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ABOUT THIS CHAPTER

What is logic synthesis? As the name itself suggests, logic synthesis is the pro-
cess of automatic production of logic components, in particular digital circuits.
It is a subject about how to abstract and represent logic circuits, how to manip-
ulate and transform them, and how to analyze and optimize them. Why does
logic synthesis matter? Not only does it play a crucial role in the electronic
design automation flow, its techniques also find broader and broader applica-
tions in formal verification, software synthesis, and other fields. How is logic
synthesis done? Read on!

This chapter covers classic elements of logic synthesis for combinational cir-
cuits. After introducing basic data structures for Boolean function representa-
tion and reasoning, we will study technology-independent logic minimization,
technology-dependent circuit optimization, timing analysis, and timing optimi-
zation. Some advanced subjects and important trends are presented as well
for further exploration.

6.1 INTRODUCTION

Since Jack Kilby’s invention of the first integrated circuit (IC) in 1958, there
have been unprecedented technological advances. Intel co-founder Gordon E.
Moore in 1965 predicted an important miniaturization trend for the semicon-
ductor industry, known as Moore’s Law, which says that the number of available
transistors being economically packed into a single IC grows exponentially, dou-
bling approximately every two years. This trend has continued for more than
four decades, and perhaps will continue for another decade or even longer.
At this time of 2008, the number of transistors in a single IC can be as many
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as several billion. This continual increase in design complexity under stringent
time-to-market constraints is the primary driving force for changes in design
tools and methodologies. To manage the ever-increasing complexity, people
seek to maximally automate the design process and deploy techniques such as
abstraction and hierarchy. Divide-and-conquer approaches are typical in the
electronic design automation (EDA) flow and lead to different abstraction
levels, such as the behavior level, register-transfer level (RTL), gate level,
transistor level, and layout level from abstract to concrete.

Logic synthesis is the process that takes place in the transition from the
register-transfer level to the transistor level. It is a highly automated procedure
bridging the gap between high-level synthesis and physical design automation.
Given a digital design at the register-transfer level, logic synthesis transforms it
into a gate-level or transistor-level implementation. The highly engineered process
explores different ways of implementing a logic function optimal with respect to
some desired design constraints. The physical positions and interconnections of
the gate layouts are then further determined at the time of physical design.

The main mathematical foundation of logic synthesis is the intersection of
logic and algebra. The “algebra of logic” created by George Boole in 1847, a.k.
a. Boolean algebra, is at the core of logic synthesis. (In our discussion we focus
on two-element Boolean algebra [Brown 2003].) One of the most influential
works connecting Boolean algebra and circuit design is Claude E. Shannon’s
M.S. thesis, A Symbolic Analysis of Relay and Switching Circuits, completed
at the Massachusetts Institute of Technology in 1937. He showed that the design
and analysis of switching circuits can be formalized using Boolean algebra, and
that switching circuits can be used to solve Boolean algebra problems. Modern
electronic systems based on digital (in contrast to analog) and two-valued (in
contrast to multi-valued) principles can be more or less attributed to Shannon.
The minimization theory of Boolean formulas in the two-level sum-of-
products (SOP) form was established by Willard V. Quine in the 1950s. The
minimization of SOP formulas found its wide application in IC design in
the 1970s when programmable logic arrays (PLAs) were a popular design
style for control logic implementation. It was the earliest stage of logic design
minimization. When multilevel logic implementation became viable in
the 1980s, the minimization theory and practice were broadened to the multi-
level case.

Switching circuits in their original telephony application were strictly combi-
national, containing no memory elements. Purely combinational circuits how-
ever are not of great utility. For pervasive use in computation a combinational
circuit needs to be augmented by memory elements that retain some of the
state of a circuit. Such a circuit is sequential and implements a finite state
machine (FSM). FSMs are closely related to finite automata, introduced in the
theory of computation. Finite automata and finite state machines as well as their
state minimization were extensively studied in the 1950s. Even though FSMs
have limited computation power, any realistic electronic system as a whole
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can be seen as a large FSM because, after all, no system can have infinite mem-
ory resources. FSM state encoding for the two-level and multilevel logic imple-
mentations was studied extensively in the 1980s.

In addition to two-level and multilevel logic minimization, important algorith-
mic developments in logic synthesis in the 1980s include retiming of synchronous
sequential circuits, algorithmic technology mapping, reduced ordered binary
decision diagrams, and symbolic sequential equivalence checking using character-
istic functions, just to name a few. Major logic synthesis tools of this period
include, for example, ESPRESSO [Rudell 1987] and later MIS [Brayton 1987],
developed at the University of California at Berkeley. They soon turned out to be
the core engines of commercial logic synthesis tools.

In the 1990s, the subject of logic synthesis was much diversified in response
to various IC design issues: power consumption, interconnect delay, testability,
new implementation styles such as field programmable gate array (FPGA),
etc. Important algorithmic breakthroughs over this period include, for instance,
sequential circuit synthesis with retiming and resynthesis, don’t care computa-
tion, image computation, timing analysis, Boolean reasoning techniques, and
so on. Major academic software developed in this period include, e.g., SIS
[Sentovich 1992], the descendant of MIS.

In the 2000s, the directions of logic synthesis are driven by design chal-
lenges such as scalability, verifiability, design closure issues between logic syn-
thesis and physical design, manufacture process variations, etc. Important
developments include, for instance, effective satisfiability solving procedures,
scalable logic synthesis and verification algorithms, statistical static timing anal-
ysis, statistical optimization techniques, and so on. Major academic software
developed in this period include, e.g., MVSIS [Gao 2002] and the ABC package
[ABC 2005], with first release in 2005.

The advances of logic synthesis have in turn led to blossoming of EDA com-
panies and the growth of the EDA industry. One of the first applications of logic
optimization in a commercial use was to remap a netlist to a different standard
cell library (in the first product, remapper, developed by Synopsys, an EDA
company founded in 1986). It allowed an IC designer migrate a design from
one library to another. Logic optimization could be used to optimize a gate-level
netlist and map it into a target library. While logic optimization was finding its
first commercial use for remapping, designers at major corporations, such
as IBM, had already been demonstrating the viability of a top-down design meth-
odology based on logic synthesis. At these corporations, internal simulation
languages were coupled with synthesis systems that translated the simulation
model into a gate-level netlist. Designers at IBM had demonstrated the utility
of this synthesis-based design methodology on thousands of real industrial ICs.
Entering a simulation model expressed using a hardware description lan-
guage (HDL) makes logic synthesis and optimization move from a minor tool
in a gate-level schematic based design methodology to the cornerstone of a
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highly productive IC design methodology. Commercial logic synthesis tools
evolve and continue to incorporate developments addressing new design
challenges.

The scope of logic synthesis can be identified as follows. An IC may
consist of digital and analog components; logic synthesis is concerned with
the digital part. For a digital system with sequential behavior, its state transition
can be implemented in a synchronous or an asynchronous way depending on
the existence of synchronizing clock signals. (Note that even a combinational
circuit can be considered as a single-state sequential system.) Most logic synthe-
sis algorithms focus on the synchronous implementation, and a few on the asyn-
chronous one.

A digital system can often be divided into two portions: datapath and control
logic. The former is concerned with data computation and storage, and often
consists of arithmetic logic units, buses, registers/register files, etc.; the latter
is concerned with the control of these data processing units. Unlike control
logic, datapath circuits are often composed of regular structures. They are typi-
cally laid out manually by IC designers with full custom design to ensure that
design constraints are satisfied, especially for high performance applications.
Hence datapath design involves less logic synthesis efforts. In contrast, control
logic is typically designed using logic synthesis. As the strengths of logic syn-
thesis are its capabilities in logic minimization, it simplifies control logic. Conse-
quently logic synthesis is particularly good for control-dominating applications,
such as protocol processing, but not for arithmetic-intensive applications, such
as signal processing.

Aside from the design issues related to circuit components, market-oriented
decisions influence the design style chosen in implementing a product. The
amount of design automation and logic synthesis efforts depends heavily on
such decisions. Design styles based on full custom design, standard cells,
and FPGAs represent typical trade-offs. In full custom design, logic synthesis is
of limited use, mainly only in synthesizing performance non-critical controllers.
For standard cell and FPGA based designs, a great portion of a design may
be processed through logic synthesis. It is not surprising that logic synthesis
is widely applied in application specific ICs (ASICs) and FPGA-based
designs.

6.2 DATA STRUCTURES FOR BOOLEAN
REPRESENTATION AND REASONING

The basic mathematical objects to be dealt with in this chapter are Boolean
functions. How to compactly represent Boolean functions (the subject of logic
minimization) and how to efficiently solve Boolean constraints (the subject of
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Boolean reasoning) are closely related questions that play central roles in logic
synthesis. There are several data structures for Boolean function representation
and manipulation. For Boolean representation, we introduce some of the most
commonly used ones, in particular, sum-of-products (SOP), product-of-sums
(POS), binary decision diagrams (BDDs), and-inverter graphs (AIGs), and
Boolean networks, among many others. For Boolean reasoning, we discuss
how BDD, SAT, and AIG packages can serve as the core engines for Boolean func-
tion manipulation and for automatic reasoning of Boolean function properties.
The efficiency of a data structure is mainly determined by its succinctness in repre-
senting Boolean functions and its capability of supporting Boolean manipulation.
Each data structure has its own strengths and weaknesses; there is not a single data
structure that is universally good for all applications. Therefore, conversion
among different data types is a necessity in logic synthesis, where various circuit
transformation and verification techniques are applied.

6.2.1 Quantifier-free and quantified
Boolean formulas

We introduce (quantifier-free) Boolean formulas for Boolean function represen-
tation and quantified Boolean formulas (QBFs) for Boolean reasoning.

A Boolean variable is a variable that takes on binary values B = {false,
true}, or {0, 1}, under a truth assignment; a literal is a Boolean variable or its
complement. In the n-dimensional Boolean space or Boolean n-space B”,
an atomic element (or vertex) a € B” is called a minterm, which corresponds
to a truth assignment on a vector of n Boolean variables.

An n-ary completely specified Boolean function f: B” — B maps every
possible truth assignment on the » input variables to either true or false. Let
symbol “-”, “X”, or “2” denote the don’t care value. We augment B to B, =
B U {-} and define an incompletely specified Boolean function f: B” — B,
which maps every possible truth assignment on the » input variables to true,
false, or don’t care. For some a € B”, f(a) = - means the function value of f
under the truth assignment a does not matter. That is, a is a don’t care con-
dition for f. Unless otherwise stated, we shall assume that a Boolean function
is completely specified.

The mapping induced by a set of Boolean functions can be described by a
functional vector or a multiple-output function f, which combines m > 1
Boolean functions into a mapping f': B” — B" if fis completely specified, or
a mapping f: B” — B, " if fis incompletely specified.

For a completely specified function f, we define its onset /" = {a € B" | fla) =
1} and offset f°" = {a € B" | fi@) = 0}. For an incompletely specified function f, in
addition to the onset and offset, we have the dcset % = {a € B” | fl@ = -}).
Although the onset, offset, and dcset are named sets rather than functions,
we will see later that sets and functions can be unified through the use of
the so-called characteristic functions.

303



304

CHAPTER 6 Logic synthesis in a nutshell

Example 6.1

Example 6.2
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FIGURE 6.1

Boolean 3-space and a 3-ary Boolean function.

The Boolean 3-space spanned by the variable vector (x4, X2, X3) can be viewed as a com-
binatorial cube as shown in Figure 6.1, where the labeled vertices represent the min-
terms and two minterms are connected by an edge if their Hamming distance is one
(that is, their binary codes differ in one position). The onset f°" = {000, 011, 100, 101,
110}, offset o = {001, 111}, and dcset ¢ = {010} of some function f are embedded
in the combinatorial cube.

A completely specified Boolean function fis a tautology, writtenas f= 1 orf < 1,
if its onset equals the universal set, Z.e., the entire Boolean space. In other words,
the output of fequals 1 under every truth assignment on the input variables.

