceleration, the company can purchase special-purpose hardware, while
in the case of emulation the verification engineer uses specially configured FPGA technology. In both
cases, the system verification engineer must synthesize the design and testbench down to a gate-level
model. Tools are available to synthesize and schedule gates for the hardware accelerator. In the case of an
FPGA emulation system, tools can map and partition the gates for the hardware.

Of course, since simulation uses vectors, it is usually a less than exhaustive approach. The verification
engineer can make the process complete by using assertions and formal property checking. Here, the engi-
neer tries to prove that an assertion is true or to produce a counterexample. The trade-off is simple.
Simulation is fast but by definition incomplete, while formal property checking is complete but may be very
slow. Usually, the verification engineer runs constrained random simulation to unearth errors early in the
verification process. The engineer applies property checking to corner case situations that can be extremely
hard for the testbench to find. The combination of simulation and formal property checking is very power-
ful. The two can even be intermixed, by allowing simulation to proceed for a set number of cycles and then
exhaustively looking for an error for a different number of cycles. In a recent design, by using this hybrid
approach , a verification engineer found an error 21,000 clock cycles from an initial state. Typically, formal
verification works well on specific functional units of the design. Between the units, the system engineers
use an “assume/guarantee” methodology to establish block pre- and postconditions for system correctness.

During the implementation flow, the verification engineer applies equivalence checking to determine
whether the DUT preserves functional behavior. Note that functional behavior is different from func-
tional intent. The verification engineer needs RTL verification to compare functional behavior with func-
tional intent. Equivalence checking is usually very fast and is a formal verification technology, which is
exhaustive in its analysis. Formal methods do not use vectors.

For transistor-level circuits, such as analog, memory, and radio frequency (RF), the event-driven verifi-
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cation techniques suggested above do not suffice (cf. Figure 2.3). The design team needs to compute signals



accurately through SPICE circuit simulation. SPICE simulation is very time consuming because the algo-
rithm solves a system of differential equations. One way to get around this cost is to select only a subset of
transistors, perform an extraction of the parasitics, and then simulate the subset with SPICE. This reduction
gives very accurate results for the subset, but even so, the throughput is still rather low. Another approach is
to perform a fast SPICE simulation. This last SPICE approach trades some accuracy for a significant increase
in throughput. The design team can also perform design space exploration by simulating various constraint
values on key goals such as gain or phase margin to find relatively optimal design parameters. The team ana-
lyzes the multiple-circuit solutions and considers the cost trade-offs. A new generation of tools performs this
“design exploration” in an automatic manner. Mixed-level simulation typically combines RTL, gate and
transistor parts of the design and uses a communication back-plane to run the various simulations and
share input and output values.

Finally, for many SoCs, both hardware and software comprise the real system. System verification engi-
neers may run a hardware–software co-simulation before handing the design to a foundry. All simulation
system components mentioned can be part of this co-simulation. In early design stages, when the hard-
ware is not ready, the software can simulate (“execute”) an instruction set model (ISM), a virtual proto-
type (model), or an early hardware prototype typically implemented in FPGAs.

2.3 Implementation

This brings us to the next stage of the design process, the implementation and layout of the digital design.
Circuit designers implement analog designs by hand. Field programmable gate array technologies usually
have a single basic combinational cell, which can form a variety of functions by constraining inputs. Layout
and process tools are usually proprietary to the FPGA family and manufacturer. For semicustom design, the
manufacturer supplies a precharacterized cell library, either standard cell or gate array. In fact, for a given
technology, the foundry may supply several libraries, differing in power, timing, or yield. The company
decides on one or more of these as the target technology. One twist on the semicustom methodology is
structured ASIC. Here, a foundry supplies preplaced memories, pad-rings and power grids as well as some-
times preplaced gate array logic, similar to the methodology employed by FPGA families. The company can
use semicustom techniques for the remaining combinational and sequential logic. The goal is to reduce non-
recurring expenses by limiting the number of mask-sets needed and by simplifying physical design.

