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Abstract—Switching current drawn by an integrated circuit (IC)
creates dynamic power supply noise on the IC and on the printed
circuit board (PCB), which in turn causes jitter in /0O signals and
reduces the maximum clock frequency. Predicting power supply
noise is challenging due to the complexity of determining the dy-
namic current drawn by the IC and the impedance of the power
delivery network. In this paper, a methodology is developed for
predicting dynamic power supply noise on the PCB resulting from
logic activity in a field-programmable gate array (FPGA). Time-
domain switching currents within the FPGA are found by per-
forming power simulations of the implemented logic over small
time intervals. A high-frequency model of the die-package-PCB
power delivery network is developed based on the inductance and
capacitance of the package and die and a cavity model description
of the PCB. The technique is shown to accurately predict noise on
the PCB in both the time and frequency domains.

Index Terms—Impedance, integrated circuit (IC), modeling,
noise, power delivery network (PDN), power integrity.

1. INTRODUCTION

OWER integrity is an increasing concern in modern digital

designs. When millions of gates in an integrated circuit (IC)
switch states after a clock edge, they draw substantial instanta-
neous current that causes noise on the power delivery network
(PDN). This power supply noise can cause logical errors and
can modify timing through logic circuits, which subsequently
causes jitter and impacts data transmission rates and maximum
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clock speed [1]-[6]. The importance of power supply noise is
Elving as power supply voltages shrink and as data rates in-

se. Methods to accurately predict dynamic power supply
noise would allow better determination of maximum jitter and
maximum clock rates and would allow better assessment of
noise mitigation techniques. Unfortunately, the complexity of
modern ICs and the power supply delivery network makes this
prediction difficult.

Determination of dynamic power supply noise requires an
accurate description of the power bus impedance and of the
current drawn by the IC. The power bus impedance includes
the impedance of the die, the package, and the printed circuit
board (PCB), including traces and power and return planes [1],
[3], [6], [7]-[10]. The PDN of the die and package is typically
described using a lumped-element model below a few gigahertz
[11]. While a lumped-element model is sufficient for the die and
package to gigahertz frequencies, a lumped-element model of
the PCB power and return planes can break down at hundreds
of megahertz, when the size of the PCB becomes electrically
large [12]. One method of improving the model of the power
and return planes of the PCB above a few hundred megahertz
is to model their impedance as a summation of cavity resonant
modes [12]-[15]. This technique allows the impedance of the
PDN to be estimated both quickly and accurately. Together, the
cavity model of the PCB and the lumped-element model of the
IC form an accurate representation of the overall power deliver
network [9], [10].

Power supply noise is generated by high-frequency currents

n by the ICs. Most traditional computer-aided design tools

predict the average, or dc, current drawn by the IC in the
process of predicting static IR voltage drops or average power
usage, which is insufficient for predicting the noise. Dynamic
current draw is typically obtained through SPICE or SPICE-like
simulations [11], [19]-[21]. In these cases, logic components
are simulated at the transistor level to generate a current wave-
form. Current waveforms may be found for simple components,
like a logic gate, and then these waveforms may be added to-
gether to estimate the waveform for a larger component, like
a processing block. In some cases, simulations are performed
directly on the larger processing block, though in many cases
SPICE simulations of large blocks is unreasonable with current
simulation and processing tools. When predicting power supply
noise, E ogic components are replaced by current sources rep-
resenthe component’s dynamic current draw. While studies
have shown this approach to work well, in many scenarios, the
engineer does not have access to the complete on-die design
information required to estimate the dynamic current in this
manner. Furthermore, for most practical designs, the simulation
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Fig. 1. Switching events propagate through a digital logic circuit from the
inputs to the output.
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Fig. 2. Dynamic current is associated with the switching times and power
draw of each gate.

times required to estimate the current can be unreasonably long
without special purpose software for estimating current [11].
While dynamic current can also be found through on-die mea-
surements [16], [17], measuring current is impractical in most
designs.