Any Boolean function can be expressed in a Boolean formula. Table 6.1
shows the building elements (excluding the last two symbols, 3 and V) of a Bool-
ean formula. Symbols -, A, V, =, & are Boolean connectives. A Boolean for-
mula ¢ can be built recursively through the following formation rules:

@ == 0[1|A|=@ |01 A @01 V 03l = @l & 0, (6.1)

where the symbol “::=" is read as “can be” and symbol “|” as “or”. That is, a Bool-
ean formula ¢ can be a constant 0, a constant 1, an atomic Boolean variable from a
variable set A, 7@, @1 A @2, 1 V @2, 91 = @2, OF Q1 & @y, built from Boolean for-
mulas ¢, and @,. To save on parentheses and enhance readability, we assume the
precedence of the Boolean connectives <, =, V, A, - is in an ascending order.
Also we often omit expressing the conjunction symbol A in a formula.

The Boolean formula
(X1 V (=x2)) V ((=X1) AX3)) A (X1 A (=X2))

can be shortened to

((X1 \Y ﬁXg) V ﬁX1X3)(X1 ﬁXz)
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Table 6.1 Symbolic Notation and Meaning

Symbol Symbol Name English Meaning

( left parenthesis for punctuation

) right parenthesis for punctuation

-,/ complement symbol logical “not”

A, . conjunction symbol logical “and”

Vv, + disjunction symbol logical “(inclusive) or”

= implication symbol logical “if . .., then...”

&, = bi-implication symbol logical “. . .ifand only if . . .”
3 existential quantifier “there exists . . . ”

v universal quantifier “forall ...”

Using the associativity of disjunction and conjunction, we can further shorten the formula
to

(X1 V =Xo V —\X1X3)X1 = Xo

but we can no longer trace a unique sequence of rules used to derive this formula.

A set of Boolean operators is called functionally complete if they are sufficient to
generate any Boolean function. Note that not all of the above Boolean connectives
are necessary to form a set of functionally complete operators. For example, the
sets {—, A} and {—, =} are functionally complete, whereas {A, =} is not.

‘We may consider a Boolean function as the semantics of some Boolean formulas.
There are different (syntactical) Boolean formulas representing the same (semanti-
cal) Boolean functions. It is this flexibility that makes logic synthesis an art.

Boolean operations over Boolean functions can be defined in terms of set
operations, such as union U, intersection N, and complement over sets. Boolean
function » = f A g has onset h°" = f°" N g°" and offset h°" = f° U g°; Boolean
function b = fV g has onset h°" = f°" U g°" and offset h°" = ° N g°"; Boolean
function » = —f (also denoted as f or f”) has onset h°" = f°" and offset h° = f°".
The dcset of function b can be derived using the fact that the union of the onset,
offset, and dcset is equal to the universal set.

Quantified Boolean formulas (QBFs) generalize (quantifier-free) Boolean
formulas with the additional universal and existential quantifiers: V and 3,
respectively. In writing a QBE we assume that the precedences of the quanti-
fiers are lower than those of the Boolean connectives. In a QBE variables being
quantified are called bound variables, whereas those not quantified are called
free variables.
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Example 6.3

Example 6.4

Consider the QBF Vx4, 3xo.f(x4, X5, X3), Where f is a Boolean formula. It is read as “For
every (truth assignment of) x4, there exists some (truth assignment of) xo, f (x4, X2, X3).”
In this case, x4 and x, are bound variables, and xs is a free variable.

Any QBF can be rewritten as a quantifier-free Boolean formula through quanti-
fier elimination by formula expansion (among other methods), e.g.,

fo(‘xvy) =f(0.,y) /\f(l7y)
and

xf(x,9) =£(0,9) Vf(1,p)

where f is a Boolean formula. Consequently, for any QBF ¢ there exists an
equivalent quantifier-free Boolean formula that refers only to the free variables
of ¢@. For a QBF of size n with & bound variables, its quantifier-free Boolean for-
mula derived by formula expansion can be of size O (2" - k). QBFs are thus of
the same expressive power as quantifier-free Boolean formulas, but can be
exponentially more succinct.

The QBF Vx4, Ixo.flxy, X2, X3) can be rewritten as
x1.(f(x1,0,x3) V f(x1,1,X3))
= (HXg.f(O,XQ,Xg)) A (3X2.f(1,X2,X3))
(f(0,0,x3) Vf(0,1,x3)) A (f(1,0,x3) VF(1,1,x3))

Note that Vx;, Jx,.f(x;, x,, x3) differs from and is, in fact, weaker than
s, Vi flxy, X2, x3). That is, (Fx,, Voo, flxg, X2, x3)) = (Vxp, Ixo.flxy, X2, X3)).
In contrast, Vx;, Vx, f(x;, X2, X3) is equivalent to Vx,, Voo flx;, x5, x3), and
similarly Jx;, 3x,.f(xy, a2, x3) is equivalent to Ix,, Iy flxy, X2, X3).

Moreover, it can be verified that the universal quantification V commutes
with the conjunction A, whereas the existential quantification 3 commutes with
the disjunction V. That is, for any QBFs ¢; and ¢,, we have

Vx.(91 A py) = Vx.py ANVX.p,

whereas
Ax. (¢ V p,) = Ix.py V 3xp,

Nonetheless in general V does not commute with V, whereas 3 does not com-
mute with A. That is, in general
Vx.(01 V@) # Vx.py V VX0,
and
(o1 A pa) # Ty ATxp,
On the other hand, for any QBF ¢, we have
=Y. = Ax.mp (6.2)
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and
—3dx.p = V. (6.3)

Because V and 3 can be converted to each other through negation, either quan-
tifier solely is suffcient to represent QBFs.

An important fact about QBFs is that they are equivalent under renaming of
bound variables. For example, Vx.f(x, 1) = Vz.f(z, ») and Ix.f(x, ) = Iz.f(z, ).
Renaming bound variables is often necessary if we want to rewrite a QBF in a differ-
ent way. Being able to identify the scope of a quantifier is crucial for such renaming.

In the QBF
Qix, Qay.(fi(x,y,2) Vf2(y,2) A Qax.fa(x,y,2))

with Q; € {V, 3}, quantifier Q4 is applied only to the variable x of f;, quantifier Q. is applied
to the y variables of all the functions, and quantifier Qs is applied only to the variable x of
f3. The QBF can be renamed as

Qia,Qb.(f1(a,b,z) V ~fa(b,z) A Qax.f3(x,b,2))

In studying QBFs, it is convenient to introduce a uniform representation, the
so-called prenex normal form, where the quantifiers of a QBF are moved to
the left leaving a quantifier-free Boolean formula on the right. That is,

Q1x1, Q22,5 + + +, OnXnf (%1, X2, -+« , %)
where Q; € {V, 3} and fis a quantifier-free Boolean formula. Such movement is

always possible by Equations (6.2) and (6.3) as well as the following equalities:
For QBFs @, and @,

(p; O Qx.py) = Ox.(p; O ) if x is not a free variable in ¢, (6.4)

where Q € {V, J} and < € (A, V},
(p1 = Vx.p,) = Vx.(¢; = p,) if xis not a free variable in ¢, (6.5)
(py = Fx.py) = Ax.(¢; = ¢,) if xis not a free variable in ¢, (6.6)
((Vx.p1) = ¢,) = Ix.(p; = @,) if xis not a free variable in p,. and (6.7)
((3x.py) = @) = Vax.(p; = @,) if x is not a free variable in ¢, (6.8)

With the renaming of bound variables, we know that the above conditions, x
not a free variable in @,, can always be satisfied. Thereby any QBF can be con-
verted into an equivalent formula in prenex normal form.

Prenex normal form is particularly suitable for the study of computational
complexity. The number of alternations between existential and universal quanti-
fiers in a QBF in prenex normal form directly reflects the difficulty in solving the
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Example 6.6

formula. (In solving a QBF ¢, we shall assume that all variables of ¢ are quantified, z.e.,
no free variables in ¢.) For instance, there are three alternations of quantifiers in the
QBF Vaxy, Vx5, 33, Vg, 3x5.f(x, . . . ,X5). The more alternations of quantifiers are in a
QBF in prenex normal form, the higher the computational complexity is in solving it.
The levels of difficulties induce the polynomial hierarchy, a hierarchy of com-
plexity classes, in complexity theory (see, e.g., [Papadimitriou 1993] for comprehen-
sive introduction). The problem of solving QBFs is known as quantified
satisfiability (QSAT); in particular, the problem is known as QSAT), for QBFs in pre-
nex normal form with 7 alternations of quantifiers. The entire polynomial hierarchy
is contained by the PSPACE complexity class; the problem QSAT (without an a priori
alternation bound #) is among the hardest in PSAPCE, 7.e., PSPACE-complete. A par-
ticularly interesting special case is QSAT, with all variables quantified existentially.
It is known as the Boolean satisfiability (SAT) problem, which is NP-complete
[Garey 1979]. Solving QBFs is much harder than solving the satisfiability of Boolean
formulas.

In the above discussion of QBF solving, we assumed all variables are not free.
For a QBF ¢ with free variables, we say that it is satisfiable (respectively valid)
if it is true under some (respectively every) truth assignment on the set of free
variables. Hence asking about the satisfiability of a Boolean formula f(x) is the
same as asking about the validity/satisfiability of the QBF Jdx f(x); asking about
the validity of a Boolean formula f(x) is the same as asking about the validity/
satisfiability of the QBF Vx f(x). Note that the validity and satisfiability of a for-
mula are the same if there are no free variables.

Although QBFs are not directly useful for circuit representation, many
computational problems in logic synthesis and verification (such as image com-
putation, don’t care computation, Boolean resubstitution, combinational equiv-
alence checking, etc.) can be posed as QBF solving. Once a computational task
is written in a QBE its detailed algorithmic solution is almost apparent and can
be derived using Boolean reasoning engines.

6.2.2 Boolean function manipulation

In addition to Boolean AND, OR, NOT operations, cofactor is an elementary

Boolean operation. For a function f(xy, . . ., x,, . . . , X,,), the positive cofactor and
negative cofactor of f with respect to x; are f(x;, ..., 1, ..., x,), denoted as fxi
or ﬂx —pandflxy, ..., 0,...,x,),denoted as f-,, or ﬂx,. — o, respectively. We can also

cofactor a Boolean function with respect to a cube, namely the conjunction of a set
of literals, by iteratively cofactoring the function with each literal in the cube.

Cofactoring the Boolean function f = x1xo—x3 V X4—XsXg With respect to the cube ¢ =
X1Xo—Xs Yields function f, = X3 V X4Xe.

Universal and existential quantifications can be expressed in terms of cofactor,
with
Vxif = fo N, (6.9)
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and
Elef :fxi \/f“xi (610)
Moreover, the Boolean difference f?—f of fwith respect to variable x; is defined as
(f‘q ‘f“xi) =Jau D f-x, (6-11)

Bx,

where @ denotes an exclusive-or (XOR) operator. Using the Boolean difference
operation, we can tell whether a Boolean function functionally depends on a
variable. If - f - equals constant 0, then the valuation of f does not depend on
x;, that is, .x, is a redundant variable for f. We call that x; is a functional
support variable of fif x; is not a redundant variable.

By Shannon expansion, every Boolean function f can be decomposed
with respect to some variable x; as

S =X N X (6.12)
Note that the variable x; needs not be a functional support variable of f.

6.2.3 Boolean function representation
Below we discuss different ways of representing Boolean functions.

6.2.3.1 Truth table

The mapping of a Boolean function can be exhaustively enumerated with a truth
table, where every truth assignment has a corresponding function value listed.

Figure 6.2 shows the truth table of the majority function fixy, X, Xxg), which valuates to
true if and only if at least two of the variables {x4, x», X3} valuate to true.

Truth tables are canonical representations of Boolean functions. That is, two
Boolean functions are equivalent if and only if they have the same truth table.

Xy Xo X3 f
0 0 O 0
0 0 1 0
0o 1 0 0
o 1 1 1
1 0 O 0
1 0 1 1
1 1 0 1
1 1 1 1

FIGURE 6.2
Truth table of the 3-ary majority function.
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Example 6.8

Example 6.9

Canonicity is an important property that may be useful in many applications of
logic synthesis and verification.

For practical implementation, a truth table is effective in representing func-
tions with a few input variables (often no more than 5 or 6 variables for modern
computers having a word size 32 or 64 bits). By storing a truth table as a com-
puter word, basic Boolean operations over two small functions can be done in
constant time by parallel bitwise operation over their truth tables. Truth tables
however are impractical to represent functions with many input variables.

