CHAPTER

Functional verification

Hung-Pin (Charles) Wen
National Chiao-Tung University, Taiwan

Li-C. Wang
University of California, Santa Barbara, California

Kwang-Ting (Tim) Cheng
University of California, Santa Barbara, California

ABOUT THIS CHAPTER

In a typical integrated circuit (IC) design flow, functional verification ensures
that the implementation conforms to the specification. Because of the rapid
growth of both design size and complexity, functional verification has become
one of the key bottlenecks in the design process. For example, it has been
reported in [Bailey 2002] that the functional verification process consumes
more than 70% of the design effort, and this number might continue to increase.
Functional verification is critical, because an undetected bug in a design may
result in significant financial loss for a company. The Pentium recall for the
famous FDIV bug, for example, cost Intel more than $450 million in 1995.
Therefore, effective verification strategies and techniques have become indis-
pensable to the design flow to ensure high verification quality.

This chapter starts with an overview of the basic concepts of functional ver-
ification and its general flow. Current challenges are explained to help readers
to understand the complexity of functional verification. Meanwhile, modern
designs usually follow the principle of hierarchism by decomposing a complex
system into multiple components. Each decomposition boundary is referred to
as a level. A brief discussion of verification at each of these levels is introduced.

To assess the verification quality, coverage metrics are developed for measur-
ing the extent of an intended verification task. Coverage metrics can be divided
into two categories: structural and functional. Structural coverage metrics calcu-
late a coverage number on the basis of specific structural representations, such
as lines and branches, in the hardware description model and are the most pop-
ular measures. Functional metrics, on the other hand, focus on the semantics or
the design intent of the hardware description model. In this chapter, various
structural coverage metrics will be reviewed in detail. 513

514

CHAPTER 9 Functional verification

Simulation-based verification is the most widely used approach in func-
tional verification. Simulation is based on testbenches. In a typical verification
task, testbenches accompanied with a design description model are developed
and include input stimuli and expected output responses by the design. The
efficiency of the simulation determines the efficiency of the verification, and,
hence, having compact and high-quality stimuli is critical to this approach. An
alternative to simulation-based verification is formal verification. Formal veri-
fication relies on mathematical reasoning techniques to verify a design. There
can be two types of formal verification methods, one to prove specific proper-
ties of a design and the other to prove that two models of a design are equiva-
lent. The former is called property checking, and the later is often referred to
as equivalence checking. At the end of this chapter, some of these formal verifi-
cation techniques will be introduced as supplemental materials.

9.1 INTRODUCTION

Verification processes happen everywhere in our daily life. One general defini-
tion of verification given in [ANSI/ASQC 1978] is “the act of reviewing, inspect-
ing, testing, checking, auditing, or otherwise establishing and documenting
whether or not items, processes, services or documents conform to specified
requirements.” Within the context of design automation of IC design, shown
in Figure 9.1, functional verification is the step to ensure that the specifications

customer
requirements
v
algorithmic modeling
& simulation
v
system
model
v v
RTL modeling RTL synthesis
& simulation & simulation
¥ '/\ \
RTL gate-level netlist
L v

gate-level simulation
& place and route

\
GDSII

FIGURE 9.1

Typical design flow overview.

9.2 Verification hierarchy | 515

and/or the implementations of the design at various abstraction levels are in
accord with the design intent.

In a typical design flow, representations for a design at different abstraction
levels often contain thousands of lines or more of Hardware Description
Language (HDL) code. These representations are error-prone because of the
high complexity of the design. Verification plays an important role in identifying
various kinds of problems that may have occurred at different design stages. For
many medium-scale to large-scale processors, application-specific integrated
circuits (ASICs), or system-on-chips (SOCs), functional verification can con-
sume more than 70% of the total labor effort in the design process [Piziali
2006]. The difficulty inherent in functional verification is a result of the following
three issues:

1. Ambiguous specifications: Customer requirements are often written
colloquially into the specification. It may be difficult to precisely specify
the requirements with a natural language such as English. Moreover, a
specification is often described at the system level. When verifying a unit
or block inside a system, a clear specification for the unit or the block
usually is not available.

2. Complexity explosion: In general, the complexity of a Boolean circuit
can grow exponentially in terms of both the number of inputs and the
number of internal states. Exhaustive simulation (of all input value combi-
nations and/or state combinations) is simply infeasible for any nontrivial
design.

3. Quality concerns: Ensuring highest-quality verification with limited
engineering resources and within limited time is the challenge to every
verification task. To effectively use resources and time, one needs cover-
age metrics to guide the spending of verification effort. Although various
coverage metrics exist to measure verification coverage, none of these
metrics have been shown to be the golden metric that can reliably and
accurately reflect the verification quality. As a result, signing off a design
with respect to functional verification can become a managerial decision
that heavily depends on one’s experience and is often influenced by time-
to-market pressure as well.

9.2 VERIFICATION HIERARCHY

Modern IC designs typically follow a top-down implementation flow in which
a system is hierarchically partitioned into components. Each partitioning bound-
ary defines the level of the design components. Within the hierarchy, verifica-
tion tasks need to be performed before individual components are assembled.
The V diagram in Figure 9.2 illustrates the design, verification, and integration

516 CHAPTER 9 FFunctional verification

system/board level

FIGURE 9.2

V diagram of design, verification, and integration.

Functional Verification
Plan

" 1 -DUV created by logic design
Design Under Verification | . Simulated by designers and
! verification engineers

FIGURE 9.3

Generic design verification flow.

flow starting from the system/board level, through the chip and core/unit
levels, to the designer level.

A generic verification flow [Palnitkar 2003a] for each level consists of several
steps, as shown in Figure 9.3. In Step 1, architects need to prepare a design
specification for the best architecture on the basis of analysis of simulation

9.2 Verification hierarchy

result. In Step 2, a functional verification plan is created to define the basic pa-
rameters that are used later in the functional verification environment. Test vec-
tors and testbenches are either generated manually or automatically by tools
during Step 3. A software simulator applies these test vectors and testbenches
to the design under verification (DUV) and collects the related information
after simulation. In Step 4, the output data are analyzed and checked against
the expected results to calculate verification coverage. If the desired coverage
goal is not achieved, Step 3 is repeated to generate more test vectors to improve
the coverage. After the coverage goal is met, optional steps of hardware-acceler-
ated simulation, emulation, and assertion-based verification could be applied to
further improve verification quality and to reduce the risk of needing a future
re-spin.

9.2.1 Designer-level verification

In the top-down implementation flow shown in Figure 9.2, the designer level is
the lowest level that defines the smallest of the RTL modules such as an arbiter
or a first-in first-out (FIFO) that one designer can be in charge of in a project.
Designer-level blocks are usually verified individually to ensure that the basic
functionalities of the blocks understood by the designer from the system speci-
fication are correctly implemented. As the tasks involved in verifying a designer-
level block do not require interaction with other blocks, the designer is given
full control of the block, and thus a high standard of verification is expected
at this level.

During the early phase of a design project, the functionality of a block would
not be completely fixed and likely will be modified frequently. For example,
part of a block’s functionality may need to move across the interface to other
blocks for better unit/core/chip optimization. It is, therefore, not uncommon
to repeat the designer-level verification process multiple times.

A variety of verification techniques are available at this level. Testbench
development is relatively easy because the block inputs and outputs are treated
as primary inputs and outputs at this stage. The designers often explore most of
or even the entire input space of the target block by simulation. Formal meth-
ods such as property checking can also be applied relatively easily at this level
because of the small design size. It is important to note that, for designer-level
verification, the main challenge is not in verifying the block itself as an indepen-
dent design, but in verifying the block in the context of the environment in
which it will be placed. For example, a property may not be verified as always
true if the block operates independently. However, under specific constraints
imposed by the environment surrounding the block, the property could become
always true. Establishing proper environmental constraints for designer-level
verification is, therefore, an important (and usually not trivial) task.

517

518

CHAPTER 9 Functional verification

9.2.2 Unit-level verification

A complex design is usually divided into several logical components that are
referred to as units. The units intercommunicate through buses following pre-
specified protocols. Figure 9.4 shows an AMBA bus-based SOC design. Memory,
UART, Bridge, and Arbiter are among the units created from many different
designer-level components. In this example, the communications between units
go through two PCI buses. [Scafidi 2004] reported that even when the full-chip
model of Intel’s Itanium-2 processor was close to the tape-out quality, unit-level
verification still uncovered additional bugs.

The functionality at the unit level is specified more clearly, and usually the
specification is more stable than that at the designer level. Each unit usually
has a precise specification where its physical and timing characteristics will
abide by the requirements of the bus protocol. Each unit implements a set of
specified operations. Therefore, the goal of unit-level verification is to guarantee
that each operation performed by the unit conforms to the desired functionality
and satisfies the bus interface’s communication constraints.

Because of the high accessibility of units through buses, high-quality verifica-
tion that guarantees each unit correctly meets its formal specification is usually
achievable. In an ideal situation, once the unit-level verification is completed,
bugs residing within these units can be excluded from the list of candidates.
When performing verification at the next level, only those bugs originated from
the communication and physical interfaces need to be considered.

9.2.3 Core-level verification

In the example of Figure 9.4, units such as the ARM processor core, the DMA
core, and the third-party IPs are initially designed for general purpose use and
are equipped with more generalized functionalities. They are incorporated into

Arbiter
AHB/ASP

3rd Party
IP

FIGURE 9.4
AMBA bus-based SOC.

9.2 Verification hierarchy

an SOC design to avoid the need for developing dedicated logic, which often
requires only a subset of the original functionalities. Such reusable components
are referred to as cores and can be either acquired from other companies or
developed internally in a company. In modern SOC designs, a core is often used
multiple times within a system or across different systems. For core providers, it
is necessary to thoroughly verify the functionality of the core before it is deliv-
ered to the core integrators.

Cores are often designed as a stand-alone component in the first place.
In addition to core-specific functionalities, standardized bus protocols and/or
physical interface standards are then incorporated to offer core reusability.
The corresponding verification components used to stimulate and monitor
these standard buses or interfaces can, therefore, be reused and shared among
cores by use of the same bus protocols or physical interfaces.

Even if a core has its own stand-alone specification, this specification can
change because of bug fixing or functionality enhancement, either of which
may alter the original functionality. Therefore, it is necessary to re-ensure that
operations defined in a previous version of the core will still work correctly
in a subsequent version. This requirement is called backward compatibility.
To meet this requirement, a regression test suite is commonly used. Such a
test suite is developed by collecting interesting and useful tests from verification
conducted on previous versions of the design. A new version must pass these
tests to ensure backward compatibility. Note that if a bug exists in old versions
of the design, we should not expect regression tests to capture this bug in the
new version even if a fix to the bug has been inserted. For that purpose, new
tests are required to verify the correctness of the inserted fix.

9.2.4 Chip-level verification

A chip-level design consists of multiple units/cores that have complete RTL and
bus functional models with well-defined I/O boundaries. At this level, the speci-
fication usually does not change significantly from its initial architecture. Hence,
the verification requirement is usually well defined.

The aim of chip-level verification is to ensure that the components are prop-
erly connected through the interfaces and the entire design abides by the speci-
fication. For a regular interface structure such as a bus protocol, only a
restricted set of sequences of control and data signals, typically called transac-
tions, are permitted. On the basis of the specified interactions between the
units, transaction-based tests can be developed to verify the interfaces.

A transaction-based test usually consists of one top-level RTL file that
includes all units and bus interfaces and one testbench file that produces trans-
actions to propagate events from one unit to another through the bus interface.
Responses at the primary I/0s and/or memory contents are monitored to check
the overall behavior of the system.

519

520

CHAPTER 9 Functional verification

9.2.5 System-/board-level verification

System-level integration is a complex task that requires many tools for design
creation, simulation, and analysis. In [Bailey 2007], system-level verification is
defined as “the utilization of appropriate abstractions to increase comprehen-
sion about a system, and to enhance the probability of a successful implementa-
tion of functionality in a cost-effective manner.”

Verification at this level involves checking the integration through the inter-
connections between different chips on the board. The functionality at the
lower levels is assumed to have been fully verified. Often, the application soft-
ware is applied at this stage to verify the entire system.

Verification engineers frequently use programmable logic devices, such as
Sfield programmable gate arrays (FPGAs), to emulate the design. With the
design implemented in programmable devices, the testbenches can be executed
directly on such emulated implementations, which is significantly faster than
executing the testbenches with a software simulator.

9.3 MEASURING VERIFICATION QUALITY

“When can one claim that the verification is complete?” This is a perpetual and still
unanswerable question. Even if a verification team performs all the scheduled
tasks, and even if no more new bugs can be discovered over an extended verifica-
tion period, say a few weeks, there is no guarantee that additional simulation
would not discover a new bug. The total space to be verified is well beyond what
can be exhaustively simulated. Considering a logic block with 64-bit inputs, the
combinatorial possibilities for its input space reach 16 x 10'® billion. If simulating
one instance takes one nanosecond, then simulating all of them will take 5.07 cen-
turies. Obviously, some modeling, analysis, and optimization techniques need to
be used to avoid simulating all tests exhaustively. Various measures are developed
to guide the selection of tests for simulation. These measures are typically referred
to as coverage metrics. Rather than simulating all tests, the idea is to simulate
just enough tests to reach a desired coverage goal on the basis of the given metric.
The assumption is that achieving the coverage goal implies that a sufficient verifi-
cation quality has been accomplished.

In this section, we will first introduce the concept of random testing fol-
lowed by the coverage-driven verification paradigm to outline the concept of
coverage in verification. We will also introduce a classification of verification
metrics and common coverage metrics within each category.

9.3.1 Random testing

Random testing is the most intuitive verification approach. A test generation
program is used to generate random tests according to a set of test templates

9.3 Measuring verification quality

along with a seed. Multiple random instances of each test template are gener-
ated and applied to exercise a variety of scenarios for exploring various design
corners. A refinement of this approach, called constrained random verification,
relies on a collection of additional constraints to guide the generation of tests.
Figure 9.5 illustrates the concept of the random testing approach.

Random test generation requires two types of inputs to constrain the test
generation process: (1) a template that serves as the skeleton of the test case,
which contains a set of unknown input fields, and (2) a set of arguments for
which the values can be set during the generation process. Instead of hand-
crafting tests directly, users specify these arguments for input fields within their
legal ranges. Multiple instances of physical test cases are then automatically gen-
erated from each template by specifying values in the input fields. Templates,
along with the changeable arguments, provide an abstract mechanism for hiding
the structural details from users while simultaneously satisfying all architectural
constraints.

