
CHAPTER

9Functional verification

Hung-Pin (Charles) Wen
National Chiao-Tung University, Taiwan

Li-C. Wang
University of California, Santa Barbara, California

Kwang-Ting (Tim) Cheng
University of California, Santa Barbara, California

ABOUT THIS CHAPTER
In a typical integrated circuit (IC) design flow, functional verification ensures

that the implementation conforms to the specification. Because of the rapid

growth of both design size and complexity, functional verification has become

one of the key bottlenecks in the design process. For example, it has been
reported in [Bailey 2002] that the functional verification process consumes

more than 70% of the design effort, and this number might continue to increase.

Functional verification is critical, because an undetected bug in a design may

result in significant financial loss for a company. The Pentium recall for the

famous FDIV bug, for example, cost Intel more than $450 million in 1995.

Therefore, effective verification strategies and techniques have become indis-

pensable to the design flow to ensure high verification quality.

This chapter starts with an overview of the basic concepts of functional ver-
ification and its general flow. Current challenges are explained to help readers

to understand the complexity of functional verification. Meanwhile, modern

designs usually follow the principle of hierarchism by decomposing a complex

system into multiple components. Each decomposition boundary is referred to

as a level. A brief discussion of verification at each of these levels is introduced.

To assess the verification quality, coverage metrics are developed for measur-

ing the extent of an intended verification task. Coverage metrics can be divided

into two categories: structural and functional. Structural coverage metrics calcu-
late a coverage number on the basis of specific structural representations, such

as lines and branches, in the hardware description model and are the most pop-

ular measures. Functional metrics, on the other hand, focus on the semantics or

the design intent of the hardware description model. In this chapter, various

structural coverage metrics will be reviewed in detail. 513

Simulation-based verification is the most widely used approach in func-

tional verification. Simulation is based on testbenches. In a typical verification
task, testbenches accompanied with a design description model are developed

and include input stimuli and expected output responses by the design. The

efficiency of the simulation determines the efficiency of the verification, and,

hence, having compact and high-quality stimuli is critical to this approach. An

alternative to simulation-based verification is formal verification. Formal veri-

fication relies on mathematical reasoning techniques to verify a design. There

can be two types of formal verification methods, one to prove specific proper-

ties of a design and the other to prove that two models of a design are equiva-
lent. The former is called property checking, and the later is often referred to

as equivalence checking. At the end of this chapter, some of these formal verifi-

cation techniques will be introduced as supplemental materials.

9.1 INTRODUCTION
Verification processes happen everywhere in our daily life. One general defini-

tion of verification given in [ANSI/ASQC 1978] is “the act of reviewing, inspect-

ing, testing, checking, auditing, or otherwise establishing and documenting

whether or not items, processes, services or documents conform to specified

requirements.” Within the context of design automation of IC design, shown

in Figure 9.1, functional verification is the step to ensure that the specifications

algorithmic modeling
& simulation

customer
requirements

system
model

RTL modeling
& simulation

RTL

RTL synthesis
& simulation

gate-level simulation
& place and route

gate-level netlist

GDSII

FIGURE 9.1

Typical design flow overview.

514 CHAPTER 9 Functional verification

and/or the implementations of the design at various abstraction levels are in

accord with the design intent.
In a typical design flow, representations for a design at different abstraction

levels often contain thousands of lines or more of Hardware Description
Language (HDL) code. These representations are error-prone because of the

high complexity of the design. Verification plays an important role in identifying

various kinds of problems that may have occurred at different design stages. For

many medium-scale to large-scale processors, application-specific integrated
circuits (ASICs), or system-on-chips (SOCs), functional verification can con-

sume more than 70% of the total labor effort in the design process [Piziali
2006]. The difficulty inherent in functional verification is a result of the following

three issues:

1. Ambiguous specifications: Customer requirements are often written
colloquially into the specification. It may be difficult to precisely specify

the requirements with a natural language such as English. Moreover, a

specification is often described at the system level. When verifying a unit

or block inside a system, a clear specification for the unit or the block

usually is not available.

2. Complexity explosion: In general, the complexity of a Boolean circuit

can grow exponentially in terms of both the number of inputs and the

number of internal states. Exhaustive simulation (of all input value combi-
nations and/or state combinations) is simply infeasible for any nontrivial

design.

3. Quality concerns: Ensuring highest-quality verification with limited

engineering resources and within limited time is the challenge to every

verification task. To effectively use resources and time, one needs cover-

age metrics to guide the spending of verification effort. Although various

coverage metrics exist to measure verification coverage, none of these

metrics have been shown to be the golden metric that can reliably and
accurately reflect the verification quality. As a result, signing off a design

with respect to functional verification can become a managerial decision

that heavily depends on one’s experience and is often influenced by time-

to-market pressure as well.

9.2 VERIFICATION HIERARCHY
Modern IC designs typically follow a top-down implementation flow in which

a system is hierarchically partitioned into components. Each partitioning bound-

ary defines the level of the design components. Within the hierarchy, verifica-

tion tasks need to be performed before individual components are assembled.

The V diagram in Figure 9.2 illustrates the design, verification, and integration

9.2 Verification hierarchy 515

flow starting from the system/board level, through the chip and core/unit

levels, to the designer level.

A generic verification flow [Palnitkar 2003a] for each level consists of several

steps, as shown in Figure 9.3. In Step 1, architects need to prepare a design

specification for the best architecture on the basis of analysis of simulation

start

end

Architectural Modeling

Design Specification

Functional Verification
Plan

Functional Verification
Environment

Design Under Verification

Analysis/Coverage

Match w/
Expected Results

Yes

No

- DUV created by logic design
- Simulated by designers and
 verification engineers

1
2

3

4

FIGURE 9.3

Generic design verification flow.

system/board level

chip level

unit/core level

designer

level

R
efine & Partition

Ve
rif

y
&

In
te

gr
at

e

FIGURE 9.2

V diagram of design, verification, and integration.

516 CHAPTER 9 Functional verification

result. In Step 2, a functional verification plan is created to define the basic pa-

rameters that are used later in the functional verification environment. Test vec-
tors and testbenches are either generated manually or automatically by tools

during Step 3. A software simulator applies these test vectors and testbenches

to the design under verification (DUV) and collects the related information

after simulation. In Step 4, the output data are analyzed and checked against

the expected results to calculate verification coverage. If the desired coverage

goal is not achieved, Step 3 is repeated to generate more test vectors to improve

the coverage. After the coverage goal is met, optional steps of hardware-acceler-

ated simulation, emulation, and assertion-based verification could be applied to
further improve verification quality and to reduce the risk of needing a future

re-spin.

9.2.1 Designer-level verification

In the top-down implementation flow shown in Figure 9.2, the designer level is

the lowest level that defines the smallest of the RTL modules such as an arbiter

or a first-in first-out (FIFO) that one designer can be in charge of in a project.
Designer-level blocks are usually verified individually to ensure that the basic

functionalities of the blocks understood by the designer from the system speci-

fication are correctly implemented. As the tasks involved in verifying a designer-

level block do not require interaction with other blocks, the designer is given

full control of the block, and thus a high standard of verification is expected

at this level.

During the early phase of a design project, the functionality of a block would

not be completely fixed and likely will be modified frequently. For example,
part of a block’s functionality may need to move across the interface to other

blocks for better unit/core/chip optimization. It is, therefore, not uncommon

to repeat the designer-level verification process multiple times.

A variety of verification techniques are available at this level. Testbench

development is relatively easy because the block inputs and outputs are treated

as primary inputs and outputs at this stage. The designers often explore most of

or even the entire input space of the target block by simulation. Formal meth-

ods such as property checking can also be applied relatively easily at this level
because of the small design size. It is important to note that, for designer-level

verification, the main challenge is not in verifying the block itself as an indepen-

dent design, but in verifying the block in the context of the environment in

which it will be placed. For example, a property may not be verified as always

true if the block operates independently. However, under specific constraints

imposed by the environment surrounding the block, the property could become

always true. Establishing proper environmental constraints for designer-level

verification is, therefore, an important (and usually not trivial) task.

9.2 Verification hierarchy 517

9.2.2 Unit-level verification

A complex design is usually divided into several logical components that are
referred to as units. The units intercommunicate through buses following pre-

specified protocols. Figure 9.4 shows an AMBA bus-based SOC design. Memory,

UART, Bridge, and Arbiter are among the units created from many different

designer-level components. In this example, the communications between units

go through two PCI buses. [Scafidi 2004] reported that even when the full-chip

model of Intel’s Itanium-2 processor was close to the tape-out quality, unit-level

verification still uncovered additional bugs.

The functionality at the unit level is specified more clearly, and usually the
specification is more stable than that at the designer level. Each unit usually

has a precise specification where its physical and timing characteristics will

abide by the requirements of the bus protocol. Each unit implements a set of

specified operations. Therefore, the goal of unit-level verification is to guarantee

that each operation performed by the unit conforms to the desired functionality

and satisfies the bus interface’s communication constraints.

Because of the high accessibility of units through buses, high-quality verifica-

tion that guarantees each unit correctly meets its formal specification is usually
achievable. In an ideal situation, once the unit-level verification is completed,

bugs residing within these units can be excluded from the list of candidates.

When performing verification at the next level, only those bugs originated from

the communication and physical interfaces need to be considered.

9.2.3 Core-level verification

In the example of Figure 9.4, units such as the ARM processor core, the DMA
core, and the third-party IPs are initially designed for general purpose use and

are equipped with more generalized functionalities. They are incorporated into

ARM
Processor

Core

On-chip
SRAM

DMA
Core

Arbiter

AHB/APB
Bridge

UART Timer GPIO
3rd Party

IP

AHB/ASP

APB

FIGURE 9.4

AMBA bus-based SOC.

518 CHAPTER 9 Functional verification

an SOC design to avoid the need for developing dedicated logic, which often

requires only a subset of the original functionalities. Such reusable components
are referred to as cores and can be either acquired from other companies or

developed internally in a company. In modern SOC designs, a core is often used

multiple times within a system or across different systems. For core providers, it

is necessary to thoroughly verify the functionality of the core before it is deliv-

ered to the core integrators.

Cores are often designed as a stand-alone component in the first place.

In addition to core-specific functionalities, standardized bus protocols and/or

physical interface standards are then incorporated to offer core reusability.
The corresponding verification components used to stimulate and monitor

these standard buses or interfaces can, therefore, be reused and shared among

cores by use of the same bus protocols or physical interfaces.

Even if a core has its own stand-alone specification, this specification can

change because of bug fixing or functionality enhancement, either of which

may alter the original functionality. Therefore, it is necessary to re-ensure that

operations defined in a previous version of the core will still work correctly

in a subsequent version. This requirement is called backward compatibility.
To meet this requirement, a regression test suite is commonly used. Such a

test suite is developed by collecting interesting and useful tests from verification

conducted on previous versions of the design. A new version must pass these

tests to ensure backward compatibility. Note that if a bug exists in old versions

of the design, we should not expect regression tests to capture this bug in the

new version even if a fix to the bug has been inserted. For that purpose, new

tests are required to verify the correctness of the inserted fix.

9.2.4 Chip-level verification

A chip-level design consists of multiple units/cores that have complete RTL and

bus functional models with well-defined I/O boundaries. At this level, the speci-

fication usually does not change significantly from its initial architecture. Hence,

the verification requirement is usually well defined.

The aim of chip-level verification is to ensure that the components are prop-

erly connected through the interfaces and the entire design abides by the speci-
fication. For a regular interface structure such as a bus protocol, only a

restricted set of sequences of control and data signals, typically called transac-
tions, are permitted. On the basis of the specified interactions between the

units, transaction-based tests can be developed to verify the interfaces.

A transaction-based test usually consists of one top-level RTL file that

includes all units and bus interfaces and one testbench file that produces trans-

actions to propagate events from one unit to another through the bus interface.

Responses at the primary I/Os and/or memory contents are monitored to check
the overall behavior of the system.

9.2 Verification hierarchy 519

9.2.5 System-/board-level verification

System-level integration is a complex task that requires many tools for design
creation, simulation, and analysis. In [Bailey 2007], system-level verification is

defined as “the utilization of appropriate abstractions to increase comprehen-

sion about a system, and to enhance the probability of a successful implementa-

tion of functionality in a cost-effective manner.”

Verification at this level involves checking the integration through the inter-

connections between different chips on the board. The functionality at the

lower levels is assumed to have been fully verified. Often, the application soft-

ware is applied at this stage to verify the entire system.
Verification engineers frequently use programmable logic devices, such as

field programmable gate arrays (FPGAs), to emulate the design. With the

design implemented in programmable devices, the testbenches can be executed

directly on such emulated implementations, which is significantly faster than

executing the testbenches with a software simulator.

9.3 MEASURING VERIFICATION QUALITY
“When can one claim that the verification is complete?” This is a perpetual and still

unanswerable question. Even if a verification team performs all the scheduled

tasks, and even if no more new bugs can be discovered over an extended verifica-

tion period, say a few weeks, there is no guarantee that additional simulation

would not discover a new bug. The total space to be verified is well beyond what

can be exhaustively simulated. Considering a logic block with 64-bit inputs, the

combinatorial possibilities for its input space reach 16� 1018 billion. If simulating
one instance takes one nanosecond, then simulating all of themwill take 5.07 cen-

turies. Obviously, some modeling, analysis, and optimization techniques need to

be used to avoid simulating all tests exhaustively. Various measures are developed

to guide the selection of tests for simulation. Thesemeasures are typically referred

to as coverage metrics. Rather than simulating all tests, the idea is to simulate

just enough tests to reach a desired coverage goal on the basis of the givenmetric.

The assumption is that achieving the coverage goal implies that a sufficient verifi-

cation quality has been accomplished.
In this section, we will first introduce the concept of random testing fol-

lowed by the coverage-driven verification paradigm to outline the concept of

coverage in verification. We will also introduce a classification of verification

metrics and common coverage metrics within each category.

9.3.1 Random testing

Random testing is the most intuitive verification approach. A test generation
program is used to generate random tests according to a set of test templates

520 CHAPTER 9 Functional verification

along with a seed. Multiple random instances of each test template are gener-

ated and applied to exercise a variety of scenarios for exploring various design
corners. A refinement of this approach, called constrained randomverification,
relies on a collection of additional constraints to guide the generation of tests.

Figure 9.5 illustrates the concept of the random testing approach.

Random test generation requires two types of inputs to constrain the test

generation process: (1) a template that serves as the skeleton of the test case,

which contains a set of unknown input fields, and (2) a set of arguments for

which the values can be set during the generation process. Instead of hand-

crafting tests directly, users specify these arguments for input fields within their
legal ranges. Multiple instances of physical test cases are then automatically gen-

erated from each template by specifying values in the input fields. Templates,

along with the changeable arguments, provide an abstract mechanism for hiding

the structural details from users while simultaneously satisfying all architectural

constraints.

Take microprocessor verification as an example. Its test template is an

assembly program with a set of predefined bias arguments. On the basis of these

parameters, one can create arguments to:

1. Select an instruction,

2. Select the next instruction on the basis of the current one,

3. Select an operand,
4. Use branch and jump,

5. Cause an overflow or underflow,

6. Interrupt to cause an exception.

However, all the preceding arguments must conform to the architectural con-
straints, such as, for instance, 32 registers (20 general-purpose, 12 special-pur-

pose), 24-bit addressing, and indirect addressing.