6.2.32 SOP

Sum-of-products (SOP), or disjunctive normal form (DNF) as it is called in
computer science, is a special form of Boolean formulas consisting of disjunc-
tions (sums) of conjunctions of literals (product terms or cubes). It is a flat
structure corresponding to a two-level circuit representation (the first level of
AND gates and the second level of an OR gate). In two-level logic minimization,
the set of product terms (Z.e., cubes) of an SOP representation of a Boolean
function is called a cover of the Boolean function. A Boolean function may have
many different covers, and a cover uniquely determines a Boolean function.

The expression f = ab-c + a—-bc + —abc + —a—-b-c is in SOP form. The set {ab—c,
a—-bc, —abc, —a—b-c} of cubes forms a cover of function f.

In our discussion, we often do not distinguish a cover and its represented
function.

Every Boolean formula can be rewritten in an SOP representation. Unlike the
truth table representation, the SOP representation is not canonical. In fact, how
to express a Boolean function in the most concise SOP-form is intractable (in
fact, NP-complete), and is termed two-level logic minimization.

Given SOP as the underlying Boolean representation, we study its usefulness
for Boolean manipulation. Consider the conjunction of two cubes. It is comput-
able in time linear in the number of literals because, having defined cubes as
sets of literals, we compute the conjunction of cubes ¢ and d, denoted g =
¢ N d, by actually taking the union of the literal sets in ¢ and d. However if
q = ¢ N d computed in this fashion contains both a literal / and its complement
—l, then the intersection is empty. Similarly the conjunction of two covers can
be obtained by taking the conjunction of each pair of the cubes in the covers.
Therefore, the AND operation of two SOP formulas is of quadratic time com-
plexity. On the other hand, the OR operation is of constant time complexity
since the disjunction of two SOP formulas is readily in SOP form. The comple-
ment operation is of exponential time complexity in the worst case.

Complementing the function
f=Xi-y1+X-Yot+...4X Yn

will result in 2”7 product terms in the SOP representation.
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In addition to the above basic Boolean operations, SAT and TAUTOLOGY check-
ings play a central role in Boolean reasoning. Checking whether an SOP formula
is satisfiable is of constant time complexity since any (irredundant) SOP formula
other than constant O must be satisfiable. In contrast, checking whether an SOP
formula is tautological is intractable, in fact, coNP-complete. When compared
with other data structures to be introduced, SOP is not commonly used as the
underlying representation in Boolean reasoning engines, but mainly used in
two-level and multilevel logic minimization.

For the purposes of minimizing two-level logic functions, efficient proce-
dures for performing Boolean operations on SOP representations or covers are
desirable. A package for performing various Boolean operations such as con-
junction, disjunction, and complementation is available as part of the ESPRESSO
program [Rudell 1987].

6.2.3.3 POS

Product-of-sums (POS), or conjunctive normal form (CNF) as it is called in
computer science, is a special form of Boolean formulas consisting of conjunc-
tions (products) of disjunctions of literals (clauses). It is a flat structure
corresponding to a two-level circuit representation (the first level of OR gates
and the second level of an AND gate).

Example 6.10 The formula (@ + b + —=c)@@ + =b + ¢)(—a + b + ¢)(—a + —b + —c) is in POS form.

Every Boolean formula has an equivalent formula in POS form. Even though POS
seems just the dual of SOP, it is not as commonly used in circuit design as SOP partly
due to the characteristics of CMOS circuits, where NMOS is preferable to PMOS.
Nevertheless it is widely used in Boolean reasoning. Satisfiability (SAT) solving over
CNF formulas is one of the most important problems in computer science. In fact,
every NP-complete problem can be reformulated in polynomial time as a SAT
problem.

Given POS as the underlying data structure, we study its usefulness for Boolean
function manipulation. For the AND operation, it is of constant time complexity
since the conjunction of two POS formulas is readily in POS. For the OR operation,
itis of quadratic time complexity since in the worst case the disjunction of two POS
formulas must be converted to a POS formula by the distributive law.

Example 6.11 Given POS formulas ¢4 = (a)-(b) and ¢» = (¢)-(d), their disjunction ¢ + ¢, equals (@ + ¢)-
@+ d)-b + )b + d).

On the other hand, the complement operation is of exponential time complex-
ity since in the worst case a POS formula may need to be complemented with
De Morgan’s Law followed by the distributive law.
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Example 6.12 Complementing the 2n-input Achilles heel function

F=+y1) Xo+y2)(Xn+Vn)

will result in 2”7 clauses in the POS representation.

As for the SAT and TAUTOLOGY checkings of POS formulas, the former is NP-
complete, and the latter is of constant time complexity because any (irredun-
dant) POS formula other than constant 1 cannot be a tautology. The POS repre-
sentation is commonly used as the underlying representation in Boolean
reasoning engines, called SAT solvers.

6.2.34 BDD

Binary decision diagrams (BDDs) were first proposed by Lee [Lee 1959] and
further developed by Akers [Akers 1978]. In their original form, BDDs are not
canonical in representing Boolean functions. To canonicalize the representa-
tion, Bryant [Bryant 1986, 1992] introduced restrictions on BDD variable order-
ing and proposed several reduction rules, leading to the well-known reduced
ordered BDDs (ROBDDs). Among various types of decision diagrams, ROBDDs
are the most widely used, and will be our focus.

Consider using an n-level binary tree to represent an arbitrary n-input Boolean
function f(x, . . ., x,,). The binary tree, called a BDD, contains two types of nodes.
A terminal node, or leaf, v has as an attribute a value value(v) € {0, 1}. A non-
terminal node v has as attributes an argument level-index index(v) € {1, - - -, n}
and two children: the 0-child, denoted else(v) € V, and the 1-child, denoted then
) € V. Ifindex(v) = i, then x; is called the decision variable for node v. Every node
v in a BDD corresponds to a Boolean function fJv] defined recursively as follows.

1. For a terminal node v,
(@) If value(v) = 1, then f[v] = 1.
(b) If value(v) = 0, then f[v] = 0.

2. For a non-terminal node v with index(v) = i,
flv)(xr, .. xn) =~ - flelse(v)](x1, . . . x,) + x5 - f[then(v)](x1, . . ., %)

Recall that, in Shannon expansion, a Boolean function f can be written as f = x;
Jx, T —xi f—, - Suppose a BDD node representing some function fis controlled
by variable x; Then its O-child and 1-child represent functions f-., and f,
respectively. Accordingly a BDD in effect represents a recursive Shannon expan-
sion. For a complete binary tree, it is easily seen that we can always find some
value assignment to the leaves of a BDD to implement any #-input function f(x;,
..., Xy because every truth assignment of variables xy, . . ., x,, activates exactly
one path from the root node to a unique leaf with the right function value. Note
that a BDD represents the offset and the onset of a function as disjoint covers,
where each cube in the cover corresponds to a path from the root node to some
terminal node.
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FIGURE 6.3
Binary tree representation of the majority function.

Example 6.13 The binary tree representation of the majority function is shown in Figure 6.3, where a
circle (square) represents a non-terminal (terminal) node and a dotted (solid) edge
indicates the pointed 0-child (1-child) of its parent node.

Definition 6.1. A BDD is ordered (i.e.,, an OBDD) if the nodes on every
Dpath from the root node to a terminal node of the BDD follow the same vari-
able ordering.

Definition 6.2. Two OBDDs D, and D, are isomorphic if there exists a one-

to-one function o from the nodes of D, onto the nodes of D, such that for any
node v if o(v) = w), then either both v and w are terminal nodes with value(v) =
value(w), or both v and w are non-terminal nodes with index(v) = index(w),
o(else(v)) = else(w) and o(then(v)) = then(w).
Since an OBDD only contains one root and the children of any non-terminal node are
distinguished, the isomorphic mapping o between OBDDs D; and D, is constrained
and easily checked for. The root in D; must map to the root in D, the root’s O-child in
D, must map to the root’s O-child in D,, and so on all the way to the terminal nodes.
Testing two OBDDs for isomorphism is thus a simple linear-time check.

Definition 6.3. ([Bryant 1986]). An OBDD D is reduced if it contains no
node v with else(v) = then(v) nor does it contain distinct nodes v and w such
that the subgraphs rooted in v and w are isomorpbhic.

An reduced OBDD (ROBDD) can be constructed from an OBDD with the fol-
lowing three reduction rules:

1. Two terminal nodes with the same value attribute are merged.

2. Two non-terminal nodes # and v with the same decision variable, the
same O-child, i.e., else(u) = else(v), and the same 1-child, then(u) =
then(v) are merged.

3. A non-terminal node v with else(v) = then(v) is removed, and its incident
edges are redirected to its child node.

Iterating the reduction steps bottom-up on an OBDD until no further modification
can be made, we obtain its unique corresponding ROBDD. These rules ensure
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that no two nodes of the ROBDD are structurally (also functionally) isomorphic,
and that the derived ROBDD has fewest nodes under a given variable ordering.
It can be shown that no two nodes of an ROBDD represent the same Boolean func-
tion, and thus two ROBDD of the same Boolean function must be isomorphic.
That is, ROBDDs are a canonical representation of Boolean functions. Every func-
tion has a unique ROBDD for a given variable ordering.

Theorem 6.1 (ROBDD Canonicity [Bryant 1986]). For any Boolean func-
tion f, there is a unique (up to isomorphism) ROBDD denoting f, and any
other OBDD denoting [ contains more nodes.

Proof. A sketch of the proof is given using induction on the number of
inputs.

Base case: If f has zero inputs, it can be either the unique 0 or 1 ROBDD.

Induction hypothesis: Any function g with a number of inputs < & has a
unique ROBDD.

Choose a function f with & inputs. Let D and I’ be two ROBDDs for f under
the same ordering. Let x; be the input with the lowest index in the ROBDDs D
and D'. Define the functions f, and f; as f,, and f-, , respectively. Both f; and f;
have less than & inputs, and by the induction hypothesis these are represented
by unique ROBDDs D, and D,.

‘We can have nodes in common between D, and D; or have no nodes in com-
mon between D, and D;,. If there are no nodes in common between D, and D,
in D, and no nodes in common between D, and D; in D', then clearly D and D/
are isomorphic.

Consider the case where there is a node « that is shared by Dy and D, in D. There
isanode ¢’ in the D, of I)' that corresponds to u. If ¢/’ is also in D; of I, then we have
a correspondence between u in D and #' in D'. However, there could be another
node #” in the D; of #” that also corresponds to z. While the existence of this node
implies that D and D’ are not isomorphic, the existence of 22/ and #” in D' is a contra-
diction to the statement of the theorem, since the two nodes root isomorphic sub-
graphs corresponding to #. (This would imply that I is not reduced.) Therefore,
u” cannot exist, and D and D) are isomorphic. a)

Example 6.14 Figure 6.4, from 6.4a to 6.4c, shows the derivation of the ROBDD from the binary tree of

the majority function.

Example 6.15 Consider the OBDD of Figure 6.5a. By the first reduction rule, we can merge all the terminal

nodes with value 0 and all the terminal nodes with value 1. The functions rooted in the two
nodes with control variable x3 are identical, namely x3. By the second reduction rule, we
can delete one of the identical nodes and make the nodes that were pointing to the deleted
node (those nodes whose 0- or 1-child correspond to the deleted node) point instead to the
other node. This does not change the Boolean function corresponding to the OBDD. The
simplified OBDD is shown in Figure 6.5b. In Figure 6.5b there is a node with control variable
X2 whose 0-child and 1-child both point to the same node. This node is redundant because
the function f rooted in the node corresponds to function
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FIGURE 6.4
From binary tree to ROBDD.

o

(b)

FIGURE 6.5
OBDD and simplified OBDDs.

f=Xo X3+ —Xo-X3=X3

Thus, by the third reduction rule, all the nodes that point to f can be made to point to its
0- or 1-child without changing the Boolean function corresponding to the OBDD as illu-
strated in Figure 6.5c.

Example 6.16 Figure 6.6 shows a reduction example using a labeling technique for the ROBDD taken
from [Bryant 1986]. We first assign the 0 and 1 terminal nodes a and b labels, respectively,
in Figure 6.6a. Next, the right node with control variable x3 is assigned label ¢. Upon encoun-
tering the other node with node with control variable xs, we find that the second reduction rule
is satisfied and assign this node the label ¢ as well. Proceeding upward we assign the label ¢
to the right node with control variable x, since the third reduction rule is satisfied for this node.
(The 0O-child and the 1-child of this node have the same label.) The left node with control
variable x, is assigned label d, and the root node is assigned the label e. Note that the nodes
are labeled in such a way that each label indicates a unique (sub-)ROBDD. Sorting and
deleting redundant nodes results in the ROBDD of Figure 6.6b.
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FIGURE 6.6

Reduction example.