Take microprocessor verification as an example. Its test template is an
assembly program with a set of predefined bias arguments. On the basis of these
parameters, one can create arguments to:

1. Select an instruction,

2. Select the next instruction on the basis of the current one,
3. Select an operand,

4. Use branch and jump,

5. Cause an overflow or underflow,

6. Interrupt to cause an exception.

However, all the preceding arguments must conform to the architectural con-
straints, such as, for instance, 32 registers (20 general-purpose, 12 special-pur-
pose), 24-bit addressing, and indirect addressing.

.

Generate Random
Tests

:

Run Tests & Collect
Coverage Metrics

:

Write Test Templates

FIGURE 9.5

Flow of random testing.

522

CHAPTER 9 Functional verification

One corresponding template may look like the following:
MUL < random R1-R4 >< random R4-R8 >< random R8-R20 >

or
< Pr(ADD) = 90% & Pr(SUB) = 10% > R3 R5 < random R4-R7 >

In the first template, the instruction is designated to be MUL (multiplication),
and its three operands can be selected from different registers. In the second
example, the actual instruction is decided with a probability, where 90% is to
be an ADD (addition) and 10% is a SUB (subtraction) where the third operand
is randomly selected from registers R4 through R7.

Random testing is usually applied at the beginning of the verification process
for modern designs. Random tests are applied to randomly exercise the design
space that often can cover some nontrivial cases and some corner cases.
Advanced constrained random test generation uses architecture knowledge of
the design and past experience to better guide the test generation process. Both
templates and bias arguments help hide the detailed information from users
while still being able to generate legal tests that conform to the architectural
constraints of the design.

9.3.2 Coverage-driven verification

Storing information during simulation is necessary to identify those scenarios
that have been previously verified. Such a task is called functional coverage
analysis. The stored information facilitates the generation of new test cases.
Coverage-driven verification (CDV) represents such a method. It measures
the current verification progress [James 2003] and then guides the development
of new strategies for uncovering any missing features or scenarios.

CDV uses a single test stimulus to explore multiple scenarios automatically.
Inheriting the characteristics of random testing, CDV can also discover corner
cases that might occur beyond a user’s expectations. Coverage points such
as assertions are often placed in the environment to collect data for analysis.
After collecting and analyzing the data, the constraints for guiding test genera-
tion can be modified, either automatically or manually, to target the missing fea-
tures or scenarios before the next round of test generation is called. This
iterative test generation process is known as coverage-directed generation
(CDG). Figure 9.6 illustrates a typical coverage-driven verification design flow.

CDV [Benjamin 1999; Bergeron 2000; Verisity 2001; Gluska 2003; Palnitkar
2003b] is more effective than constrained random verification and thus achieves
verification closure faster. Figure 9.7 illustrates the effectiveness comparison of
these two approaches.

Coverage is created to identify the error-prone areas in which bugs may
reside. It originates from software testing, which provides a means of assessing
the thoroughness of software development. A general definition of coverage is a

9.3 Measuring verification quality 1 523

Existing Templates
& Constraints

'

Generate Random el Test
Generation
Tests .
Constraints
Run Tests &
Measure Coverage End
Metrics

:

Coverage Results — .

FIGURE 9.6
Coverage-driven verification design flow.

closure %

coverage-driven
verification

coverage

constrained random
verification

-

Time
FIGURE 9.7

Effectiveness comparison between coverage-driven verification and constrained random
verification approaches.

measure of the extent to which the features and scenarios of the design under
verification are covered.

Coverage metrics can be classified into two categories—functional cover-
age and structural coverage—according to the verification intent. Functional
coverage checks the concordance of the semantic design intent with the
designer’s implementation, and it is measured by the number of features and
scenarios defined in the design specification that are exercised by the test set.
Structural coverage aims at measuring the degree of confidence for syntactic
correctness of the physical implementation that the test set achieves.

524

CHAPTER 9 Functional verification

9.3.3 Structural coverage metrics

Structural coverage measure is also referred to as code coverage metric,
because the objective is to evaluate whether various kinds of elements in the
HDL implementation are exercised by a given test set. Because code coverage
metric ties with test vectors and physical representation in the hardware descrip-
tion language, simulation engines can be easily modified to provide the coverage
information. Code coverage comes in many forms. The following describes a few
among the commonly used metrics.

9.3.3.1 Line coverage (a.k.a. statement coverage)

This metric takes the syntactical HDL implementation and counts the number of
lines exercised during the simulation run. The line coverage is defined as:
#of exercised lines in HDL

Line Coverage = - - x 100%
Total 4 of lines in HDL

Consider the following Verilog HDL code in Box 9.1:

BOX 9.1

1. always @(in or reset) begin
2 out = in;

3. if (reset)

4, out =0;

5. en=1;

6. end

If the testbench exercises lines 1, 2, 3, 5, and 6, the line coverage would be
5/6 = 83.3%. The line coverage is easy to comprehend, and the missed line
explicitly indicates the absence of signal activities. One obvious drawback of
line coverage is its lack of a clear connection between the number of exercised
lines and the correctness of design intent.

9.3.3.2 Toggle coverage

This metric checks whether signals in the design change their values during
simulation. It helps verify the quality of the test set and locate the unexercised
areas. Signals that fail to be initialized or to toggle by the test cases can be easily
identified. Box 9.2 is a sample toggle coverage report.

BOX 9.2
1. //net toggle coverage
2. //name Toggle 0—1 1—0

3. clk Yes

9.3 Measuring verification quality

4. reset No Yes No
5. start Yes
6. state[6:0] Yes
7. state[9:7] No No No
8. op[2:0] Yes
9. op[3] No No Yes
10. op[4] Yes
11. op[5] No No Yes

12. round[1:0] Yes
18. src1[63:0] VYes
14. src2[63:0] VYes

Although the toggle coverage is easy to compute, it has similar drawbacks to the
line coverage in that it does not provide any insight about the design intent from
the toggle events.

9.3.3.3 Branch/path coverage

This metric evaluates the control flow, such as if and case, in RTL statements.
It counts the number of branches at decision points that are exercised during
simulation. The branch coverage is defined as:

of exercised branches

Branch Coverage = x 100%
8 Total # of possible branches ¢

The path coverage refines the branch coverage concept. It does not look at decision
points independently. Instead, it considers the whole sequence of decision points,
called a path, which could possibly be involved in one clock cycle. Note that
when if or case statements are nested, the total number of possible paths may grow
exponentially. Therefore, reaching a 100% path coverage may become difficult.

Consider the preceding exemplar Verilog HDL code in the discussion of line
coverage. Assume the signal reset is always 1. Then, for the if statement, only
the reset = 1 branch is exercised. Thus, the branch coverage is 1/2 = 50%.
Now consider another example:

BOX 9.3
1. if (x1=vy)
2. z=0;
3. W=7z

In Figure 9.8, the RTL code is represented in two flowcharts — each of which is
from the line and branch coverage viewpoints, respectively. Assume the values
of signal x are never equal to those of y during simulation. Then line 2 will be
exercised, resulting in a final line coverage of 100%. But the branch (x == j),

525

526

CHAPTER 9 Functional verification

FIGURE 9.8
(a) Flowchart for line coverage. (b) Flowchart for branch coverage.

represented by the dotted line in Figure 9.8b, is never exercised, resulting in a
branch coverage of only 50%.

Note that designers can implement the branch condition implicitly without
the use of if or case statements. For example, an if-else condition can be imple-
mented by a multiplexer that uses AND or AND-NOT operations. Hence, it may
not be always apparent to know exactly where to collect the branch statistics to
calculate a branch coverage. In many situations, a branch not explicitly implemen-
ted by use of if or case statements may not be accounted for in the coverage.

9.3.3.4 Expression coverage

The expression coverage enhances the line and branch coverages and provides
more information about concurrent signal assignments. It focuses the analysis
on the expression in the right-hand side of an assignment or the expression in
a condition statement.

Typically, one expression can be recursively decomposed into multiple sub-
expressions, which are either a single variable or two variables connected by a
logical operator. These sub-expressions are monitored individually during simu-
lation. An expression is fully covered if all of the sub-expressions are exercised.
Otherwise, the expression coverage for a line is calculated by deriving the ratio
of the total number of exercised cases to the total number of possible cases
among all of its sub-expressions.

X* | #kof exercised cases for sub-expressions
x 100%

Expression Coverage = — - - -
27, #of possible cases for sub-expressions i

The expression coverage can be further classified into three categories: multiple
sub-condition, basic sub-condition, and focused expression coverages
[Dempster 2002].

The multiple sub-condition coverage (MSC) is the most popular and straight-
forward one. It enumerates all possible combinations of the sub-expressions.
That is, if there are N sub-expressions, then 2V cases need to be covered to achieve
a 100% multiple sub-condition coverage. Consider the following expression in
Box 9.4:

9.3 Measuring verification quality

BOX 9.4
1.if (A==0 || (B==1)&& (C == 0))

The participating sub-expressions are (A == 0), (B == 1), and (C == 0). Thus,
the test vectors have to cover all 2° = 8 possible cases to achieve a 100% multi-
ple sub-condition coverage.

The basic sub-condition coverage (BSC) checks both the true and false
states of each sub-expression during simulation. For the preceding example,
there are six possible cases: (A == 0) is true, (A == 0) is false, (B == 1) is true,

== 1) is false, (C == 0) is true, and (C == 0) is false. A sample report, after
the basic sub-condition coverage is derived, is listed in Box 9.5:

BOX 9.5

1. Count Sub-expression Outcome
2. 4 A==0 true

3. 6 A== false

4. 8 EE= true

5. 2 B==1 false

6. 0 C==0 true

7. 10 C==0 false

In this report, because the condition “(C == 0) is true” has never been exer-

cised during simulation, the basic sub-condition coverage is (5/6) = 83.33%.

An expression is a function of the participating variables combined with
Boolean operators. If one variable in focus can control the result of the expres-
sion, there should be a pair of variable assignments for which the values at all
other variables, except the focused variable, are the same so that one assign-
ment evaluates the expression to be true and the other assignment to be false.
On the basis of this notion, the focused expression coverage (FEC) is devel-
oped, which helps identify the minimum set of tests required for verifying a
complicated branching expression. To achieve a 100% FEC for an expression,
for each participating variable in the expression, the test set must include a pair
of vectors that assign identical values to all other variables except the target var-
iable, and these two vectors evaluate the expression to different values.

To illustrate this notion, consider the expression in Box 9.6:

BOX 9.6
1. if (A 8& B)

The focused expression coverage criteria for variable A are [A, B] = [0, 1] and
[A, B] = [1, 1]. Note that in both cases, B has to be 1 for the effect of changing

527

528

CHAPTER 9 Functional verification

A to be observed. Similarly, the criteria for variable B are [A, B] = [1, 0] and
[A, B] = [1, 1]. Because [A, B] = [1, 1] is a common assignment, it would
require only three assignments to fully validate expression (A && B).

Now consider the following example in Box 9.7:

BOX 9.7
1. (X == 1) 8& (Y == 0) || € == 0)

The three sub-expressions are expr_1 = == 1), expr_ 2 = (Y == 0), and
expr_3 = (Z == 0). To achieve a 100% FEC, the test set must include the follow-
ing tests:

m To target expr_1, [expr_1, expr_2, expr_3] = [0, 1, O] and [expr_1,
expr_2, expr_3] = [1, 1, 0] are required. Note that expr_2 has to be 1
because it is ANDed with expr_2. Similarly, expr_3 has to be 0 because
it is ORed with the rest of the expression. The result is that (X, Y, Z) =
(0, 0, D) and (1, 0, 1) must be covered.

m To target expr_2, [expr_1, expr_2, expr_3] = [1, 0, O] and [expr_1,
expr_2, expr_3] = [1, 1, 0] are required. Therefore, X, Y, Z2) = (1, 1, 1)
and (1, 0, 1) must be covered.

m To target expr_3, there are three different ways to ensure expr_3
controlling the overall expression: [expr_1, expr_2] = [0, 0], [0, 1] and
[1, O] respectively. Therefore, one of following three pairs, X, Y, Z) =
{0, 1, 1, (0, 1, 0)}, {(O, O, 1), (0, O, O}, and {(1, 1, 1), (1, 1, 0)} must be
included in the test set.

Combining these three requirements, the minimum test set for a 100% FEC
includes 4 tests which are either {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0)} or {(0,
0,1, (1,0, D, A, 1, D, A,1, 0}

Suppose a given test set contains only two tests, (X, Y, Z) = (1, 0, 1) and
X, Y, 2) = {1, 0, 0), which evaluate [expr_1, expr_2, expr_3] to [1, 1, O] and
[1, 1, 1], respectively. With respect to the focused expression notion, none of
the three sub-expressions is satisfied by these two tests and, thus, its focused
expression coverage is 0%.

9.3.3.5 Trigger coverage (a.k.a. event coverage)

This metric simply measures the number of exercised variables in the sensitivity
list. Consider the example given in Box 9.8:

BOX 9.8

1. always @(a or b or ¢)
2. begin

8 ...

4.end

9.3 Measuring verification quality

Signals a, b, and ¢ are monitored throughout the simulation. If only b and ¢

change values during simulation, then the trigger coverage would be 2/3 =
66.67%.

9.3.3.6 Finite state machine (FSM) coverage

The FSM coverage plays an important role in verifying the control unit of a design.
As its name implies, this metric is tied to the HDL structure of finite state
machines in a design and can be divided into three sub-classes. The state cover-
age reports the states that are visited and their frequencies during simulation. The
arc coverage records the state transitions that are traversed during simulation.
Even if 100% state and arc coverages are achieved, there is no guarantee that
the FSM is bug-free. Therefore, the third class of FSM coverage, called sequential
arc coverage (a.k.a. transition coverage), was designed. The metric measures
the coverage on the basis of an increased sequential depth of state visitation or arc
traversal. It also identifies the fundamental cyclic sequences in various lengths.
Figure 9.9 shows an FSM example and the arc sequences starting from s, for cal-
culating the sequential arc coverage. For example, {s;—s,—s$5} is a 2-arc transition
starting from s1 to be monitored for the sequential arc coverage.