Create Coverage
Goals

Write Test Templates

Generate Random
Tests

Perturb Bias
Arguments or Write

Extra Templates

Run Tests & Collect
Coverage Metrics

FIGURE 9.5

Flow of random testing.

9.3 Measuring verification quality 521

One corresponding template may look like the following:

MUL < random R1-R4 >< random R4-R8 >< random R8-R20 >

or

< Pr ADDð Þ ¼ 90% & Pr SUBð Þ ¼ 10% > R3 R5 < random R4-R7 >

In the first template, the instruction is designated to be MUL (multiplication),

and its three operands can be selected from different registers. In the second

example, the actual instruction is decided with a probability, where 90% is to

be an ADD (addition) and 10% is a SUB (subtraction) where the third operand
is randomly selected from registers R4 through R7.

Random testing is usually applied at the beginning of the verification process

for modern designs. Random tests are applied to randomly exercise the design

space that often can cover some nontrivial cases and some corner cases.

Advanced constrained random test generation uses architecture knowledge of

the design and past experience to better guide the test generation process. Both

templates and bias arguments help hide the detailed information from users

while still being able to generate legal tests that conform to the architectural
constraints of the design.

9.3.2 Coverage-driven verification

Storing information during simulation is necessary to identify those scenarios
that have been previously verified. Such a task is called functional coverage
analysis. The stored information facilitates the generation of new test cases.

Coverage-driven verification (CDV) represents such a method. It measures

the current verification progress [James 2003] and then guides the development

of new strategies for uncovering any missing features or scenarios.

CDV uses a single test stimulus to explore multiple scenarios automatically.

Inheriting the characteristics of random testing, CDV can also discover corner

cases that might occur beyond a user’s expectations. Coverage points such
as assertions are often placed in the environment to collect data for analysis.

After collecting and analyzing the data, the constraints for guiding test genera-

tion can be modified, either automatically or manually, to target the missing fea-

tures or scenarios before the next round of test generation is called. This

iterative test generation process is known as coverage-directed generation
(CDG). Figure 9.6 illustrates a typical coverage-driven verification design flow.

CDV [Benjamin 1999; Bergeron 2000; Verisity 2001; Gluska 2003; Palnitkar

2003b] is more effective than constrained random verification and thus achieves
verification closure faster. Figure 9.7 illustrates the effectiveness comparison of

these two approaches.

Coverage is created to identify the error-prone areas in which bugs may

reside. It originates from software testing, which provides a means of assessing

the thoroughness of software development. A general definition of coverage is a

522 CHAPTER 9 Functional verification

measure of the extent to which the features and scenarios of the design under

verification are covered.
Coverage metrics can be classified into two categories—functional cover-

age and structural coverage—according to the verification intent. Functional

coverage checks the concordance of the semantic design intent with the

designer’s implementation, and it is measured by the number of features and

scenarios defined in the design specification that are exercised by the test set.

Structural coverage aims at measuring the degree of confidence for syntactic
correctness of the physical implementation that the test set achieves.

constrained random
verification

coverage-driven
verification

Time

co
ve

ra
ge

closure %

FIGURE 9.7

Effectiveness comparison between coverage-driven verification and constrained random

verification approaches.

Generate Random
Tests

Analyze Simulation
Data

Run Tests &
Measure Coverage

Metrics

Coverage Results

Desired Coverage
Acheived ?

Modify Test
Generation
Constraints

End

Existing Templates
& Constraints

FIGURE 9.6

Coverage-driven verification design flow.

9.3 Measuring verification quality 523

9.3.3 Structural coverage metrics

Structural coverage measure is also referred to as code coverage metric,
because the objective is to evaluate whether various kinds of elements in the

HDL implementation are exercised by a given test set. Because code coverage

metric ties with test vectors and physical representation in the hardware descrip-

tion language, simulation engines can be easily modified to provide the coverage

information. Code coverage comes in many forms. The following describes a few

among the commonly used metrics.

9.3.3.1 Line coverage (a.k.a. statement coverage)

This metric takes the syntactical HDL implementation and counts the number of

lines exercised during the simulation run. The line coverage is defined as:

Line Coverage ¼#of exercised lines in HDL

Total#of lines in HDL
� 100%

Consider the following Verilog HDL code in Box 9.1:

BOX 9.1

1. always @(in or reset) begin

2. out ¼ in;

3. if (reset)

4. out ¼ 0;

5. en ¼ 1;

6. end

If the testbench exercises lines 1, 2, 3, 5, and 6, the line coverage would be

5/6 ¼ 83.3%. The line coverage is easy to comprehend, and the missed line

explicitly indicates the absence of signal activities. One obvious drawback of

line coverage is its lack of a clear connection between the number of exercised

lines and the correctness of design intent.

9.3.3.2 Toggle coverage

This metric checks whether signals in the design change their values during

simulation. It helps verify the quality of the test set and locate the unexercised

areas. Signals that fail to be initialized or to toggle by the test cases can be easily
identified. Box 9.2 is a sample toggle coverage report.

BOX 9.2

1. //net toggle coverage

2. //name Toggle 0!1 1!0

3. clk Yes

524 CHAPTER 9 Functional verification

4. reset No Yes No

5. start Yes

6. state[6:0] Yes

7. state[9:7] No No No

8. op[2:0] Yes

9. op[3] No No Yes

10. op[4] Yes

11. op[5] No No Yes

12. round[1:0] Yes

13. src1[63:0] Yes

14. src2[63:0] Yes

Although the toggle coverage is easy to compute, it has similar drawbacks to the

line coverage in that it does not provide any insight about the design intent from

the toggle events.

9.3.3.3 Branch/path coverage

This metric evaluates the control flow, such as if and case, in RTL statements.

It counts the number of branches at decision points that are exercised during

simulation. The branch coverage is defined as:

Branch Coverage ¼ #of exercised branches

Total#of possible branches
� 100%

The path coverage refines the branch coverage concept. It does not look at decision

points independently. Instead, it considers the whole sequence of decision points,

called a path, which could possibly be involved in one clock cycle. Note that

when ifor case statements are nested, the total number of possible paths may grow

exponentially. Therefore, reaching a 100% path coverage may become difficult.
Consider the preceding exemplar Verilog HDL code in the discussion of line

coverage. Assume the signal reset is always 1. Then, for the if statement, only

the reset ¼ 1 branch is exercised. Thus, the branch coverage is 1/2 ¼ 50%.

Now consider another example:

BOX 9.3

1. if (x !¼ y)

2. z ¼ 0;

3. w ¼ z;

In Figure 9.8, the RTL code is represented in two flowcharts — each of which is

from the line and branch coverage viewpoints, respectively. Assume the values

of signal x are never equal to those of y during simulation. Then line 2 will be

exercised, resulting in a final line coverage of 100%. But the branch (x ¼¼ y),

9.3 Measuring verification quality 525

represented by the dotted line in Figure 9.8b, is never exercised, resulting in a

branch coverage of only 50%.

Note that designers can implement the branch condition implicitly without

the use of if or case statements. For example, an if-else condition can be imple-
mented by a multiplexer that uses AND or AND-NOT operations. Hence, it may

not be always apparent to know exactly where to collect the branch statistics to

calculate a branch coverage. Inmany situations, a branch not explicitly implemen-

ted by use of if or case statements may not be accounted for in the coverage.

9.3.3.4 Expression coverage

The expression coverage enhances the line and branch coverages and provides

more information about concurrent signal assignments. It focuses the analysis

on the expression in the right-hand side of an assignment or the expression in

a condition statement.

Typically, one expression can be recursively decomposed into multiple sub-
expressions, which are either a single variable or two variables connected by a

logical operator. These sub-expressions are monitored individually during simu-

lation. An expression is fully covered if all of the sub-expressions are exercised.

Otherwise, the expression coverage for a line is calculated by deriving the ratio

of the total number of exercised cases to the total number of possible cases

among all of its sub-expressions.

Expression Coverage ¼ Sk
i¼1#of exercised cases for sub-expressions i

Sk
i¼1#of possible cases for sub-expressions i

� 100%

The expression coverage can be further classified into three categories: multiple
sub-condition, basic sub-condition, and focused expression coverages
[Dempster 2002].

Themultiple sub-condition coverage (MSC) is themost popular and straight-

forward one. It enumerates all possible combinations of the sub-expressions.

That is, if there are N sub-expressions, then 2N cases need to be covered to achieve

a 100% multiple sub-condition coverage. Consider the following expression in

Box 9.4:

x != y

z = 0;

w = z;

x != y

z = 0;

w = z;

truefalse

(a) (b)

FIGURE 9.8

(a) Flowchart for line coverage. (b) Flowchart for branch coverage.

526 CHAPTER 9 Functional verification

BOX 9.4

1. if ((A ¼¼ 0) || ((B ¼¼ 1) && (C ¼¼ 0)))

The participating sub-expressions are (A ¼¼ 0), (B ¼¼ 1), and (C ¼¼ 0). Thus,

the test vectors have to cover all 23 ¼ 8 possible cases to achieve a 100% multi-

ple sub-condition coverage.

The basic sub-condition coverage (BSC) checks both the true and false

states of each sub-expression during simulation. For the preceding example,

there are six possible cases: (A ¼¼ 0) is true, (A ¼¼ 0) is false, (B ¼¼ 1) is true,

(B ¼¼ 1) is false, (C ¼¼ 0) is true, and (C ¼¼ 0) is false. A sample report, after
the basic sub-condition coverage is derived, is listed in Box 9.5:

BOX 9.5

1. Count Sub-expression Outcome

2. 4 A ¼¼ 0 true

3. 6 A ¼¼ 0 false

4. 8 B ¼¼ 1 true

5. 2 B ¼¼ 1 false

6. 0 C ¼¼ 0 true

7. 10 C ¼¼ 0 false

In this report, because the condition “(C ¼¼ 0) is true” has never been exer-

cised during simulation, the basic sub-condition coverage is (5/6) ¼ 83.33%.

An expression is a function of the participating variables combined with

Boolean operators. If one variable in focus can control the result of the expres-

sion, there should be a pair of variable assignments for which the values at all
other variables, except the focused variable, are the same so that one assign-

ment evaluates the expression to be true and the other assignment to be false.

On the basis of this notion, the focused expression coverage (FEC) is devel-

oped, which helps identify the minimum set of tests required for verifying a

complicated branching expression. To achieve a 100% FEC for an expression,

for each participating variable in the expression, the test set must include a pair

of vectors that assign identical values to all other variables except the target var-

iable, and these two vectors evaluate the expression to different values.
To illustrate this notion, consider the expression in Box 9.6:

BOX 9.6

1. if (A && B)

The focused expression coverage criteria for variable A are [A, B] ¼ [0, 1] and

[A, B] ¼ [1, 1]. Note that in both cases, B has to be 1 for the effect of changing

9.3 Measuring verification quality 527

A to be observed. Similarly, the criteria for variable B are [A, B] ¼ [1, 0] and

[A, B] ¼ [1, 1]. Because [A, B] ¼ [1, 1] is a common assignment, it would
require only three assignments to fully validate expression (A && B).

Now consider the following example in Box 9.7:

BOX 9.7

1. if (((X ¼¼ 1) && (Y ¼¼ 0)) || (Z ¼¼ 0))

The three sub-expressions are expr_1 ¼ (X ¼¼ 1), expr_2 ¼ (Y ¼¼ 0), and
expr_3 ¼ (Z ¼¼ 0). To achieve a 100% FEC, the test set must include the follow-

ing tests:

n To target expr_1, [expr_1, expr_2, expr_3] ¼ [0, 1, 0] and [expr_1,

expr_2, expr_3] ¼ [1, 1, 0] are required. Note that expr_2 has to be 1
because it is ANDed with expr_2. Similarly, expr_3 has to be 0 because

it is ORed with the rest of the expression. The result is that (X, Y, Z) ¼
(0, 0, 1) and (1, 0, 1) must be covered.

n To target expr_2, [expr_1, expr_2, expr_3] ¼ [1, 0, 0] and [expr_1,

expr_2, expr_3] ¼ [1, 1, 0] are required. Therefore, (X, Y, Z) ¼ (1, 1, 1)

and (1, 0, 1) must be covered.

n To target expr_3, there are three different ways to ensure expr_3

controlling the overall expression: [expr_1, expr_2] ¼ [0, 0], [0, 1] and
[1, 0] respectively. Therefore, one of following three pairs, (X, Y, Z) ¼
{(0, 1, 1), (0, 1, 0)}, {(0, 0, 1), (0, 0, 0)}, and {(1, 1, 1), (1, 1, 0)} must be

included in the test set.

Combining these three requirements, the minimum test set for a 100% FEC

includes 4 tests which are either {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0)} or {(0,

0, 1), (1, 0, 1), (1, 1, 1), (1, 1, 0)}.

Suppose a given test set contains only two tests, (X, Y, Z) ¼ (1, 0, 1) and

(X, Y, Z) ¼ (1, 0, 0), which evaluate [expr_1, expr_2, expr_3] to [1, 1, 0] and

[1, 1, 1], respectively. With respect to the focused expression notion, none of

the three sub-expressions is satisfied by these two tests and, thus, its focused

expression coverage is 0%.

9.3.3.5 Trigger coverage (a.k.a. event coverage)

This metric simply measures the number of exercised variables in the sensitivity

list. Consider the example given in Box 9.8:

BOX 9.8

1. always @(a or b or c)

2. begin

3. . . .

4. end

528 CHAPTER 9 Functional verification

Signals a, b, and c are monitored throughout the simulation. If only b and c

change values during simulation, then the trigger coverage would be 2/3 ¼
66.67%.

9.3.3.6 Finite state machine (FSM) coverage

The FSM coverage plays an important role in verifying the control unit of a design.

As its name implies, this metric is tied to the HDL structure of finite state

machines in a design and can be divided into three sub-classes. The state cover-
age reports the states that are visited and their frequencies during simulation. The

arc coverage records the state transitions that are traversed during simulation.

Even if 100% state and arc coverages are achieved, there is no guarantee that

the FSM is bug-free. Therefore, the third class of FSM coverage, called sequential
arc coverage (a.k.a. transition coverage), was designed. The metric measures
the coverage on the basis of an increased sequential depth of state visitation or arc

traversal. It also identifies the fundamental cyclic sequences in various lengths.

Figure 9.9 shows an FSM example and the arc sequences starting from s1 for cal-

culating the sequential arc coverage. For example, {s1!s2!s2} is a 2-arc transition

starting from s1 to be monitored for the sequential arc coverage.

In calculating the coverage, the conventional FSM coverage interprets the

RTL code syntactically. That is, it treats each state as a unique state and its state

transition to any other state as a unique arc. Although each state has a unique
state code, it is common that a group of states have identical or very similar

behavior. Therefore, interpreting the FSM syntactically may result in many

unnecessary checks. Consider the following partial RTL code of a 4-bit binary

counter with reset and load signals in Box 9.9:

BOX 9.9

1. always @(posedge clk) begin

2. if (reset) count ¼ 0;

3. if (load) count ¼ in;

4. else if (count ¼¼ 15)

5. count ¼ 0;

6. else

7. count ¼ count þ 1;

8. end

The implementation has 16 states. Because any state can go to anyother state includ-

ing itself (either through incrementing the count variable or through loading a new

state value in), each state has 16 outgoing arcs, resulting in a total of 256 arcs.