FIGURE 6.7

ROBDD examples: (a) ROBDD of function f = x1 A x». (b) ROBDD of function f = x; V Xo.
(c) ROBDD of the n-ary odd parity function.

Example 6.17 To see that ROBDDs represent the offset and the onset of a function as disjoint
covers, consider the examples of Figure 6.7. The ROBDD in (a) represents the function
f =Xy A Xo. There are exactly two paths leading to the O terminal node. If x4 is a 0, then
the function represented by the ROBDD evaluates to a 0 since the 0-child of the node
with index x; is the O terminal node. If x4 is a 1 and x, is a 0, the function evaluates to
a 0. Thus, the offset is represented as {—xy, x;—x5}. The two cubes in the cover are dis-
joint. If x; and x, are both 1, the function evaluates to a 1. The onset is the singleton
{x1x2}. Note that a cube of these covers corresponds to a single path from the root node
to some terminal node. Similar analysis can be applied for the ROBDDs in (b) and (c).

In representing a Boolean function, different variable orderings may result in
ROBDDs with very different sizes (in terms of the number of nodes).
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Example 6.18 If the variables in the function f = ab + cd are ordered as index(a) < index(b) < index(c) <
index(d) (a on top and d at bottom), the resulting ROBDD has only 4 non-terminal nodes.
However, if the order index(@) < index(c) < index(b) < index(d) is chosen, there are 7
non-terminal nodes.

Due to the sensitivity of ROBDD sizes to the chosen variable ordering, finding a
suitable ordering becomes an important problem to obtain a reasonably sized
ROBDD representing a given logic function. Finding the best variable ordering
that minimizes the ROBDD size is coNP-complete [Bryant 1986]. However,
there are good heuristics. For example, practical experience suggests that sym-
metric and/or correlated variables should be ordered close to each other. Other
heuristics attempt to generate an ordering such that the structure of the ROBDD
under this ordering mimics the given circuit structure.

It is not surprising that there exists a family of Boolean functions whose BDD
sizes are exponential in their formula sizes under all BDD variable orderings. For
instance, it has been shown that ROBDDs of certain functions, such as integer
multipliers, have exponential sizes irrespective of the ordering of variables [Bry-
ant 1991]. Fortunately for many practical Boolean functions, there are variable
orderings resulting in compact BDDs. This phenomenon can be explained intu-
itively by the fact that a BDD with # nodes may contain up to 2” paths, which
correspond to all possible truth assignments. ROBDD representations can be
considerably more compact than SOP and POS representations.

Example 6.19 The odd parity function of Figure 6.7¢ is an example of function which requires 2n — 1
nodes in an ROBDD representation but 2" product terms in a minimum SOP
representation.

We examine how well ROBDDs support Boolean reasoning. Complementing
the function of an ROBDD can be done in constant time by simply interchanging
the 0 and 1 terminal nodes.

In cofactoring an ROBDD with respect to a literal x; (respectively — x;), the
variable x; is effectively set to 1 (respectively 0) in the ROBDD. This is accom-
plished by determining all the nodes whose 0- or 1-child corresponds to any
node v with index(v) = i, and replacing their 0- or 1-child by then(v) (respec-
tively else(v)).

Example 6.20 Figure 6.8 illustrates a cofactor example, where the given ROBDD of (a) has been cofac-
tored with respect to x3 yielding the ROBDD of (b). Similarly, an ROBDD can be cofac-
tored with respect to —x; by using else(v) to replace all nodes v with index(v) = i.

Binary Boolean operations, such as AND, OR, XOR, and so on, over two
ROBDDs (under the same variable ordering) can be realized using the recursive
BoppArrLy operation. In the generic BpopArpry operation, ROBDDs D, and D, are
combined as D; (op) D, where (op) is a Boolean function of two arguments.
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FIGURE 6.8

Cofactor example.

The result of the BopArpry operation is another ROBDD. The operation can be

customized by replacing (op) with a specific operator, e.g., AND, OR, XOR, etc.
The algorithm proceeds from the roots of the two argument graphs downward,

creating nodes in the resultant graph. It is based on the following recursion

Slop) & = xi - (fx,(0P) &x,) + ~%i - (f-w,(0D) &)
From an ROBDD perspective we have
Tl (op)glw] = x; - (f[then(v){op)glthen(w)]) + ~x; - (flelse(v)|(op)gleise(w)]) (6.13)

where fIv] and g[w] are the Boolean functions rooted in the nodes v and w.
There are several cases to consider.

1. If v and w are terminal nodes, we simply generate a terminal node u# with
value(w) = value(v) (op) value(w).

2. Else, if index(v) = index(w) = i, we follow Equation (6.13). Create node
u with index(u) = i, and apply the algorithm recursively on else(v) and
else(w) to generate else(n) and on then(v) and then(w) to generate
then(u).

3. If index(v) = i but index(w) > i, we create a node u# having index Z, and
apply the algorithm recursively on else(v) and w to generate else(u) and
on then(v) and w to generate then(u).

4. If index(v) > i and index(w) = i we create a node u having index ¢ and
apply the algorithm recursively on v and else(w) to generate else(x) and
on v and then(w) to generate then(t).

Implementing the above algorithm directly results in an algorithm of expo-
nential complexity in the number of input variables, since every call in which
one of the arguments is a non-terminal node generates two recursive calls.
Two refinements can be applied to reduce this complexity. Firstly, if the algo-
rithm is applied to two nodes where one is a terminal node, then we can return
the result based on some Boolean identities. For example, we have fV 1 = 1 and
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fVO=ffor (op) =OR, fAO0=0and fA 1 =ffor (op) =AND and f § 0 = f
and f @ 1 = — ffor (0p) = XOR. Secondly, more importantly the algorithm need
not evaluate a given pair of nodes more than once. We can maintain a hash table
containing entries of the form (v, w, ©) indicating that the result of applying the
algorithm to subgraphs with roots v and w was u. Before applying the algorithm
to a pair of nodes we first check whether the table contains an entry for these
two nodes. If so, we can immediately return the result. Otherwise we make the
two recursive calls, and upon returning, add a new entry to the table. This
refinement drops the time complexity to O(|D|-|D,]), where |D,| and |D,| are
the number of nodes in the two given graphs.

Example 6.21 We illustrate the BopArrLy algorithm with an example taken from [Bryant 1986]. The two
ROBDDs to be operated on by an OR operator are shown in Figure 6.9a and 6.9b. Each
node in the two ROBDDs has been assigned a unique label. This label could correspond
to the labels generated during ROBDD reduction. The labels are required to maintain the
table entries described immediately above.

The OBDD resulting from the OR of the two ROBDDs is shown in Figure 6.9c. First,
we choose the pair of root nodes labeled al and b 1. We create a node with control
variable x4 and recursively apply the algorithm to the node pairs a3, b1l and a2, b 1.
Since a3 corresponds to the 1 terminal node, we can immediately return the 1 terminal
node as the result of the OR. We must still compute the OR of the a2, b1 node pair.
This involves the computation of the OR of a2, b3 and a2, b2, and so on. Note that
a3, b3 will appear as a node pair twice during the course of the algorithm.

Reducing the OBDD of Figure 6.9¢ results in the ROBDD of Figure 6.9d.

On the other hand, SAT and TAUTOLOGY checkings using BDDs are of constant
time complexity due to the canonicity of BDDs. More specifically, SAT (respec-
tively TAUTOLOGY) checking corresponds to checking if the BDD is not equal
to the O-terminal (respectively 1-terminal) node. Another application of BDDs is

a3 ad
(@)
FIGURE 6.9

ROBDD examples for the BopAprLy operation: (@) ROBDD of function f; = —x; V —Xs.
(b) ROBDD of function f, = x> A x3. (C) Intermediate OBDD after the BopArrLY operation
for f; Vv fo. (d) Final ROBDD of f4 V fo.
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checking if two functions f; and f, are equivalent. The problem is of constant
time complexity given that f; and f, are already represented in BDDs under
the same variable ordering. Two BDDs (under the same variable ordering) rep-
resent the same function if and only if they have the same root node.

As all the above Boolean manipulations are efficiently solvable (Z.e., in polyno-
mial time), BDDs are a powerful tool in logic synthesis and verification. We are by
no means saying that Boolean reasoning is easy because the BDD size of a function
can be exponential in the number of variables. Building the BDD itself risks expo-
nential memory blow-up. Consequently BDD shifts the difficulty from Boolean
reasoning to Boolean representation. Nevertheless once BDDs are built, Boolean
manipulations can be done efficiently. In contrast, CNF-based SAT solving is mem-
ory efficient but risks exponential runtime penalty. Depending on problem
instances and applications, the capability and capacity of state-of-the-art BDD
packages vary. Just to give a rough idea, BDDs with hundreds of Boolean variables
are still manageable in memory but not with thousands of variables. In contrast,
state-of-the-art SAT solvers typically may solve in reasonable time the satisfiability
problem of CNF formulas with up to tens of thousands of variables.

For the implementation of effective BDD packages, there are several important
techniques. Firstly, complemented edges can be used to compactly represent a
function as well as its complement [Madre 1988]. A complemented edge indicates
that the function rooted in the node that the edge points to has be complemented.
Introducing complemented edges does not destroy the canonicity of the ROBDD if
the edges to be complemented are selected properly.

Example 6.22 The ROBDDs for a function with and without complemented edges are shown in Figure

6.10. Complemented edges are indicated by dots on them.

FIGURE 6.10
ROBDDs (a) without and (b) with complemented edges.
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Secondly, a global unique table can be maintained wherein every node repre-
senting a unique function is given a unique label. Before creating a new node
the table is checked to see if the function corresponding to this new node exists
in the table. If not, the node is created, given a new label, and added to the
unique table. If the function already exists, the node in the table corresponding
to this function is returned.

Thirdly, dynamic variable ordering [Rudell 1993] can effectively reduce BDD
sizes. A BDD variable ordering good for some functions may be bad for other
functions. In the manipulation of ROBDD, new functions can be created. As a
result, originally good variable ordering may become inadequate. Dynamic vari-
able ordering provides a way of adjusting variable ordering to keep BDD sizes
small. The description of an efficient implementation of an ROBDD package
can be found in [Rudell 1990].

6.2.35 AIG

An and-inverter graphb (AIG) is a directed acyclic graph (DAG) G = (V, E)
consisting of vertices V representing AND2 (two-input AND) gates and directed
edges E C V x V connecting gates. Inverters are denoted by markers on edges.
Since operators {A, —} are functionally complete, any Boolean function can be
represented in an AIG. Most Boolean functions can be represented compactly
using AIGs.

The simple AIG data structure allows quick and cheap structural hashing
among AIG nodes. Two AIG nodes with the same inputs under the same comple-
mentation conditions are merged (similar to the second reduction rule of
ROBDD). Unlike ROBDD, however, the AIG representation is not canonical even
when structural hashing is applied.

Example 6.23 Figure 6.11 shows the AIGs of function f = a~cd + —b-cd without and with structural
hashing in 6.11a and 6.11b, respectively.

(a) (b)
FIGURE 6.11
AlGs (a) without and (b) with structure hashing.
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From the practical point of view, what make AIGs distinct from circuit netlists
composed of AND2 gates and inverters are threefold:

1. Structural hashing — Structural hashing is applied during AIG construc-
tion; it propagates constants and ensures that each node is structurally
unique. Accordingly AIGs are stored in a compact form.

2. Complemented edges — AIGs represent inverters as attributes on edges and
thus do not require extra memory. Such complemented edges facilitate
fast manipulation of AIGs and, in particular, lead to efficient structural
hashing.

3. Regularity — Asaresult of regularity, memory management of an AIG package
can be done by a simple customized memory manager which uses fixed
amount of memory for each node (thanks to the fixed number of inputs
of each node). By allocating memory for nodes in a topological order, we
can optimize AIG traversal, which is repeatedly performed in many logic
synthesis algorithms, in the same order. Experience suggests that many
AlG-based applications have reduced memory footprint (namely, the
amount of main memory used or referenced during a program’s
execution).