The following paper presents an efficient methodology for
predicting the dynamic current drawn by a design implemented
in a field-programmable gate array (FPGA) and for predicting
the resulting power supply noise. The transient current is es-
timated through simulation of the static power consumed by
the FPGA over small intervals of time. The PDN of the FPGA
die and package is modeled using an equivalent lumped-RLC
circuit. The PCB is modeled using a cavity model. Together,
the dynamic current along with the impedance model of the die,
package, and PCB are used to predict the noise voltage observed
at different locations on the PCB. Comparison of simulations
and measurements shows that this technique can be used to ac-
curately estimate the power supply noise in both the time and
frequency domains.

II. CURRENT SOURCE MODELING

The ability to estimate dynamic current is not a part of most
FPGA computer-aided design tools. Many tools, however, are
built to find power. Dynamic current can be estimated from dy-
namic power by assuming that the power supply voltage is con-
stant. While most software tools are only configured to estimate
static power consumption, dynamic power can be estimated
from the static power determined over small time intervals. The
process is described next.

A typical digital circuit is shown in Fig. 1. Switching of
inputs to the logical circuit generates a cascade of switching
events as logical changes propagate from the input to the output.
Switching at each gate draws current as illustrated in Fig. 2.
Most current is drawn immediately after a clock edge, when the

PowerPlay
Timing Power
Analyzer Analyzer
Input o
Switching -
Data Power Dynamic
Vectors eve n.ts Analysis current
e (.vcd file)

Fig. 3. Simulation of dynamic current.

inputs to the circuit change. Some current is drawn long after
the clock edge, however, as logic circuits deep within the design
switch after a long propagation delay of logical data through the
circuit.

Given an input data vector, the logical function of each gate,
and the propagation delay through each gate, it is relatively
straightforward to estimate a timing diagram for logical switch-
ing at each gate output. If one knows the time of each switching
event and the energy consumed by each event, one can then
estimate the dynamic power or current for the circuit.

Dynamic current is estimated here using the PowerPlay Power
Analyzer (PPPA) tool that is part of Altera Quartus II software
suite [18]. This tool determines the power consumed by an
FPGA for a particular logic circuit, given the clock frequency
and time interval of operation. A logical simulation of the digital
circuit is performed first using the Quartus II Timing Analyzer
with a given data pattern applied to the circuit input as shown
in Fig. 3. The timing analyzer generates a .VCD (value change
dump) file which includes information about when and where
switching occurs within the logic design. Power analysis is then
performed using this .VCD file. While PPPA only estimates the
average power draw, one option available in the tool is to per-
form a power estimate over a given period of time, determined
by the start time, stop time, and/or time interval. By setting a
small time interval, the average power over the interval becomes
approximately “instantaneous” and can be used to estimate the
“instantaneous” current. By repetitively performing this simu-
lation over consecutive intervals of time, a waveform for the
dynamic current can be obtained. This repetitive simulation can
be automated using scripts and can be done relatively quickly.

In our work, an appropriate size for the time interval was
determined experimentally. The noise waveform on the PCB
was estimated for small and large time intervals. A small time
interval results in a large number of points used to represent the
current waveform, giving a high-resolution representation of the
waveform but also increasing the computation requirements. An
interval size was chosen that gave a good tradeoff between the
quality of the estimated noise waveform and the computational
requirements. In our simulations, intervals less than 1 ns did not
improve estimates of noise voltages.

A simulation of the dynamic current was performed for a sim-
ple circuit consisting of many parallel T-flip-flops, as shown in
Fig. 4. Each block in Fig. 4 represents many T-flip-flops in par-
allel. Tests were performed on an Altera Stratix II FPGA. Each
block contains a sufficient number of T-flip-flops to consume
5% of the logical resources available in the FPGA. When the
clock input transitions from low to high, the T-flip-flops in this
block all switch state. The four blocks of T-flip-flops are driven
by four different clock frequencies, so that they switch at differ-
ent times. A clock divider generates a clock at 1/7, 1/3, 3/7, and
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1/1 of the clock frequency. Together, the four blocks consume
20% of the FPGA logical resources. Fig. 5 shows the dynamic
current predicted using the methodology described previously.
The waveform shows both the current consumed by the T-flip-
flops as well as by the clock tree. Different sized peaks occur
depending on the number of flip-flops that switch at a partic-
ular time. At the highest peaks, around 11 000 mA, all four
blocks switch simultaneously. At the peaks around 8000 mA,
the 1/7,3/7, and 1/1 clocks switch together, and so forth. To test
a more sophisticated circuit, tests were also performed using a
7-bit gray code counter, as shown in Fig. 6. Using a 100 MHz
clock, the most significant bit of the counter changes with an
oscillation frequency of 100 MHz/2” = 0.78 MHz. Many gray
code counters were placed together in a large block, similar to
the T-flip-flops in Fig. 4, so they would draw sizeable current
and generate sizeable noise when they switched. All together,
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Fig. 7. Switching current drawn by the gray code counter.
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Fig. 8.  Model of the PCB, package, and die.