Figure 9.10a illustrates this conventional interpretation of the FSM. If the counter

is 8-bit, the total number of states will increase to 256 states with 65,526 arcs.

To represent the design as an FSM, it is better to interpret it semantically,

which defines the states on the basis of the unique actions taken during the

9.3 Measuring verification quality 529

operation. For the preceding example, there are only three different actions:
count ¼ 0, count ¼ in, and count ¼ count þ 1. Figure 9.10b shows the FSM

of this interpretation, which consists of only three states and nine arcs. The

semantic FSM coverage, calculated on the basis of this representation, can

greatly reduce the number of tests required for achieving a high coverage.

9.3.3.7 More on structural coverage

Different metrics for structural coverage can be associated with different HDL

structures at different design stages. In general, during the behavioral-level

design stage, only line, branch, condition, path, trigger, and FSM coverage can

be measured. Toggle coverage is often applied to gate-level designs only. The

RTL-level design stage has the broadest possible coverage spectrum, and all
types of metrics can be applied.

(a) (b)

count = 0

count = 1

count = 2

count = 15

count = 14

•••

count = 0

count = in
count =

count + 1

FIGURE 9.10

Illustration of (a) the conventional FSM coverage. (b) the semantic FSM coverage.

length of transition 1-arc

(a) (b)

2-arc

s1→s1 s1→s1→s1

s1→s2 s1→s1→s2

s1→s2→s1

s1→s2→s2

sequence of states
from s1

A

C D

B

FE

s0

s1

s2

FIGURE 9.9

(a) FSM example. (b) Transition sequences from s1.

530 CHAPTER 9 Functional verification

Because these metrics are simple and straightforward, it is often desirable to

achieve a high structural coverage. The typical coverage goals for various

metrics are listed in Table 9.1 [Dempster 2002].

Even if the desired coverage for these metrics is achieved, it does not guaran-
tee a bug-free design. None of these metrics — or even were we to combine

them all — can be guaranteed to cover all the possible erroneous scenarios.

The structural coverage attempts to explore the design space from the

implementation perspective. Although the targets of the structural coverage

do not necessarily have direct correlation to functional bugs, achieving a high

structural coverage can likely increase the chance of bug discovery. A bug

may be revealed by a new test that was designed to detect a not-yet-covered

structural target.

9.3.4 Functional coverage metrics

Functional coverage metrics guide test generation and verification from a

semantic perspective. They supplement the deficiencies in the code coverage

and help improve verification quality. Some companies have stated that func-

tional coverage would be an important component of their next-generation ver-

ification methods [Drucker 2002].
Functional coverage metrics usually involve the interpretation of functional-

ity and the related measurements from the specification, and require domain

knowledge and instrumentation from the designer and/or verification engi-

neers. Therefore, an automated means of creating functional coverage models

does not exist. Typically, verification engineers need to manually develop a list

of target functionalities to be verified and to devise different strategies to exer-

cise each case in the list. A functional bug is claimed to be found if the design

does not behave as expected with respect to the functional specification after
exercising the related verification scenarios.

Table 9.1 Typical Coverage Targets for Different Metrics

Metric Coverage Goal (%)

Line 100

Branch 100

Condition 60�100
Path >50

Trigger 100

Toggle 100

FSM (state and arc) 100

9.3 Measuring verification quality 531

The verification method based on the functional coverage includes four

major tasks:

1. Determining the coverage events to be verified

2. Preparing stimuli to exercise the target events

3. Collecting data from the design under verification
4. Analyzing results to quantify the coverage and identify missing events

Basically, it is the designer’s job to determine the functions to be covered. Veri-

fication engineers are required to create a verification plan on the basis of their

understanding of the design’s functional specification. In addition to enumerat-
ing the functions under verification, external resource expenditures, including

verification time, manpower, and related software and tool costs, should also

be carefully considered.

The verification plan forms the basis for developing the corresponding test

programs. Random testing techniques are often used at the transaction level

to facilitate test program development. For the AMBA APB part of the example

in Figure 9.4, transactions considered for functional coverage could be based on

either a simple operation, like a Read/Write to RAM, or a complicated opera-
tion, like a sequence of back-to-back Reads to the same address in RAM.

9.4 SIMULATION-BASED APPROACH
[Bergeron 2000] introduced a re-convergence model for the general design and

verification process. Figure 9.11 illustrates the application of this model to func-

tional verification. The designer’s effort is dedicated to transforming the func-
tional specification into an implementation in HDL, whereas the verification

effort ensures that the transformation is as intended without misinterpreting

any functionality.

The functional verification process is typically associated with the concept

of testbench, which refers to the environment used to apply the predetermined

sequence of input vectors to the design under verification (DUV) and to

observe the responses. Figure 9.12 illustrates a DUV surrounded by a testbench.

No external communication is required in this system. The testbench models
certain aspects of the design intent and is responsible for delivering the input

sequences to the DUV and for receiving the output responses for subsequent

analysis.

HDL Codingspecification

transformation

verification

FIGURE 9.11

Re-convergence model for the design and verification process.

532 CHAPTER 9 Functional verification

9.4.1 Testbench and simulation environment
development

In general, the testbench is an HDL description used to create a closed system
on top of the design under verification. A testbench consists of three fundamen-

tal components: a stimuli driver, a monitor, and a checker.
The stimuli driver is responsible for providing stimuli to the DUV. The sti-

muli can be either predetermined or generated during simulation. The purpose

of the stimuli driver is not to mimic the behavior of the entire neighboring

blocks but to maintain the interface coherence to the DUV.

The monitor is used to observe signal at the inputs, outputs, and any inter-

nal wires of interest on the DUV. The values at the input and output signals must
be consistent with the interface protocol, and the monitor will issue an error if

any exception occurs.

A checker can be viewed as a special type of monitor for checking the func-

tionality of the design intent. Traditionally, designers create the functionality

checkers manually and use them to compare the responses from the design

with the specification. As designs become more complicated, the need to auto-

mate the development of such checkers increases.

On the basis of the coverage metrics, verification engineers try to prepare a
set of test cases to cover the target functional events. In developing such test

cases, experience plays a crucial role. Creating meaningful test cases for some

specific events often rely heavily on a designer’s knowledge and interpretation

of the specifications.

Consider a 16-bit one-hot encoding bus protocol. To achieve an optimal cov-

erage for all scenarios, the test cases would require each bit taking a turn to be 1

with others being 0. In deriving the test cases, it could be difficult to observe

the regularity solely from the structure of a design implementation. However,
having knowledge of the functionality of the protocol would help capture the

regularity and similarity for each bit that make test generation easier and more

efficient.

Enumerating deterministic test cases to cover all functions is tedious. An

alternative is to convert a design specification into an HDL model to automate

the checking. Such a testbench is called a self-checking testbench, because

checking instrumentation is no longer needed. The self-checking testbench

Design Under
Verification (DUV)

Testbench

FIGURE 9.12

Generic structure of the design under verification and its testbench.

9.4 Simulation-based approach 533

paradigms can be divided into three types: checking with golden vectors,
checking against a reference model, and transaction-based checking.

Checking with golden vectors is the most widely used approach among

the three. Given coverage metrics, the verification engineers search for test

cases at inputs and derive the corresponding output responses manually or by

use of an auxiliary program. Such combinations of input and output vectors

are called the golden vectors. After the testbench applies the input vectors to

the DUV, the actual responses are captured and compared with the golden vec-

tors. A bug is found when a mismatch occurs between the golden and the actual

responses. Figure 9.13 shows the components of this method.
The checking-against-a-reference-model paradigm uses a reference

model that captures all functions in the specification. The reference model is

typically implemented at a more abstract level with either a high-level program-

ming or a verification language. All input vectors are applied to both the refer-

ence model and the DUV, and their responses are evaluated and compared. If

the comparison takes place at the end of each cycle, the reference model must

be cycle-accurate. The checker compares the responses from both the DUV

and the reference model, as illustrated in Figure 9.14. If the specifications
change, the reference model would need to be modified accordingly. This mod-

ification effort is usually much lower than the effort of reproducing all golden

vectors required for the checking-with-golden-vectors paradigm.

Transaction-based checking is applicable to the DUV that can correspond

to commands and data in a transaction. It uses a scoreboard to record the veri-

fied command and data. The checker is used to query the scoreboard. It issues

an error if the identifier cannot match any transaction in the scoreboard or if the

DUV

Checker

Golden
Vectors

Stimuli

FIGURE 9.13

Self-checking testbench with golden vectors.

DUV

Checker

Stimuli

Reference
Model

FIGURE 9.14

Self-checking testbench with a reference model.

534 CHAPTER 9 Functional verification

command and data are not the expected values given by the scoreboard. This

concept is illustrated in Figure 9.15.

9.4.2 Methods of observation points

As we can see in the preceding, the monitor and checker in one testbench are

tightly tied to the concept of observation of signal changes in the DUV. Such

observation approaches will also determine the strategy used for generating
stimuli. The three common verification paradigms regarding the observation

points are the black-box, the white-box, and the grey-box methods.

The black-box method assumes the internal signals of the DUV are not

accessible during verification. Only the external input/output interfaces are

directly controllable and observable. The verification plan, including the test-

bench development, is developed based only on input/output functionality.

Figure 9.16 illustrates this method.

The major advantages of black-box verification are its simplicity and inde-
pendence from specific implementation information. Of all the verification

methods, it requires the least amount of knowledge about the DUV. Even if

the design’s HDL code is not ready, the verification process can be started,

and stimuli can be developed as long as a reliable specification for the DUV

becomes available. Whether the DUV is realized as an ASIC, an FPGA, a circuit

board, or a software program is irrelevant. The black-box method only aims at

verifying the functionality defined with respect to the design boundaries.

DUV

Checker

Stimuli

Scoreboard

FIGURE 9.15

Transaction-based self-checking testbench.

DUV

Testbench
Checker and

Monitor

FIGURE 9.16

Black-box verification.

9.4 Simulation-based approach 535

On the other hand, without any structural information, black-box verifica-

tion lacks the observability and controllability internal to the DUV, which some-
times might be required to determine whether the DUV passes or fails a specific

test. It is challenging to precisely identify what and where a problem is in the

DUV with this method. It may not be feasible for the black-box verification to

check for DUV’s low-level features and structural changes. Black-box verifica-

tion may not be suitable for designer-level blocks, because many interesting cor-

ner cases may be observed only when implementation details are provided.

In short, the black-box method requires no implementation knowledge and

demands only design specification to complete the testbench development.
Being independent of the implementation makes the generated stimuli more

reusable for different realizations, but it also makes the stimuli generation pro-

cess more difficult because of the lack of observability and controllability inter-

nal to the DUV.

The white-box method, which is illustrated in Figure 9.17, represents

another extreme scenario. Here, the full observability and controllability inter-

nal to the DUV is assumed to be available. For controllability, verification engi-

neers can easily derive stimuli for the desired events by setting up the
required internal states and justifying these states backward toward the inputs.

Likewise, regarding observability, any changes in internal signals can be directly

observed. Therefore, the white-box method can pinpoint the problematic area

in the DUV once a mismatch from the expected value is observed.

Low-level features and implementation changes can be incorporated in the

white-box approach, because such verification is tied to a specific implementa-

tion. Therefore, the generated test cases may only be valid for the specific imple-

mentation. Modification to the generated test cases would be necessary if the
implementation changes. Therefore, the maintenance efforts required for the

white-box method would be much greater than those for the black-box method.

White-box verification can ensure that implementation-dependent features

are verified. For example, it becomes feasible to generate test cases to exercise

a timing-critical path when the full observability and controllability to the inter-

nal structure of the DUV is available.

Checker Monitor

DUV

a

c

b

FIGURE 9.17

White-box verification.

536 CHAPTER 9 Functional verification

The grey-box approach is a compromise between the black-box and the

white-box approaches, which inherits the advantages from both methods. This
approach intends to exercise only those significant features associated with the

implementation.

The general architecture of the DUV is assumed to be known by the verifica-

tion engineers, and only a limited number of internal points are accessible.

These observation points are often located in the inter-block interface and

adhere to specific communication protocols. In other words, the grey-box veri-

fication method observes only a select set of important internal signals, which

are typically located at the boundary of a building block. Therefore, for the illus-
tration in Figure 9.17, a grey-box method would preclude observation of the

monitor c but would include the other two observation points.

Similar to the white-box approach, the grey-box approach could exercise a

desired event by applying a test case directly at inter-block interfaces. Even if

the implementation of the components changes, as long as the interfaces

between the components within the DUV remain unchanged, the generated test

cases can be reused.

9.4.3 Assertion-based verification

Assertion-based verification is becoming popular in the industry and has drawn

much attention in the recent literature [Foster 2004]. This method embeds a set

of assertions in various parts of the implementation for monitoring design prop-

erties. Assertion-based verification can be viewed as a variant of the white-box

method.

The concept of assertions is originated from software testing. An assertion is
a line in the program that checks the validity of an expression. A correct pro-

gram must guarantee that such expressions are always true; otherwise, a warn-

ing or exit signal should be issued. Software engineers frequently write

assertions to check the possible existence of unexpected scenarios. Many

high-level programming languages such as C/Cþþ, Java, and Eiffel support

assertions by the use of a system library or by the use of the language definition

itself. Actually, the first standardization of VHDL defined its language constructs

to support simple assertions, as shown in Figure 9.18.

assert Boolean-expression

(a) (b)

report string-expression
severity severity-level;

assert parity = '0'
report "Parity Error"
severity error;

FIGURE 9.18

(a) Syntax. (b) example of an even-parity assertion in VHDL.

9.4 Simulation-based approach 537

Similar to software testing, assertions in hardware design are also expressed

as part of the design description in the HDL code. Many contemporary hard-
ware verification languages (HVLs), such as SystemVerilog [Accellera

2002a] and OpenVera [Synopsys 2001], were developed to facilitate the

writing of assertions in conjunction with the design itself. Another flavor of

practical solutions is to use an auxiliary specification language. Several different

proprietary formats of specification languages exist, such as PSL/Sugar [Accel-

lera 2002b]. Assertions can be written in the specification language with a

proper interface to the design.

The use of assertions in verification has various advantages. In black-box ver-
ification, for example, assertions can be used to replace the original monitors

for the purpose of collecting coverage data. In white-box verification, the origin

of an assertion failure could be confined to a limited area to facilitate the debug-

ging process. It is also a good practice to use assertions as formal comments in

place of comments in natural language. Meanwhile, assertions can be reused as

part of the verification IP associated with the IP core delivered to the customers.

Moreover, because assertions are placed in the HDL code, they can be directly

used as properties to be checked for the use of formal methods.

9.4.3.1 Assertion coverage and classification

The term assertion coverage has a variety of definitions. It could be used to
indicate the ratio of the number of assertions to the number of HDL code lines.