In calculating the coverage, the conventional FSM coverage interprets the
RTL code syntactically. That is, it treats each state as a unique state and its state
transition to any other state as a unique arc. Although each state has a unique
state code, it is common that a group of states have identical or very similar
behavior. Therefore, interpreting the FSM syntactically may result in many
unnecessary checks. Consider the following partial RTL code of a 4-bit binary
counter with reset and load signals in Box 9.9:

BOX 9.9
1. always @(posedge clk) begin
2. if (reset) count = 0O;

3. if (load) count = in;
4. else if (count == 15)
5 count = 0;

6. else

7. count = count + 1;
8. end

The implementation has 16 states. Because any state can go to any other state includ-
ing itself (either through incrementing the count variable or through loading a new
state value in), each state has 16 outgoing arcs, resulting in a total of 256 arcs.
Figure 9.10a illustrates this conventional interpretation of the FSM. If the counter
is 8-bit, the total number of states will increase to 256 states with 65,526 arcs.

To represent the design as an FSM, it is better to interpret it semantically,
which defines the states on the basis of the unique actions taken during the

529

530 CHAPTER 9 Functional verification

A/v B length of transition 1-arc 2-arc
548 51—>81—>8
S cl b 1751 175175
\ sequence of states $182 185128
E & F from s, $1—8,—8;
Q 518,85,

(@) (b)
FIGURE 9.9

(@) FSM example. (b) Transition sequences from sy.

O

count = 15 > count =1

S P

(@)
FIGURE 9.10

-,

—_—

‘//vcount= 0 \

count =
count+1<*———

llustration of (a) the conventional FSM coverage. (b) the semantic FSM coverage.

operation. For the preceding example, there are only three different actions:
count = 0, count = in, and count = count + 1. Figure 9.10b shows the FSM
of this interpretation, which consists of only three states and nine arcs. The
semantic FSM coverage, calculated on the basis of this representation, can
greatly reduce the number of tests required for achieving a high coverage.

9.3.3.7 More on structural coverage

Different metrics for structural coverage can be associated with different HDL
structures at different design stages. In general, during the behavioral-level
design stage, only line, branch, condition, path, trigger, and FSM coverage can
be measured. Toggle coverage is often applied to gate-level designs only. The
RTL-level design stage has the broadest possible coverage spectrum, and all

types of metrics can be applied.

count =in

9.3 Measuring verification quality

Table 9.1 Typical Coverage Targets for Different Metrics

Metric Coverage Goal (%)
Line 100

Branch 100

Condition 60~100

Path >50

Trigger 100

Toggle 100

FSM (state and arc) 100

Because these metrics are simple and straightforward, it is often desirable to
achieve a high structural coverage. The typical coverage goals for various
metrics are listed in Table 9.1 [Dempster 2002].

Even if the desired coverage for these metrics is achieved, it does not guaran-
tee a bugfree design. None of these metrics — or even were we to combine
them all — can be guaranteed to cover all the possible erroneous scenarios.

The structural coverage attempts to explore the design space from the
implementation perspective. Although the targets of the structural coverage
do not necessarily have direct correlation to functional bugs, achieving a high
structural coverage can likely increase the chance of bug discovery. A bug
may be revealed by a new test that was designed to detect a not-yet-covered
structural target.

9.3.4 Functional coverage metrics

Functional coverage metrics guide test generation and verification from a
semantic perspective. They supplement the deficiencies in the code coverage
and help improve verification quality. Some companies have stated that func-
tional coverage would be an important component of their next-generation ver-
ification methods [Drucker 2002].

Functional coverage metrics usually involve the interpretation of functional-
ity and the related measurements from the specification, and require domain
knowledge and instrumentation from the designer and/or verification engi-
neers. Therefore, an automated means of creating functional coverage models
does not exist. Typically, verification engineers need to manually develop a list
of target functionalities to be verified and to devise different strategies to exer-
cise each case in the list. A functional bug is claimed to be found if the design
does not behave as expected with respect to the functional specification after
exercising the related verification scenarios.

531

532

CHAPTER 9 Functional verification

The verification method based on the functional coverage includes four
major tasks:

1. Determining the coverage events to be verified

2. Preparing stimuli to exercise the target events

3. Collecting data from the design under verification

4. Analyzing results to quantify the coverage and identify missing events

Basically, it is the designer’s job to determine the functions to be covered. Veri-
fication engineers are required to create a verification plan on the basis of their
understanding of the design’s functional specification. In addition to enumerat-
ing the functions under verification, external resource expenditures, including
verification time, manpower, and related software and tool costs, should also
be carefully considered.

The verification plan forms the basis for developing the corresponding test
programs. Random testing techniques are often used at the transaction level
to facilitate test program development. For the AMBA APB part of the example
in Figure 9.4, transactions considered for functional coverage could be based on
either a simple operation, like a Read/Write to RAM, or a complicated opera-
tion, like a sequence of back-to-back Reads to the same address in RAM.

9.4 SIMULATION-BASED APPROACH

[Bergeron 2000] introduced a re-convergence model for the general design and
verification process. Figure 9.11 illustrates the application of this model to func-
tional verification. The designer’s effort is dedicated to transforming the func-
tional specification into an implementation in HDL, whereas the verification
effort ensures that the transformation is as intended without misinterpreting
any functionality.

The functional verification process is typically associated with the concept
of testbench, which refers to the environment used to apply the predetermined
sequence of input vectors to the design under verification (DUV) and to
observe the responses. Figure 9.12 illustrates a DUV surrounded by a testbench.
No external communication is required in this system. The testbench models
certain aspects of the design intent and is responsible for delivering the input
sequences to the DUV and for receiving the output responses for subsequent
analysis.

transformation
specification = HDL Coding

verification
FIGURE 9.11
Re-convergence model for the design and verification process.

9.4 Simulation-based approach

Testbench

Design Under
Verification (DUV)

FIGURE 9.12
Generic structure of the design under verification and its testbench.

94.1 Testbench and simulation environment
development

In general, the testbench is an HDL description used to create a closed system
on top of the design under verification. A testbench consists of three fundamen-
tal components: a stimuli driver, a monitor, and a checker.

The stimuli driver is responsible for providing stimuli to the DUV. The sti-
muli can be either predetermined or generated during simulation. The purpose
of the stimuli driver is not to mimic the behavior of the entire neighboring
blocks but to maintain the interface coherence to the DUV.

The monitor is used to observe signal at the inputs, outputs, and any inter-
nal wires of interest on the DUV. The values at the input and output signals must
be consistent with the interface protocol, and the monitor will issue an error if
any exception occurs.

A checker can be viewed as a special type of monitor for checking the func-
tionality of the design intent. Traditionally, designers create the functionality
checkers manually and use them to compare the responses from the design
with the specification. As designs become more complicated, the need to auto-
mate the development of such checkers increases.

On the basis of the coverage metrics, verification engineers try to prepare a
set of test cases to cover the target functional events. In developing such test
cases, experience plays a crucial role. Creating meaningful test cases for some
specific events often rely heavily on a designer’s knowledge and interpretation
of the specifications.

Consider a 16-bit one-hot encoding bus protocol. To achieve an optimal cov-
erage for all scenarios, the test cases would require each bit taking a turn to be 1
with others being 0. In deriving the test cases, it could be difficult to observe
the regularity solely from the structure of a design implementation. However,
having knowledge of the functionality of the protocol would help capture the
regularity and similarity for each bit that make test generation easier and more
efficient.

Enumerating deterministic test cases to cover all functions is tedious. An
alternative is to convert a design specification into an HDL model to automate
the checking. Such a testbench is called a self-checking testbench, because
checking instrumentation is no longer needed. The self-checking testbench

533

534

CHAPTER 9 Functional verification

paradigms can be divided into three types: checking with golden vectors,
checking against a reference model, and transaction-based checking.

Checking with golden vectors is the most widely used approach among
the three. Given coverage metrics, the verification engineers search for test
cases at inputs and derive the corresponding output responses manually or by
use of an auxiliary program. Such combinations of input and output vectors
are called the golden vectors. After the testbench applies the input vectors to
the DUV, the actual responses are captured and compared with the golden vec-
tors. A bug is found when a mismatch occurs between the golden and the actual
responses. Figure 9.13 shows the components of this method.

The checking-against-a-reference-model paradigm uses a reference
model that captures all functions in the specification. The reference model is
typically implemented at a more abstract level with either a high-level program-
ming or a verification language. All input vectors are applied to both the refer-
ence model and the DUV, and their responses are evaluated and compared. If
the comparison takes place at the end of each cycle, the reference model must
be cycle-accurate. The checker compares the responses from both the DUV
and the reference model, as illustrated in Figure 9.14. If the specifications
change, the reference model would need to be modified accordingly. This mod-
ification effort is usually much lower than the effort of reproducing all golden
vectors required for the checking-with-golden-vectors paradigm.

Transaction-based checking is applicable to the DUV that can correspond
to commands and data in a transaction. It uses a scoreboard to record the veri-
fied command and data. The checker is used to query the scoreboard. It issues
an error if the identifier cannot match any transaction in the scoreboard or if the

Golden
Vectors
Checker
Stimuli DUV
FIGURE 9.13
Self-checking testbench with golden vectors.
Reference
Model
Checker
Stimuli Duv

FIGURE 9.14
Self-checking testbench with a reference model.

9.4 Simulation-based approach

Scoreboard

Checker

Stimuli Duv

FIGURE 9.15
Transaction-based self-checking testbench.

Checker and

Testbench Monitor

DUV

FIGURE 9.16

Black-box verification.

command and data are not the expected values given by the scoreboard. This
concept is illustrated in Figure 9.15.

9.4.2 Methods of observation points

As we can see in the preceding, the monitor and checker in one testbench are
tightly tied to the concept of observation of signal changes in the DUV. Such
observation approaches will also determine the strategy used for generating
stimuli. The three common verification paradigms regarding the observation
points are the black-box, the white-box, and the grey-box methods.

The black-box method assumes the internal signals of the DUV are not
accessible during verification. Only the external input/output interfaces are
directly controllable and observable. The verification plan, including the test-
bench development, is developed based only on input/output functionality.
Figure 9.16 illustrates this method.

The major advantages of black-box verification are its simplicity and inde-
pendence from specific implementation information. Of all the verification
methods, it requires the least amount of knowledge about the DUV. Even if
the design’s HDL code is not ready, the verification process can be started,
and stimuli can be developed as long as a reliable specification for the DUV
becomes available. Whether the DUV is realized as an ASIC, an FPGA, a circuit
board, or a software program is irrelevant. The black-box method only aims at
veritying the functionality defined with respect to the design boundaries.

535

536

CHAPTER 9 Functional verification

On the other hand, without any structural information, black-box verifica-
tion lacks the observability and controllability internal to the DUV, which some-
times might be required to determine whether the DUV passes or fails a specific
test. It is challenging to precisely identify what and where a problem is in the
DUV with this method. It may not be feasible for the black-box verification to
check for DUV’s low-level features and structural changes. Black-box verifica-
tion may not be suitable for designer-level blocks, because many interesting cor-
ner cases may be observed only when implementation details are provided.

In short, the black-box method requires no implementation knowledge and
demands only design specification to complete the testbench development.
Being independent of the implementation makes the generated stimuli more
reusable for different realizations, but it also makes the stimuli generation pro-
cess more difficult because of the lack of observability and controllability inter-
nal to the DUV.

The white-box method, which is illustrated in Figure 9.17, represents
another extreme scenario. Here, the full observability and controllability inter-
nal to the DUV is assumed to be available. For controllability, verification engi-
neers can easily derive stimuli for the desired events by setting up the
required internal states and justifying these states backward toward the inputs.
Likewise, regarding observability, any changes in internal signals can be directly
observed. Therefore, the white-box method can pinpoint the problematic area
in the DUV once a mismatch from the expected value is observed.

Low-level features and implementation changes can be incorporated in the
white-box approach, because such verification is tied to a specific implementa-
tion. Therefore, the generated test cases may only be valid for the specific imple-
mentation. Modification to the generated test cases would be necessary if the
implementation changes. Therefore, the maintenance efforts required for the
white-box method would be much greater than those for the black-box method.

White-box verification can ensure that implementation-dependent features
are verified. For example, it becomes feasible to generate test cases to exercise
a timing-critical path when the full observability and controllability to the inter-
nal structure of the DUV is available.

Checker Monitor

DUV
FIGURE 9.17

White-box verification.

9.4 Simulation-based approach

The grey-box approach is a compromise between the black-box and the
white-box approaches, which inherits the advantages from both methods. This
approach intends to exercise only those significant features associated with the
implementation.

The general architecture of the DUV is assumed to be known by the verifica-
tion engineers, and only a limited number of internal points are accessible.
These observation points are often located in the inter-block interface and
adhere to specific communication protocols. In other words, the grey-box veri-
fication method observes only a select set of important internal signals, which
are typically located at the boundary of a building block. Therefore, for the illus-
tration in Figure 9.17, a grey-box method would preclude observation of the
monitor ¢ but would include the other two observation points.

Similar to the white-box approach, the grey-box approach could exercise a
desired event by applying a test case directly at inter-block interfaces. Even if
the implementation of the components changes, as long as the interfaces
between the components within the DUV remain unchanged, the generated test
cases can be reused.

9.4.3 Assertion-based verification

Assertion-based verification is becoming popular in the industry and has drawn
much attention in the recent literature [Foster 2004]. This method embeds a set
of assertions in various parts of the implementation for monitoring design prop-
erties. Assertion-based verification can be viewed as a variant of the white-box
method.

The concept of assertions is originated from software testing. An assertion is
a line in the program that checks the validity of an expression. A correct pro-
gram must guarantee that such expressions are always true; otherwise, a warn-
ing or exit signal should be issued. Software engineers frequently write
assertions to check the possible existence of unexpected scenarios. Many
high-level programming languages such as C/C++4-, Java, and Eiffel support
assertions by the use of a system library or by the use of the language definition
itself. Actually, the first standardization of VHDL defined its language constructs
to support simple assertions, as shown in Figure 9.18.

assert Boolean-expression assert parity = '0'
report string-expression report "Parity Error"
severity severity-level; severity error;

(a) (b)
FIGURE 9.18

(a) Syntax. (b) example of an even-parity assertion in VHDL.

537

538

CHAPTER 9 Functional verification

Similar to software testing, assertions in hardware design are also expressed
as part of the design description in the HDL code. Many contemporary bhard-
ware verification languages (HVLs), such as SystemVerilog [Accellera
2002a] and OpenVera [Synopsys 2001], were developed to facilitate the
writing of assertions in conjunction with the design itself. Another flavor of
practical solutions is to use an auxiliary specification language. Several different
proprietary formats of specification languages exist, such as PSL/Sugar [Accel-
lera 2002b]. Assertions can be written in the specification language with a
proper interface to the design.