These features make a modern AIG package particularly efficient for Boolean
function representation and reasoning.

We analyze the usefulness of AIGs for Boolean manipulation. The AND opera-
tion has a constant time complexity since the conjunction of two given AIGs can
be done by adding an AIG node. The OR operation is essentially the same as the
AND operation except for the markings on the input and output edges of the added
AIG node, and thus is of constant time complexity. The complementation corre-
sponds to marking an edge and is therefore of constant time complexity, too.

SAT and TAUTOLOGY checkings using AIGs are NP-complete and coNP-com-
plete, respectively. When used as a Boolean reasoning engine, an AIG package can
be viewed as a solver performing satisfiability checking over circuits rather than over
CNF formulas, and is similar to automatic test pattern generation (ATPG).

AIGs can also be used in verification applications, such as equivalence checking
and even model checking. For instance, checking if two given AIGs under compari-
son are functionally equivalent can be reduced to TAUTOLOGY (SAT) checking by
adding an XNOR (XOR) gate, which can be expressed in terms of AND2 and INV
gates, with its two-inputs feeded in by the outputs of the two AIGs. The two AIGs
are equivalent if and only if the output of the XNOR (XOR) gate is tautological (unsa-
tisfiable). Hence the equivalence checking problem is coNP-complete. When it
comes to synthesis, AIGs are used in multilevel logic minimization and technology
mapping. In the academic system ABC [ABC 2005], AIGs are used as a unifying data
structure for both logic synthesis and verification.

A new binary format called AIGER [Biere 2007] was recently proposed to
enable compact representation of AIGs in files and memory. With memory
requirements of about three bytes per AIG node, AIGER has become a standard
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representation for circuit-based problems in SAT Competitions and Hardware
Model Checking Competitions, organized annually as satellite events of Interna-
tional Conference on Theory and Applications of Satisfiability Testing and
International Conference on Computer Aided Verification, respectively.

6.2.3.6 Boolean network

A (combinational) logic circuit can be represented with a Boolean network, a
directed graph G = (V; E) with nodes Vand directed edges E. Every node i € V'is
associated with a logic function f; and a Boolean variable x;, called the output var-
iable of node 7, representing the output of function f;. Hence the relation between
variable x; and function f; obeys (x; = f;). Every edge (7, j) € E connecting from
node  to node j signifies that variable x; is an input to function f;, and we call that
node 7 () is a fanin (fanout) of node j (¥). That is, variable x; syntactically appears
in the Boolean expression of f; as x; or —x;. We say x; is a (structural) support var-
iable of /; - If, in addition, the Boolean difference g_a{,- is satisfiable, then x; is a func-
tional support variable of f;, as defined previously.

A node 7 without any fanin is a primary input and its associated logic function
is x;, i.e., identical to its output variable. Moreover, a subset of Vis specified as pri-
mary outputs. Among the variables of node outputs, we say those of the primary
inputs are the primary input variables, those of the primary outputs are the pri-
mary output variables, and others are local (or intermediate) variables.

The sets of fanins and fanouts of node 7 are denoted as FI(?) and FO®),
respectively. The transitive fanins 7FI(?) and transitive fanouts 7FO(%) of a
node 7 are defined recursively as

TFI(i) = {k € V|k = i,or k € FI(j) forj € TFI(i)}

and
TFO(i) = {k € V|k = i,0r k € FO(j) forj € TFO(i)}

respectively.

A (combinational) Boolean network can be acyclic or cyclic. Any acyclic circuit
must behave combinationally because no internal states can be maintained and the
output only depends on the current input assignment, rather than on the prior
input assignments; a cyclic circuit, in contrast, may possibly exhibit combinational
behavior as well [Kautz 1970]. Because the existence of cyclic structures substan-
tially complicates the analysis and optimization of logic design, most logic synthe-
sis systems assume that combinational circuits are acyclic. In the sequel we shall
assume that a Boolean network is acyclic. Therefore, TFI(Z) N TFO®) = {i}.

A node function f; is a local function, in the sense that it is in terms of the
output variables of the immediate fanins of node i. The function of node 7 can
be alternatively expressed purely in terms of the primary input variables. In this
case, it is called the global function g; of node 7. Function g; can be derived
from f; by recursively substituting f; for y;, for j € TFI(®), until no further substi-
tution is possible. This substitution process is guaranteed to terminate because
of the assumption of acyclic combinational Boolean networks.

323
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f5 = XqXg+—X4—Xy

fi=x4] |fo=x%5| |[f3=Xx3

FIGURE 6.12

Boolean network example.

Example 6.24 Figure 6.12 shows a Boolean network example, where nodes 1, 2 and 3 are the primary

inputs, and nodes 5 and 6 are the primary outputs. A local function f; is shown in the
corresponding node /. The global function of node / can be obtained by either recursive
composition or quantification. For instance, the global function

gs = X1 (X1 +X2) + X12(x1 + X2)
by recursive composition, or equivalently
gs = 3X44(X1X4 + —Xi —|X4)(X4 = (X1 +X2))

by guantification.

As for the implementation issue, how to represent the logic function f; of a node ¢
in a Boolean network is a matter of choice. Our previously mentioned data struc-
tures, such as the truth table, SOP, BDD, AIG, and Boolean network representations,
can be adopted. Compared with AIGs, generic Boolean networks may lack special
structures to be exploited for effective Boolean reasoning. They however are suit-
able for generic circuit representation.

6.2.4 Boolean representation conversion

6.24.1 CNF vs. DNF

SOP-to-POS and POS-to-SOP conversions can be achieved by applying double
complements. By applying De Morgan’s Law, an SOP (a POS) formula ¢
becomes a POS (an SOP) one ¢’ after the first complement. We can then
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convert the POS (SOP) formula ¢’ to an SOP (a POS) one ¢" by the distributive
law. Finally, applying De Morgan’s Law again for the second complement, we
convert the SOP (POS) formula ¢” to a POS (an SOP) one ¢"’. Note that the con-
versions may suffer from an exponential blow-up in formula sizes due to the
intermediate step of applying the distributive law.

Example 6.25 The 2n-input Achilles heel function (x + y1)X> + yo) - - - (X, + ¥») has 27 product terms in
an SOP representation but has a linear-sized POS representation.

There exist Boolean functions whose SOP- and POS-formula sizes are inevitably
exponential in the number of input variables. For example, the n-input odd parity
function (x;®x; - - -®x,,) has 21 product terms in an SOP representation and is
equally large in a POS representation. As another example, integer multiplication
over n-bit operands, comparison of two n-bit operands, and addition and subtraction
of n-bit operands all have SOP and POS realizations that grow exponentially with 7.

An interesting application of Boolean representation conversion is on Boolean
reasoning. Recall that SAT (respectively TAUTOLOGY) checking is trivial for DNF
(respectively CNF) formulas. If we are interested in knowing the satisfiability of a
CNF formula, we may covert it into DNF and then check the satisfiability of the
DNF formula, which is a constant time checking. Similarly we may check the tau-
tology of a DNF formula by converting it into CNE The hardness of Boolean
reasoning, of course, is shifted to the representation conversion process. Another
application of Boolean representation conversion is on quantifier elimination for
QBFs. Observe that the universal (respectively existential) quantification is easy
for CNF (respectively DNF) formulas. The QBF Vux,.0(x) with ¢(x) in CNF equals
the induced quantifier-free Boolean formula of removing every appearance of
literals x; and —x; in @(x); similarly the QBF dx;.0(x) with ¢(x) in DNF equals
the induced quantifier-free Boolean formula of removing every appearance of lit-
erals x; and —x; in @(x). It is thus of linear time complexity. Therefore given a
QBE we can convert the formula back and forth between CNF and DNF to elimi-
nate quantifiers. As a consequence, any SOP-POS converter can be used as a
Boolean reasoning engine and QBF solver.

Example 6.26 The QBF
Va.(@a+b+-c)la+-b+c)(-a+b+c)

equals the quantifier-free Boolean formula
(b+-c)(-b+c)b+c)
The QBF
Ja.(ab—c + a-bc + —abc)
equals the quantifier-free Boolean formula

b-c + —bc + bc
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FIGURE 6.13

(a) AlG of —x4. (b) AIG of (x1 A Xo). () AIG of (X1 V X2). (d) AlIG of (x1 = X2). (€) AIG Of (X1 < X2).
(f) AlG of (X1 A _‘Xg) V (X2 = X3).

6.2.4.2 Boolean formula vs. circuit

A Boolean formula ¢ can be translated into a circuit, e.g., an AIG, in linear time.
The translation can be done by following the inductive construction of ¢ with
the rules of Equation (6.1).

Example 6.27 Figure 6.13a-e show the AlGs of —xy, X1 A Xp, X1 V Xo, X1 = X, and xq < x,. They form

the templates of the basic formation rules of Equation (6.1). Given an arbitrary Boolean
formula, its AIG can be built from these templates, e.g., the AIG of (x; A —Xo) V (Xo =
Xg) is shown in Figure 6.13f.

Any (combinational) circuit, on the other hand, represents some Boolean func-
tion f: B” — B, which can be specified with a Boolean formula. Recall Example
6.24, which shows how an output function of a circuit can be obtained.

6.2.43 BDD vs. Boolean network

A two-input multiplexor is a switch with two data inputs #,, #;, one control
input ¢, and one output o, with 0 = iy if c = 0 and o = 7; if c = 1. Because a
non-terminal node in a BDD can be seen as a two-input multiplexor and BDDs
are universal for functional representation, any Boolean function can be imple-
mented using a circuit whose only constituent gates are two-input multiplexors.
Translating a BDD to a multiplexor-based Boolean network is a straightforward
process by substituting every BDD node with a multiplexor, and can be accom-
plished in time linear in the size of the BDD.

Given a Boolean network, the ROBDD of a primary output function in terms of
the primary input variables can be constructed. A naive approach is to build an
OBDD representing the global function of the Boolean network and then reduce
it. Rather, a more effective way is to traverse the circuit from primary inputs to pri-
mary outputs using a series of Boolean manipulations over ROBDDs based on node
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Multilevel circuit.
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FIGURE 6.15

(@) ROBDD for primary input a. (b) ROBDD for —a. (c) ROBDDs for a A b.

functions. For a primary input, its ROBDD is a graph with a single non-terminal
node and two terminal nodes. For a functional node, its ROBDD can be con-
structed using a series of complement and/or BppArpLY Operations.

Example 6.28 Consider the circuit of Figure 6.14. The ROBDD for primary input a is shown in
Figure 6.15a. Similarly, the ROBDD for primary input b will have one node with control
variable b with a 0-child (1-child) corresponding to the O (1) terminal node. The ROBDD
for —a is shown in Figure 6.15b. We can create the ROBDD for signal d by performing an
AND operation on the ROBDDs for the primary inputs a and b. This ROBDD is shown in
Figure 6.15¢c. We can create the ROBDD for signal f by performing an OR operation on
the ROBDD for signal d and the ROBDD for the primary input c.

As an application, ROBDD-based circuit equivalence checking can be achieved
by the conversion from Boolean networks to ROBDDs. Since ROBDDs are a
canonical representation of Boolean functions, in order to check two circuits
C, and G, for equivalence, we can use the following method.

1. Choose an ordering for the primary inputs of the circuits.

2. Create ROBDDs for the primary outputs of the two circuits.

3. Check if the ROBDDs are isomorphic. If so, the circuits are equivalent. If
not, the circuits are not equivalent.

In order to check two ROBDDs for equivalence, we can use the canonicity
property of ROBDDs and perform a linear-time graph isomorphism check as
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per Definition 6.2. Notice that any ordering will suffce, as long as the same
ordering is chosen for both circuits. However, the size of the ROBDDs created
is strongly dependent on the ordering chosen.

6.2.5 Isomorphism between sets and
characteristic functions

A very profound application of Boolean functions is the concept of characteristic
functions in representing sets. It is a very important idea leading to a leap in capac-
ity of many logic synthesis and verification algorithms. A characteristic function
is a (total) function 7y, : U — B, where U is a finite set often in the form of B” for
some 7, such that y4(e) = 1 if and only if e € A, that is, the onset of 4 equals A4.
It serves as a predicate indicating the membership property. In other words, the
function 4 answers a query, whether an element e € U is in A C U. Essentially,
any finite set A C U can be represented with a characteristic function y 4. Thereby
set operations (e.g., intersection N, union U, and complement) over sets are in
effect Boolean operations (e.g., conjunction A, disjunction V, and negation —,
respectively) over characteristic functions. Note that constant functions 0 and 1
are characteristic functions of the empty set (J and universal set U, respectively.
Some applications of characteristic functions are given below.