However, assertion density, suggested in [Piziali 2004], is considered a better

term for this definition. The better definition for assertion coverage should be

similar to that of functional coverage, which is defined on the basis of the num-

ber of exercised scenarios over the total number of scenarios to be covered.

Assertion coverage counts the number of exercised assertions to the total

number of assertions extracted from the design implementation.

Assertions can be classified into two types: static and temporal.

n Static assertions dictate those legal scenarios that are not related to time,

and, as such, they are required to be held for all time. These scenarios can

be described by the first-order logic. The one-hot encoding bus is an exam-

ple. Only one bit in such a bus can be one, and the rest should be zero. A
static assertion monitors the bus during the course of simulation and

sends an error message whenever this rule is violated.

n Temporal assertions extend the capability of static assertions to tempo-

ral logic. The consequent statement needs to be evaluated during the spe-

cified period of time after which the antecedent condition is triggered.

Consider the following SystemVerilog example in Box 9.10:

BOX 9.10

1. @(posedge clk)

2. init_event |¼> abort_event;

538 CHAPTER 9 Functional verification

where |¼> denotes the non-overlapping implication operator. This example

states that once an antecedent condition, init_event, successfully completes,
a consequent statement, abort_event, will occur in the next clock cycle.

The behavior of temporal assertions can be illustrated by a finite state

machine, as shown in Figure 9.19. In the idle state, the assertion moves to the

evaluate state when its antecedent condition is triggered. The evaluate state

repeatedly checks the consequent statement before a Pass/Fail result is issued.

Once there is a result, either an error signal is generated or the system moves

back to the idle state.

To illustrate a SystemVerilog Assertion (SVA) example, assume that the
intended property in a design is the following: “after the request signal is

asserted, the acknowledge signal must be generated from 1 to 3 cycles later.”

Figure 9.20 shows its timing diagram and the corresponding code in SVA.

9.4.3.2 Use of assertions

For different types of properties, assertions can be divided into two categories:

coverage assertions and checker assertions. Coverage assertions primarily

record the occurrence frequency of a specified event. Such assertions usually

monitor events defined in the functional coverage metrics. For the example of

a 16-bit one-hot coded bus, the assertion defines all possible combinations of

16 one-hot cases and records the case(s) exercised during simulation.
Checker assertions function as sentinels. They watch the violation of static

or temporal properties. At the module level, in white-box verification, assertions

evaluateidle

Pass/Fail

Trigger!Trigger

!(Pass/Fail)

FIGURE 9.19

Finite state machine for generic assertions.

(a)

0

reg

ack

1 2 3 4 5

Timing Diagram

property req_ack;
@(posedge_clk) req##[1:3] $rose(ack);

endproperty
as_req_ack: assert property (req_ack);

SVA Sample Code
(b)

FIGURE 9.20

Example of a temporal assertion in SVA.

9.4 Simulation-based approach 539

can check implementation details, whereas in black-box verification, assertions

check against the specification through both module inputs and outputs. For
higher-level verification, checker assertions are used to monitor the interfaces

across components. Because the interfaces must abide by their corresponding

protocols, checker assertions signal errors once unexpected scenarios occur.

A two-hot message in a one-hot coded bus is such an example.

9.4.3.3 Writing assertions

One of the most frequently asked questions in assertion-based verification is

“Who should write the assertions?” In practice, this job is shared by the entire

design and verification team. At different levels of the design abstraction, differ-

ent properties are converted into assertions. It may be difficult to ask a designer

responsible for designing a small block and lacking a system-level view to write
high-level assertions.

At the architectural level, a design is described by use of the input/output

functions of each component and the interface protocols that connect them,

without implementation detail. Assertions at this level model high-level relation-

ships and ensure that system-level behavior is consistent with the system-level

specification. Also at this level, observation points are located at inputs and out-

puts of the components and at bus interfaces only.

Assertions try to capture one’s understanding of the design intent. Once a
design component is created, the designer can write assertions for it on the

basis of the functionality from the specification and the implementation he or

she chooses. At this level, assertions are frequently used for debugging and for

measuring coverage.

If applicable, verification engineers may use formal methods to prove asser-

tions to complement the deficiencies of simulation-based methods. Also, asser-

tions accompanied with IP cores from IP providers would need to be

integrated into the verification plan.

9.5 FORMAL APPROACHES
Advances in modern simulators allow full-chip simulation to be efficiently con-

ducted. Nevertheless, the success of simulation-based verification remains

dependent largely on the quality of the stimuli. The stimuli exercise a design
under verification (DUV) and traverse its state space. Verification can be con-

sidered as a process of exploring reachable state space of the design. Modern

designs rapidly increase in size and complexity, and, consequently, their reach-
able state space can grow exponentially. As a result, it becomes difficult to

exhaust all reachable states for complete verification by use of only simulation.

Formal approaches aim to make complete verification possible, where com-

pleteness is in the sense that all reachable states are explored. The underlying

idea is to infer the design properties by reasoning without explicitly simulating

540 CHAPTER 9 Functional verification

stimuli. A property models certain aspects of design behavior associated with all

or a subset of reachable states. Proving design properties with formal approaches
requires the use of efficient search or reasoning engines, many of which have

been developed over the years. Significant advances have been achieved in

recent years.

The remainder of this chapter provides an overview of modern formal verifi-

cation approaches. Three major types of formal approaches are introduced:

model checking, equivalence checking, and theorem proving. For each

approach, we explain the underlying theory, illustrate its use, give examples,

and discuss the advantages and disadvantages. Finally, we include a brief review
of advanced research topics in the area.

9.5.1 Equivalence checking

Modern VLSI design flow is partitioned into a number of synthesis steps that

take the idea from system specification into GDSII. This results in descriptions

at different abstraction levels, which include behavioral, RTL, gate, and switch

levels. Ensuring equivalence between two alternative descriptions of the same
design is a commonly encountered problem in a design process. This task is

referred to as equivalence checking. Although such a general concept can be

applied to detect any mismatch from two descriptions given at any level, com-

mercially available equivalence checking tools typically address the equivalence

between the design’s RTL code and its various gate-level netlists, as shown in

Figure 9.21. That is the focus of this section.

RTL Code

Logic Synthesis

Gate-Level Netlist 1

Place & Route

Gate-Level Netlist 2

DFT Synthesis

Gate-Level Netlist 3

Clock Tree Synthesis

Gate-Level Netlist 4

FIGURE 9.21

RTL to gate-level design flow.

9.5 Formal approaches 541

Boolean circuits, in general, can be viewed as finite state machines
(FSMs), and, therefore, Boolean equivalence checking (BEC) over two cir-
cuits, FSM1 and FSM2, can be formulated as the problem of checking for the

output of the miter circuit, as shown in Figure 9.22, being constant 0 or

not. FSM1 consists of combinational logic C1 and a state-holding element set,

S1, whereas FSM2 consists of combinational logic C2 and a state-holding element

set, S2. Both primary inputs are m bits and primary outputs are n bits. PPO1

(PPO2) denotes the pseudo-primary outputs from to C1 (C2) to S1 (S2). Note that

the number of state-holding elements can be different in the two FSMs. Each

pair of corresponding primary output bits — one from C1 and the other from
C2 — connects to an XOR gate. If any XOR output becomes 1 with respect to

any input vector or sequence, these two FSMs are not equivalent.

A simplified version of the BEC problem is combinational equivalence
checking (CEC). This problem assumes that FSM1 and FSM2 have a complete,

one-to-one mapping between the state-holding elements and that they start with

the same initial state. The assumption is also made that PPO1 always has the

same value as PPO2. Hence, the original miter circuit can be recast as that

shown in Figure 9.23; here, we only focus on the comparison between combi-
national logic C1 and C2 without any sequential elements. The combinational

equivalence checking problem is thus formulated as the following: Given two

combinational Boolean netlists C1 and C2, check whether the corresponding

outputs of C1 and C2 are equal for all input combinations. There are two

types of approaches for solving the CEC problem: functional equivalence and

structural equivalence.

PI combinational
logic C1

state-holding
elements S1

combinational
logic C2

state-holding
elements S2

primary
inputs

primary
outputs

m

n

n
FSM2

FSM1

PPO1

PPO2

PO1

PO2

XORs

n

FIGURE 9.22

Miter circuit for checking equivalence of two FSMs.

542 CHAPTER 9 Functional verification

9.5.1.1 Checking based on functional equivalence

The first step of functional CEC is to translate the combinational circuits into a

canonical representation. A representation of a Boolean function is canonical

if the representation for each function is unique and independent of the imple-

mentation of the function. A truth table is one example of a canonical represen-

tation for Boolean functions. Equivalence can be determined by directly

comparing the two canonical representations. Among all canonical representa-

tions, the reduced ordered binary decision diagram (OBDD), introduced
in Chapter 4, is the most prevalent, because OBDD yields a more compact rep-

resentation than other representations. The CEC problem can be resolved by

building the OBDDs for the outputs of the circuits on the basis of their primary

inputs. Two circuits are equivalent if the OBDDs from each pair of correspond-

ing outputs are graphically isomorphic.

9.5.1.2 Checking based on structural search

A structural search approach checks to see whether any vector exists at primary

inputs that would cause a mismatch between the two circuits at their primary

outputs. If no such input vector can be found, the two circuits are proven equiv-

alent. The satisfiability (SAT) solvers, introduced in Chapter 4, can be used as
the structural search engine for checking equivalence. A SAT solver can be used

to check if an assignment at PIs exists to satisfy a 1 at the miter’s output.

An UNSAT answer from the solver proves the equivalence of the two circuits.

An ATPG tool developed for generating manufacturing tests for stuck-at faults

can also be used for checking structural equivalence. As illustrated in Fig-

ure 9.24, if the stuck-at-0 fault at the XOR output is proven a redundant fault

by an ATPG tool, the two circuits are equivalent. A thorough treatment of ATPG

techniques will be provided in Chapter 14.
For complex circuits, directly applying SAT solving at the miter’s output signal

may result in an exponential number of backtracks, which makes the approach

inefficient. Structural similarity between the two circuits under checking can be

explored to improve its efficiency, which attempts to solve the structural equiva-

lence problem by incrementally solving a sequence of easier sub-problems

combinational
logic C1

combinational
logic C2

XORs

n

PI

primary
inputs

m
n

n

primary
outputs

PO1

PO2

FIGURE 9.23

Combinational equivalence checking.

9.5 Formal approaches 543

[Brand 1993; Kunz 1993; Goldberg 2000; Huang 2000]. On the basis of a

divide-and-conquer strategy, various heuristics have been developed to identify

internal equivalent points from the two circuits under checking. For example,
when two signals are proved to be equivalent, the equivalence of the two sig-

nals can be encoded as a SAT clause and added back to the SAT formulation of

the problem. Such equivalence clauses can then help to speed up the SAT

search, as shown in [Lu 2003].

For the sequential equivalence checking (SEC) problem, shown in

Figure 9.22, state traversal techniques are often used. The most common state

traversal technique is reachability analysis. Note that two FSMs, M1 and M2,

are equivalent if, and only if, the output of the miter circuit M1�2 is constant
0 under all combinations of input assignments for all reachable states of M1�2.
Therefore, checking sequential equivalence would require the ability of deriving

the set of states reachable from a given initial state set I for a given FSM M. An

intuitive approach that explicitly enumerates state transitions over the state

graph of the FSM is not scalable to large design and, thus, is often impractical.

Practical solutions usually adopt a symbolic technique implemented by OBDD

that implicitly derives the reachable state set by use of transition functions.

Symbolic reachable analysis consists of two steps: (1) encoding the FSM
symbolically and (2) performing reachability analysis iteratively. Given FSM

M1 ¼ (Q1, I1,
P

1, O1, d1, l1) and FSM M2 ¼ (Q2, I2,
P

2, O2, d2, l2), where Qi
0s,

Ii
0s,
P

i
0s, Oi

0s, di0s, li0s denote the state spaces, the initial state sets, the input

and output alphabets, transition functions, and output functions, respectively,

the FSM M1�2 ¼ (Qm, Im,
P

m, Om, dm, lm) for the miter circuit can be con-

structed as follows:

n The state space Qm ¼ Q1 � Q2

n The initial state set Im ¼ I1 � I2
n

P
m and Om are the same input and output alphabet sets as in M1 and M2

(that is,
P

m ¼
P

1 ¼
P

2 and Om ¼ O1 ¼ O2)

n The transition function dm(s, a):
P

m � Qm!Qm, where s and a represent

for one state in Qm and one input vector in S, respectively
n The output function lm(s, x):

P
m � Qm!Om

We define a new function, called transition relation, which is denoted as R(x, s, s0):
(
P

m�Qm)�Qm! {0, 1}.R(a,p,q)¼ 1 if there exists a transition from the statep to
the state q under an input vector a for M1�2; otherwise, R(a, p, q) ¼ 0. Assume

combinational
logic C1

combinational
logic C2

PI

s-a-0?

PO

FIGURE 9.24

Checking structural inequivalence by generating a test for XOR output stuck-at-0 fault.

544 CHAPTER 9 Functional verification

given an input vector set x ¼ (x1, x2, . . . , xk) with the corresponding sequence

of state transitions dx ¼ (d1, d2, . . . , dk), the transition relation from the state s to
the state s’ can be formulated as:

R x; s; s0ð Þ ¼ s1
0 � d1 s; xð Þð Þ ^ s2

0 � d2 s; xð Þð Þ ^ . . . ^ sk
0 � dk s; xð Þð Þ ¼ Pi si

0 � di s; xð Þð Þ

Therefore, if the input vector set x can bring the finite state machine from the

state s to the state s0, then R(x, s, s0) ¼ 1; otherwise, R(x, s, s0) ¼ 0.

We then annotate the existential quantification operator 9 to the transition
relation R. A pair of states (p, q) 2 R9 if, and only if, there exists an input vector

x such that the machine transitions from state p to state q after applying x.

Applying the existential quantification notation 9 to the preceding transition

relation results in R9(s, s0). Such a notation is called quantified transition
relation and represented as:

R9 s; s0ð Þ ¼ 9x: s1 0 � dl s; xð Þð Þ ^ s2
0 � d2 s; xð Þð Þ ^ . . . ^ sk

0 � dk s; xð Þð ÞÞ
¼ 9x: Pi si

0 � di s; xð Þð Þ
Given M1�2 ¼ (Qm, Im,

P
m, Om, dm, lm) and its quantified transition relation,

we can apply R9 to derive all reachable states. Such a process is called reachability

analysis and can be done by the image computation denoted as Img(S, R9),
where S is a set of given states and R9 is the quantified transition relation

defined by M1�2. The output of Img(S, R9) is the set of states reachable from S

in one clock cycle. One approach to reachability analysis is to iteratively perform

image computation starting from the initial state set Im. Such an approach is called
forward reachability analysis, and the generic pseudocode is outlined as follows:

Algorithm 9.1 Forward_Reachability

1. i :¼ 0 // counter for looping
2. Qi:¼ I // i-th set of reachable states
3. do {
4. Qnew:¼ Img(Qi, R9); // compute image from current states
5. Qiþ1 :¼ Qi _ Qnew; // update the state set for next iteration
6. i :¼ i þ 1; // counter increments
7. } until (Qiþ1 � Qi) // stop when state set is stable
8.
9. return Qiþ1

Consider the 7-state FSM shown in Figure 9.25 for which state 0 is the only ini-

tial state. The forward reachability algorithm derives all reachable states from

state 0 as follows in Table 9.2:
The iterative process stops at iteration 4 for which the current set of reach-

able states is equivalent to the next set of reachable states. Therefore, the set of

reachable states from state 0 is {0, 1, 2, 3}. From this analysis, we find that states

9.5 Formal approaches 545

4, 5, and 6, which are surrounded by the dotted line in Figure 9.25, can never
be reached from the initial state 0. These states form the set of unreachable

states for state 0.