The use of assertions in verification has various advantages. In black-box ver-
ification, for example, assertions can be used to replace the original monitors
for the purpose of collecting coverage data. In white-box verification, the origin
of an assertion failure could be confined to a limited area to facilitate the debug-
ging process. It is also a good practice to use assertions as formal comments in
place of comments in natural language. Meanwhile, assertions can be reused as
part of the verification IP associated with the IP core delivered to the customers.
Moreover, because assertions are placed in the HDL code, they can be directly
used as properties to be checked for the use of formal methods.

94.3.1 Assertion coverage and classification

The term assertion coverage has a variety of definitions. It could be used to
indicate the ratio of the number of assertions to the number of HDL code lines.
However, assertion density, suggested in [Piziali 2004], is considered a better
term for this definition. The better definition for assertion coverage should be
similar to that of functional coverage, which is defined on the basis of the num-
ber of exercised scenarios over the total number of scenarios to be covered.
Assertion coverage counts the number of exercised assertions to the total
number of assertions extracted from the design implementation.
Assertions can be classified into two types: static and temporal.

m Static assertions dictate those legal scenarios that are not related to time,
and, as such, they are required to be held for all time. These scenarios can
be described by the first-order logic. The one-hot encoding bus is an exam-
ple. Only one bit in such a bus can be one, and the rest should be zero. A
static assertion monitors the bus during the course of simulation and
sends an error message whenever this rule is violated.

m Temporal assertions extend the capability of static assertions to tempo-
ral logic. The consequent statement needs to be evaluated during the spe-
cified period of time after which the antecedent condition is triggered.
Consider the following SystemVerilog example in Box 9.10:

BOX 9.10
1. @(posedge clk)
2. init_event |=> abort_event;

9.4 Simulation-based approach

where |=> denotes the non-overlapping implication operator. This example
states that once an antecedent condition, init_event, successfully completes,
a consequent statement, abort_event, will occur in the next clock cycle.

The behavior of temporal assertions can be illustrated by a finite state
machine, as shown in Figure 9.19. In the idle state, the assertion moves to the
evaluate state when its antecedent condition is triggered. The evaluate state
repeatedly checks the consequent statement before a Pass/Fail result is issued.
Once there is a result, either an error signal is generated or the system moves
back to the idle state.

To illustrate a SystemVerilog Assertion (SVA) example, assume that the
intended property in a design is the following: “after the request signal is
asserted, the acknowledge signal must be generated from 1 to 3 cycles later”
Figure 9.20 shows its timing diagram and the corresponding code in SVA.

9.4.3.2 Use of assertions

For different types of properties, assertions can be divided into two categories:
coverage assertions and checker assertions. Coverage assertions primarily
record the occurrence frequency of a specified event. Such assertions usually
monitor events defined in the functional coverage metrics. For the example of
a 16-bit one-hot coded bus, the assertion defines all possible combinations of
16 one-hot cases and records the case(s) exercised during simulation.

Checker assertions function as sentinels. They watch the violation of static
or temporal properties. At the module level, in white-box verification, assertions

I Trigger

Trigger
T
idle evaluate
v \)
Pass/Fail - pass/Fail)
FIGURE 9.19
Finite state machine for generic assertions.
0O 1 2 3 4 5
N property req_ack;
reg @(posedge_clk) req##[1:3] $rose(ack);
\ N endproperty
I [I as_req_ack: assert property (req_ack);
ack |
Timing Diagram SVA Sample Code
(@ (b)
FIGURE 9.20

Example of a temporal assertion in SVA.

539

540

CHAPTER 9 Functional verification

can check implementation details, whereas in black-box verification, assertions
check against the specification through both module inputs and outputs. For
higher-level verification, checker assertions are used to monitor the interfaces
across components. Because the interfaces must abide by their corresponding
protocols, checker assertions signal errors once unexpected scenarios occur.
A two-hot message in a one-hot coded bus is such an example.

9.4.3.3 Writing assertions

One of the most frequently asked questions in assertion-based verification is
“Who should write the assertions?” In practice, this job is shared by the entire
design and verification team. At different levels of the design abstraction, differ-
ent properties are converted into assertions. It may be difficult to ask a designer
responsible for designing a small block and lacking a system-level view to write
high-level assertions.

At the architectural level, a design is described by use of the input/output
functions of each component and the interface protocols that connect them,
without implementation detail. Assertions at this level model high-level relation-
ships and ensure that system-level behavior is consistent with the system-level
specification. Also at this level, observation points are located at inputs and out-
puts of the components and at bus interfaces only.

Assertions try to capture one’s understanding of the design intent. Once a
design component is created, the designer can write assertions for it on the
basis of the functionality from the specification and the implementation he or
she chooses. At this level, assertions are frequently used for debugging and for
measuring coverage.

If applicable, verification engineers may use formal methods to prove asser-
tions to complement the deficiencies of simulation-based methods. Also, asser-
tions accompanied with IP cores from IP providers would need to be
integrated into the verification plan.

9.5 FORMAL APPROACHES

Advances in modern simulators allow full-chip simulation to be efficiently con-
ducted. Nevertheless, the success of simulation-based verification remains
dependent largely on the quality of the stimuli. The stimuli exercise a design
under verification (DUV) and traverse its state space. Verification can be con-
sidered as a process of exploring reachable state space of the design. Modern
designs rapidly increase in size and complexity, and, consequently, their reach-
able state space can grow exponentially. As a result, it becomes difficult to
exhaust all reachable states for complete verification by use of only simulation.

Formal approaches aim to make complete verification possible, where com-
pleteness is in the sense that all reachable states are explored. The underlying
idea is to infer the design properties by reasoning without explicitly simulating

9.5 Formal approaches

stimuli. A property models certain aspects of design behavior associated with all
or a subset of reachable states. Proving design properties with formal approaches
requires the use of efficient search or reasoning engines, many of which have
been developed over the years. Significant advances have been achieved in
recent years.

The remainder of this chapter provides an overview of modern formal verifi-
cation approaches. Three major types of formal approaches are introduced:
model checking, equivalence checking, and theorem proving. For each
approach, we explain the underlying theory, illustrate its use, give examples,
and discuss the advantages and disadvantages. Finally, we include a brief review
of advanced research topics in the area.

9.5.1 Equivalence checking

Modern VLSI design flow is partitioned into a number of synthesis steps that
take the idea from system specification into GDSII. This results in descriptions
at different abstraction levels, which include behavioral, RTL, gate, and switch
levels. Ensuring equivalence between two alternative descriptions of the same
design is a commonly encountered problem in a design process. This task is
referred to as equivalence checking. Although such a general concept can be
applied to detect any mismatch from two descriptions given at any level, com-
mercially available equivalence checking tools typically address the equivalence
between the design’s RTL code and its various gate-level netlists, as shown in
Figure 9.21. That is the focus of this section.

\J
RTL Code
\ Y
Logic Synthesis DFT Synthesis
¥ v
Gate-Level Netlist 1 Gate-Level Netlist 3
\J A
Place & Route Clock Tree Synthesis
v v
Gate-Level Netlist 2 Gate-Level Netlist 4
L \J

FIGURE 9.21
RTL to gate-level design flow.

541

542

CHAPTER 9 Functional verification

Boolean circuits, in general, can be viewed as finite state machines
(FSMs), and, therefore, Boolean equivalence checking (BEC) over two cir-
cuits, FSM; and FSM,, can be formulated as the problem of checking for the
output of the miter circuit, as shown in Figure 9.22, being constant 0 or
not. FSM; consists of combinational logic C; and a state-holding element set,
S1, whereas FSM, consists of combinational logic C, and a state-holding element
set, S,. Both primary inputs are m bits and primary outputs are n bits. PPO,
(PPO,) denotes the pseudo-primary outputs from to C; (C>) to S; (52). Note that
the number of state-holding elements can be different in the two FSMs. Each
pair of corresponding primary output bits — one from C; and the other from
C, — connects to an XOR gate. If any XOR output becomes 1 with respect to
any input vector or sequence, these two FSMs are not equivalent.

A simplified version of the BEC problem is combinational equivalence
checking (CEC). This problem assumes that FSM; and FSM, have a complete,
one-to-one mapping between the state-holding elements and that they start with
the same initial state. The assumption is also made that PPO, always has the
same value as PPO,. Hence, the original miter circuit can be recast as that
shown in Figure 9.23; here, we only focus on the comparison between combi-
national logic C; and C, without any sequential elements. The combinational
equivalence checking problem is thus formulated as the following: Given two
combinational Boolean netlists C; and C,, check whether the corresponding
outputs of C; and C, are equal for all input combinations. There are two
types of approaches for solving the CEC problem: functional equivalence and
structural equivalence.

primary FSM; primary

inputs outputs
o o PO,

Pl » combinational

m logic C;
. n
state-holding —p» XORs

elements S; | ppp —
1
> > 7
FSM, A

——— combinational
logic C,
state-holding
elements S, PPO,

FIGURE 9.22
Miter circuit for checking equivalence of two FSMs.

9.5 Formal approaches

primary primary
inputs outputs
PI combinational POy

> logic C n
m ge s _|+> XORs
e =K
combinational n

logic C, PO,

FIGURE 9.23
Combinational equivalence checking.

9.5.1.1 Checking based on functional equivalence

The first step of functional CEC is to translate the combinational circuits into a
canonical representation. A representation of a Boolean function is canonical
if the representation for each function is unique and independent of the imple-
mentation of the function. A truth table is one example of a canonical represen-
tation for Boolean functions. Equivalence can be determined by directly
comparing the two canonical representations. Among all canonical representa-
tions, the reduced ordered binary decision diagram (OBDD), introduced
in Chapter 4, is the most prevalent, because OBDD yields a more compact rep-
resentation than other representations. The CEC problem can be resolved by
building the OBDDs for the outputs of the circuits on the basis of their primary
inputs. Two circuits are equivalent if the OBDDs from each pair of correspond-
ing outputs are graphically isomorphic.

9.5.1.2 Checking based on structural search

A structural search approach checks to see whether any vector exists at primary
inputs that would cause a mismatch between the two circuits at their primary
outputs. If no such input vector can be found, the two circuits are proven equiv-
alent. The satisfiability (SAT) solvers, introduced in Chapter 4, can be used as
the structural search engine for checking equivalence. A SAT solver can be used
to check if an assignment at PIs exists to satisfy a 1 at the miter’s output.
An UNSAT answer from the solver proves the equivalence of the two circuits.
An ATPG tool developed for generating manufacturing tests for stuck-at faults
can also be used for checking structural equivalence. As illustrated in Fig-
ure 9.24, if the stuck-at-0 fault at the XOR output is proven a redundant fault
by an ATPG tool, the two circuits are equivalent. A thorough treatment of ATPG
techniques will be provided in Chapter 14.

For complex circuits, directly applying SAT solving at the miter’s output signal
may result in an exponential number of backtracks, which makes the approach
inefficient. Structural similarity between the two circuits under checking can be
explored to improve its efficiency, which attempts to solve the structural equiva-
lence problem by incrementally solving a sequence of easier sub-problems

543

544 CHAPTER 9 Functional verification

Pl combinational PO
logic C
g ! s-a-0?
combinational
logic C,
FIGURE 9.24

Checking structural inequivalence by generating a test for XOR output stuck-at-O fault.

[Brand 1993; Kunz 1993; Goldberg 2000; Huang 2000]. On the basis of a
divide-and-conquer strategy, various heuristics have been developed to identify
internal equivalent points from the two circuits under checking. For example,
when two signals are proved to be equivalent, the equivalence of the two sig-
nals can be encoded as a SAT clause and added back to the SAT formulation of
the problem. Such equivalence clauses can then help to speed up the SAT
search, as shown in [Lu 2003].

For the sequential equivalence checking (SEC) problem, shown in
Figure 9.22, state traversal techniques are often used. The most common state
traversal technique is reachability analysis. Note that two FSMs, M; and M,
are equivalent if, and only if, the output of the miter circuit M, is constant
0 under all combinations of input assignments for all reachable states of M.
Therefore, checking sequential equivalence would require the ability of deriving
the set of states reachable from a given initial state set I for a given FSM M. An
intuitive approach that explicitly enumerates state transitions over the state
graph of the FSM is not scalable to large design and, thus, is often impractical.
Practical solutions usually adopt a symbolic technique implemented by OBDD
that implicitly derives the reachable state set by use of transition functions.

Symbolic reachable analysis consists of two steps: (1) encoding the FSM
symbolically and (2) performing reachability analysis iteratively. Given FSM
M, = Oy, I1, Y 1, Q1, 01, A and FSM M, = (Q3, Iz, Y 2, Qa, 02, 42), where Q/'s,
I's, > /s, Q/s, d/s, /s denote the state spaces, the initial state sets, the input
and output alphabets, transition functions, and output functions, respectively,
the FSM M2 = Qs Lins D i Qs Oy Ay for the miter circuit can be con-
structed as follows:

m The state space Q,,, = Q1 X Q>

m The initial state set I,, = I, X I,

m >, and Q,, are the same input and output alphabet sets as in M; and M,
(thatis, >, =Y 1 =>,and Q,, = Q; = Q)

m The transition function d,,(s, @): > _,, X Q,,—Q,, where s and a represent
for one state in Q,,, and one input vector in %, respectively

m The output function Z,,,(s, 2): > . X Qm—Q

We define a new function, called transition relation, which is denoted as R(x;, s, s'):
G X Q) X Oy, — {0, 1}. R(a, p,) = 1 if there exists a transition from the state p to
the state g under an input vector a for M, ,; otherwise, R(a, p, ¢) = 0. Assume

9.5 Formal approaches

given an input vector set x = (xy, X, ..., Xp) With the corresponding sequence
of state transitions 6, = (64, 05, ..., Oz), the transition relation from the state s to
the state s’ can be formulated as:

R(x,s,5') = (s1" = 01(s, 2)) A (82 = 62(5,%)) Ao A (52 = Sn(s,x)) = TLi(s/ = (s, x))

Therefore, if the input vector set x can bring the finite state machine from the
state s to the state §', then R(x, s, §) = 1; otherwise, R(x, s, §) = 0.

We then annotate the existential quantification operator 3 to the transition
relation R. A pair of states (p, @) € Ry if, and only if, there exists an input vector
x such that the machine transitions from state p to state g after applying x.
Applying the existential quantification notation 3 to the preceding transition
relation results in R5(s, §'). Such a notation is called quantified transition
relation and represented as:

R5(s,s") = 3x.(s1" = 01(5,2)) A (82" = 62(5,%)) Ao A (s’ = Se(s,x)))
= 3. T,(s;/ = 0:(s,x))

Given Mycz = Qs Ly D o> Qo> O Amy) and its quantified transition relation,
we can apply R5 to derive all reachable states. Such a process is called reachability
analysis and can be done by the image computation denoted as Img(S, R>),
where § is a set of given states and Ry is the quantified transition relation
defined by M;,. The output of Img(S, R>) is the set of states reachable from §
in one clock cycle. One approach to reachability analysis is to iteratively perform
image computation starting from the initial state set 7,,,. Such an approach is called
Jorward reachability analysis, and the generic pseudocode is outlined as follows:

Algorithm 9.1 Forward_Reachability

1.7i:=0 // counter for looping

2.Q=1 // i-th set of reachable states

3. do { .