By way of contrast, in a fully custom methodology, one tries to gain performance and limit power con-
sumption by designing much of the circuit as transistors. The circuit designers keep a corresponding RTL
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design. The verification engineer simulates the RTL and extracts a netlist from the transistor description.
Equivalence checking compares the extracted netlist to the RTL. The circuit designer manually places and
routes the transistor-level designs. Complex high-speed designs, such as microprocessors, sometimes use
full custom methodology, but the design costs are very high. The company assumes that the high volume
will amortize the increased cost. Fully custom designs consider implementation closure for power and
speed as most important. At the other end of the spectrum, FPGA designs focus on design cost and time
to market. Semicustom methodology tries to balance the goals of timing and power closure with design

In the semicustom implementation flow, one first attempts to synthesize the RTL design into a mapped
netlist. The circuit designers supply their RTL circuit along with timing constraints. The timing con-
straints consist of signal arrival and slew (transition) times at the inputs, and required times and loads
(capacitances) at the outputs. The circuit designer identifies clocks as well as any false or multiple-cycle
paths. The technology library is usually a file that contains a description of the function of each cell along
with delay, power, and area information. Either the cell description contains the pin-to-pin delay repre-
sented as look-up table functions of input slew, output load, and other physical parameters such as volt-
age and temperature, or as polynomial functions that best fit the parameter data. For example, foundries
provide cell libraries in Liberty or OLA (Open Library Application Programming Interface) formats. The
foundry also provides a wire delay model, derived statistically from previous designs. The wire delay
model correlates the number of sinks of a net to capacitance and delay.

Several substages comprise the operation of a synthesis tool. First, the synthesis tool compiles the RTL
into technology-independent cells and then optimizes the netlist for area, power, and delay. The tool
maps the netlist into a technology. Sometimes, synthesis finds complex functions such as multipliers and
adders in parameterized (area/timing) reuse libraries. For example, the tool might select a Booth multi-
plier from the reuse library to improve timing. For semicustom designs, the foundry provides a standard
cell or gate array library, which describes each functional member. In contrast, the FPGA supplier
describes a basic combinational cell from which the technology mapping matches functional behavior of
subsections of the design. To provide correct functionality, the tool may set several pins on the complex
gates to constants. A post-process might combine these functions for timing, power, or area.

A final substage tries to analyze the circuit and performs local optimizations that help the design meet its
timing, area and power goals. Note that due to finite number of power levels of any one cell, there are limits
to the amount of capacitance that functional cell types can drive without the use of buffers. Similar restric-
tions apply to input slew (transition delay). The layout engineer can direct the synthesis tool by enhancing or
omitting any of these stages through scripted commands. Of course, the output must be a mapped netlist.

To get better timing results, foundries continue to increase the number of power variations for some
cell types. One limitation to timing analysis early in the flow is that the wire delay models are statisti-
cal estimates of the real design. Frequently, these wire delays can differ significantly from those found
after routing. One interesting approach to synthesis is to extend each cell of the technology library so
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cost (cf. Figure 2.4).



that it has an infinite or continuous variation of power. This approach, called gain-based synthesis,
attempts to minimize the issue of inaccurate wire delay by assuming cells can drive any wire capaci-
tance through appropriate power level selection. In theory, there is minimal perturbation to the natu-
ral delay (or gain) of the cell. This technique makes assumptions such as that the delay of a signal is a
function of capacitance. This is not true for long wires where resistance of the signal becomes a factor.
In addition, the basic approach needs to include modifications for slew (transition delay).

To allow detection of manufacturing faults, the design team may add extra test generation circuitry.
Design for test (DFT) is the name given to the process of adding this extra logic (cf. Figure 2.5).
Sometimes, the foundry supplies special registers, called logic-sensitive scan devices. At other times, the
test tool adds extra logic called Joint Test Action Group (JTAG) boundary scan logic that feeds the regis-
ters. Later in the implementation process, the design team will generate data called scan vectors that test
equipment uses to detect manufacturing faults. Subsequently, tools will transfer these data to automatic
test equipment (ATE), which perform the chip tests.