Reachability analysis can be also conducted through a background traversal of

the state space [Abdulla 2000]. For a target final state (which could be a state that

causes non-equivalence of the two FSMs), the search attempts to compute the set

of previous states that can transition into this target state. If the backward reach-

ability analysis can eventually reach an initial state, the search stops, and the

two FSMs are proven not equivalent. Intuitions behind the forward and backward
reachability analysis are illustrated in Figure 9.26a and Figure 9.26b, respectively.

Image computation may suffer from too many iterations and/or memory

explosion. Several techniques that attempt to avoid memory explosion, such

as the use of SAT solving instead of BDD-based techniques [Abdulla 2000], have

been proposed.

Table 9.2 Reachable States by Forward Reachability Algorithm

Iteration 1 2 3 4

Qi {0} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3}

Qnew {0} {1, 2} {1, 3} {0, 1, 3}

Qiþ1 {1, 2} {1, 3} {0, 1, 3} {0, 1, 2, 3}

0 1

3 2

5

4

6

FIGURE 9.25

Example of forward reachability analysis.

init F1 F2 Fk badB1B2Bk

(a) (b)

……

FIGURE 9.26

Intuitions behind forward and backward reachability analysis.

546 CHAPTER 9 Functional verification

Boolean equivalence checking has been widely accepted and incorporated

into industrial design flows. Most leading EDA vendors offer BEC tools that
include Encounter Conformal from Cadence and Formality from Synopsys. Com-

binational equivalence checkers have enjoyed tremendous success, partially

thanks to the recent advances in SAT solving, which help to improve both per-

formance and scalability of CECs. Sequential equivalence checking has also

made significant progress in recent years. SEC tools such as SLEC from Calypto

[Calypto 2008] are also commercially available.

9.5.2 Model checking (property checking)

Given a property and a design, a model checking tool allows a user to check

whether the property holds true on the design. To develop such a tool, one

needs to ask two basic questions: how to specify or describe a property and

how to efficiently prove that a property holds true or is violated. The first ques-

tion concerns the language used to express properties. Such a language deter-

mines what properties can be described and what properties cannot be

described and, hence, limits the applicability of a model checking tool. The sec-
ond question concerns the computation engine used to prove properties. Like

equivalence checking described previously, OBDD and SAT are two prevalent

methods that are used to implement the core computation engine of a model-

checking tool. In this section, we begin by introducing the (formal) languages

used to describe properties, followed by a brief review of how OBDD and

SAT can be used to implement a model checking tool.

Temporal logic, introduced by Arthur Prior in 1960s [Prior 1957] and initi-

ally known as Tense Logic, provides a formal system for qualitatively describing
and inferring how the values of statements for properties vary over time in a

system. In temporal logic, a statement’s truth value can change over time. In

contrast, in traditional predicate logic, a statement’s truth value is either true

or false, which does not change over time. Application of temporal logic in ver-

ification started to receive attention in 1980s.

Temporal logic consists of two types of formulas: (1) state formulas, a form of

atomic propositions (AP) that indicate the validity of specific states; and (2)

path formulas, in which the property of a path holds constant. Note that a path
here refers to a sequence of states. According to the views taken with respect

to the underlying nature of time, temporal logic can be classified into (1) linear
temporal logic (LTL), where the future value can only be derived along its linear

computation path; and (2) branching time temporal logic (BTTL), which is a

tree-like structure that allows quantifications over many different futures at each

moment. Whether LTL or BTTL is more suitable for model checking depends on

the property and the design being checking [Emerson 1990].

LTL allows applications to reason about the nondeterministic behavior. It
models time as a sequence of discrete states starting from an initial moment

with no predecessors and extending infinitely into the future. Such a sequence

9.5 Formal approaches 547

of states is known as either a computation path or an execution path. LTL

derives the change over time with a linear time model M ¼ (S, !, L), which
is also known as a Kripke structure [Kripke 1963]. Here,

S: a set of state formulas {s0, s1, . . .}
!: the transition relation where 8s 2 S, 9s0 2 S, s.t. s!s0

L: a labeling function L:S!P(AP) in which each state is labeled with a set

of atomic propositions from AP.

Figure 9.27 shows a simple example of a linear time model, M1, where

S ¼ {s0, s1, s2, s3}

! ¼ {(s0, s1), (s0, s2), (s1, s0), (s1, s3), (s2, s3), (s3, s0), (s3, s3)}

L ¼ {(s0, {p,q}), (s1, {r,t}), (s2, {q,t}), (s3, {r})}

A path p in M ¼ (S,!, L) is an infinite sequence of ordered states {si 2 S} such
that for each i � 1, si ! siþ1. Therefore, path p can be expressed as p ¼ {s1 !
s2 ! . . . ! si ! . . .}. Particularly, pk denotes the suffix of a path starting from

the k
-th state. For example, p3 ¼ {s3! s4! . . .}. The notations � and 6� denote

the satisfaction relation and the unsatisfaction relation, respectively. Given a
Kripke structure M ¼ (S, !, L), p � f denotes that the formula f holds true

(i.e., is satisfied by the system) at the starting point of the path p in M. Let

I(s1) be the set of formulae that hold true at the starting point of path p. Then,
“p � f” means “f 2 I(s1).”

LTL is built up from a set of propositional variables p1, p2, . . . ,>(true) and ?
(false), the usual logic connectives :(negation), _(disjunction), ^(conjunction),
!(imply), and the following temporal modal operators: X(Next), G(Always),

F(Finally), U(Until), and R(Release):

n Next (X) operator is unary and specifies that a formula holds at the second

state on the path p:
p � Xf iff p2 � f

n Always (G) operator is unary and specifies that a formula holds along

every state on the path p:

p � Gf iff 8i � 1; pi � f

q,t r

r,tp,q

s0 s1

s2 s3

FIGURE 9.27

Example of an LTL model.

548 CHAPTER 9 Functional verification

n Finally (F) operator is unary and specifies that a formula holds at some

future state on the path p:

p � Ff iff 9i � 1; pi � f

n Until (U) operator is binary and specifies that for some i� 1, p0 to pk�1 satis-
fies the first formula f and pk satisfies the second formula c:

p � fUc iff 9i � 1; s:t: pi � c and 8j < i; pj � f

n Release (R) operator is binary and specifies that for some i � 1, we have

either there exists j < k such that pj satisfies the first formula f or pk satis-
fies the second formula c:

p � fRc iff either 9i > 1; s:t: pi � f and 8j 	 i; pj � c

or

8k � 1; pk � c

Figure 9.28 illustrates examples for the semantics of various LTL operators

assuming that all examples show on a path p in M ¼ (S, !, L). We can apply

LTL to the Kripke structure M1 in Figure 9.27 and derive the following formulas:

1. s0 � Xt for all path p, and s0 6� X q ^ rð Þ because the next state of s0 can

not satisfy both q and r.

X f:

G f:

F f:

f f

~ f~ f

f U y:

f R y:
(case 1)

f f f f f

f

f

f

y y y f, y

y

f R y:
(case 2)

yyyyy

p

FIGURE 9.28

Examples for semantics of LTL operations.

9.5 Formal approaches 549

2. s0 � G: p ^ tð Þ and s3 � Gr because M1 can loop at s3 forever.
3. s0 6� GFp denotes that not every path starting from s0 can finally hold the

formula p. p ¼ s0 ! s1 ! s3 ! s3. . .f g is such one example.

4. s0 � GFp! GFr denotes that every path starting from s0 which satisfies

the formula p will always satisfy the formula r, but not for the case

s0 6� GFr ! GFp.
5. 8s 2 S in M1, s � X q _ rð Þ ! Fr denotes that the next state of one path

starting from every state in M1 can be q or r, and then the formula r will

also hold on the path finally.

The expressive power of LTL is limited and implicitly quantifies universally

over paths. An LTL formula can be satisfied if, and only if, all paths starting from

the given state satisfy such a formula. A LTL system cannot decide whether one

specific formula can be satisfied along some paths in M. Therefore, computa-
tion tree logic (CTL), one type of BTTL, is evaluated over a branching-time

structure and it quantifies the paths explicitly by introducing both the existen-

tial operator (E) and the universal operator (A) over paths.
The Existential (E) operator is defined as follows:

n EXf specifies that there is a path such that f holds at the next state:

s � EXf iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: v2 � f
�

n EGf specifies that there is a path along which f holds at every state:

s � EGf iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 8vi; vi � f
�

n EFf specifies that there is a path along which f holds finally:

s � EFf iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 9vi; vi � f
�

n E fUc½
 specifies that there is a path along which f holds until c holds:

s � E fUc½
 iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: p � fUc
�

The Universal (A) operator is defined as follows:

n AXf specifies that for all paths, f holds at the next state:

s � AXf iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: v2 � f
�

n AGf specifies that for all paths, f holds at every state of the path:

s � AGf iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 8vi; vi � f
�

n AFf specifies that for all paths, f holds finally:

s � AFf iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 9vi; vi � f
�

550 CHAPTER 9 Functional verification

n A fUc½
 specifies that for all paths, f holds until c holds:

s � A fUc½
iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: p � fUc
�

Figure 9.29 illustrates partial examples for the Existential and Universal

operations according to the preceding definitions.

CTL is capable of specifying branching behaviors such as AG(EFf), which is

also known as resetability—meaning there is always a path back to f. This

property cannot be modeled by LTL because of the lack of the path quantifier

E. Likewise, there exists some LTL formulas that cannot be expressed in CTL.

For example, FGf in LTL means that the formula f will finally hold along every

path from the given point. Its semantic should be expressible as A(FGf). How-

ever, in CTL, every temporal operator (F and G) must be preceded by a path
quantifier (E or A). Hence, CTL cannot express A(FGf). CTL* extends the

expressiveness from both LTL and CTL and primarily allows a path quantifier

to be used followed by an arbitrary LTL formula. The relationships between

the expressiveness of LTL, CTL, and CTL* can be viewed as LTL [CTL �
CTL*, which are illustrated in Figure 9.30. Particularly, there is a set {f4} of

CTL* formulas that can be expressed neither in CTL nor in LTL. E(GFf) is such
an example, saying that there is a path where from one certain state, f’s holds
through arbitrarily many states to the end [Huth 2004].

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

n1n1n1

n1 n1 n1

EFf:EGf:EXf:

AXf: AGf: AFf:

f

f f

f

f

f

f

f

ff f

f

f

f

f

f

f

f

f

f

f

f

FIGURE 9.29

Illustrations for CTL Existential and Universal operations.

9.5 Formal approaches 551

The properties of design systems can be divided into two types [Owicki

1982]:

1. Safety properties that indicate that some bad event will never happen.

For a sequential program, safety guarantees that no incorrect outcome will

be produced by the program. For a finite state machine, safety checking

denotes those properties whose violation can always find a finite trace.

Another typical example of safety is a mutual exclusive property that states

that having more than one process in the critical section will never occur.
2. Liveness properties that indicate that some good event will eventually

happen. For a sequential program, the program will terminate as it pro-

duces a legal outcome. For a finite state machine, those properties that

may be violated will never have a finite witness. CTL can model the simple

liveness for the phrase “The light will turn green” as light � AF(green).
“Any request will eventually be satisfied” is another example semantic

phrase that can be expressed and the corresponding CTL expression is

AG(Req)) AF(Sat). Liveness focuses on a slice in the tree structure and
may incur the witness as a computation path of infinite steps.

To illustrate the safety and liveness properties, consider a two-input Muller C-

element used for asynchronous circuit connections. Figure 9.31a shows its
gate-level netlist with two Boolean inputs (x, y) and one output (z). The

corresponding dynamic behavior is represented by the state transition graph

in Figure 9.31b.

A safety property of the C-element is that if all inputs and outputs are equal,

then the output z will not change its value until all inputs flip their values.

There are two situations: all values are 0 and all values are 1.

n AG((x ¼ 0 ^ y ¼ 0 ^ z ¼ 0)) A(z ¼ 0 U (x ¼ 1 ^ y ¼ 1)))

n AG((x ¼ 1 ^ y ¼ 1 ^ z ¼ 1)) A(z ¼ 1 U (x ¼ 0 ^ y ¼ 0)))

A liveness property of the C-element is that if both inputs become equal, then

the output z will eventually change to the corresponding value. There are

two situations: both input values are 0 and both input values are 1.

CTL*

CTLLTL

f4

f1 f2 f3

FIGURE 9.30

Relationships between the expressiveness of LTL, CTL, and CTL*.

552 CHAPTER 9 Functional verification

n AG(A(x ¼ 0 ^ y ¼ 0) U (z ¼ 0 _ x ¼ 1 _ y ¼ 1))

n AG(A(x ¼ 1 ^ y ¼ 1) U (z ¼ 1 _ x ¼ 0 _ y ¼ 0))

9.5.2.1 Model checking with temporal logic

Let a Kripke structure M ¼ (S,!, L) represent a finite state concurrent system.

The model-checking problem can be formulated as: given a model M, a property
p specified as a temporal formula, and a state s, does s � p hold in M? The

corresponding result is either (1) yes, s � p in M, or (2) no, s 6� p in M. Espe-

cially for the latter case, such a result is derived from finding a counterexample

that invalidates p in M. Therefore, the modeling checking problem can be

addressed by computing the state set Sp that satisfies p in M.

The labeling algorithm, proposed by E. Clarke, E. Emerson, and A. Sistla

[Clarke 1986], is a basic algorithm for the model checking problem. Given a

CTL formula, the labeling algorithm labels the set of states in which the target
formula p holds, which is denoted as p½
½
≜ 8s 2 S inM; s � pf g, and called

the denotation of p. Deriving p½
½
 starts by decomposing p into a set of sub-

formulas in a bottom up manner. Because {?;:; ^} and {AF, EX, EU} can form

an adequate set of connectives for CTL [Martin 2004], and all other proposi-

tional and temporal connectives can be written in terms of this set, a preproces-

sing step to convert the target formula p into an equivalent form in terms of this

adequate set is first invoked and then followed by labeling states in M for p½
½
.
Later, the denotation p½
½
 is compared with the set Sinit of all initial states to
check whether Sinit � p½
½
.