4 Qrew:= IMmg(@, R); // compute image from current states
5 Q"= Q' V Quow; // update the state set for next iteration
6. =i+ 1; // counter increments

7. }until @' = Q) // stop when state set is stable

8.

9. return Q'

Consider the 7-state FSM shown in Figure 9.25 for which state 0 is the only ini-
tial state. The forward reachability algorithm derives all reachable states from

state O as follows in Table 9.2:
The iterative process stops at iteration 4 for which the current set of reach-

able states is equivalent to the next set of reachable states. Therefore, the set of
reachable states from state 0 is {0, 1, 2, 3}. From this analysis, we find that states

545

546

CHAPTER 9 Functional verification

Table 9.2 Reachable States by Forward Reachability Algorithm

Iteration 1 2 3 4

Q {0} (0,1, 2 {0, 1, 2, 3} {0, 1, 2, 3}
Qrew {0} {1, 2} {1, 3 {0, 1,3}
Q' {1, 2} {1, 3} {0, 1,3 {0,1,2,8

FIGURE 9.25

Example of forward reachability analysis.

(@)

FIGURE 9.26

Intuitions behind forward and backward reachability analysis.

4, 5, and 6, which are surrounded by the dotted line in Figure 9.25, can never
be reached from the initial state 0. These states form the set of unreachable
states for state 0.

Reachability analysis can be also conducted through a background traversal of
the state space [Abdulla 2000]. For a target final state (which could be a state that
causes non-equivalence of the two FSMs), the search attempts to compute the set
of previous states that can transition into this target state. If the backward reach-
ability analysis can eventually reach an initial state, the search stops, and the
two FSMs are proven not equivalent. Intuitions behind the forward and backward
reachability analysis are illustrated in Figure 9.26a and Figure 9.26b, respectively.

Image computation may suffer from too many iterations and/or memory
explosion. Several techniques that attempt to avoid memory explosion, such
as the use of SAT solving instead of BDD-based techniques [Abdulla 2000], have
been proposed.

9.5 Formal approaches

Boolean equivalence checking has been widely accepted and incorporated
into industrial design flows. Most leading EDA vendors offer BEC tools that
include Encounter Conformal from Cadence and Formality from Synopsys. Com-
binational equivalence checkers have enjoyed tremendous success, partially
thanks to the recent advances in SAT solving, which help to improve both per-
formance and scalability of CECs. Sequential equivalence checking has also
made significant progress in recent years. SEC tools such as SLEC from Calypto
[Calypto 2008] are also commercially available.

9.5.2 Model checking (property checking)

Given a property and a design, a model checking tool allows a user to check
whether the property holds true on the design. To develop such a tool, one
needs to ask two basic questions: how to specify or describe a property and
how to efficiently prove that a property holds true or is violated. The first ques-
tion concerns the language used to express properties. Such a language deter-
mines what properties can be described and what properties cannot be
described and, hence, limits the applicability of a model checking tool. The sec-
ond question concerns the computation engine used to prove properties. Like
equivalence checking described previously, OBDD and SAT are two prevalent
methods that are used to implement the core computation engine of a model-
checking tool. In this section, we begin by introducing the (formal) languages
used to describe properties, followed by a brief review of how OBDD and
SAT can be used to implement a model checking tool.

Temporal logic, introduced by Arthur Prior in 1960s [Prior 1957] and initi-
ally known as Tense Logic, provides a formal system for qualitatively describing
and inferring how the values of statements for properties vary over time in a
system. In temporal logic, a statement’s truth value can change over time. In
contrast, in traditional predicate logic, a statement’s truth value is either true
or false, which does not change over time. Application of temporal logic in ver-
ification started to receive attention in 1980s.

Temporal logic consists of two types of formulas: (1) state formulas, a form of
atomic propositions (AP) that indicate the validity of specific states; and (2)
path formulas, in which the property of a path holds constant. Note that a path
here refers to a sequence of states. According to the views taken with respect
to the underlying nature of time, temporal logic can be classified into (1) linear
temporal logic (LTL), where the future value can only be derived along its linear
computation path; and (2) branching time temporal logic (BITL), which is a
tree-like structure that allows quantifications over many different futures at each
moment. Whether LTL or BTTL is more suitable for model checking depends on
the property and the design being checking [Emerson 1990].

LTL allows applications to reason about the nondeterministic behavior. It
models time as a sequence of discrete states starting from an initial moment
with no predecessors and extending infinitely into the future. Such a sequence

547

548

CHAPTER 9 Functional verification

of states is known as either a computation path or an execution path. LTL
derives the change over time with a linear time model M = (S, —, L), which
is also known as a Kripke structure [Kripke 1963]. Here,

§: a set of state formulas {sy, sq, ...}

—: the transition relation where Vs € 8, 35’ € S, s.t. s—¢§

L: a labeling function L:S—P(AP) in which each state is labeled with a set
of atomic propositions from AP,

Figure 9.27 shows a simple example of a linear time model, M, where

S = {so, $1, $2, $3}
— = {(So, S1), (So, $2), (51, S0), (1, $3), (52, $3), (83, o), (83, $3)}

L = {0, {D,gD, (51, (11D, (52, {q,1D), (53, {rD}

A path 7w in M = (8, —, L) is an infinite sequence of ordered states {s; € 8} such
that for each 7 > 1, s; — s;, 1. Therefore, path © can be expressed as T = {s; —
$2 — ... — §; — ...}. Particularly, 7® denotes the suffix of a path starting from
the &£ state. For example, = {s3 — s4 — ...}. The notations | and }£ denote
the satisfaction relation and the umsatisfaction relation, respectively. Given a
Kripke structure M = (S, —, L), T |= ¢ denotes that the formula ¢ holds true
(i.e., is satisfied by the system) at the starting point of the path m in M. Let
I(sy) be the set of formulae that hold true at the starting point of path n. Then,
“T £ ¢” means “¢ € I(s))”

LTL is built up from a set of propositional variables pq, p,, ..., T (true) and L
(false), the usual logic connectives —(negation), V(disjunction), A(conjunction),
—(@{mply), and the following temporal modal operators: X(Nex?t), G(Always),
F(Finally), U(Until), and R(Release):

m Next (X) operator is unary and specifies that a formula holds at the second
state on the path m:

nEXo iff 1 k= ¢

m Always (G) operator is unary and specifies that a formula holds along
every state on the path m:

nEGYfVi> 1,1 ¢

So —a 31
pa rt
) \ .

FIGURE 9.27

Example of an LTL model.

9.5 Formal approaches

m Finally (F) operator is unary and specifies that a formula holds at some
future state on the path m:

nEFif > 1,0 F ¢

m Until (U) operator is binary and specifies that for some 7 > 1, 7° to T* ! satis-
fies the first formula ¢ and n* satisfies the second formula i:

nEQUY iff i >1, st Eyand V) <iw ¢

m Release (R) operator is binary and specifies that for some 7 > 1, we have
either there exists j < & such that W satisfies the first formula ¢ or 7% satis-
fies the second formula :

T = Ry #ff either 3i > 1,s.t. 7w = pandVj < i, 7 =y
or
Ve >1,m% Ey

Figure 9.28 illustrates examples for the semantics of various LTL operators
assuming that all examples show on a path © in M = (8, —, L). We can apply
LTL to the Kripke structure M; in Figure 9.27 and derive the following formulas:

1. so | Xt for all path &, and sy [~ X(g A r) because the next state of s, can
not satisfy both g and r.

T
— A ~
X¢: - > - > >
Go: P > P > P > P > P >
Fo: ~p > ~p > O > - -
pUy: ¢ > P > P > Y > -
(gl:;p;) Yy oY Y P > >
(cq;Eewzz) ' Ad Ad Ad Aa Ad

FIGURE 9.28

Examples for semantics of LTL operations.

549

550

CHAPTER 9 Functional verification

N

So E G—(p At) and s3 E Gr because M; can loop at s; forever.

3. so £ GFp denotes that not every path starting from s, can finally hold the
formula p. 1 = {sg — §; — $3 — $3...} is such one example.

4. sy = GFp — GFr denotes that every path starting from s, which satisfies
the formula p will always satisfy the formula 7, but not for the case
So £ GFr — GFp.

5. Vs € S'in My, s = X(g V r) — Fr denotes that the next state of one path

starting from every state in M; can be g or r, and then the formula » will

also hold on the path finally.

The expressive power of LTL is limited and implicitly quantifies universally
over paths. An LTL formula can be satisfied if, and only if, all paths starting from
the given state satisfy such a formula. A LTL system cannot decide whether one
specific formula can be satisfied along some paths in M. Therefore, computa-
tion tree logic (CTL), one type of BTTL, is evaluated over a branching-time
structure and it quantifies the paths explicitly by introducing both the existen-
tial operator (E) and the universal operator (A) over paths.
The Existential (E) operator is defined as follows:

m EX¢ specifies that there is a path such that ¢ holds at the next state:
SEEX¢ifIn={vi —v2—..vi— ... |, _JstukEd

m EG¢ specifies that there is a path along which ¢ holds at every state:
SEEGOifIn={v; »v; = ...vi— .|, _} st Vo, ¢

m EF¢ specifies that there is a path along which ¢ holds finally:
sEEFQiffIn={vi — v, — ..oy —...[,_} st Jo,v; ¢

m E[¢pUy] specifies that there is a path along which ¢ holds until y holds:

sEEQUY I In={vi > v2 — ...v; — ... |, _} st. | ¢UY
The Universal (A) operator is defined as follows:
m AX¢ specifies that for all paths, ¢ holds at the next state:
SEAXGHfVn={vi > v, — ... — ... |, _JstuvE¢
m AG¢ specifies that for all paths, ¢ holds at every state of the path:
sEAGoiff Vn = {vl — vy = U=, b st Yo, E @

m AF¢ specifies that for all paths, ¢ holds finally:

SEAFQiffVn={v; » v, — ...v;— .|, _} st Iv,vi o

9.5 Formal approaches

* V4 * V4 * 4]
EX¢: EGo:) EF¢:
— —a - —a —
® ?
¢
a o a A7
P ®
sy v z
¢
* 74 * 4 * V4
AXop AGo: [AF¢
¢ ¢ ¢ [
V' Pl TS s P AT < — T~
¢ o ¢ ¢
P o e : : o
? @ ()
\J : Y : A
¢ ¢
FIGURE 9.29

lllustrations for CTL Existential and Universal operations.

m A[pUV] specifies that for all paths, ¢ holds until i holds:
sEAPUYLF Vn = {v1 — v — ..vi — .|,) st T E QUY

Figure 9.29 illustrates partial examples for the Existential and Universal
operations according to the preceding definitions.

CTL is capable of specifying branching behaviors such as AG(EFf), which is
also known as resetability—meaning there is always a path back to f. This
property cannot be modeled by LTL because of the lack of the path quantifier
E. Likewise, there exists some LTL formulas that cannot be expressed in CTL.
For example, FG¢ in LTL means that the formula ¢ will finally hold along every
path from the given point. Its semantic should be expressible as A(FG¢). How-
ever, in CTL, every temporal operator (F and G) must be preceded by a path
quantifier (E or A). Hence, CTL cannot express A(FG¢). CTL* extends the
expressiveness from both LTL and CTL and primarily allows a path quantifier
to be used followed by an arbitrary LTL formula. The relationships between
the expressiveness of LTL, CTL, and CTL* can be viewed as LTL U CTL C
CTL*, which are illustrated in Figure 9.30. Particularly, there is a set {¢4} of
CTL* formulas that can be expressed neither in CTL nor in LTL. E(GF¢) is such
an example, saying that there is a path where from one certain state, ¢'s holds
through arbitrarily many states to the end [Huth 2004].

551

552

CHAPTER 9 Functional verification

FIGURE 9.30

Relationships between the expressiveness of LTL, CTL, and CTL*.

The properties of design systems can be divided into two types [Owicki
1982]:

1. Safety properties that indicate that some bad event will never happen.
For a sequential program, safety guarantees that no incorrect outcome will
be produced by the program. For a finite state machine, safety checking
denotes those properties whose violation can always find a finite trace.
Another typical example of safety is a mutual exclusive property that states
that having more than one process in the critical section will never occur.

2. Liveness properties that indicate that some good event will eventually
happen. For a sequential program, the program will terminate as it pro-
duces a legal outcome. For a finite state machine, those properties that
may be violated will never have a finite witness. CTL can model the simple
liveness for the phrase “The light will turn green” as light = AF(green).
“Any request will eventually be satisfied” is another example semantic
phrase that can be expressed and the corresponding CTL expression is
AG(Req) = AF(Sat). Liveness focuses on a slice in the tree structure and
may incur the witness as a computation path of infinite steps.

To illustrate the safety and liveness properties, consider a two-input Muller C-
element used for asynchronous circuit connections. Figure 9.31a shows its
gate-level netlist with two Boolean inputs (x, ») and one output (2). The
corresponding dynamic behavior is represented by the state transition graph
in Figure 9.31b.

A safety property of the C-element is that if all inputs and outputs are equal,
then the output z will not change its value until all inputs flip their values.
There are two situations: all values are 0 and all values are 1.

BEAG(x=0AyYy=0Nz2=0=>AG=0U0UK=1Ay=1)
BEAG(x=1Ay=1ANz=D=AEE=1U0UK=0Ay=0)

A liveness property of the C-element is that if both inputs become equal, then
the output z will eventually change to the corresponding value. There are
two situations: both input values are 0 and both input values are 1.

9.5 Formal approaches

(x=0ny=0)u(x=y)

(a) (b)
FIGURE 9.31
(a) Gate-level netlist. (b) state transition graph of a C-element.

B AGAx=0Ay=0UE=0Vx=1Vy=1)
B AGAx=1Npy=DUE=1Vx=0Vy=0)

9.5.2.1 Model checking with temporal logic

Let a Kripke structure M = (S, —, L) represent a finite state concurrent system.
The model-checking problem can be formulated as: given a model M, a property
D specified as a temporal formula, and a state s, does s = p hold in M? The
corresponding result is either (1) yes, s): pin M, or (2) no, s bé p in M. Espe-
cially for the latter case, such a result is derived from finding a counterexample
that invalidates p in M. Therefore, the modeling checking problem can be
addressed by computing the state set S, that satisfies p in M.