As designs have become larger, so has the amount of test data. The economics of the scan vector pro-
duction with minimal cost and design impact leads to data compression techniques. One of most widely
used techniques is deterministic logic built in self-test(BIST). Here, a test tool adds extra logic on top of
the DFT to generate scan vectors dynamically.

Before continuing the layout, the engineer needs new sets of rules, dealing with the legal placement and
routing of the netlist. These libraries, in various exchange formats, e.g., LEF for logic, DEF for design and
PDEF for physical design, provide the layout engineer physical directions and constraints. Unlike the
technology rules for synthesis, these rules are typically model-dependent. For example, there may be
information supplied by the circuit designer about the placement of macros such as memories. The rout-
ing tool views these macros as blockages. The rules also contain information from the foundry.

Even if the synthesis tool preserved the original hierarchy of the design, the next stages of implemen-
tation need to view the design as flat. The design-planning step first flattens the logic and then partitions
the flat netlist as to assist placement and routing;—in fact, in the past, design planning was sometimes
known as floor planning. A commonly used technique is for the design team to provide a utilization ratio
to the design planner. The utilization ratio is the percentage of chip area used by the cells as opposed to
the nets. If the estimate is too high, then routing congestion may become a problem. If the estimate is too
low, then the layout could waste area. The design-planning tool takes the locations of hard macros into
account. These macros are hard in the sense that they are rectangular with a fixed length, fixed width, and
sometimes a fixed location on the chip. The design-planning tool also tries to use the logical hierarchy of
the design as a guide to the partitioning. The tool creates, places and routes a set of macros that have fixed
lengths, widths, and locations. The tool calculates timing constraints for each macro and routes the power
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and ground grids. The power and ground grids are usually on the chip’s top levels of metal and then dis-
tributed to the lower levels. The design team can override these defaults and indicate which metal layers
should contain these grids. Sometimes design planning precedes synthesis. In these cases, the tool parti-
tions the RTL design and automatically characterizes each of the macros with timing constraints.

After design planning, the layout engineer runs the physical implementation tools on each macro. First,
the placer assigns physical locations to each gate of the macro. The placer typically moves gates while min-
imizing some cost, e.g., wire length or timing. Legalization follows the coarse placement to make sure the
placed objects fit physical design rules. At the end of placement, the layout engineer may run some more
synthesis, like re-sizing of gates. One of the major improvements to placement over the last decade is the
emergence of physical synthesis. In physical synthesis, the tool interleaves synthesis and placement. Recall
that previously, logic synthesis used statistical wire capacitance. Once the tool places the gates, it can per-
form a global route and get capacitances that are more accurate for the wires, based on actual placed loca-
tions. The physical synthesis tool iterates this step and provides better timing and power estimates.

Next, the layout engineer runs a tool that buffers and routes the clock tree. Clock-tree synthesis
attempts to minimize the delay while assuring that skew, that is the variation in signal transport time
from the clock to its corresponding registers, is close to zero.

Routing the remaining nets comes after clock-tree synthesis. Routing starts with a global analysis called
global route. Global route creates coarse routes for each signal and its outputs. Using the global routes as
a guide, a detailed routing scheme, such as a maze channel or switchbox, performs the actual routing. As
with the placement, the tool performs a final legalization to assure that the design obeys physical rules.
One of the major obstacles to routing is signal congestion. Congestion occurs when there are too many
wires competing for a limited amount of chip wire resource. Remember that the design team gave the
design planner a utilization ratio in the hope of avoiding this problem.

Both global routing and detailed routing take the multilayers of the chip into consideration. For exam-
ple, the router assumes that the gates are on the polysilicon layer, while the wires connect the gates
through vias on 3–8 layers of metal. Horizontal or vertical line segments comprise the routes, but some
recent work allows 45° lines for some foundries. As with placement, there may be some resynthesis, such
as gate resizing, at the end of the detailed routing stage.