The labeling algorithm explicitly enumerates the states in the model whose

size often grows exponentially in terms of the numbers of variables in the sys-

tem. This problem is typically referred to as the state explosion problem. To

overcome this issue, a more efficient technique called fix-point computation
is proposed, which incorporates OBDD for symbolic computation and implicit

representation of states. Model checking with OBDDs is often referred to as

symbolic model checking [Burch 1990], and SMV, developed at Carnegie
Mellon University, is one such verifier [McMillan 1992].

x

y

z

(a) (b)

z = 0

(x = 0∩y = 0)∪(x! = y)

(x = 1∩y = 1)∪(x! = y)
(x=0∩y=0)

(x =1∩y = 1)

z = 1

FIGURE 9.31

(a) Gate-level netlist. (b) state transition graph of a C-element.

9.5 Formal approaches 553

Fix-point computation finds the set of states that satisfies the specific global

CTL formula. A function xiþ1 ¼ f(xi) is called a fix-point if 9xk, where k � 0,
s.t. xkþ1 ¼ f(xk) ¼ xk. Given a starting value x0, a fix-point can be found by itera-

tively mapping f to xi until f(xk)¼ xk. To help calculate the fix-points on a Kripke

structure M ¼ (S,!, L), we define a function t called a predicate transformer,

which takes a subset of S and outputs another subset. In other words, the function

t is defined on the basis of the power set P(S), which is the set of all subsets of S.
t i(S0) denotes i applications of t to the given subset S0 � S. That is,

tiðS0 Þ ¼ tðtð. . .ðt|fflfflfflfflffl{zfflfflfflfflffl}
i times

ðS0 ÞÞ

Þ

t is monotonic, provided that for any two subsets of S, P, and Q, if P � Q � P

(S), then t (P) � t (Q). Note that because t is monotonic, by starting from a sub-

set of S and continuously applying t, a fixed point can always be reached.

Let t be monotonic, � be the empty set, and U be a finite set {s0,s1, . . ., sn} �
P(S) of n elements in M, then 9l, s.t. t l(�) ¼ t lþ1(�) and 9u, s.t. t u(U) ¼ t uþ1

(U). t l(�) and t u(U) are called the least and greatest fix-points of t, which are

denoted by fpmin and fpmax, respectively. Each basic CTL* operator can be fur-

ther represented by either fpmin or fpmax over an appropriate predicate trans-

former. For a complete treatment of the underlying theory and proof, please

refer to [Granas 2003].

Suppose that we would like to apply the fix-point computation to check

AG f) AFcð Þ, then sub-annotations will be computed in a bottom-up manner.
That is then c½
½
; AFc½
½
; f½
½
; f) AFc½
½
; and AG f) AFcð Þ½
½
 in this example.

Assuming c ¼ p and f ¼ q, let’s check the process of calculating the formula on

the basis of the example given in Figure 9.27.

n c½
½
 ¼ r½
½
 ¼ s3f g
n AFc½
½
 ¼ AFr½
½
 ¼ s0; s1; s2; s3f g can be computed as the union of
� c½
½
 ¼ r½
½
 ¼ s3f g
� r _ AXr½
½
 ¼ s3f gU s1; s2f g ¼ s1; s2; s3f g
� r _ AX r _ AXrð Þ½
½
 ¼ s3f gU s0; s1; s2; s3f g ¼ s0; s1; s2; s3f g
� no need to repeat since {s0, s1, s2, s3} converges

n f½
½
 ¼ p½
½
 ¼ s0f g
n f) AFc½
½
 ¼ :f _ AFcð Þ½
½
 ¼ :p _ AFrð Þ½
½

� :p _ AFrð Þ½
½
 ¼ s1; s2; s3f gU s0; s1; s2; s3f g ¼ s0; s1; s2; s3f g

n AGm½
½
 can be computed as the intersection of m½
½
; m ^ AXm½
½
;
m ^ AX m ^ AXmð Þ½
½
, and etc. Therefore, AG f) AFcð Þ½
½
 can be obtained

from the following and result in {s0, s1, s2, s3}:

n m½
½
 ¼ f) AFc½
½
 ¼ s0; s1; s2; s3f g
n m ^ AXm½
½
 ¼ s0; s1; s2; s3f g \ s0; s1; s2; s3f g ¼ s0; s1; s2; s3f g
n m ^ AX m ^ AXmð Þ½
½
 ¼ s0; s1; s2; s3f g
n . . . all remaining computations converge to {s0, s1, s2, s3}

554 CHAPTER 9 Functional verification

Because every state belongs to AG f) AFcð Þ½
½
 ¼ s0; s1; s2; s3f g, the Kripke

structure M ¼ (S, !, L) satisfies this property. As we can see, computing the
state set for propositional connectives is straightforward. The computation for

temporal connectives such as EXf is relatively sophisticated and requires apply-

ing the temporal operations over the current state set repeatedly until there is

no change.

Symbolic model checking is often limited by the sizes of corresponding

OBDDs used in the computation. Typically, a good variable ordering is crucial

for minimizing OBDD size. However, finding optimal ordering is a proven NP-

complete problem. In some cases, even with the best ordering, the OBDD size
is still larger than the available computation resource. To address this problem,

an alternative method, called bounded model checking (BMC), was proposed,

which only tries to find counterexamples for properties within a bounded num-

ber of clock cycles (state transitions). Most of the bounded model checkers use

a propositional decision (SAT) procedure [Biere 1999]. Several efficient satisfia-

bility solvers have been developed in recent years that are capable of solving

problems with more than thousands of variables. Bounded model checking

can find minimal length counterexamples as the propositional decision proce-
dure traverses the state-transition graph step by step. This feature can also make

users easily understand counterexamples and consequently facilitate the debug-

ging process.

Given the Kripke structure M ¼ (S,!, L) and a safety property f, by use of

BMC we can determine whether a length-k execution path of M that satisfies f
exists. That is, M�kEf. Let a propositional formula T(s,s0) define the relation-

ship of the state transition in M and let I(s), a predicate over the state variables,

define the initial states. The BMC problem is equivalent to the satisfiability prob-
lem of a Boolean formula M;f½

k ¼ M½

k ^ f½

k

���
where M½
½
k and f½
½
k,

respectively, encode the set of length-k execution paths of M and the set of

length-k paths that satisfy f in M.

For a valid length-k path p ¼ s0 ! s1 ! s2 ! . . .! skf g; M½
½
k can be

defined as

M½
½
k ¼ I s0ð Þ ^ T s0; s1ð Þ ^ T s1; s2ð Þ ^ . . . ^ T sk�1; skð Þ ¼ I s0ð Þ ^
Yk�1

i¼0 T si; siþ1ð Þ

The core of encoding for a formula f with k steps depends on whether M
contains any loop that starts at sl and ends at sk. Therefore, f½
½
k can be com-

puted as the disjunction of two cases:

1. Without loopback in M: f½
½
k≜ : Qk
l¼0T sl; skð Þ ^ f½
½
0k

� �� �
, where for

every :½
½
ik, k is the length of the prefix of the path and i is the current

position in this prefix.

2. With a loopback in M: ½½f

k≜
Qk

l¼0ðTðsl; skÞ^l½½f

0kÞ), where for every

l :½
½
ik, i is the current position in the path p, k is the length of the prefix

of this path, and l is the position where the loop starts.

9.5 Formal approaches 555

For example, given a formula f ¼ Fp, M� kf is used to check whether any

reachable state in which a property p holds in M within k steps exists. Bounded
model checking will first derive M;f½
½
k ¼ I s0ð Þ ^Qk�1

i¼0 T si; siþ1ð Þ ^Qk
j¼0 p sj
� �

,

where p(sj) ¼ 1 if the property p holds on sj, otherwise p(sj) ¼ 0. This satisfia-

bility problem can be solved with an SAT solver. It will return 1 if such a path is

found. To check whether any reachable state that satisfies p, provided that q

holds infinitely (i.e., f ¼ GFq ^ Fp) exists, modeling the loopback behavior in

M is required. That is,

M;f½
½
k ¼ I s0ð Þ ^
Yk�1

i¼0 T si; siþ1ð Þ ^
Yk

j¼0 p sj
� � ^

Yk

l¼0 T sl ; skð Þ^l q½
½
0k
� �

Although bounded model checking with the propositional decision (SAT) pro-
cedure can handle larger circuits, it is an incomplete technique. If the checking

formulas are unsatisfiable (i.e., the property holds true over a bounded length k

of checking, there is no guarantee that the property will hold or not over a

length greater than k.

9.5.3 Theorem proving

We have introduced how propositional and temporal logic can be automated to

compare two representations in equivalence checking and to validate proper-

ties from the specifications against a given model in model checking. The effec-

tiveness of both equivalence checking and model-checking techniques is often

limited by the capacity and performance of the underlying engines used such

as OBDD and SAT. Sometimes, the complexity of a verification task for an arith-
metic circuit, such as a data path or a signal processing unit, can be reduced if a

more general mathematical formulation of the circuit, with a better abstraction

of the word-level information, is provided. Theorem proving techniques are

applied for such purposes.

Theorem proving is the process for determining whether a given implemen-

tation satisfies the target specification by means of mathematical reasoning, as

shown in Figure 9.32. Both the implementation and specification need to be

transformed into formulas in a formal logic system. The relationships between
implementation and specification are regarded as theorems in logic. The confor-

mance is then established by proving the theorems either from implementation

design
implementation

design
specification

implication

equivalence

FIGURE 9.32

Verification by theorem proving.

556 CHAPTER 9 Functional verification

to specification, denoted by the implication arrow in the figure, or from speci-

fication to implementation, denoted by the equivalence arrow.
A proof system (or calculus) S consists of:

1. Expressions of S: a finite sequence of symbols

2. Well-formed formulas of S: a subset of the expressions of S
3. Axioms of S: a finite set of the well-formed formulas of S
4. Inference rules of S: a finite set of derivation rules from a given finite set

of well-formed formulas to a new well-formed formula

The general form of an inference rule is a1; a2 ;... ak
b , where the well-formed formu-

las a1; a2; . . . ; ak are called the premises of the rule, whereas the well-formed

formula b is called the conclusion.

In such a proof system S, a proof is a finite sequence of formulas, f1, f2, . . . ,
fn in which fi can be either an axiom or else derived from applying an infer-

ence rule of S over {f1, f2, . . . , fi-1}, which is denoted as {f1, f2,. . ., fi-1} ‘ fi.

The last formula fn is the goal of the proof, which is known as a theorem of S.
Sometimes, proofs may require supplementary assumptions, such as G ¼ c1;f
c2; . . . ;ci�1g from the domain specific axioms. The term G ‘ f asserts that
the formula f is valid if all assumptions in G are true. If G is empty, we write this

as ‘ f.
Many modern theorem proving systems are publicly available. These include

Coq [Coq 2003], Z/Eves [Saaltink 1999], High-Order Logic (HOL) [Nipkow

2002], PVS [Owre 1992], and ACL2 [Kaufmann 2002]. To illustrate the deduc-

tion process involved in theorem proving, we use HOL, developed at the Uni-

versity of Cambridge [Gordon 1993], for the remainder of the discussion. HOL

supports the use of standard predicate operators, five axioms, and eight primi-
tive inference rules, which are listed in Table 9.3, for expressing most ordinary

mathematical theories.

The first step of the proof method in HOL is to formalize both the specifica-

tion and the implementation into the formal logic used in the proof system.

Then, the formulation of a proof goal can be achieved by either proof of impli-

cation (forward) or proof of equivalence (backward) with the inference rules. In

the forward manner, a theorem prover starts with simple lemmas that can be

proven directly to develop new rules. Rules are successively combined into
more difficult lemmas until the target theorem is proven. Figure 9.33 shows

an example for such an HOL theorem proving. The functional specification of

the underlying black-box, shown in Figure 9.33a, is an NOR function denoted

by f ¼ �x � �y. Its formal specification can be expressed as SPEC x; y; zð Þ≜
z ¼ :x ^ :yð Þ. And the implementation, which is shown in Figure 9.33b, may

use only primitive AND, OR, and NOT gates. The corresponding descriptions

of these gates in formal logic are:

n AND i1; i2; outð Þ≜ out ¼ i1 ^ i2ð Þ, where i1 and i2 are input ports and out

is an output port.

9.5 Formal approaches 557

x

y

z x

y

zw

(a) (b)

f = x � y

FIGURE 9.33

Example of theorem proving by HOL.

Table 9.3 Base Rules of Higher Order Logics Used in HOL

Name Explanation Rule Remark

ASSUME Assumption
introduction

-

t ‘ t

REFL Reflexivity
-

‘ t ¼ t

ABS Abstraction G ‘ t1 ¼ t2
G ‘ ðlx:t1Þ ¼ ðlx:t2Þ

If x is not free in G,
where (lx.ti)
denotes the function
defined by f(x) ¼ ti

BETA_CONV Beta-
conversion

-

‘ ðlx:t1Þt2 ¼ t1½t2=x

t1[t2/x] substitutes t2
for x in t1 with the
restriction that no free
variables in t2 become
bound after
substitution into t1

SUBST Substitution G1 ‘ t1 ¼ t2jG2 ‘ t½t1

G1 [G2 ‘ t½t2

t[ti] denotes a term t
containing a subterm ti

INST_TYPE Type
instantiation

G ‘ t

G ‘ t½s1; . . .; sn=v1; . . .; vn

t½s1; . . . ; sn=v1; . . . ; vn

substitutes in parallel
the types s1; . . . ; sn for
the variables v1; . . . ; vn
in t

DISCH Assumption
discharging

G ‘ t2
G- t1f g ‘ t1) t2

G–{t1} denotes the set
subtracting {t1} from G

MP Modus
ponens

G1 ‘ t1) t2jG2 ‘ t1
G1 [G2j-t2

558 CHAPTER 9 Functional verification

n OR i1; i2; outð Þ≜ out ¼ i1 _ i2ð Þ, where i1 and i2 are input ports and out is

an output port.

n NOT i; outð Þ≜ out ¼ :ið Þ, where i is an input port and out is an output

port.

Therefore, the formal definition for the implementation in Figure 9.33b is

IMPL x; y; zð Þ≜9w:OR x; y;wð Þ ^ NOT z;wð Þ. The goal of this proof is to derive

SPEC(x, y, z) from IMPL(x, y, z) by applying the inference rules specified in

Table 9.3. The proof — given step-by-step — is as follows in Table 9.4. Please

note that the actual process executed with HOL software may not look exactly

the same though. However, it should be similar to what it is shown below.

Theorem proving can be applied to verify implementations described at
different levels of abstraction. The formal specification of the behavior of a

transistor-level CMOS inverter, for example, can be expressed by SPEC x; yð Þ≜
y ¼ :xð Þ [Gordon 1992]. Consider the network structure shown in Figure 9.34.