Incompletely Specified Function as Characteristic Function. To repre-
sent an incompletely specified Boolean function I : B” — {0, 1, -}, three charac-
teristic functions 7, f, d can be used to represent its onset, offset and dcset,
respectively. That is, for a minterm m € B”,

r(m) = 1 ifandonlyif I(m) = 0
fim) = 1 ifandonlyif I(m) = 1, and
dim) = 1 ifandonlyif I(m) = -—

As the three sets form a partition on B”, i.e., the three sets are pairwise disjoint
and union to B”, two characteristic functions are suffcient in representing an
incompletely specified function. However, even so three characteristic functions
are often used for the sake of convenience in Boolean manipulation.

Boolean Relation as Characteristic Function. A relation is more general
than a function as it allows one-to-many mappings, which are prohibited in a
function. A Boolean relation can be treated as a set of input-output mapping
pairs, and thus can be represented by a characteristic function.

Example 6.29 Given a set of Boolean functions f4(x), . . . , f(x), they can be converted into a Boolean

relation

>3

R(x,y) =

li

(=)

by introducing a vector of output variables y = (v1, . . . , ). For truth assignments a € B”
and b € B™ on variables x and y, respectively, relation R(a, b) valuates to true if and only
if the /th bit of b equals the value of f(a) fori =1, ..., m. In other words, R(a, b) = 1 if and
only if a and b are consistent assignments under the mapping of functions f4, . . ., .
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Circuit Consistency Condition as Characteristic Function. The consis-
tency condition imposed by a circuit can be converted into a Boolean formula,
in particular, a CNF formula by Tseitin’s procedure [Tseitin 1970], where every
gate of a circuit translates into a set of clauses of fixed sizes and, further, the
CNF formula of a circuit is the conjunction of the clauses of all gates. Therefore
the conversion is done in time linear to the circuit size.

Example 6.30 The CNF formula of the consistency condition imposed by an AND2 gate with inputs a, b
and output ¢ is

(@anb)ec
((anb)=c)(c= (anb))
(

(

—aV-bvc)(-cV(anb))
-aV-bvc)(-cva)(-cVb)

Using the above three clauses for an AND2 gate, we can obtain the CNF formula

(ﬁX1 V Xo \/X4)(ﬁX4 \/X1)(ﬁX4 VX2)/\
(—\X2 V X3 \/X5)(—‘X5 \/X2)(“X5 \Y _\Xg)/\
(X4 V —Xs5 VX@)(—‘XG \Y —\X4)(—\X6 \/X5)/\
(X6 V X7)(—Xe V =X7)

for the consistency condition imposed by the AlG of Figure 6.16. Note that the first three
clauses correspond to the AIG node of x4, the second three clauses correspond to
the AIG node of x5, the third three clauses correspond to the AIG node of xg, and the
last two clauses correspond to the inversion of xg for x;. Hence for given an AlG,
the so-constructed CNF formula is of size linear in the numiber of nodes.

1L
Rk

FIGURE 6.16

AlG example for CNF conversion.
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Note that the function represented by the so-constructed CNF formula is not
the same as the primary output functions of a given circuit. A circuit and its CNF
formula are equivalent only in the sense that the CNF formula is true under a
truth assignment if and only if the truth assignment is consistent in the circuit.
A circuit implements some Boolean functions whereas such a CNF formula
represents a Boolean relation.

At first glance, Tseitin’s linear-time translation from circuits to CNF formulas
seems contradictory to the exponential cost of the SOP-to-POS conversion
because we may covert in linear time any SOP formula to an AIG and then fur-
ther convert the AIG to a CNF formula by Tseitin’s procedure. This paradox can
be clarified by observing that in Tseitin’s conversion new extra variables are
present in the resultant POS/CNF formula. It differs from the previous SOP-to-
POS conversion where no new variables are created. In fact, a Boolean relation
derived from the new conversion reduces to a Boolean function as derived from
the old one when the intermediate variables (those other than the primary
input and output variables) are existentially quantified out and further a positive
co-factor is performed on the Boolean relation with respect to the primary out-
put variable. The existential quantification and conversion back to a POS for-
mula, however, may result in exponential blow-up in formula sizes.

Example 6.31 Figure 6.17 shows the AIG of function f = X1Xo + XaX4 + . . . + Xon_1Xon. By Tseitin’s

conversion, the CNF formula is of size linear to n due to the allowance of intermediate vari-
ables. Without intermediate variables, the POS representation of f must have 2" clauses.

Set Manipulation as Boolean Manipulation. By dealing with characteris-
tic functions, we are able to manipulate sets of elements simultaneously rather
than manipulate individual elements separately. For instance, the intersection of

I

TR AR A

X1 X2 X3 X4 X5 Xg X7 Xg Xon-1 Xon
FIGURE 6.17

AlG of function f = X4Xo + XaXs4 + . . . + Xon_1Xopn.
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two sets A and B can be done by performing y4 A x5 instead of examining, for
every element e € A, whether e is in B as well. It leads to substantial improve-
ments to many logic synthesis and verification algorithms. Such approaches that
manipulate sets of objects simultaneously are known as (implicit) symbolic
algorithms, in contrast to the traditional (explicit) enumerative algorithms
(which enumerate individual objects separately).

Example 6.32 Let set U be the universe {0, 1,2, 3,4, 5,6, 7}, setAC Ube {0, 1, 2, 4}, and set B C U
be {2, 3, 4, 6}. Consider the binary encoding with Boolean variables x4, x», and x3 such
that element O is encoded as —x1—Xo—X3, 1 @S —X1—XoX3, 2 @S —X1Xo—Xg, 3 AS —X1XoX3,
4 as x1—Xo—X3, 5 as x1—xoX3, 6 as x1Xo—Xg, and 7 as x;xox3. Then the characteristic func-
tions of these sets with respect to the binary encoding are

w = 1
A —X1—X2 + =X1—X3 + —Xo—X3, and
A8 = ~X1X2 +X17X3

It can be checked that formula —y4 corresponds to the characteristic function of the set
UN\A, formula y4 A ys corresponds to that of A N B, and formula x4 V x5 corresponds to
that of A U B.

Example 6.33 Image and pre-image computations are key operations in logic synthesis and formal ver-
ification. The image of A C B” under the functional vector f = (fy, . . . , f,,)) is the set {g €
B | g = f(p), p € A}. The characteristic function of the image is

Imgr(A) = 3X. 1 (y; = (X)) A 24(X)

which refers to the newly introduced y variables taking on the function values. In con-
trast, the pre-image of B C B under the functional vector f= {f;, . . ., f,,} is the set
{p € B" | g = f(p), g € B}. The characteristic function of the pre-image is

m
Preimgr(B) = 3y. A (i = i(x)) A 7z5(y)

which refers to the x variables only.

6.2.6 Boolean reasoning engines

Among the introduced data structures, BDD packages and SAT solvers are the
most widely used Boolean reasoning engines. They are extensively used in various
symbolic, or called implicit, algorithms, such as image computation, don’t care
computation, state reachability analysis, and so on. Any Boolean reasoning engine
can be more or less used in developing symbolic algorithms. In the sequel when a
computational task is expressed in terms of a QBE we should be aware that its
computation is already achievable by Boolean manipulation using a BDD package.
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Although BDD-based algorithms and symbolic algorithms were once almost syn-
onymous in the 1990s, recently other data structures were developed as alternatives
to BDDs. Due to the capacity limit of BDDs, more and more symbolic algorithms are
based on other data structures. Notably, Boolean reasoning engines using SAT and
AIGs, for instance, are gaining in popularity in hardware synthesis and verification.
Moreover, hybrid Boolean reasoning engines combining complementary data struc-
tures may become important tools. In fact, combinational equivalence checking of
multi-million gate designs has been demonstrated in an industrial setting through
such hybrid solvers combining BDD and AIG [Kuehlmann 1997].

6.3 COMBINATIONAL LOGIC MINIMIZATION

Logic synthesis is typically divided into two phases: technology independent
optimization and technology dependent optimization. The former aims at
simplifying Boolean expressions and logic netlist structures regardless of the tar-
get technology node for manufacturing, whereas the latter aims at optimizing cir-
cuits under the target implementation technology. This divide-and-conquer
separation is often beneficial in orthogonalizing various design concerns. Simpli-
fied Boolean expressions are often good for optimization with respect to the target
implementation technology. Also it allows a designer to migrate a design from one
technology node to another without substantial re-optimization. Our study will
begin with the first phase, and then proceed to the second one in Section 6.4.

In technology independent optimization, combinational logic minimization
consists of two-level and multilevel logic minimization. Two-level logic minimi-
zation is a relatively simple and well-studied subject in both theory and practice.
As a multilevel logic netlist can be seen as a network of two-level logic compo-
nents, the results of two-level minimization are in part applicable to multilevel
minimization. Not only optimized two-level SOP representations can be used
as a starting point for multilevel synthesis, but two-level minimization techni-
ques can also be used in minimizing multilevel netlists. Hence we delve into
two-level logic minimization before considering the multilevel counterpart.

6.3.1 Two-level logic minimization

There are a variety of two-level logic implementations. The most common one is
the SOP implementation, where the first level of logic corresponds to AND
gates and the second level to OR gates. NOR-NOR structures, NAND-NAND
structures, AND-XOR structures, and OR-AND structures are also possible.

Example 6.34 The function of Figure 6.18a can be reexpressed in POS form and implemented as the

circuit shown in Figure 6.18c. An SOP implementation can be directly converted into
an equivalent NAND-NAND implementation by replacing all the AND gates and OR gates
by NAND gates. A NAND-NAND implementation of the function of Figure 6.18a is shown
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Two-level logic implementations.

in Figure 6.18b. Similarly, a POS implementation can be directly converted into a
NOR-NOR implementation as shown in Figure 6.18d.

Two-level logic is typically implemented as a programmable logic array
(PLA) [Fleisher 1975] in a NOR-NOR form followed by inverters at the outputs. PLAs
have the advantage of being very structured and are therefore amenable to auto-
mated logic and layout synthesis. Even though PLAs are no longera popular ICimple-
mentation style, they can be an important ingredient in modern system designs
because their regular structures [Mo 2004] provide a solution to alleviate the infa-
mous process variation problem of IC manufacturing in the nanometer regime.

6.3.1.1 PLA implementation vs. SOP minimization

Despite the fact that many regular functions have a minimum two-level logic
representation whose size grows exponentially with the number of inputs to
the function (e.g., parity functions and adders), two-level logic circuits can effi-
ciently implement control logic.

The hardware cost of a PLA implementing some SOP formula is directly reflected
in the formula. The number of literals (respectively product terms) of the formula
corresponds to the number of transistors (respectively product lines) of the PLA.
Therefore, minimizing an SOP expression not only reduces PLA area cost, but also
improves circuit performance due to the reduction in capacitive loads.

Example 6.35 An NMOS PLA is shown in Figure 6.19a, whose output marked f implements the logic
function of Figure 6.18. Note that while the input plane and output plane are both
NOR-planes, we have inverters at the outputs. An SOP representation can be directly
mapped to a NOR-NOR PLA with output inverters by complementing each literal in the
input plane. The function f = a - b + —a - ¢ has been implemented as

~(=(=(=a+-b) + ~(a + —¢)))
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FIGURE 6.19
(@) Programmable logic array. (b) Multiple-output cover.

PLAs can implement multiple-output functions that share product terms across outputs
as shown in Figure 6.19a. The multiple-output cover is represented as shown in
Figure 6.19b. The two outputs share the cube a - b in their onsets. Therefore, in the PLA
of Figure 6.19a the first row from the bottom feeds transistors in both columns in the output
plane. The number of columnsin a PLA equals two times the number of inputs plus the num-
ber of outputs, the number of rows equals the number of product terms in the cover, the
number of transistors in the input plane equals the number of “1” or “0” literals in the input
part of the multiple-output cover, and the number of transistors in the output plane equals
the number of 1’s in the output part of the multiple-output cover.