the gray code counters consumed 5% of the FPGA logical re-
sources. The dynamic current drawn by this 7-bit gray code
counter block is shown in Fig. 7 for a 150 ns interval.

III. IMPEDANCE MODELING

The noise voltage on the PDN results from the switching
current drawn by the FPGA and the PDN impedance. Estimation
of the PDN impedance is explained later, first for a case where
no decoupling capacitors are placed on the PCB and then for a
case with decoupling capacitors.

A. Modeling the Die—Package—PCB

The PDN for the FPGA includes the on-die power delivery
system, the FPGA package, and the PDN on the PCB. The PCB
includes power and return planes, decoupling capacitors, and a
low-frequency dc power supply. For estimating power supply
noise on the PCB, the FPGA may reasonably be represented as
drawing current from a single point on the PCB and, thus, the
IC PDN can be approximated using a single lumped capacitor,
inductor, and resistor, Crpca, Lrpga, and Rppga, as shown
in Fig. 8. Lppga represents the equivalent inductance of all
the power and return pins of the package (package traces and
balls). Crpga and Rppga represent the on-die capacitance and
resistance. The switching current is placed in parallel with the
on-die capacitance and resistance. For the FPGA used here,
Crpca, Rrpga, and Lppga were determined experimentally
to be 440 nF (when powered), 10 pH, and 0.7 €2, respectively,
by comparing the measured impedance looking into the power
and return planes of a PCB with and without the FPGA present.
The on-die decoupling capacitance and package inductance act
as a low-pass filter for the noise currents. Above the LC resonant
frequency (76 MHz), this filter will reduce noise current through
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the package by 40 dB/decade, so their values have a substantial
impact on the high-frequency noise seen on the power and return
planes.

The impedance of the power and return planes of the PCB
were found using a cavity model [12]-[15]. The resulting
impedance can be represented using either S-parameter blocks
or using an equivalent SPICE network. To validate both the
impedance response of the system and the resulting noise volt-
age, two measurement ports were placed on the PCB as shown in
Figs. 8 and 9. The FPGA has three power supplies: a 1.3 V sup-
ply for the core, a 2.5 V supply for the /O, and a 3.3 V predriver
supply. The ports were placed between the 1.3 V supply plane
for the core and the PCB return plane. Port 1 is relatively far
away from the FPGA. Port 3 is relatively close. Port 2 is the loca-
tion where the FPGA is connected to the PCB. On an X-Y grid
with (0, 0) at the bottom left corner of the board, port 1 is located
at (7.91, 9.25) inches, port 2 (the FPGA) at (3.5, 4.3) inches, and
port 3 at (1.95, 4.63) inches. The cavity model of the PCB accu-
rately represents the differing impedances seen among ports 1,
2, and 3. The input impedance of any measurement equipment
attached to ports 1 and 3 is included in simulations. The model
of the ports included a 6 nH parasitic inductance in series with
the port, to model the connection to the power and return planes.

The low-frequency dc power supply was not modeled as a
part of this effort. Measurements with and without the power
supply connected to the PCB showed that the power supply had
negligible impact on of the power-plane impedance within the
frequency range considered in this study.

To help validate the power bus model, Z-parameter mea-
surements were made between ports and the results were com-
pared to the simulated values. Fig. 10 shows the measured and
simulated values of Z3; when the IC was placed on the PCB.
Measured and simulated values were within a few decibels at
all frequencies except around 23 and 450 MHz, where the re-
sponse at system resonances was under or overestimated by
about 10 dB. The system resonances around 23 and 90 MHz are
due to the lumped-element behavior of the die—package—PCB.
The numerous peaks above 300 MHz are due to resonant modes
within the cavity formed by the power/ground plane pair.