Once the router finishes, an extraction tool derives the capacitances, resistances, and inductances. In a
two-dimensional (2-D) parasitic extraction, the extraction tool ignores 3-D details and assumes that each
chip level is uniform in one direction. This produces only approximate results. In the case of the much
slower 3-D parasitic extraction, the tool uses 3-D field solvers to derive very accurate results. A 2½-D
extraction tool compromises between speed and accuracy. By using multiple passes, it can access some of
the 3-D features. The extraction tool places its results in a standard parasitic exchange format file (SPEF).

During the implementation process, the verification engineer continues to monitor behavioral consis-
tency through equivalence checking and using LVS comparison. The layout engineer analyzes timing and
signal integrity issues through timing analysis tools, and uses their results to drive implementation deci-
sions. At the end of the layout, the design team has accurate resistances, capacitances, and inductances for
the layout. The system engineer uses a sign-off timing analysis tool to determine if the layout meets tim-
ing goals. The layout engineer needs to run a DRC on the layout to check for violations.

Both the Graphic Data System II (GDSII) and the Open Artwork System Interchange Standard
(OASIS) are databases for shape information to store a layout. While the older GDSII was the database of
choice for shape information, there is a clear movement to replace it by the newer, more efficient OASIS
database. The LVS tool checks for any inconsistencies in this translation.

What makes the implementation process so difficult is that multiple objectives need consideration. For
example, area, timing, power, reliability, test, and yield goals might and usually cause conflict with each
other. The product team must prioritize these objectives and check for implementation closure.

Timing closure—that is meeting all timing requirements—by itself is becoming increasingly difficult and
offers some profound challenges. As process geometry decrease, the significant delay shifts from the cells to
the wires. Since a synthesis tool needs timing analysis as a guide and routing of the wires does not occur until
after synthesis, we have a chicken and egg problem. In addition, the thresholds for noise sensitivity also
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shrink with smaller geometries. This along with increased coupling capacitances, increased current densi-
ties and sensitivity to inductance, make problems like crosstalk and voltage (IR) drop increasingly familiar.

Since most timing analysis deals with worst-case behavior, statistical variation and its effect on yield add
to the puzzle. Typically timing analysis computes its cell delay as function of input slew (transition delay)
and output load (output capacitance or RC). If we add the effects of voltage and temperature variations as
well as circuit metal densities, timing analysis gets to be very complex. Moreover, worst-case behavior may
not correlate well with what occurs empirically when the foundry produces the chips. To get a better pre-
dictor of parametric yield, some layout engineers use statistical timing analysis. Here, rather than use sin-
gle numbers (worst case, best case, corner case, nominal) for the delay-equation inputs, the timing analysis
tool selects probability distributions representing input slew, output load, temperature, and voltage among
others. The delay itself becomes a probability distribution. The goal is to compute the timing more accu-
rately in order to create circuits with smaller area and lower power but with similar timing yield.

Reliability is also an important issue with smaller geometries. Signal integrity deals with analyzing
what were secondary effects in larger geometries. These effects can produce erratic behavior for chips
manufactured in smaller geometries. Issues such as crosstalk, IR drop, and electromigration are factors
that the design team must consider in order to produce circuits that perform correctly.

Crosstalk noise can occur when two wires are close to each other (cf. Figure 2.6). One wire, the aggressor,
switches while the victim signal is in a quiet state or making an opposite transition. In this case, the aggres-
sor can force the victim to glitch. This can cause a functional failure or can simply consume additional
power. Gate switching draws current from the power and ground grids. That current, together with the wire
resistance in the grids, can cause significant fluctuations in the power and ground voltages supplied to gates.
This problem, called IR drop, can lead to unpredictable functional errors. Very high frequencies can produce
high current densities in  signals and power lines, which can lead to the migration of metal ions. This power
electromigration can lead to open or shorted circuits and subsequent signal failure.