The implementation is built on basic modules and includes a power cell, a

ground cell, a P-type transistor, and an N-type transistor which are denoted as

VDD(p), GND(q), PTran(x, p, y), and NTran(x, y, q), respectively. The beha-

viors of these basic modules can be formally defined as:

n VDD pð Þ≜ p ¼ > trueð Þð Þ
n GND qð Þ≜ q ¼ ? flaseð Þð Þ
n PTran x; p; yð Þ≜ :x) p ¼ yð Þð Þ
n NTran x; y; qð Þ≜ x) y ¼ qð Þð Þ

Table 9.4 Step-by-step Proof for an NOR Function

Proof

IMPL(x, y, z) { from the circuit diagram }

‘ 9w:OR x; y;wð Þ ^ NOT z;wð Þ { by definition of the implementation }

‘ OR x; y;wð Þ ^ NOT z;wð Þ { strip off 9w }

‘ w ¼ x _ yð Þ ^ NOT z;wð Þ { by formal definition of OR gate }

‘ w ¼ x _ yð Þ ^ z ¼ :wð Þ { by formal definition of NOT gate }

‘ z ¼ : x _ yð Þð Þ { substitute w with x _ y }

‘ z ¼ :x ^ :yð Þ { distribute : over x _ y }

‘ SPEC x; y; zð Þ { by definition of the specification }

‘ IMPL x; y; zð Þ) SPEC x; y; zð Þ
Q.E.D.

9.5 Formal approaches 559

Then, the entire network structure can be formulated as:

IMPL x; yð Þ≜9p; q:VDD pð Þ ^ PTran x; p; yð Þ ^ Ntran x; y; qð Þ ^ GND qð Þ
Again, the proof goal is to derive SPEC(x, y) from IMPL(x, y) by applying infer-

ence rules. The step-by-step proof process is as follows.

Proof

IMPL x; yð Þ from the network structuref g
‘ 9p; q:VDD pð Þ ^ PTran x; p; yð Þ ^ NTran x; y; qð Þ ^ GND qð Þ

fby definition of the implementation g
‘ VDD pð Þ ^ PTran x; p; yð Þ ^ NTran x; y; qð Þ ^ GND qð Þ

strip off 9p; qf g
‘ p ¼ >ð Þ ^ PTran x; p; yð Þ ^ NTran x; y; qð Þ ^ q ¼ ?ð Þ

fby definition of VDD and GND cells g
‘ p ¼ >ð Þ ^ PTran x;>; yð Þ ^ NTran x; y;?ð Þ ^ q ¼ ?ð Þ

substitute p in PTran; q in NTranf g
‘ 9p:p ¼ >ð Þ ^ PTran x;>; yð Þ ^ NTran x; y;?ð Þ ^ 9q:q ¼ ?ð Þ

fuse 9a:t1 ^ t2 ¼ 9a:t1ð Þ ^ t2 if a is free in t2 g
‘ >ð Þ ^ PTran x;>; yð Þ ^ NTran x; y;?ð Þ ^ >ð Þ

fuse 9a:a ¼ >ð Þ ¼ > and 9a:a ¼ ?ð Þ ¼ > g
‘ PTran x;>; yð Þ ^ NTran x; y;?ð Þ

use x ^ >ð Þ ¼ xf g
‘ :x) > ¼ yð Þð Þ ^ x) y ¼ ?ð Þð Þ

by definition of PTran and NTran cellsf g
‘ x _ > ¼ yð Þð Þ ^ :x _ y ¼ ?ð Þð Þ

by a) bð Þ ¼ :a _ bð Þf g

VDD

GND

p

q

yx

FIGURE 9.34

CMOS inverter.

560 CHAPTER 9 Functional verification

‘ x ^ :xð Þ _ x ^ y ¼ ?ð Þð Þ _ > ¼ yð Þ ^ :xð Þ _ > ¼ yð Þ ^ y ¼ ?ð Þð Þ
‘ ?ð Þ _ x ^ y ¼ ?ð Þð Þ _ > ¼ yð Þ ^ :xð Þ ?ð Þ
‘ x ^ y ¼ ?ð Þð Þ _ > ¼ yð Þ ^ :xð Þ

apply Boolean simplificationf g
‘ y ¼ :xð Þ

if x ¼ >) y ¼ ?ð Þ and if x ¼ ?) y ¼ >ð Þf g
‘ IMPL x; yð Þ) SPEC x; yð Þ
Q.E.D.

Theorem proving has been successfully applied to the verification of hardware
designs, such as the TAMARACK microprocessor [Joyce 1986] and the Viper

microprocessor [Cohn 1988]. Its strength is its ability to support the expressive-

ness of higher order logics, to relate circuit behaviors at different levels of

abstraction [Melham 1988], and to provide many effective reasoning utilities.

Moreover, the design hierarchy and regularity can be exploited by theorem pro-

vers, which enable users to be in full control of the verification process. Higher

order logics can specify and verify generic and parameterized hardware designs.

One such example would be a channel encoder with words in n-bit width. Also,
tactics of inference rules can continuously evolve during the deduction process.

Particularly frequent and useful theories/theorems can be customized and

retained for future proofs.

Verification by theorem proving requires users to familiarize themselves with

the proof system and to spend a considerable amount of effort toward develop-

ing the formal models for both the specification and the implementation. This is

one of the major disadvantages of the approach. Moreover, because of the lack

of sound proof systems for higher order logic, the derivation of inference rules
may require a great deal of human intervention, especially for complex and

large theorems. For these reasons, the application of theorem proving has been

limited and not widely used for industrial design projects.

9.6 ADVANCED RESEARCH
Simulation remains the mainstream verification approach in the industry. Its
scalability, along with its easy applicability to designs at almost any abstraction

level, makes it attractive for complex verification tasks. When used as a stand-

alone technique, simulation can detect simple and easy-to-find bugs. Its effec-

tiveness in finding corner-case, hard-to-detect bugs can be limited because of

the availability of high-quality stimuli that can cover a wide range of the corner

cases and can activate and reveal the subtle bugs. Although traditional formal

techniques—broadly speaking, model checking and theorem proving—can, in

principle, analyze and find subtle bugs, their applicability can be limited by their
runtime inefficiency and/or difficulty in use.

9.6 Advanced research 561

For simulation-based approaches, measuring the coverage and preparing the

test vectors are the two most important things in the verification plan. The cov-
erage-driven verification (CDV) flow, shown in Figure 9.6, links these two

together and can be automated if the test generation constraints can be modi-

fied automatically [Bai 2003; Chen 2003; Wen 2006, 2007]. Such improvements

can substantially save the amount of manual efforts needed for coverage analysis

and test preparation. The improvements in coverage-driven verification can be

divided into two categories: feedback-based coverage-driven verification and

coverage-driven verification by construction.

Feedback-based coverage-driven verification modifies the biases and
seeds to direct the automatic test generation. A generic algorithm [Bose 2001]

can be applied to resynthesize test cases for optimizing the coverage. The

authors in [Tasiran 2001] represent the DUV as a Markov chain model and ana-

lyze the feedback data to modify the model’s parameters. The authors in [Fine

2003] cast the coverage-driven test generation in a statistical inference frame-

work by modeling the relationship between coverage information and the direc-

tives to the test generation as Bayesian networks. A machine-learning–based

technique in [Fine 2006] was later proposed to provide enhanced coverage
through automatically learning the relationship between the initial state and vec-

tor generation success.

Coverage-driven verification by construction derives an abstract model

that can capture the logical constraints in the DUV and assemble the new direc-

tives to correctly hit the uncovered events. [Ur 1999] abstract the processor

control as a set of FSMs and use them to automate the verification tasks. A phys-

ical test case is derived from a sequential trace of the state traversal in the FSM.

The works in [Chen 2003] and [Bai 2003] generate tests to target stuck-at and
crosstalk faults in processors and use a virtual constraint circuit (VCC)

for assisting the module-level test generation process. The application is for

software-based self-test (SBST) [Lai 2000]. A data-mining approach based

on simulation data was proposed in [Wen 2006, 2007] to approximate the

functionality of the DUV as BDDs that can then be used to better guide the test

generation process.

Although the capacity and performance of formal methods has improved sig-

nificantly over the past decade, such improvements barely kept pace with the
growth in design complexity. The search for new solutions resulted in some

powerful hybrid techniques that combined formal and informal approaches.

These hybrid techniques attempt to address verification bottlenecks by enhanc-

ing coverage of the state space traversed.

Researchers who investigated formal methods have widely recognized the

importance of providing a way to combine disparate tools. Joyce and Seger

experimented with combining trajectory evaluation with theorem proving.

They used trajectory evaluation as a decision procedure for the higher-order

562 CHAPTER 9 Functional verification

logic (HOL) system [Joyce 1993]. A proposal called interface logics [Guttman

1991] discusses the idea of combining different theorem provers by defining a
single logic such that the logic of each individual tool can be viewed as its sub-

logics. [Jang 1997] used CTL model checking to verify a set of properties of

embedded microcontrollers, and the proof of the top-level specification was

achieved through a compositional argument by use of the properties instead

of through a theorem prover. A hybrid of two model-checking techniques,

called MIST [Hazelhurst 2002], enables a handshake between symbolic trajec-

tory evaluation and symbolic model checking.

Generally speaking, hybrid methods combining formal and informal tech-
niques aim to increase the design space coverage and, thus, the probability of

finding design errors. These types of methods include control space explora-

tion, directed functional test generation, combining ATPG with formal tech-

niques, and heuristic-based traversal. Control space exploration addresses

the problem of finding bugs and increases space coverage by exploring control

logic [Iwashita 1994; Ho 1995; Geist 1996; Moondanos 1998]. Directed func-

tional test generation leverages the strengths of both formal verification and sim-

ulation techniques to generate functional tests [Sumners 2000; Ganai 2001;
Mishra 2005]. Because ATPG can avoid state space explosion by use of dual jus-

tification and propagation techniques to localize the search, adding formal tech-

niques can compensate for the inherent incompleteness of ATPG, making the

combination a more complete and effective verification approach [Boppana

1999; Huang 2001; Vedula 2004]. Heuristic-based traversal tackles the need to

efficiently traverse state space by an extensive use of heuristics [Yang 1998;

Wagner 2005; Shyam 2006]. Note that because of the inherent incompleteness

of informal techniques, any method that combines an informal technique with
another is also an incomplete verification method.

9.7 CONCLUDING REMARKS
This chapter reviews thebasicconcepts of functional verification and the challenges

associated with it. Different levels of the verification hierarchy, including the

designer level, unit level, core level, chip level, and system/board level,

are explained. Various coverage metrics used for measuring the explored extent

of verification are provided. The simulation-based approach is currently the most

pervasive form of verification. Key components such as testbench and simulation
environment development are reviewed. The emerging assertion-based verification

method is explained in detail. To compensate for the incompleteness of simulation-

based verification, formal methods built onmathematical theorieswere developed.

Basic concepts in equivalence checking, model checking, and theorem proving are

reviewed. Current research efforts toward advancing functional verification are

summarized to conclude this chapter.

9.7 Concluding remarks 563

9.8 EXERCISES

9.1. (Line Coverage) Suppose that the module in Box 9.11 was specified in

your Verilog HDL design:

BOX 9.11

1. module test;

2. reg X, Y, Z;

3. initial

4. begin

5. X ¼ 10b0;
6. Y ¼ 10b1;
7. if (X)

8. Z ¼ Y;

9. else

10. Z ¼ �Y;
11. end

12. endmodule

Calculate the line coverage after simulation and identify the line or lines
that has/have not been covered.

9.2. (Toggle Coverage) Suppose that the following module in Box 9.12

was specified in your Verilog HDL design:

BOX 9.12

1. module test;

2. reg [2:0] X;

3. initial

4. begin

5. X ¼ 30b000;
6. #100;

7. X ¼ 30b110;
8. #100;

9. X ¼ 30b010;
10. #100;

11. end

12. endmodule

After simulation, the register would have achieved a total toggle per-

centage of 50%. Please identify which toggles are missing.

564 CHAPTER 9 Functional verification

9.3. (Expression Coverage) Suppose that the following module was speci-
fied in your Verilog HDL design:

BOX 9.13

1. module test;

2. reg X, Y;

3. wire Z;

4. assign Z ¼ X|Y;

5. initial

6. begin

7. X ¼ 1’b0;

8. Y ¼ 1’b0;

9. #50;

10. X ¼ 1’b1;

11. #50;

12. Y ¼ 1’b1;

13. #50;

14. end

15. endmodule

This module consists of only one expression: X|Y. Calculate the expres-

sion coverage after simulation and identify those cases that are not

covered.

9.4. (FSM Coverage) Suppose that the module in Box 9.14 was specified in
your Verilog HDL design:

BOX 9.14

1. module test;

2. reg [1:0] D;

3. wire W, X, Y, Z;

4.

5. assign Y ¼ D[1] ^ D[0];

6. assign Z ¼ X ^ Y;

7. assign W ¼ �Z;
8. always @(posedge clk) begin

9. D[1] ¼ W;

10. D[0] ¼ Z;

11. end

12.

13. always #50 clk ¼ �clk;
14. initial

15. begin

9.8 Exercises 565

16. clk ¼ 0;

17. D ¼ 2’b00;

18. #100 X ¼ 1’b1;

19. #100 X ¼ 1’b0;

20. #100 X ¼ 1’b1;

21. #100 X ¼ 1’b0;

22. end

23. endmodule

Please first draw the corresponding finite state machine and then cal-

culate both the state and the arc coverage from the simulation.

9.5. (Equivalence Checking) Determine whether the following two com-
binational circuits are functionally equivalent. If not, produce a

counterexample.

9.6. (Equivalence Checking) Determine whether the following two

sequential circuits are functionally equivalent. If not, produce a coun-
terexample. Note that the initial states of all flip-flops are zero.

F

X

Y

Z

X

Y

Z

F

Circuit A Circuit B

(b)(a)

FIGURE 9.35

Gate-level schematics for the two circuits in Exercise 9.5.

X Y X Y

Circuit A Circuit B
(a) (b)

FIGURE 9.36

Gate-level schematics for the two circuits in Exercise 9.6.

566 CHAPTER 9 Functional verification

9.7. (Kripke Structure) Derive the Kripke structure for the following
circuit.

9.8. (Kripke Structure) Derive the Kripke structure for the following

circuit.

9.9. (Model Checking) Assume that f, c, and g are atomic propositions.

Please use LTL to describe the following design properties:

(a) If c occurs, g never occurs in the future.

(b) Always if f occurs, then eventually c occurs immediately fol-

lowed by g.
(c) Any occurrence of f is followed eventually by an occurrence of

c. Furthermore, g never occurs between f and c.

9.10. (Model Checking) Prove or disprove the following equivalences of

all LTL formulas:

(a) fWc � fUc _ Gf

Y1

Y0

X

clk

QCLR

Q
SET

D

QCLR

Q
SET

D

FIGURE 9.38

Gate-level schematic used for Exercise 9.8.

QCLR

QSETD

QCLR

QSETD

QCLR

QSETDX

clk

FIGURE 9.37

Gate-level schematic used for Exercise 9.7.

9.8 Exercises 567

(b) fRc � fW f _ cð Þ
(c) fUc � cR f _ cð Þ

9.11. (Model Checking) Prove the following equivalences of all CTL

formulas:

(a) AGf � f ^ AXAGf
(b) EFc � c _ EXEFc
(c) E fUc½
 � c _ f ^ EXE½fUc
ð Þ

9.12. (Model Checking) Consider the model M in Figure 9.39. Please
check whether s0 � f and s3 � f hold the following CTL formulas

f’s in M:

(a) AG(AFa)
(b) EX(EXc)
(c) AG(EF(c_d))

9.13. (Model Checking) Assume that f is an atomic proposition. Please

prove or disprove that the formula EGFf in CTL* is equivalent to

the formula EGEFf in CTL.