6.3.1.2 Terminology

We define terminology and notation used for two-level logic minimization.
As a notational convention, we write a cube (Z.e., a product term) c¢ in a bit-

vector form ¢ = [c; . . . ¢,], where ¢; is “0” if the i™ variable x; appears comple-

mented in ¢, ¢; is “1” if variable x; appears uncomplemented in ¢, and ¢; is “-” if

variable x; does not appear in c.

Example 6.36 A cube ¢ = x;—x, in the Boolean space spanned by variables x1, Xo, X3 can be repre-
sented as [10-].

For multi-output functions, the notion of cubes is slightly generalized. A cube of a
Boolean function fwith 7 inputs and 2 outputs is written as ¢ = [¢; - - - ¢, €11 - - -
C,.1-m], Which consists of the input part with ¢;’s for 1 < i < n and output part with
c;/sfor n+1 < i< n+m.Inthe input part, c;is defined the same as before; in the out-
put part, ¢; is “0,” “1,” and “-” if the input part of ¢ belongs to the offset, onset, and
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dcset, respectively, of the (7 - n)th output of f. For single-output functions, we may
not write the (7-+1)* bit of the cube if the function is fully specified.

A minterm, defined in Section 6.2, corresponds to a cube in which every vari-
able of a Boolean space appears. Minterms and cubes may be used to represent
the values of a set of input variables, e.g., x—z is shorthand for x = 1, y = 0, and
z = 1. Therefore, there is a natural correspondence between an input assignment
and a vertex in the Boolean n-space. This correspondence may be extended to
cubes where absent variables are assumed to be unassigned. Thus, if a circuit C
has inputs v, w, x, , and z then applying the cube x—yz to Cis shorthand for applying
v=X,w=X,x=1,y=0,andz= 1, where “X” is used to denote an unknown value.

A cube g contains another cube r if the literals in the input part of cube g are
a subset of the literals in the input part of cube r and the outputs in the output
part of g are a superset of the outputs in the output part of cube 7. In bit-vector
notation, the cube [0—]|1] of a two-input, single-output function contains the
cube [00]1]. Similarly, the cube [0—|11] of a two-input, two-output function
contains the cube [0—|10]. A cube is said to be contained by a cover if every min-
term contained by the cube is contained by some cube in the cover. For example,
the cover {00——, —1—1} contains the cube [0——1].

Ifa cube g contains only onset and dcset vertices of a Boolean function f; then g
is called an implicant of . A prime implicant (or prime) of fis an implicant
which is not contained by any other implicant of f and which is not entirely
contained in the dcset of f. An alternate operational definition, which is crucial
in ESPRESSO, of a prime implicant is as follows. An implicant is prime if no 0- or
1-literal can be “raised” (to include more minterms) to a “—” without resulting in
the implicant intersecting the offset of any component of the multiple-output func-
tion. For instance, a cube [111] of a three-input, single-output function would be a
prime cube if each of [11—], [1—1] and [—11] intersected the offset. A literal in a
cube is said to be prime if raising that particular literal toa “—” results in a cube that
intersects the offset. Thus, [110] may not be a prime cube of a function f because
[11—] is an implicant of f, but the first two literals may be prime in the implicant
[110] because [—10] and [1—0] intersect the offset of f. All the literals contained
in a cube have to be prime in order for the cube to be prime.

An essential prime implicant (or essential prime) is a prime implicant
which includes one or more onset vertices which are not included in any other
prime implicant. These vertices are termed essential vertices. An optional
prime implicant is a prime implicant for which all vertices are included in
other prime implicants.

A minimal cover for a function fis generated by selecting all of the essential
prime implicants and a minimal set of optional prime implicants such that all
vertices in the onset of f are included in the cover.

Example 6.37 For the example in Figure 6.1b, there are three essential prime implicants and no optional
prime implicants. The minimal cover would be f = —xg + —X4Xo + X1—Xo.

A relatively essential vertex of a cube g in a cover C is a vertex in the
onset that is contained by g and is not contained in any other cube in C.
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Example 6.38 In Figure 6.1b, x1—x,x3 is a relatively essential vertex of the cube x;—x,, while the other

vertex in this cube, x;—x>—x3, is not a relatively essential vertex since it is also contained
in the cube —xas.

A two-input, two-output function can also be represented as a multiple-out-
put cover, with cubes that have input as well as output parts.

Example 6.39 The two-output function F = {11]01, 00|10, 10[11} has two cubes in each of its compo-

nents F4 and F». If the inputs are a and b, then F; can be represented as —a—-b + a—b,
and F, is ab + a-b. The cube a—b is shared by F; and F,, because its output part
indicates that it belongs to both their onsets.

In order to keep cover sizes small, it is desirable to ensure some form of
minimality for the cover. An easily satisfiable property is that no cube c¢ of a
cover contains another cube d of the cover. Such a cover is minimal with
respect to single cube containment.

An implicant in a cover is irredundant if it contains an essential or a
relatively essential vertex. Thus, removing the implicant changes the functional-
ity of the cover. Else it is redundant and can be safely removed from the cover.
A cover is prime if each of the implicants in the cover is prime. A cover is
irreundant if each of the implicants is irredundant. The definitions apply to both
completely specified and incompletely specified functions.

6.3.2 SOP minimization

Two-level Boolean minimization is used to find an SOP representation for a Bool-
ean function that is optimum according to a given cost function. The typical
cost functions used are the number of product terms, the number of literals,
or a combination of both.

With any of these cost functions, the problem of two-level minimization con-
tains the subproblem of finding the solution of a minimum covering problem
which has been shown to be NP-complete [Garey 1979]. Nevertheless, sophisti-
cated exact minimizers (e.g., [Dagenais 1986; Rudell 1987) have been developed
whose average-case behavior for most commonly encountered functions is accept-
able. Furthermore, heuristic minimization methods exist (e.g., [Hong 1974;
Brayton 1984]) which have been shown to produce results that are close to the
minimum within reasonable amounts of time, even for large Boolean functions.

Two-level Boolean minimization for a given function consists of two steps:

1. generating the set of prime implicants, and
2. selecting a minimum set of prime implicants to cover all onset minterms.

6.3.2.1 The Quine-McCluskey method

The first algorithmic method proposed for two-level minimization is the
Quine-McCluskey method [McCluskey 1956], which follows the two steps
outlined above.
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Prime Implicant Generation. The set of prime implicants can be generated
by iteratively merging two cubes which differ in exactly one position, where one is
of literal x and the other is of literal —x assuming variable x is the corresponding
variable in the position. For instance, two cubes ¢; = [00—1] and ¢, = [01—1]
can be merged as [0——1]. This merging process continues until no more merging
is possible. Initially all onset and dcset minterms are the cubes to start with. Upon
termination, a maximal cube (not contained by every other cube) is a prime impli-
cant provided that it is not entirely contained by the dcset.

Example 6.40 Consider the completely specified Boolean function shown in Figure 6.20a. It has been
represented as a list of minterms. Each minterm has an associated decimal value
obtained by converting the binary number represented by the minterm into a decimal
number; for instance the value of 0000 is 0 and that of 1100 is 12. The cubes generated
by merging the pairs of cubes are shown in Figure 6.20b and 6.20c. We have five prime
implicants, marked as A, B, C, D, and E, for the function in this example.

Prime Implicant Table. A prime implicant table is a table with rows indexed
by onset minterms and columns indexed by prime implicants. An entry at position
(7, p) in the table is marked “X” if prime implicant j contains onset minterm 7.

Example 6.41 Figure 6.21 shows the prime implicant table of the previous example.

Since we want a minimum set of prime implicants that covers all the onset min-
terms, we have to select a minimum set of columns in a prime implicant table
such that there is at least one X in every row. This is the classical minimum
unate covering problem which has been shown to be NP-complete [Garey
1979]. Nevertheless there are several reduction techniques that help simplify
solving the unate covering problem:

Simplification by Essential Prime Implicants. A row with a single X
represents a (relatively) essential vertex, and the corresponding column repre-
sents a (relatively) essential prime implicant. The column must be selected in
the final cover because any prime cover for the function will have to contain

0, 8 —000—E
0 0000 5, 7 01-1—D
5 0101 7, 15 -111—C
7 0111 8, 9 100-
8 1000 8, 10  10-0
9 1001 9, 11 10-1
10 1010 10,11 101-
111011 10,14 1-10
14 1110 11,15 1-11 8, 9, 10,11 10— — B

15 1111 14,15 111- 10,11,14,15  1-1— — A
(a) (b) (c)
FIGURE 6.20

Prime implicant generation.
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0000 X
0101 X
0111 X X
1000 X X
1001 X

1010 X X

1011 X X
1110 X

1111 X X

FIGURE 6.21

Prime implicant table.

the prime that contains the onset minterm corresponding to this row. Therefore
we can simplify the prime implicant table by removing the columns
corresponding to (relatively) essential prime implicants and removing the rows
covered by these removed columns.

Example 6.42 In the prime implicant table of Figure 6.21 A, B, D, and E are essential prime implicants.

We select the essential prime implicants since they have to be contained in any prime
cover. This results in a cover for the function, since selecting columns A, B, D, and E
results in the presence of X in every row.

Some functions may not have essential prime implicants. Consider the hypothetical
prime implicant table of Figure 6.22a. There is no row with a single X. It is necessary
to make an arbitrary selection of a prime to begin with. Assume that prime A is selected.
We obtain the reduced table of Figure 6.22b after deleting column A and the first two
rows contained by A from the table of Figure 6.22a.

Simplification by Column Dominance. A column U of a prime implicant
table is said to dominate another column V if U contains every row contained by
V. We can delete the dominated columns, since selecting the dominating col-
umn will result in covering more uncontained minterms than the dominated
column. Note that the dominating column might not exist in a minimum solu-
tion. Further if minimizing the literal count was our objective, then we can only
delete dominated columns that correspond to primes with equal or more literals
than the dominating prime.
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ABCDEFGH

0000 | x X
0001 (x x BCDEFGH CDEFG
0101 x x 0101 |x x 0101 [x
0111 X X 0111 x x 0111 |x X
1000 X x| 1000 X x| 1000 X
1010 X X 1010 X X 1010 X X
1110 X X 1110 X X 1110 X X
1111 X X 1111 X X 111 x x
(@) (b) (©
FIGURE 6.22

Cyclic prime implicant table.

Example 6.43 In the reduced table of Figure 6.22b column B is dominated by column € and column H
is dominated by column G. Reducing the table of Figure 6.22b yields the table of
Figure 6.22c. In this table C and G are relatively essential prime implicants. Choosing
C and G results in the selection of E, which completes the cover f = {A, C, E, G}. We
are not guaranteed that this cover is minimum; we have to backtrack to our arbitrary
choice of selecting prime A and delete prime A from the table, i.e., explore the possibility
of constructing a cover that does not have A in it. This results in f = {B, D, F, H}.

Simplification by Row Dominance. A row 7 of a prime implicant table is
said to dominate another row j if 7 has a 1 in every column in which j has a 1.
Any minimum expression derived from a table which contains both rows i and j
can be derived from a table which only contains the dominated row.

Example 6.44 In Figure 6.22c, row 0111 dominates row 0101 and can be deleted; row 1010 dominates
row 1000 and can be deleted as well.

A Branch-and-Bound Covering Strategy. The covering procedure of the
Quine-McCluskey method is summarized below. The input to the procedure is
the prime implicant table T

1. Delete the dominated primes (columns) and the dominating minterms
(rows) in T. Detect essential primes' in 7'by checking to see if any minterm
is contained by a single prime implicant. Add these essential prime impli-
cants to the selected set. Repeat until no new essential primes are detected.

2. If the size of the selected set of prime implicants equals or exceeds the
best solution thus far, return from this level of recursion. If there are no
elements left to be contained, declare the selected set as the best solution
recorded thus far.

"These primes may not be essential primes of the original function or table.
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3. Heuristically select a prime implicant.

4. Add this prime implicant to the selected set and recur for the sub-table result
ing from deleting the prime implicant and all minterms that are contained
by this prime implicant. Then, recur for the sub-table resulting from delet-
ing this prime implicant without adding it to the selected set.

6.3.2.2 Other methods

State-of-the-art exact two-level logic minimization algorithms, such as
ESPRESSO [Rudell 1987] and Scherzo [Coudert 1995], are all based on the
Quine-McCluskey method, but are able to outperform the Quine-McCluskey
method significantly due to superior prime generation, implicant table gen-
eration, and covering techniques. In particular, with decision diagram based
data structures, Scherzo [Coudert 1995] was able to outperform ESPRESSO
by two orders of magnitude in terms of speed. Introductions to ESPRESSO
and decision diagram based two-level logic minimization can be found in
[Devadas 1994] and [Minato 1996], respectively. A good overview on two-
level logic minimization can be found in [Coudert 1994].