The labeling algorithm, proposed by E. Clarke, E. Emerson, and A. Sistla
[Clarke 1986], is a basic algorithm for the model checking problem. Given a
CTL formula, the labeling algorithm labels the set of states in which the target
formula p holds, which is denoted as [[p]]2{Vs € SinM,s = p}, and called
the denotation of p. Deriving [[p]] starts by decomposing p into a set of sub-
formulas in a bottom up manner. Because {1, —, A} and {AF, EX, EU} can form
an adequate set of connectives for CTL [Martin 2004], and all other proposi-
tional and temporal connectives can be written in terms of this set, a preproces-
sing step to convert the target formula p into an equivalent form in terms of this
adequate set is first invoked and then followed by labeling states in M for [[p]].
Later, the denotation [[p]] is compared with the set S, of all initial states to
check whether S;,,,, C [[p]].

The labeling algorithm explicitly enumerates the states in the model whose
size often grows exponentially in terms of the numbers of variables in the sys-
tem. This problem is typically referred to as the state explosion problem. To
overcome this issue, a more efficient technique called fix-point computation
is proposed, which incorporates OBDD for symbolic computation and implicit
representation of states. Model checking with OBDDs is often referred to as
symbolic model checking [Burch 1990], and SMV, developed at Carnegie
Mellon University, is one such verifier [McMillan 1992].

553

554

CHAPTER 9 Functional verification

Fix-point computation finds the set of states that satisfies the specific global
CTL formula. A function x;,; = f(x,) is called a fix-point if 3x;, where & > 0,
s.t. Xp 1 = flxp) = xp,. Given a starting value x,, a fix-point can be found by itera-
tively mapping fto x; until f(x;) = x;. To help calculate the fix-points on a Kripke
structure M = (S, —, L), we define a function t called a predicate transformer,
which takes a subset of § and outputs another subset. In other words, the function
7 is defined on the basis of the power set P(S), which is the set of all subsets of S.
/(8 denotes 7 applications of T to the given subset §' C S. That is,

v(8) =2(e(.. (1 (8))-)
T is monotonic, provided that for any two subsets of §, P and Q,if PC Q C P
(9), then 1 (P) C 1 (Q). Note that because 1 is monotonic, by starting from a sub-
set of § and continuously applying 1, a fixed point can always be reached.

Let © be monotonic, @ be the empty set, and U be a finite set {s,,5y, .. ., 5,} C
P(S) of n elements in M, then 3/, s.t. T/(0) =t ""'(®) and Ju, s.t. Tt “U) =1 “"!
U). 1 (@) and t “(U) are called the least and greatest fix-points of t, which are
denoted by fP,,.i, and fp,,,.x, respectively. Each basic CTL* operator can be fur-
ther represented by either fp,,;, Or fP,,. OVer an appropriate predicate trans-
former. For a complete treatment of the underlying theory and proof, please
refer to [Granas 2003].

Suppose that we would like to apply the fix-point computation to check
AG(¢p = AFY), then sub-annotations will be computed in a bottom-up manner.
Thatis then ([y]], [AFY]) [[$]), [[¢ = AFy]}, and [[AG(¢ = AFY)]]in this example.
Assuming y = p and ¢ = g, let’s check the process of calculating the formula on
the basis of the example given in Figure 9.27.

w (V] = []][—{55}

[V]| = [[AFr]] = {so, s1, S2, $3} can be computed as the union of

o [l = [[r]] = {s3}

U
o [[rvAXr]| = {s3}U{s1, s2} = {s1, 82, 53}
no

[vV AX(r V AX7)]] = {s3}U{s0, $1, $2, 83} = {S0, $1, $2, $3}
need to repeat since {s,, 1, S2, $3} converges
= [[¢]] = [[p] = {s0}
([0 = AFY]]| = [[~¢ V (AFY)]] = [[-p V (AFr)]]
* [[-pV (AFr)]] = {s1,52,53}U{s0, 1, 82, 83} = {80, 51, 52, 53}
[[AGu]] can be computed as the intersection of [[u]], [[u A AXy]],
[0 A AX (e A AXp)]], and etc. Therefore, [[AG(¢p = AFy)]] can be obtained
from the following and result in {sq, s1, $2, $3}:
w [[W] = [[¢ = AFY]] = {s0, 51, 52, 53}
u [[:u /\AX:“'H - {807 S1, 82, 83} n {So, S1, 82, 53} = {S(), S1, 82, 53}
m ([AAX(uAAXp)]] = {so, s1, $2, $3}
m ... all remaining computations converge to {so, S, $2, 3}

9.5 Formal approaches

Because every state belongs to [[AG(¢ = AFY)]] = {so, s1, S2, s3}, the Kripke
structure M = (S, —, L) satisfies this property. As we can see, computing the
state set for propositional connectives is straightforward. The computation for
temporal connectives such as EX¢ is relatively sophisticated and requires apply-
ing the temporal operations over the current state set repeatedly until there is
no change.

Symbolic model checking is often limited by the sizes of corresponding
OBDDs used in the computation. Typically, a good variable ordering is crucial
for minimizing OBDD size. However, finding optimal ordering is a proven NP-
complete problem. In some cases, even with the best ordering, the OBDD size
is still larger than the available computation resource. To address this problem,
an alternative method, called bounded model checking (BMC), was proposed,
which only tries to find counterexamples for properties within a bounded num-
ber of clock cycles (state transitions). Most of the bounded model checkers use
a propositional decision (SAT) procedure [Biere 1999]. Several efficient satisfia-
bility solvers have been developed in recent years that are capable of solving
problems with more than thousands of variables. Bounded model checking
can find minimal length counterexamples as the propositional decision proce-
dure traverses the state-transition graph step by step. This feature can also make
users easily understand counterexamples and consequently facilitate the debug-
ging process.

Given the Kripke structure M = (S, —, L) and a safety property ¢, by use of
BMC we can determine whether a length-k execution path of M that satisfies ¢
exists. That is, M =xE¢. Let a propositional formula 7(s,s’) define the relation-
ship of the state transition in M and let I(s), a predicate over the state variables,
define the initial states. The BMC problem is equivalent to the satisfiability prob-
lem of a Boolean formula [[M, ¢]], = [[M]], A [[¢]], where [[M]], and [[¢]],,
respectively, encode the set of length-# execution paths of M and the set of
length-# paths that satisfy ¢ in M.

For a valid length-2 path 7= {s) — s — s, — ... — s},[[M]], can be
defined as

(M}, = I(50) A T(s0,51) AT(s1,52) Ao AT(s6m1,86) = L(50) A o T(sir501)

The core of encoding for a formula ¢ with & steps depends on whether M
contains any loop that starts at s; and ends at s,. Therefore, [[¢]], can be com-
puted as the disjunction of two cases:

1. Without loopback in M: [[¢]],2 (- (Hf’:OT(sl,sk) A [[d)]]z)), where for
every [[.]],, & is the length of the prefix of the path and 7 is the current
position in this prefix.

2. With a loopback in M: [[¢]], 2115 (T (ss,se)N[[@]]2)), where for every
/[[]] 7 is the current position in the path 7, & is the length of the prefix
of this path, and / is the position where the loop starts.

555

556

CHAPTER 9 Functional verification

For example, given a formula ¢ = Fp, M= ,¢ is used to check whether any
reachable state in which a property p holds in M within & steps exists. Bounded
model checking will first derive [M, ¢]], = I(so) A Tr—g T(si,8i41) A H]’.io p(sy),
where p(sp = 1 if the property p holds on s;, otherwise p(s)) = 0. This satisfia-
bility problem can be solved with an SAT solver. It will return 1 if such a path is
found. To check whether any reachable state that satisfies p, provided that g
holds infinitely (i.e., ¢ = GFg A Fp) exists, modeling the loopback behavior in
M is required. That is,

(1M, 81}, = 1(s0) A T,y Tsivsii) AT o 2(5) A T (TGstsse)nullal)y)

Although bounded model checking with the propositional decision (SAT) pro-
cedure can handle larger circuits, it is an incomplete technique. If the checking
formulas are unsatisfiable (i.e., the property holds true over a bounded length &
of checking, there is no guarantee that the property will hold or not over a
length greater than k.

9.5.3 Theorem proving

We have introduced how propositional and temporal logic can be automated to
compare two representations in equivalence checking and to validate proper-
ties from the specifications against a given model in model checking. The effec-
tiveness of both equivalence checking and model-checking techniques is often
limited by the capacity and performance of the underlying engines used such
as OBDD and SAT. Sometimes, the complexity of a verification task for an arith-
metic circuit, such as a data path or a signal processing unit, can be reduced if a
more general mathematical formulation of the circuit, with a better abstraction
of the word-level information, is provided. Theorem proving techniques are
applied for such purposes.

Theorem proving is the process for determining whether a given implemen-
tation satisfies the target specification by means of mathematical reasoning, as
shown in Figure 9.32. Both the implementation and specification need to be
transformed into formulas in a formal logic system. The relationships between
implementation and specification are regarded as theorems in logic. The confor-
mance is then established by proving the theorems either from implementation

implication

design design
implementation specification

~_

equivalence
FIGURE 9.32

Verification by theorem proving.

9.5 Formal approaches

to specification, denoted by the implication arrow in the figure, or from speci-
fication to implementation, denoted by the equivalence arrow.
A proof system (or calculus) S consists of:

1. Expressions of S: a finite sequence of symbols

2. Well-formed formulas of §: a subset of the expressions of §

3. Axioms of S: a finite set of the well-formed formulas of §

4. Inference rules of S: a finite set of derivation rules from a given finite set
of well-formed formulas to a new well-formed formula

The general form of an inference rule is W, where the well-formed formu-

las oy, 00, ...,0, are called the premises of the rule, whereas the well-formed
formula f is called the conclusion.

In such a proof system 8, a proof is a finite sequence of formulas, ¢, ¢», ...,
¢,, in which ¢; can be either an axiom or else derived from applying an infer-
ence rule of S over {¢1, P2, ..., ¢,1}, which is denoted as {¢p;, ¢a,. .., Pi1} - @;.
The last formula ¢,, is the goal of the proof, which is known as a theorem of S.
Sometimes, proofs may require supplementary assumptions, such as I' = {y,,
Vs, ... yW;_1} from the domain specific axioms. The term I' - ¢ asserts that
the formula ¢ is valid if all assumptions in I" are true. If I is empty, we write this
as F ¢.

Many modern theorem proving systems are publicly available. These include
Coq [Coq 2003], Z/Eves [Saaltink 1999], High-Order Logic (HOL) [Nipkow
2002], PVS [Owre 1992], and ACL2 [Kaufmann 2002]. To illustrate the deduc-
tion process involved in theorem proving, we use HOL, developed at the Uni-
versity of Cambridge [Gordon 1993], for the remainder of the discussion. HOL
supports the use of standard predicate operators, five axioms, and eight primi-
tive inference rules, which are listed in Table 9.3, for expressing most ordinary
mathematical theories.

The first step of the proof method in HOL is to formalize both the specifica-
tion and the implementation into the formal logic used in the proof system.
Then, the formulation of a proof goal can be achieved by either proof of impli-
cation (forward) or proof of equivalence (backward) with the inference rules. In
the forward manner, a theorem prover starts with simple lemmas that can be
proven directly to develop new rules. Rules are successively combined into
more difficult lemmas until the target theorem is proven. Figure 9.33 shows
an example for such an HOL theorem proving. The functional specification of
the underlying black-box, shown in Figure 9.33a, is an NOR function denoted
by f =X xp. Its formal specification can be expressed as SPEC(x,y,z) 2
z = (-x A —p). And the implementation, which is shown in Figure 9.33b, may
use only primitive AND, OR, and NOT gates. The corresponding descriptions
of these gates in formal logic are:

m AND(i1, 72, out) 2 out = (i; A i), where 7, and 7, are input ports and out
is an output port.

557

558

CHAPTER 9 Functional verification

Table 9.3 Base Rules of Higher Order Logics Used in HOL

Name Explanation Rule Remark
ASSUME Assumption m
introduction
REFL Reflexivity —
ABS Abstraction 'ty =1t If x is not free in T,
I'F (x.ty) = (x.tp) where (Ax.t)
denotes the function
defined by f(x) = t;
BETA_CONV Beta- - t4[to/x] substitutes t,
conversion F ()t = ti[t2/X] for x in t; with the
restriction that no free
variables in t, become
bound after
substitution into t;
SUBST Substitution [y bty =to]Ta - tt4] t[t] denotes a term t
Ty UT, F tts] containing a subterm ¢
INST_TYPE Type et to1,...,on/Viy ..., Vp)
instantiation I'Etlot,....,00/Vi,..., V5 substitutes in parallel
the types a1, ..., 0, for
the variables v1,...,Vv,
int
DISCH Assumption 't I'-{t4} denotes the set
discharging T-{t;}Ft; =t subtracting {ti} from T’
MP Modus i+t = t2|F2 Ft
ponens Iy Ut
: ____________________ |
X |
) f=xxy —> @LMZ
Yy— y :l !
(a) (b)
FIGURE 9.33

Example of theorem proving by HOL.

9.5 Formal approaches

m OR(iy, iz, 0ut) 2 out = (i1 V i), where i, and i, are input ports and out is
an output port.

m NOT(7,out) 2 out = (—i), where 7 is an input port and out is an output
port.

Therefore, the formal definition for the implementation in Figure 9.33b is
IMPL(x,y,z) 2 3w.OR(x,y,w) A NOT (z,w). The goal of this proof is to derive
SPEC(x, y, z) from IMPL(x, y, 2) by applying the inference rules specified in
Table 9.3. The proof — given step-by-step — is as follows in Table 9.4. Please
note that the actual process executed with HOL software may not look exactly
the same though. However, it should be similar to what it is shown below.

Table 9.4 Step-by-step Proof for an NOR Function

Proof

IMPL(X, vy, 2) {from the circuit diagram}

F 3w.OR(x,y,w) ANOT (z,w) {by definition of the implementation }
F OR(x,y,w) ANOT (z,w) {strip off Jw}
F(w=xVy)ANOT(z,w) {by formal definition of OR gate}
Fw=xVy)A(z=-w) { by formal definition of NOT gate}
Fz==kxVy)) { substitute w with x Vv y}
FZz=—xA-y) { distribute — over x V y }

F SPEC(x,y,z) { by definition of the specification}

FIMPL(x,y,z) = SPEC(x,y,z)
Q.E.D.