9.14. (Theorem Proving) The exclusive-or function XOR can be defined

as f ¼ x � y ¼ �xyþ x�y in Figure 9.40a, and its implementation is

shown in Figure 9.40b. Please derive SPEC(x, y, z) from IMPL(x, y, z)

by applying the inference rules specified in Table 9.3.

a,d a,c

cb,ds0 s1

s3 s2

FIGURE 9.39

Finite state machine for the model M used for Exercise 9.12.

f = xƒy

x

y
z

(a) (b)

x

y

z

FIGURE 9.40

Specification and implementation views in Exercise 9.14. (a) SPEC(x,y,z). (b) IMPL(x,y,z).

568 CHAPTER 9 Functional verification

9.15. (Theorem Proving) Given i1, i2 as input ports and out as an output

port, the formal specifications for NAND and XOR gates can be repre-

sented as:

n NAND(i1,i2,out) ≜ out ¼ :(i1 ^ i2)

n XOR(i1,i2,out) ≜ out ¼ (i1 ^ :i2) _ (:i1 ^ i2)

(a) Derive the formal descriptions for the two circuits in Exercise

9.5.

(b) Prove that the two circuits are equivalent by applying inference

rules specified in Table 9.3.

9.16. (Theorem Proving) Given i1 and i2 as input ports and out as an out-
put port, the formal specifications for NAND and NOR gates are:

n NAND(i1, i2, out) ≜ out ¼ :(i1 ^ i2)

n NOR(i1, i2, out) ≜ out ¼ :(i1 _ i2)

(a) Derive the formal specifications for a NAND gate from the CMOS

implementation in Figure 9.41a.

(b) Derive the formal specifications for a NOR gate from the CMOS

implementation in Figure 9.41b.

VDD

GND

out

qp

(a)

VDD

GND qp

out

(b)

FIGURE 9.41

Transistor schematics for NAND and NOR gates in Exercise 9.16. (a) a NAND gate. (b) a NOR

gate.

9.8 Exercises 569

ACKNOWLEDGMENTS
We thank Professor Michael S. Hsiao of Virginia Tech, Professor Jing-Yang Jou of National Chiao Tung

University, and Professor Jie-Hong (Roland) Jiang of National Taiwan University for reviewing the

text and providing helpful comments.

REFERENCES
R9.0 Books

[Bailey 2007] G. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription for

Electronic System Level Methodology, Morgan Kaufmann, San Francisco, February 2007.

[Bergeron 2000] J. Bergeron, Writing Testbenches, Function Verification of HDL Models, Second

edition, Kluwer Academic Publishers, New York, February 2003.

[Dempster 2002] D. Dempster and M. Stuart, Verification Methodology Manual: Techniques for

Verifying HDL Designs, Third Edition, Teamwork International, Hampshire, UK, June 2002.

[Foster 2004] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design, Second Edition, Kluwer

Academic Publishers, New York, May 2004.

[Gorden 1993] M. J. C. Gorden and T. F. Melham, Introduction to HOL: A Theorem Proving Envi-

ronment for Higher Order Logic, Cambridge University Press, London, June 1993.

[Granas 2003] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, June 2003.

[Huth 2004] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning about

Systems, Second Edition, Cambridge University Press, New York, June 2004.

[James 2003] P. James, Verification Plans: The Five-Day Verification Strategy for Modern Hard-

ware Verification Languages, Kluwer Academic Publishers, New York, October 2003.

[Nipkow 2002] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, Springer-Verlag, Berlin Heidelberg, May 2002.

[Palnitkar 2003a] S. Palnitkar, VerilogW HDL: A Guide to Digital Design and Synthesis, Second Edi-

tion, Prentice Hall PTR, New Jersey, March 2003.

[Palnitkar 2003b] S. Palnitkar, Design Verification with e, Prentice Hall PTR, New Jersey, October

2003.

[Piziali 2004] A. Piziali, Functional Verification Coverage Measurement and Analysis, Springer,

New York, October 2004.

[Prior 1957] A. N. Prior, Time and Modality, Clarendon Press, Oxford, 1957.

R9.1 Introduction

[ANSI/ASQC 1978] ANSI/ASQC A3, Quality systems terminology. American Society for Quality Con-

trol, Milwaukee, WI, 1978.

[Bailey 2002] B. Bailey, The wake of the sleeping giant-verification, Scalable Verification Technical

Publications, http://www.mentor.com, April 2002.

[Piziali 2006] A. Piziali, Verification planning to functional closure of processor-based SoCs, in Proc.

DesignCon, 3-TP2, February 2006.

R9.2 Verification Hierarchy

[Scafidi 2004] C. Scafidi, J. D. Gibson, and R. Bhatia, Validating the Itanium 2 exception control unit:

A unit-level approach, IEEE Design & Test of Computers, 21(2), pp. 94–101, March 2004.

570 CHAPTER 9 Functional verification

R9.3 Measuring Verification Quality

[Benjamin 1999] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R. Smeets, A study in

coverage-driven test generation, in Proc. ACM/IEEE Design Automation Conf., pp. 970–975,

June 1999.

[Drucker 2002] L. Drucker, Functional coverage metrics—the next frontier, EETimes, http://www

.eetimes.com, August 2002.

[Gluska 2003] A. Gluska, Coverage-oriented verification of Banias, in Proc. ACM/IEEE Design

Automation Conf., pp. 280–284, June 2003.

[Verisity 2001] Verisity Design Inc., Coverage-Driven Functional Verification, White Paper, http://

www.verisity.com, 2001.

R9.4 Simulation-Based Approach

[Accellera 2002a] Accellera, http://www.systemverilog.org, 2002

[Accellera 2002b] Accellera, http://www.accellera.org, 2002

[Synopsys 2001] Synopsys, http://www.open-vera.com, 2001

R9.5 Formal Approaches

[Abdulla 2000] P. A. Abdulla, P. Bjesse, and N. Eén, Symbolic reachability analysis based on SAT sol-

vers, in Proc. 6th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Sys-

tems, pp. 411–425, March 2000.

[Biere 1999] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking without BDDs, in

Proc. Workshop on Tools and Algorithms for the Construction and Analysis of Systems,

pp. 193–207, March 1999.

[Brand 1993] D. Brand, Verification of large synthesized designs, in Proc. IEEE/ACM Int. Conf. on

Computer-Aided Designs, pp. 534–537, November 1993.

[Burch 1990] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, Symbolic model

checking: 1020 states and beyond, in Proc. IEEE Symp. on Logic in Computer Science,

pp. 1–33, June 1990.

[Calypto 2008] Calypto Design Systems, SLEC System, http://www.calypto.com, 2008.

[Clarke 1986] E. M. Clarke, E. A. Emersion, and A. P. Sistla, Automatic verification of finite state con-

current system using temporal logic specifications, ACM Trans. on Programming Languages

and System, 8(2), pp. 144–163, April 1986.

[Cohn 1988] A. Cohn, Correctness properties of the VIPER block model: The second level, Techni-

cal Report No. 134, University of Cambridge, Computer Laboratory, May 1988.

[Coq 2003] The Coq Development Team, The Coq Proof Assistant Reference Manual, version 7.4,

INRIA, http://coq.inria.fr/doc/main.html, February 2003 .

[Emerson 1990] E. A. Emerson, Temporal and modal logic, in Handbook of Theoretical Computer

Science, Vol. B, Elsevier, pp. 996–1072, 1990.

[Goldberg 2000] E. Goldberg, M. Prasad, and R. Brayton, Using SAT for combinational equivalence

checking, in Proc. Int. Workshop on Logic Synthesis, pp. 185–191, May 2000.

[Huang 2000] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang, and F. Brewer, AQUILA: An Equiva-

lence Checking System for Large Sequential Designs, IEEE Trans. on Computers, 49(5),

pp. 443–464, May 2000.

[Joyce 1986] J. J. Joyce, G. Birtwistle, and M. Gordon, Proving a computer correct in higher order

logic, Technical Report No. 134, University of Cambridge, Computer Laboratory, 1986.

[Kaufmann 2002] M. Kaufmann and J. Moore, A computational logic for applicative common lisp, in

A Companion to Philosophical Logic, pp. 724–741, Blackwell Publishers, 2002.

References 571

[Kripke 1963] S. A. Kripke, Semantic consideration on modal logic, in Proc. A Colloquium: Model

and Many Valued Logic, Acta Philosophica Fennica, 16, pp. 83–94, August 1963.

[Kunz 1993] W. Kunz, HANNIBAL: An efficient tool for logic verification based on recursive learning,

in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 538–543, November 1993.

[Lu 2003] F. Lu, L.-C. Wang, K.-T. Cheng, and R. C.-Y. Huang. A circuit SAT solver with signal corre-

lation guided learning, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf.,

pp. 892–897, March 2003.

[Martin 2004] A. Martin, Adequate sets of temporal connectives in CTL, Elsevier Electronic Notes in

Theoretical Computer Science, 52(1), pp. 1–11, January 2004.

[McMillan 1992] K. L. McMillan, Symbolic Model Checking—An Approach to the State Explosion

Problem, PhD thesis, SCS, Carnegie Mellon University, 1992.

[Melham 1988] T. F. Melham, Abstraction mechanisms for hardware verification, in VLSI Specifica-

tion, Verification, and Synthesis, pp. 129–157, Kluwer Academic Publishers, Boston, 1988.

[Owicki 1982] S. Owicki and L. Lamport, Proving liveness properties of concurrent programs, ACM

Trans. on Programming Languages and Systems, 4(3), pp. 455–495, July 1982.

[Owre 1992] S. Owre, J. M. Rushby, and N. Shankar, PVS: A prototype verification system, in Proc.

11th Int. Conf. on Automated Deduction (CADE), pp. 748–752, June 1992.

[Saaltink 1999] M. Saaltink, The Z/EVES Users Guide, Technical Report TR-97-5493-06, ORA,

Canada, 1999.

R9.6 Advanced Research

[Bai 2003] X. Bai, L. Chen, and S. Dey, Software-based self-test for crosstalk in processors, in Proc.

Int. Workshop on High Level Design Validation and Test, pp. 11–16, November 2003.

[Bose 2001] M. Bose, J. Shin, E. M. Rudnick, T. Dukes, and M. Abadir, A genetic approach to auto-

matic bias generation for biased random instruction generation, in Proc. 2001 Congress on Evo-

lutionary Computation, pp. 442–448, May 2001.

[Chen 2003] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, A scalable software-based self-test meth-

odology for programmable processors, in Proc. ACM/IEEE Design Automation Conf.,

pp. 548–553, June 2003.

[Fine 2003] S. Fine and A. Ziv, Coverage directed test generation for functional verification using

Bayesian networks, in Proc. ACM/IEEE Design Automation Conf., pp. 286–291, June 2003.

[Fine 2006] S. Fine, A. Freund, I. Jaeger, Y. Mansour, Y. Naveh, and A. Ziv, Harnessing machine

learning to improve the success rate of stimuli generation, IEEE Trans. on Computers, 55(11),

pp. 1344–1355, November 2006.

[Ganai 2001] M. Ganai, P. Yalagandula, A. Aziz, A. Kuehlmann, and V. Singhal, SIVA: A system for cov-

erage-directed state space search, J. of Electronic Testing: Theory and Applications, 17(1),

pp. 11–27, February 2001.

[Geist 1996] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal, Coverage-

directed test generation using symbolic techniques, in Proc. Int. Conf. on Formal Methods in

Computer-Aided Design, pp. 143–158, November 1996.

[Guttman 1991] J. D. Guttman, A proposed interface logic for verification environments, Technical

Report M91-19, the MITRE Corporation, March 1991.

[Hazelhurst 2002] S. Hazelhurst, G. Kamhi, O. Weissberg, and L. Fix, A hybrid verification approach:

Getting deep into the design, in Proc. ACM/IEEE Design Automation Conf., pp. 111–116, June

2002.

[Ho 1995] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, Architecture validation for proces-

sors, in Proc. Int. Symp. on Computer Architecture, pp. 404–413, May 1995.

[Huang 2001] C.-Y. Huang and K.-T. Cheng, Using word-level ATPG and modular arithmetic con-

straint-solving techniques, IEEE Trans. on Computer-Aided Design, 20(3), pp. 381–391, March

2001.

572 CHAPTER 9 Functional verification

[Iwashita 1994] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose, Automatic test program genera-

tion for pipelined processors, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,

pp. 580–583, November 1994.

[Jang 1997] J.-Y. Jang, S. Qadeer, M. Kaufmann, and C. Pixley, Formal verification of FIRE: A case

study, in Proc. ACM/IEEE Design Automation Conf., pp. 173–177, June 1997.

[Joyce 1993] J. J. Joyce and C. H. Seger, Linking BDD-based symbolic evaluation to interactive theo-

rem-proving, in Proc. ACM/IEEE Design Automation Conf., pp. 469–474, June 1993.

[Lai 2000] W.-C. Lai, A. Krstic, and K.-T. Cheng, Functionally testable path delay faults on a micropro-

cessor, IEEE Design & Test of Computers, 17(4), pp. 6–14, October 2000.

[Mishra 2005] P. Mishra and N. Dutt, Functional coverage driven test generation for validation of

pipelined processors, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf.,

pp. 678–683, March 2005.

[Moondanos 1998] D. Moondanos, J. A. Abraham, and Y. V. Hoskote, Abstraction techniques for

validation coverage analysis and test generation, IEEE Trans. on Computers, 47(1), pp. 2–14,

January 1998.

[Shyam 2006] S. Shyam and V. Bertacco, Distance-guided hybrid verification with GUIDO, in Proc.

IEEE/ACM Design, Automation and Test in Europe Conf., pp. 1211–1216, March 2006.

[Tasiran 2001] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer, A functional valida-

tion technique: Biased-random simulation guided by observability-based coverage, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 82–88, September 2001.

[Ur 1999] S. Ur and Y. Yadin, Micro architecture coverage directed generation of test programs, in

Proc. ACM/IEEE Design Automation Conf., pp. 175–180, June 1999.

[Vedula 2004] V. M. Vedula, W. J. Townhead, and J. A. Abraham, Program slicing for ATPG-based

property checking, in Proc. Int. Conf. on VLSI Design, pp. 591–596, January 2004.

[Wagner 2005] I. Wagner, V. Bertacco, and T. Austin, StressTest: An automatic approach to test

generation via activity monitors, in Proc. ACM/IEEE Design Automation Conf., pp. 783–788,

June 2005.

[Wen 2006] H.-P. Wen, L.-C. Wang, and K.-T. Cheng, Simulation-based functional test generation for

embedded processors, IEEE Trans. on Computers, 55(11), pp. 1–9, November 2006.

[Wen 2007] H.-P. Wen, L.-C. Wang, and J. Bhadra, An incremental learning framework for estimating

signal controllability in unit-level verification, in Proc. IEEE/ACM Int. Conf. on Computer-Aided

Design, pp. 250–257, November 2007.

[Yang 1998] C. H. Yang and D. Dill, Validation with guided search of the state space, in Proc. ACM/

IEEE Design Automation Conf., pp. 599–604, June 1998.

References 573