Power considerations are equally complex. As the size of designs grow and geometries shrink, power
increases. This can cause problems for batteries in wireless and hand-held devices, and thermal
management in microprocessor, graphic and networking applications. Power consumption falls into two

One easy way to reduce dynamic power is to decrease voltage. However, decreased voltage leads to smaller
noise margins and less speed.
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areas: dynamic power (cf. Figure 2.7), the power consumed when devices switch value; and leakage power

with increased capacitance and voltage. Therefore, as designs become larger, dynamic power increases.
(cf. Figure 2.8), the power leaked through the transistor. Dynamic power consumption grows directly



A series of novel design and transistor innovations can reduce the power consumption. These include
operand isolation, clock gating, and voltage-islands. Timing and power considerations are very often in
conflict with each other, so the design team must employ these remedies carefully.

A design can have part of its logic clock-gated by using logic to enable the  bank of registers. The logic
driven by the registers is quiescent until the clock-gated logic enables the registers. Latches at the input
can isolate parts of a design that implement operations (e.g. an arithmetic logic unit (ALU)), when results
are unnecessary for correct functionality, thus preventing unnecessary switching. Voltage-islands help
resolve the timing vs. power conflicts. If part of a design is timing critical, a higher voltage can reduce the
delay. By partitioning the design into voltage-islands, one can use lower voltage in all but the most tim-
ing-critical parts of the design. An interesting further development is dynamic voltage/frequency scaling,
which consists of scaling the supply voltage and the speed during operation to save power or increase per-
formance temporarily.
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The automatic generation of manufacturing fault detection tests was one of the first EDA tools. When
a chip fails, the foundry wants to know why. Test tools produce scan vectors that can identify various
manufacturing faults within the hardware. The design team translates the test vectors to standard test
data format and the foundry can inject these inputs into the failed chip through automated test equip-
ment (ATE). Remember that the design team added extra logic to the netlist before design planning, so
that test equipment could quickly insert the scan vectors, including set values for registers, into the chip.
The most common check is for stuck at 0 or stuck at 1 faults where the circuit has an open or short at a
particular cell. It is not surprising that smaller geometries call for more fault detection tests. An integra-
tion of static timing analysis with transition/path delay fault automatic test pattern generation (ATPG)
can help, for example, to detect contact defects; while extraction information and bridging fault ATPG
can detect metal defects.

Finally, the design team should consider yield goals. Manufacturing becomes more difficult as geometries
shrink. For example, thermal stress may create voids in vias. One technique to get around this problem is to
minimize the vias inserted during routing, and for those inserted, to create redundant vias. Via doubling,
which converts a single via into multiple vias, can reduce resistance and produce better yield. Yield analysis
can also suggest wire spreading during routing to reduce cross talk and increase yield. Manufacturers also
add a variety of manufacturing process rules needed to guarantee good yield. These rules involve antenna
checking and repair through diode insertion as well as metal fill needed to produce uniform metal densities
necessary for copper wiring chemical–mechanical polishing (CMP). Antenna repair has little to do with
what we typically view as antennas. During the ion-etching process, charge collects on the wires connected
to the polysilicon gates. These charges can damage the gates. The layout tool can connect small diodes to the
interconnect wires as a discharge path.

Even with all the available commercial tools, there are times when layout engineers want to create their
own tool for analysis or small implementation changes. This is analogous to the need for an API in veri-
fication. Scripting language and C-language-based APIs for design databases such as MilkyWay and
OpenAccess are available. These databases supply the user with an avenue to both the design and rules.
The engineer can directly change and analyze the layout.

2.4 Design for Manufacturing

One of the newest areas for EDA tools is design for manufacturing. As in other areas, the driving force of
the complexity is the shrinking of geometries. After the design team translates their design to shapes, the
foundry must transfer those shapes to a set of masks. Electron beam (laser) equipment then creates the
physical masks for each layer of the chip from the mask information. For each layer of the chip, the foundry
applies photoresistive material, and then transfers the mask structures by the stepper optical equipment
onto the chip. Finally, the foundry etches the correct shapes by removing the excess photoresist material.