Theorem proving can be applied to verify implementations described at
different levels of abstraction. The formal specification of the behavior of a
transistor-level CMOS inverter, for example, can be expressed by SPEC(x,y) 2
» = (—x) [Gordon 1992]. Consider the network structure shown in Figure 9.34.
The implementation is built on basic modules and includes a power cell, a
ground cell, a P-type transistor, and an N-type transistor which are denoted as
VDD(p), GND(q), PTran(x, p, y), and NTran(x, y, q), respectively. The beha-
viors of these basic modules can be formally defined as:

m VDD(p) & (p = T(true))
m GND(q)4(q = L(flase))

m PTran(x,p,y)2(~x = (p=y))
m NTran(x,py,q)2(x = (y =q))

559

560 CHAPTER 9 Functional verification

L

FIGURE 9.34
CMOS inverter.

Then, the entire network structure can be formulated as:
IMPL(x,y) £ 3p,q.Vpp(p) A PTran(x,p,y) A Ntran(x,y,q) N GND(q)

Again, the proof goal is to derive SPEC(x, y) from IMPL(x, y) by applying infer-
ence rules. The step-by-step proof process is as follows.
Proof

IMPL(x,y) {from the network structure }

F3p,q.VDD(p) A PTran(x,p,y) A\ NTran(x,y,q) N GND(q)
{by definition of the implementation }
F VDD(p) A PTran(x,p,y) N NTran(x,y,q) N GND(q)
{strip off Ip,q }
F(p=T)APTran(x,p,y) AN NTran(x,y,q) N\ (g = L)
{by definition of VDD and GND cells }
F(p=T)APTran(x, T,y) ANTran(x,y, L) A (g = L)
{substitute p in PTran, q in NTran }
F (3p.p=T)APTran(x, T,y) AN NTran(x,y, L) A (3q.q = 1)
{use Ja.ty N\t = (Fa.t;) N1, if a is free in #, }
F (T) APTran(x, T,y) A NTran(x,y, L) A (T)
{use(Ja.a=T)=Tand (Jaa=1)=T }
F PTran(x, T,y) A NTran(x,y, 1)
{use (xAT)=x 1}
Flx= (T=y)Ax=0=1)
{by definition of PTran and NTran cells }
FaV(T=p)A(wV=1)
{by(a = b) = (—aVvb) }

9.6 Advanced research 1 561

FaAx)VEA@=L)V{(T=p)A)V({(T=p)Al=1))
F(L)V@aA@=1)V({T=p)A-x)(L)

Fanlp=1)Vv{T=yAx)
{apply Boolean simplification }

Fy= ()
{ifx=T=@w=Landifx=1L=@=T) }

F IMPL(x,y) = SPEC(x,y)
Q.E.D.

Theorem proving has been successfully applied to the verification of hardware
designs, such as the TAMARACK microprocessor [Joyce 1986] and the Viper
microprocessor [Cohn 1988]. Its strength is its ability to support the expressive-
ness of higher order logics, to relate circuit behaviors at different levels of
abstraction [Melham 1988], and to provide many effective reasoning utilities.
Moreover, the design hierarchy and regularity can be exploited by theorem pro-
vers, which enable users to be in full control of the verification process. Higher
order logics can specify and verify generic and parameterized hardware designs.
One such example would be a channel encoder with words in 7-bit width. Also,
tactics of inference rules can continuously evolve during the deduction process.
Particularly frequent and useful theories/theorems can be customized and
retained for future proofs.

Verification by theorem proving requires users to familiarize themselves with
the proof system and to spend a considerable amount of effort toward develop-
ing the formal models for both the specification and the implementation. This is
one of the major disadvantages of the approach. Moreover, because of the lack
of sound proof systems for higher order logic, the derivation of inference rules
may require a great deal of human intervention, especially for complex and
large theorems. For these reasons, the application of theorem proving has been
limited and not widely used for industrial design projects.

9.6 ADVANCED RESEARCH

Simulation remains the mainstream verification approach in the industry. Its
scalability, along with its easy applicability to designs at almost any abstraction
level, makes it attractive for complex verification tasks. When used as a stand-
alone technique, simulation can detect simple and easy-to-find bugs. Its effec-
tiveness in finding corner-case, hard-to-detect bugs can be limited because of
the availability of high-quality stimuli that can cover a wide range of the corner
cases and can activate and reveal the subtle bugs. Although traditional formal
techniques—broadly speaking, model checking and theorem proving—can, in
principle, analyze and find subtle bugs, their applicability can be limited by their
runtime inefficiency and/or difficulty in use.

562

CHAPTER 9 Functional verification

For simulation-based approaches, measuring the coverage and preparing the
test vectors are the two most important things in the verification plan. The cov-
erage-driven verification (CDV) flow, shown in Figure 9.6, links these two
together and can be automated if the test generation constraints can be modi-
fied automatically [Bai 2003; Chen 2003; Wen 2006, 2007]. Such improvements
can substantially save the amount of manual efforts needed for coverage analysis
and test preparation. The improvements in coverage-driven verification can be
divided into two categories: feedback-based coverage-driven verification and
coverage-driven verification by construction.

Feedback-based coverage-driven verification modifies the biases and
seeds to direct the automatic test generation. A generic algorithm [Bose 2001]
can be applied to resynthesize test cases for optimizing the coverage. The
authors in [Tasiran 2001] represent the DUV as a Markov chain model and ana-
lyze the feedback data to modify the model’s parameters. The authors in [Fine
2003] cast the coverage-driven test generation in a statistical inference frame-
work by modeling the relationship between coverage information and the direc-
tives to the test generation as Bayesian networks. A machine-learning-based
technique in [Fine 2006] was later proposed to provide enhanced coverage
through automatically learning the relationship between the initial state and vec-
tor generation success.

Coverage-driven verification by construction derives an abstract model
that can capture the logical constraints in the DUV and assemble the new direc-
tives to correctly hit the uncovered events. [Ur 1999] abstract the processor
control as a set of FSMs and use them to automate the verification tasks. A phys-
ical test case is derived from a sequential trace of the state traversal in the FSM.
The works in [Chen 2003] and [Bai 2003] generate tests to target stuck-at and
crosstalk faults in processors and use a virtual constraint circuit (VCC)
for assisting the module-level test generation process. The application is for
software-based self-test (SBST) [Lai 2000]. A data-mining approach based
on simulation data was proposed in [Wen 20006, 2007] to approximate the
functionality of the DUV as BDDs that can then be used to better guide the test
generation process.

Although the capacity and performance of formal methods has improved sig-
nificantly over the past decade, such improvements barely kept pace with the
growth in design complexity. The search for new solutions resulted in some
powerful hybrid techniques that combined formal and informal approaches.
These hybrid techniques attempt to address verification bottlenecks by enhanc-
ing coverage of the state space traversed.

Researchers who investigated formal methods have widely recognized the
importance of providing a way to combine disparate tools. Joyce and Seger
experimented with combining trajectory evaluation with theorem proving.
They used trajectory evaluation as a decision procedure for the bighber-order

9.7 Concluding remarks | 563

logic (HOL) system [Joyce 1993]. A proposal called interface logics [Guttman
1991] discusses the idea of combining different theorem provers by defining a
single logic such that the logic of each individual tool can be viewed as its sub-
logics. [Jang 1997] used CTL model checking to verify a set of properties of
embedded microcontrollers, and the proof of the top-level specification was
achieved through a compositional argument by use of the properties instead
of through a theorem prover. A hybrid of two model-checking techniques,
called MIST [Hazelhurst 2002], enables a handshake between symbolic trajec-
tory evaluation and symbolic model checking.

Generally speaking, hybrid methods combining formal and informal tech-
niques aim to increase the design space coverage and, thus, the probability of
finding design errors. These types of methods include control space explora-
tion, directed functional test generation, combining ATPG with formal tech-
niques, and beuristic-based traversal. Control space exploration addresses
the problem of finding bugs and increases space coverage by exploring control
logic [Iwashita 1994; Ho 1995; Geist 1996; Moondanos 1998]. Directed func-
tional test generation leverages the strengths of both formal verification and sim-
ulation techniques to generate functional tests [Sumners 2000; Ganai 2001,
Mishra 2005]. Because ATPG can avoid state space explosion by use of dual jus-
tification and propagation techniques to localize the search, adding formal tech-
niques can compensate for the inherent incompleteness of ATPG, making the
combination a more complete and effective verification approach [Boppana
1999; Huang 2001; Vedula 2004]. Heuristic-based traversal tackles the need to
efficiently traverse state space by an extensive use of heuristics [Yang 1998;
Wagner 2005; Shyam 20006]. Note that because of the inherent incompleteness
of informal techniques, any method that combines an informal technique with
another is also an incomplete verification method.

9.7 CONCLUDING REMARKS

This chapter reviews the basic concepts of functional verification and the challenges
associated with it. Different levels of the verification hierarchy, including the
designer level, unit level, core level, chip level, and system/board level,
are explained. Various coverage metrics used for measuring the explored extent
of verification are provided. The simulation-based approach is currently the most
pervasive form of verification. Key components such as testbench and simulation
environment development are reviewed. The emerging assertion-based verification
method is explained in detail. To compensate for the incompleteness of simulation-
based verification, formal methods built on mathematical theories were developed.
Basic concepts in equivalence checking, model checking, and theorem proving are
reviewed. Current research efforts toward advancing functional verification are
summarized to conclude this chapter.

564 CHAPTER 9 Functional verification

9.8 EXERCISES

9.1. (Line Coverage) Suppose that the module in Box 9.11 was specified in
your Verilog HDL design:

BOX 9.11
1. module test;
2. reg X, Y, Z
3. initial
4. begin
5. X =1b0;
6. Y =1Db1;
7. if (X)
8. Z=Y,
9. else
10. Z=~Y,;
11. end
12. endmodule

Calculate the line coverage after simulation and identify the line or lines
that has/have not been covered.

9.2. (Toggle Coverage) Suppose that the following module in Box 9.12
was specified in your Verilog HDL design:

BOX 9.12
1. module test;
2. reg [2:0] X;
3. initial
4. begin
X = 3'b000;
#+100;
X = 3'b110;
#100;
9. X = 3Db010;
10. #100;
11. end
12. endmodule

© N OO

After simulation, the register would have achieved a total toggle per-
centage of 50%. Please identify which toggles are missing.

9.3. (Expression Coverage) Suppose that the following module was speci-
fied in your Verilog HDL design:

BOX 9.13

1.
. reg X, Y;

. wire Z;

. assign Z = X|Y;

11.
12.
13.
14.
15.

9.4.

©NO O s BN

module test;

initial
begin
X = 1’b0;
Y = 1’b0;
#50;
X =1b1;
#50;
Y = 1'b1;
#90;
end
endmodule

This module consists of only one expression: X|Y. Calculate the expres-
sion coverage after simulation and identify those cases that are not

covered.

your Verilog HDL design:

BOX 9.14

. module test;
. reg [1:0] D;
. wire W, X, Y, Z;

assign Y = D[1] A D[O];
assign Z =X AY;
assign W = ~Z;

. always @(posedge clk) begin

D] =W,
D[0] = Z;

. end

. always #50 clk = ~clk;
. initial

. begin

9.8 Exercises

(FSM Coverage) Suppose that the module in Box 9.14 was specified in

565

566 CHAPTER 9 Functional verification

16. clk =0;

17. D = 2’b00;

18. #100 X = 1’bf;
19. #100 X = 1’b0;
20. #100 X = 1'b1;
21. #100 X = 1’b0;
22. end

23. endmodule

Please first draw the corresponding finite state machine and then cal-
culate both the state and the arc coverage from the simulation.

9.5. (Equivalence Checking) Determine whether the following two com-
binational circuits are functionally equivalent. If not, produce a

counterexample.
X

X _ Y '|> _F
7 —

Y _ﬁ) —F z__|

Circuit A Circuit B
() (b)
FIGURE 9.35

Gate-level schematics for the two circuits in Exercise 9.5.

9.6. (Equivalence Checking) Determine whether the following two
sequential circuits are functionally equivalent. If not, produce a coun-
terexample. Note that the initial states of all flip-flops are zero.

Circuit A Circuit B
(a) (b)

FIGURE 9.36

Gate-level schematics for the two circuits in Exercise 9.6.

9.8 Exercises | 567

9.7. (Kripke Structure) Derive the Kripke structure for the following

circuit.
X D SET qHp SET o || p SET
’(CLRQ CLR Q \7 CLRQ
clk
FIGURE 9.37

Gate-level schematic used for Exercise 9.7.

9.8. (Kripke Structure) Derive the Kripke structure for the following

circuit.
SET \E
X D Q
CLR Q
SET
D L
Q Yo
clk
CLR Q
FIGURE 9.38

Gate-level schematic used for Exercise 9.8.

9.9. (Model Checking) Assume that ¢, i, and y are atomic propositions.
Please use LTL to describe the following design properties:
(a) If Y occurs, y never occurs in the future.
(b) Always if ¢ occurs, then eventually { occurs immediately fol-
lowed by .
(c) Any occurrence of ¢ is followed eventually by an occurrence of
Y. Furthermore, y never occurs between ¢ and .

9.10. (Model Checking) Prove or disprove the following equivalences of
all LTL formulas:
@ oWy = pUY V G¢

568

CHAPTER 9 Functional verification

9.11.

9.12.

9.13.

9.14.

(b) PRy = ¢W (o V)
(©) PO =yR(d V)

(Model Checking) Prove the following equivalences of all CTL
formulas:

(@) AGY = ¢ NAXAGY

(b) EFy = V EXEFy/

(©) E[pUY] = V (¢ A EXE[pUY))

(Model Checking) Consider the model M in Figure 9.39. Please
check whether sy = ¢ and s3 = ¢ hold the following CTL formulas
¢’s in M.

(a) AG(AFa)

(b) EX(EX0)

(c) AG(EF(cVad)y)

(Model Checking) Assume that ¢ is an atomic proposition. Please
prove or disprove that the formula EGF¢ in CTL is equivalent to
the formula EGEF¢ in CTL.

(Theorem Proving) The exclusive-or function XOR can be defined
as f =x ® py = Xxy+xy in Figure 9.40a, and its implementation is
shown in Figure 9.40b. Please derive SPEC(x, y, z) from IMPL(x, y, z)
by applying the inference rules specified in Table 9.3.