Fig. 11 shows the self-impedance, 7, looking into port 1.
The measured and simulated values also agree here within a few
decibels. The resonance around 3 MHz is due to the inductance
of the connector at port 1 (6 nH) and the overall capacitance
of the PCB and FPGA (roughly 440 nF). The small error in
the simulated and measured values of impedance is due to a
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Fig. 11. Simulated and measured impedance looking into port 1.

small error in the simulated value of the port inductance and the
difficulty of making a good measurement of input impedance
with a network analyzer when the impedance is much smaller
than 1 2.

B. Modeling System Impedance With Decoupling Capacitors

Measurements and simulations were performed both with and
without decoupling capacitors placed on the board. Decoupling
capacitors were modeled as a lumped capacitor in series with an
inductance associated with the equivalent self-inductance of the
capacitor in series with the connection inductance to the power
and return planes. The capacitors were added to the overall
power bus model by placing ports at the capacitor location on
the PCB power and return planes.

Measurements were performed with 16 decoupling capacitors
(15 SMT capacitors and 1 330 uF bulk decoupling capacitor)
placed on the PCB as shown in Fig. 9. The SMT capacitors were
located near to the FPGA. The bulk decoupling capacitor was
located near to the dc power supply. The bulk decoupling capac-
itor was modeled in series with a 15 nH connection inductance
and a 60 mS2 resistance. The SMT capacitors included five 0805
10 uF capacitors, each modeled in series with a 1.2 nH con-
nection inductance, five 0603 2.2 yF capacitors in series with a
1 nH inductance, and five 0603 1 uF capacitors in series with a
1 nH inductance.
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Fig. 13.  Simulated transfer impedance between ports 1 and 3 with and without
decoupling capacitors placed on the PCB.

The simulated and measured values of transfer impedance
between ports 1 and 3, Z3;, are shown in Fig. 12 when the 16
decoupling capacitors were placed on the board. The simulated
and measured impedance matches within a few decibels at all but
a few frequencies. The small deviation between the measured
and simulated impedances at low frequencies (less than 10 MHz)
is due to a variation in the actual values of the capacitors about
their nominal values, as specified in their datasheet and used in
SPICE simulations.

The impact of adding decoupling capacitors to the PCB
is illustrated in Fig. 13, where the transfer impedance between
ports 1 and 3 is shown with and without the added decoupling
capacitors. While the decoupling capacitors have a significant
impact on impedance at low frequencies (i.e., below 100 MHz),
they have very little impact at higher frequencies, due to the
parasitic inductance to the capacitors.

IV. NOISE VOLTAGE

To evaluate the accuracy of the model, the switching noise
voltage generated between the power and return planes was mea-
sured at port 1, far away from the IC, as indicated in Fig. 9. Mea-

Spectrum Analyzer
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capacitance

From Power
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Fig. 14.  Switching currents generate noise voltage at the oscilloscope through
the impedance of the PCB, package, and die.

surements were made while the FPGA was loaded and running
either the T-flip-flop or gray code design described in Section
II. The noise voltage was measured using either an oscillo-
scope, for a time-domain measurement, or a spectrum analyzer,
for a frequency-domain measurement. A signal generator was
also connected to the FPGA to provide a 100 MHz clock signal.
Measurements were performed in a shielded chamber to exclude
interference from other sources. Measurements were made both
with and without decoupling capacitors on the board.

An equivalent circuit representing the coupling between the
switching current in the FPGA and the noise voltage at the oscil-
loscope is shown in Fig. 14. The current source and oscilloscope
are essentially connected to two ports of an impedance network.
The relationship between voltage and current at each port is

given in the frequency domain by
- Eelle) @

Va(w)| | Zn(w)
where V] (w) is the voltage at the spectrum analyzer or oscil-
loscope, V5 (w) is the voltage inside the die, I; (w) is the cur-
rent from the spectrum analyzer or oscilloscope, and I (w) is
the switching current in the FPGA as estimated from PPPA
as described in Section II. Since the spectrum analyzer or
oscilloscope acts as a 50-(2 load on the PDN,

Vi(w) = =1 (w) x 50 €. )

Solving (1) and (2) gives the measured noise voltage in terms
of the on-die switching current

Vi) = Z21@R@ 7 w50 O

where Z1(w) and Zs;(w) are the input impedance look-
ing into port 1 and the transfer impedance between port 1
and port 2, where port 2 is inside the die at the location of
the switching current. While estimates using (3) can be di-
rectly compared to spectrum analyzer measurements, the in-
verse Fourier transform of (3) can be used to estimate the
time-domain noise voltage and can be compared to oscilloscope
measurements.