Since the stepper uses light for printing, it is important that the wavelength is small enough to transcribe
the features accurately. When the chip’s feature size was 250 nm, we could use lithography equipment that
produced light at a wavelength of 248 nm. New lithography equipment that produces light of lower wave-
length needs significant innovation and can be very expensive. When the feature geometry gets significantly
smaller than the wavelength, the detail of the reticles (fine lines and wires), transferred to the chip from the
mask can be lost. Electronic design automation tools can analyze and correct this transfer operation with-

This process uses resolution enhancement techniques and methods to provide dimensional accuracy.
One mask synthesis technique is optimal proximity correction (OPC). This process takes the reticles in the

GDSII or OASIS databases and modifies them by adding new lines and wires, so that even if the geometry is
smaller than the wavelength, optical equipment adequately preserves the details. This technique successfully
transfers geometric features of down to one-half of the wavelength of the light used. Of course given a fixed
wavelength, there are limits beyond which the geometric feature size is too small for even these tricks.
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out new equipment, by modifying the shapes data— a process known as mask, synthesis (cf. Figure 2.9).



For geometries of 90 nm and below, the lithography EDA tools combine OPC with other mask syn-
thesis approaches such as phase shift mask (PSM), off-axis illumination and assist features (AF). For
example, PSM is a technique where the optical equipment images dark features at critical dimensions
with 0° illumination on one side and 180° illumination on the other side. There are additional manufac-
turing process rules needed such as minimal spacing and cyclic conflict avoidance, to avoid situations
where the tool cannot map the phase.

In summary, lithography tools proceed through PSM, OPC, and AF to enhance resolution and make
the mask more resistive to process variations. The process engineer can perform a verification of silicon
vs. layout and a check of lithography rule compliance. If either fails, the engineer must investigate and
correct, sometimes manually. If both succeed, another EDA tool “fractures” the design, subdividing the
shapes into rectangles (trapezoids), which can be fed to the mask writing equipment. The engineer can
then transfer the final shapes file to a database, such as the manufacturing-electron-beam-exposure sys-
tem (MEBES). Foundry equipment uses the MEBES database (or other proprietary formats) to create the
physical masks. The process engineer can also run a “virtual” stepper tool to pre-analyze the various stages
of the stepper operation. After the foundry manufactures the masks, a mask inspection and repair step
ensures that they conform to manufacturing standards.

team would like to correlate some of the activities during route with actual yield. Problems with CMP, via
voids and cross talk can cause chips to unexpectedly fail. EDA routing tools offer some solutions in the
form of metal fill, via doubling and wire spacing. Library providers are starting to develop libraries for
higher yields that take into account several yield failure mechanisms. There are tools that attempt to cor-
relate these solutions with yield. Statistical timing analysis can correlate timing constraints to parametric
circuit yield.

Finally, the process engineer can use tools to predict the behavior of transistor devices or processes.
Technology computer aided design (TCAD) deals with the modeling and simulation of physical manu-
facturing process and devices. Engineers can model and simulate individual steps in the fabrication
process. Likewise, the engineer can model and simulate devices, parasitics or electrical/thermal proper-
ties, therefore providing insights into their electrical, magnetic or optical properties.

For example, because of packing density, foundries may switch isolation technology for an IC from the
local oxidation of silicon model toward the shallow trench isolation (STI) model. Under this model, the
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Another area of design for manufacturing analysis is prediction of yield (cf. Figure 2.10). The design



process engineer can analyze breakdown stress, electrical behavior such as leakage, or material vs. process
dependencies. Technology computer aided design tools can simulate STI effects, extract interconnect par-
asitics, such as diffusion distance, and determine SPICE parameters.
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