Sy bd «— ¢ Sy

y

P

— &
S3 ad ac S
>

FIGURE 9.39

Finite state machine for the model M used for Exercise 9.12.

(@) (b)

FIGURE 9.40

Specification and implementation views in Exercise 9.14. (a) SPEC(x,y,2). (b) IMPL(x,y,2).

9.8 Exercises |1 569

out

out

L

p GND q GND

(a) (b)
FIGURE 9.41

Transistor schematics for NAND and NOR gates in Exercise 9.16. () a NAND gate. (b) a NOR
gate.

9.15. (Theorem Proving) Given i, i, as input ports and out as an output
port, the formal specifications for NAND and XOR gates can be repre-
sented as:

m NAND,,iz,0ut) 2 out = —(i; A i)
m XOR(Z,ix,0ut) 2 out = (i1 N\ —ip) V (—iy A iz)

(a) Derive the formal descriptions for the two circuits in Exercise
9.5.
(b) Prove that the two circuits are equivalent by applying inference
rules specified in Table 9.3.
9.16. (Theorem Proving) Given 7, and #, as input ports and out as an out-
put port, the formal specifications for NAND and NOR gates are:

m NAND(, iy, out) 2 out = —(i; A i)
m NOR(y, iz, out) 2 out = (i1 V i)

(a) Derive the formal specifications for a NAND gate from the CMOS
implementation in Figure 9.41a.

(b) Derive the formal specifications for a NOR gate from the CMOS
implementation in Figure 9.41b.

570

CHAPTER 9 Functional verification

ACKNOWLEDGMENTS

We thank Professor Michael S. Hsiao of Virginia Tech, Professor Jing-Yang Jou of National Chiao Tung
University, and Professor Jie-Hong (Roland) Jiang of National Taiwan University for reviewing the
text and providing helpful comments.

REFERENCES

R9.0 Books

[Bailey 2007] G. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription for
Electronic System Level Methodology, Morgan Kaufmann, San Francisco, February 2007.

[Bergeron 2000] J. Bergeron, Writing Testbenches, Function Verification of HDL Models, Second
edition, Kluwer Academic Publishers, New York, February 2003.
[Dempster 2002] D. Dempster and M. Stuart, Verification Methodology Manual: Techniques for
Verifying HDL Designs, Third Edition, Teamwork International, Hampshire, UK, June 2002.
[Foster 2004] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design, Second Edition, Kluwer
Academic Publishers, New York, May 2004.

[Gorden 1993] M. J. C. Gorden and T. E Melham, Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic, Cambridge University Press, London, June 1993.

[Granas 2003] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, June 2003.

[Huth 2004] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning about
Systems, Second Edition, Cambridge University Press, New York, June 2004.

[James 2003] P. James, Verification Plans: The Five-Day Verification Strategy for Modern Hard-
ware Verification Languages, Kluwer Academic Publishers, New York, October 2003.

[Nipkow 2002] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, Springer-Verlag, Berlin Heidelberg, May 2002.

[Palnitkar 2003a] S. Palnitkar, Verilog® HDL: A Guide to Digital Design and Synthesis, Second Edi-
tion, Prentice Hall PTR, New Jersey, March 2003.

[Palnitkar 2003b] S. Palnitkar, Design Verification with e, Prentice Hall PTR, New Jersey, October
2003.

[Piziali 2004] A. Piziali, Functional Verification Coverage Measurement and Analysis, Springer,
New York, October 2004.

[Prior 1957] A. N. Prior, Time and Modality, Clarendon Press, Oxford, 1957.

R9.1 Introduction

[ANSI/ASQC 1978] ANSI/ASQC A3, Quality systems terminology. American Society for Quality Con-
trol, Milwaukee, WI, 1978.

[Bailey 2002] B. Bailey, The wake of the sleeping giant-verification, Scalable Verification Technical
Publications, http://www.mentor.com, April 2002.

[Piziali 2006] A. Piziali, Verification planning to functional closure of processor-based SoCs, in Proc.
DesignCon, 3-TP2, February 20006.

R9.2 Verification Hierarchy

[Scafidi 2004] C. Scafidi, J. D. Gibson, and R. Bhatia, Validating the Itanium 2 exception control unit:
A unit-level approach, IEEE Design & Test of Computers, 21(2), pp. 94-101, March 2004.

References

R9.3 Measuring Verification Quality

[Benjamin 1999] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R. Smeets, A study in
coverage-driven test generation, in Proc. ACM/IEEE Design Automation Conf., pp. 970-975,
June 1999.

[Drucker 2002] L. Drucker, Functional coverage metrics—the next frontier, EETimes, http://www
.eetimes.com, August 2002.

[Gluska 2003] A. Gluska, Coverage-oriented verification of Banias, in Proc. ACM/IEEE Design
Automation Conf., pp. 280-284, June 2003.

[Verisity 2001] Verisity Design Inc., Coverage-Driven Functional Verification, White Paper, http://
www.verisity.com, 2001.

R9.4 Simulation-Based Approach

[Accellera 2002a] Accellera, http://www.systemverilog.org, 2002
[Accellera 2002b] Accellera, http://www.accellera.org, 2002
[Synopsys 2001] Synopsys, http://www.open-vera.com, 2001

R9.5 Formal Approaches

[Abdulla 2000] P. A. Abdulla, P. Bjesse, and N. Eén, Symbolic reachability analysis based on SAT sol-
vers, in Proc. Oth Int. Conf. on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 411-425, March 2000.

[Biere 1999] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking without BDDs, in
Proc. Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
pp- 193-207, March 1999.

[Brand 1993] D. Brand, Verification of large synthesized designs, in Proc. IEEE/ACM Int. Conf. on
Computer-Aided Designs, pp. 534-537, November 1993.

[Burch 1990] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, Symbolic model
checking: 10?° states and beyond, in Proc. IEEE Symp. on Logic in Computer Science,
pp. 1-33, June 1990.

[Calypto 2008] Calypto Design Systems, SLEC System, http://www.calypto.com, 2008.

[Clarke 1986] E. M. Clarke, E. A. Emersion, and A. P. Sistla, Automatic verification of finite state con-
current system using temporal logic specifications, ACM Trans. on Programming Languages
and System, 8(2), pp. 144-163, April 1986.

[Cohn 1988] A. Cohn, Correctness properties of the VIPER block model: The second level, Techni-
cal Report No. 134, University of Cambridge, Computer Laboratory, May 1988.

[Coq 2003] The Coq Development Team, The Coq Proof Assistant Reference Manual, version 7.4,
INRIA, http://coq.inria.fr/doc/main.html, February 2003 .

[Emerson 1990] E. A. Emerson, Temporal and modal logic, in Handbook of Theoretical Computer
Science, Vol. B, Elsevier, pp. 996-1072, 1990.

[Goldberg 2000] E. Goldberg, M. Prasad, and R. Brayton, Using SAT for combinational equivalence
checking, in Proc. Int. Workshop on Logic Synthesis, pp. 185-191, May 2000.

[Huang 2000] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang, and E Brewer, AQUILA: An Equiva-
lence Checking System for Large Sequential Designs, I[EEE Trans. on Computers, 49(5),
pp. 443-464, May 2000.

[Joyce 1986]]. J. Joyce, G. Birtwistle, and M. Gordon, Proving a computer correct in higher order
logic, Technical Report No. 134, University of Cambridge, Computer Laboratory, 1986.

[Kaufmann 2002] M. Kaufmann and J. Moore, A computational logic for applicative common lisp, in
A Companion to Philosophical Logic, pp. 724-741, Blackwell Publishers, 2002.

571

572

CHAPTER 9 Functional verification

[Kripke 1963] S. A. Kripke, Semantic consideration on modal logic, in Proc. A Colloquium: Model
and Many Valued Logic, Acta Philosophica Fennica, 16, pp. 83-94, August 1963.

[Kunz 1993] W. Kunz, HANNIBAL: An efficient tool for logic verification based on recursive learning,
in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 538-543, November 1993.

[Lu 2003] E Lu, L.-C. Wang, K.-T. Cheng, and R. C.-Y. Huang. A circuit SAT solver with signal corre-
lation guided learning, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf.,
pp. 892-897, March 2003.

[Martin 2004] A. Martin, Adequate sets of temporal connectives in CTL, Elsevier Electronic Notes in
Theoretical Computer Science, 52(1), pp. 1-11, January 2004.

[McMillan 1992] K. L. McMillan, Symbolic Model Checking—An Approach to the State Explosion
Problem, PhD thesis, SCS, Carnegie Mellon University, 1992.

[Melham 1988] T. E Melham, Abstraction mechanisms for hardware verification, in VLSI Specifica-
tion, Verification, and Synthesis, pp. 129-157, Kluwer Academic Publishers, Boston, 1988.
[Owicki 1982] S. Owicki and L. Lamport, Proving liveness properties of concurrent programs, ACM

Trans. on Programming Languages and Systems, 4(3), pp. 455-495, July 1982.

[Owre 1992] S. Owre, J. M. Rushby, and N. Shankar, PVS: A prototype verification system, in Proc.
11th Int. Conf. on Automated Deduction (CADE), pp. 748-752, June 1992.

[Saaltink 1999] M. Saaltink, The Z/EVES Users Guide, Technical Report TR-97-5493-06, ORA,
Canada, 1999.

R9.6 Advanced Research

[Bai 2003] X. Bai, L. Chen, and S. Dey, Software-based self-test for crosstalk in processors, in Proc.
Int. Workshop on High Level Design Validation and Test, pp. 11-16, November 2003.

[Bose 2001] M. Bose, J. Shin, E. M. Rudnick, T. Dukes, and M. Abadir, A genetic approach to auto-
matic bias generation for biased random instruction generation, in Proc. 2001 Congress on Evo-
lutionary Computation, pp. 442-448, May 2001.

[Chen 2003] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, A scalable software-based self-test meth-
odology for programmable processors, in Proc. ACM/IEEE Design Automation Conf.,
pp. 548-553, June 2003.

[Fine 2003] S. Fine and A. Ziv, Coverage directed test generation for functional verification using
Bayesian networks, in Proc. ACM/IEEE Design Automation Conf., pp. 286-291, June 2003.
[Fine 2006] S. Fine, A. Freund, I. Jaeger, Y. Mansour, Y. Naveh, and A. Ziv, Harnessing machine
learning to improve the success rate of stimuli generation, IEEE Trans. on Computers, 55(11),

pp. 1344-1355, November 2006.

[Ganai 2001] M. Ganai, P. Yalagandula, A. Aziz, A. Kuehlmann, and V. Singhal, SIVA: A system for cov-
erage-directed state space search, J of Electronic Testing: Theory and Applications, 17(1),
pp. 11-27, February 2001.

[Geist 1996] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal, Coverage-
directed test generation using symbolic techniques, in Proc. Int. Conf. on Formal Methods in
Computer-Aided Design, pp. 143-158, November 1996.

[Guttman 1991] J. D. Guttman, A proposed interface logic for verification environments, Technical
Report M91-19, the MITRE Corporation, March 1991.

[Hazelhurst 2002] S. Hazelhurst, G. Kamhi, O. Weissberg, and L. Fix, A hybrid verification approach:
Getting deep into the design, in Proc. ACM/IEEE Design Automation Conf., pp. 111-116, June
2002.

[Ho 1995] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, Architecture validation for proces-
sors, in Proc. Int. Symp. on Computer Architecture, pp. 404-413, May 1995.

[Huang 2001] C.-Y. Huang and K.-T. Cheng, Using word-level ATPG and modular arithmetic con-
straint-solving techniques, IEEE Trans. on Computer-Aided Design, 20(3), pp. 381-391, March
2001.

References

[Iwashita 1994] H. Iwashita, S. Kowatari, T. Nakata, and E Hirose, Automatic test program genera-
tion for pipelined processors, in Proc. IEEE/ACM Int. Conf on Computer-Aided Design,
pp. 580-583, November 1994.

[Jang 1997] J.-Y. Jang, S. Qadeer, M. Kaufmann, and C. Pixley, Formal verification of FIRE: A case
study, in Proc. ACM/IEEE Design Automation Conf., pp. 173-177, June 1997.

[Joyce 1993] J. J. Joyce and C. H. Seger, Linking BDD-based symbolic evaluation to interactive theo-
rem-proving, in Proc. ACM/IEEE Design Automation Conf., pp. 469-474, June 1993.

[Lai 2000] W.-C. Lai, A. Krstic, and K.-T. Cheng, Functionally testable path delay faults on a micropro-
cessor, IEEE Design & Test of Computers, 17(4), pp. 6-14, October 2000.

[Mishra 2005] P. Mishra and N. Dutt, Functional coverage driven test generation for validation of
pipelined processors, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf.,
pp. 678-683, March 2005.

[Moondanos 1998] D. Moondanos, J. A. Abraham, and Y. V. Hoskote, Abstraction techniques for
validation coverage analysis and test generation, IEEE Trans. on Computers, 47(1), pp. 2-14,
January 1998.

[Shyam 2006] S. Shyam and V. Bertacco, Distance-guided hybrid verification with GUIDO, in Proc.
IEEE/ACM Design, Automation and Test in Europe Conf., pp. 1211-1216, March 2006.

[Tasiran 2001] S. Tasiran, E Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer, A functional valida-
tion technique: Biased-random simulation guided by observability-based coverage, in Proc.
IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 82-88, September 2001.

[Ur 1999] S. Ur and Y. Yadin, Micro architecture coverage directed generation of test programs, in
Proc. ACM/IEEE Design Automation Conf., pp. 175-180, June 1999.

[Vedula 2004] V. M. Vedula, W. J. Townhead, and J. A. Abraham, Program slicing for ATPG-based
property checking, in Proc. Int. Conf. on VLSI Design, pp. 591-596, January 2004.

[Wagner 2005] I. Wagner, V. Bertacco, and T. Austin, StressTest: An automatic approach to test
generation via activity monitors, in Proc. ACM/IEEE Design Automation Conf., pp. 783-788,
June 2005.

[Wen 2006] H.-P. Wen, L.-C. Wang, and K.-T. Cheng, Simulation-based functional test generation for
embedded processors, IEEE Trans. on Computers, 55(11), pp. 1-9, November 2006.

[Wen 2007] H.-P. Wen, L.-C. Wang, and J. Bhadra, An incremental learning framework for estimating
signal controllability in unit-level verification, in Proc. IEEE/ACM Int. Conf. on Computer-Aided
Design, pp. 250-257, November 2007.

[Yang 1998] C. H. Yang and D. Dill, Validation with guided search of the state space, in Proc. ACM/
IEEE Design Automation Conf., pp. 599-604, June 1998.

573