A comparison of the measured and simulated noise voltages
at port 1 is seen in Figs. 15 and 16 when the T-flip-flop
pattern was implemented inside the FPGA. Fig. 15 shows the
spectrum, as measured with the spectrum analyzer, and Fig. 16
shows the time-domain noise waveform, as measured with the
oscilloscope. These results were generated without decoupling
capacitors on the board. A dc component is not observed in these
results, as the measurements were made using a dc block and
as only the (ac) switching sources were modeled in simulation,
not the dc power supply. The measured and simulated spectra
generally match within a few decibels with the exception of a
few low-frequency (and low-amplitude) components at roughly
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Fig. 16. Noise voltage waveform at port 1 when implementing the T-flip-flop
design.

2.5, 5, and 10 MHz. These components were not driven by the
implemented T-flip-flop circuit, but rather by other circuitry
in the FPGA that were not considered in our simulation.
Good agreement can also be seen between measured and
simulated values in the time domain as shown in Fig. 16.
Similar studies of the noise voltage at port 3 (the near port) also
showed a good match between the measured and simulated
results.

Fig. 17 compares measured and simulated noise voltages at
port 1 when the FPGA implemented the gray code counter. In
this case, the gray code counter consumed 40% of the available
resources in the FPGA. Results were generated when there were
no decoupling capacitors on the PCB. There was generally a very
good comparison between the results except at very low frequen-
cies (e.g., below 600 kHz). The high-frequency energy “spikes”
are due to switching inside the FPGA, which is accurately ac-
counted for by Quartus PPPA. The low-frequency components
below 600 kHz are not due to switching of logic gates but are
due to other noise sources that are not accounted for by Quar-
tus PPPA. This low frequency noise caused a low frequency
“wander” in the time-domain signal as shown in Fig. 17(b).
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Fig. 17. Noise voltage at port 1 when implementing the gray code counter
design, consuming 40% of FPGA resources (a) spectrum, (b) time-domain
waveform, and (c) closeup of time-domain waveform.

None the less, there is a good comparison of the time-domain
signals at high frequency, as indicated in Fig. 17(c).

Fig. 18 shows another comparison of measured and simulated
noise voltages while implementing the gray code counter, except
in this case all 16 decoupling capacitors were placed on the
board. The measured and simulated noise voltages again match
well.
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design consuming 40% of FPGA resources, and 16 decoupling capacitors were
mounted on PCB. (a) Spectrum. (b) Time-domain waveform.

It is interesting to note the strong noise voltage at 100 and
300 MHz observed in Figs. 15, 17, and 18. The FPGA is stimu-
lating resonances in the board at these frequencies, as illustrated
in Figs. 10, 12, and 13. Controlling these resonances can be crit-
ical to power bus design—particularly in the case of an analog
device with a narrow-band sensitivity to noise, where a slight
shift in the resonance frequency or the quality of the resonance
can have a significant impact on performance.

V. CONCLUSION

A methodology to estimate power supply noise associated
with switching activity in an FPGA was proposed. Switching
currents in the FPGA could be estimated by controlling the sim-
ulation time over which power analysis was performed. This
technique has the advantage over traditional methods that no
detailed information about the innerworkings of the FPGA is
required beyond what is available in the FPGA simulation tool.
The current waveforms can also be found relatively quickly
with minimal computational resources. Lumped-element mod-
els were used to accurately represent the IC die and package
up to 1 GHz, but a more sophisticated cavity-based model was
required for the PCB to get accurate results up to that frequency.
Once the PDN was constructed, the power supply noise can be
estimated directly from the impedance network and the switch-

ing current. Good agreement between simulated and measured
values of noise voltage on the PCB was found in both the time
and frequency domains. This simulation approach can be used
to more intelligently evaluate FPGA designs and decoupling
strategies for their impact on power supply noise and the asso-
ciated jitter and/or emissions it generates.
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