6.3.3 Multilevel logic minimization

Two-level logic is limited because not all Boolean functions can be efficiently
represented in the SOP form. Multilevel logic implementation of a function is
often faster and smaller than two-level logic. Therefore multilevel realizations
are the preferred means of implementing combinational logic in very large
scale integrated (VLSI) systems. Because of the increased potential for reusing
sub-circuits, there are more degrees of freedom in implementing a Boolean func-
tion than in the two-level case. This increased freedom, however, largely
expands the search space in identifying an optimal solution.

The area of multilevel logic synthesis has blossomed since the mid-1980s. Many
of the methods developed have been successfully used in commercially available
computer-aided design packages. There are two types of basic approaches, rule-
based local transformations and algorithmic transformations. Rule-based local
transformations were developed at IBM in the late 1970s, known as the LSS system
[Darringer 1981]. A rule transforms a pattern for a local set of gates and intercon-
nections into another equivalent one when certain patterns are recognized in
logic netlists. The transformations have somewhat limited optimization capability
since they are local in nature and do not have a global perspective of the design.

Algorithmic transformations began to evolve in about 1981, in parallel with
activity in two-level logic synthesis and influenced by it. The algorithmic coun-
terpart uses two phases: a technology-independent step based on algorithms for
manipulating general Boolean functions [Brayton 1982] and a technology
mapping step (the subject of Section 6.4) where the design described in terms
of generic Boolean functions is mapped into a set of gates that can be imple-
mented in the design method of choice (gate arrays, standard cells, or macro-
cells). Both rule-based methods (e.g., [Darringer 1984; Bartlett 1986]) and
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algorithmic methods (e.g., [Brayton 1987; Bostick 1987]) have been successful.
Algorithmic methods for logic synthesis are our main focus.

We describe the various logic transformations used in algorithmic logic syn-
thesis systems, most of which use algebraic [Brayton 1982, 1984] and Boolean
[Bostick 1987; Devadas 1989] operations in technology-independent optimiza-
tion, and use graph covering methods [Keutzer 1987] in technology mapping.
We first introduce technology-independent optimization and focus primarily
on area minimization. Implementation details of the algorithms can be found
in [Brayton 1987, 1990].

6.3.3.1 Logic transformations

The goal of multilevel logic optimization is to obtain multilevel representation
of a Boolean function optimal with respect to some design constraints. In order
to restructure a logic function, a collection of different operations is helpful.
The operations described below are commonly used and can be composed in
a script file for orchestrated optimization.

Decomposition. Decomposition of a Boolean function is the process of
reexpressing a single function as a composition of new functions.

Example 6.45 The process of translating the expression
F=a-b-c+a-b-d+—-a--c-—-d+-b--c-—-d

to the set of expressions

= X-Y4+-X-2Y
= a-b, and

= c+d

<X
\

is decomposition.

Extraction. Extraction, related to decomposition, is applied to multiple
functions. It is the process of identifying and creating new intermediate func-
tions and their corresponding output variables, and reexpressing the original
functions in terms of the original as well as the new variables.

Extraction creates nodes which feed multiple outputs. The operation identi-
fies common subexpressions among different logic functions forming a network.
New nodes corresponding to the common subfunctions are created and each of
the logic functions in the original network is simplified with respect to these new
nodes. The optimization problem of extraction is to find a set of intermediate
functions such that the resulting network has minimum area, delay, or power.

Example 6.46 Exiraction applied to the following three functions

F = (a+b)-c-d+e
G = (a+b)-—e, and
H = c-d-e

may yield
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F = X-Y+e
G = X-—e

H = Y-e

X = a+b, and
Y = c¢c-d

Factoring. A factored form is a parenthesized representation of a tree net-
work where each internal node is an AND or an OR gate and each leaf is a literal.
Like SOP, factored forms are a way of representing Boolean functions and are per-
haps a more natural way for multilevel circuits than the SOP representation.

A factored-form Boolean expression can be implemented using a complex
CMOS gate. The number of transistors of the logic gate is closely related to the
number of literals of the factored form as can be seen from the following example.

Example 6.47 Figure 6.23 shows a complex CMOS gate implementing the factored form f=a 4 (b + ¢)d.

In general, excluding the possible output buffer, 2n transistors are needed to implement a
factored form with n literals.

Consequently the literal count of a factored form can be used as a good estimate
of hardware cost. The optimization problem associated with factoring is to find
a factored form with a minimum number of literals.

Factoring is the process of deriving a factored form from an SOP represen-
tation of a function.

Example 6.48 The expression

F=a-c+a-d+b-c+b-d+e
can be factored into

F=(@+b) -(c+d)+e

o
c

a— f= a+(b+c)d

FIGURE 6.23

Factored form vs. complex CMOS gate implementation.
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Substitution. Substitution, also called resubstitution, of a function G into
F is the process of reexpressing F as a function of its original inputs and G.

Example 6.49 Substituting

G=a+b
into
F=a+b-c
produces
F=G-(a+c¢)

This operation creates an arc in the Boolean network connecting the node of
the substituting function, namely G, to the node of the function being substi-
tuted into, namely F

Elimination. Elimination, collapsing, or flattening is the the inverse
operation of substitution. If G is a fanin node of E collapsing G into F reex-
presses F without G. It undoes the operation of substituting G into F

Example 6.50 If
F G-a+-G-b and
G = c+d

then collapsing G into F results in

F = a-c+a-d+b-—-c-—-dand
G = c+d

If the node G is not a primary output and does not fan out to other nodes, then
it may be removed from the Boolean network, resulting in a network with one
less node.

Flattening a logic function into the SOP form could result in an exponential
growth in representation.

Example 6.51 Consider the flattening of the nodes g4 through gy into £ with

F = g1-92---0
g1 = ai+by
go = ax+bs
Ok = ax+bx

After flattening, the SOP representation for F will have 2% product terms.
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Given a Boolean network, we may compute the value of a node, which represents
the saved literal count due to the existence of this node rather than collapsing this
node into its fanout nodes. For nodes with little or negative values, we may elimi-
nate them from the Boolean network by collapsing them into their fanouts. It
should be noted that eliminating a node may change other nodes’ values.

6.3.3.2 Division and common divisors
To realize the above logic transformations, it is important to define opera-
tions which, when given functions f and p, find functions g and » such that
f=p-q+r if such g and r exist. This operation is called the division of f
by p generating quotient g and remainder ». The function p is called a
divisor of f if » is not null and a factor if  is null.
The conditions for p being a Boolean factor or a Boolean divisor are stated in
the following propositions.
Proposition 6.1. A logic function p is a Boolean factor of a logic function
fif and only if f -—p = O (that is, the onset of f is contained in the onset of D).
Proposition 6.2. If f - p # 0, then p is a Boolean divisor of f
For a given division operation, the resulting g and » may depend upon the
particular representation of f and p. Moreover for any logic function, there are
many Boolean factors and divisors. This fact poses a problem in choosing a good
factor and divisor. If the domain is restricted to a particular subset of expres-
sions, then the division operation is unique and much easier to carry out. A
restricted version of such division is called algebraic division.

6.3.3.3 Algebraic division

We begin the description of algebraic division with some definitions. The sup-
portofaBoolean expression fdenoted as sup( f) is the set of all variables v that
syntactically occur in fas v or —v. For example, if f=a + —a + b - ¢, then sup(f)
={a, b, c}. We say that fis orthogonal to g, writtenas f | g, if sup( f) Nsup(g) =
(. For example, f=a + b and g = ¢ + d are orthogonal.

The function g is an algebraic divisor of f if there exist » and # such that
f=g-b+r where b # 0, g L b, and the remainder » is minimal, Z.e., has as
few cubes as possible. Under this condition on the remainder, the quotient
b, denoted as f/g, is in fact unique. We say the function g divides f evenly if
f=g b, where h #0,g L b,and r = 0.

We consider two main problems of algebraic optimization, namely comput-
ing quotients f/g given fand g, and determining divisors g of a given function f.

Computing the Quotient. Given two covers (i.e., sets of cubes) f = {b,
by, ..., bptand g = {ay, az, . . ., a)g}, we define b; = {¢; | a; - ¢; € f}
foralli=1,2,...,Igl, ie, b; corresponds to all the multipliers of the cube
a; in g that produce elements of f. It is easy to see that

lg]
Flg=()bi=hi0hy...Nhy

i=1
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Example 6.52 Consider two covers

f a-b-c+a-b-d+d-e, and
g = a-b+e.

We have |g| = 2 and |f| = 3. With 3 x 2 = 6 comparisons, we obtain

hy = {c,d}, and
ho = {d}

Hence hy N hy, = d, and

f=(@-b+e)-d+a-b-c

The above algorithm requires O(|f| - |g]) operations. Encoding and sorting the
cubes of f and g can reduce the complexity to O(If| + I1gD) log(lfl + I1g)
[McGeer 1987].

Kernels and Algebraic Divisors. Given an efficient method for algebraic
division, optimization can be carried out if good algebraic divisors can be found.
The set of algebraic divisors is defined as D(f) = {g | f/g # 0}. The primary
divisors of fare defined as P(f) = {f/c | c is a cube}.

Example 6.53 If
f=a-b-c+a-b-d-e

then
ffa=b-c+b-d-e

is a primary divisor.

Proposition 6.3. Every divisor of f is contained in a primary divisor, i.e., if g
divides [, then g C p € P(f).
Proof. Let ¢ € f/g be a cube. Then g C f/(f/g and f/(f/g) C f/c € P(f). ©
A function g is termed cube-free if the only cube that divides g evenly is 1.
The kernels of fare defined as K(f) = {k | k € P(f), k is cube-free}. For a kernel
k € K(f), its cokernel is the cube ¢ with f/c = k.

Example 6.54 If
f=a-b-c+a-b-d-e

then
fa=b-c+b-d-e

is a primary divisor but not cube-free since b is a factor of f/a = b - (¢ + d - €). However,
flla-b)=c+d-eisakernel, and a - b is a cokernel.

The following theorem (originally proven in [Brayton 1982]) is the basis of alge-
braic optimization methods.
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Theorem 6.2. Two expressions f and g have a non-cube common divisor d
if and only if there exist Rernels Ry € K(f) and kR, € K(g) such that Ry N kR, bas
two or more terms (i.e., Ry N Ry is not a cube).

Proof. For the “if” part, Ry N R, is clearly a common divisor of f and g. It
remains to prove the “only if” part. m]

Assume d divides both fand g, and 4 has two or more terms. Then there is a
cube-free SOP expression e such that e divides d. Also e divides fand g as well.
By Proposition 6.3, e C kye P(f) and e C k, € P(g) for some Ryand k. Since e is
cube-free, Ry and R, are cube-free as well. Hence, B, € K(f) and R, € K(Q.
Finally, since e C Ry N Rg, ks M R, must have two or more terms. O

We can therefore use the kernels of fand g to locate common divisors. Note that
these are not the only common divisors of fand g, but they are good common divi-
sors to consider during logic optimization. We compute the set of kernels for each
logic expression, then form intersections among kernels from the different logic
expressions. If this intersection set contains no non-cube elements, then by Theo-
rem 6.2, we need only look for divisors consisting of single cubes. Otherwise, we
have found an algebraic divisor common to two or more expressions.

Computing the Kernels. The kernels of a function f can be computed
using the algorithm of Figure 6.24. The kernel generation algorithm first makes
f cube-free by finding its largest cube factor. It then selects the literals of fin a
lexicographical order and divides them into f; the resulting quotient is a kernel
if it is cube-free. (Note that this kernel might contain other kernels, too.) If it is
not cube-free, then it is made cube-free by selecting its largest cube factor. Note
that in this context the largest cube is the cube with the most number of

KERNELS(f){
¢s = largest cube (with maximum number of literals) factor of f ;
K=KERNEL1(0, f/cy) ;
if (f is cube-free)
return(fUK) ;
return(K) ;

}

KERNEL1(j, g){
R=g;
N = Maximum index of variables in g;
for(i=j+1;i” N;i=i+1){
if (/;/in 1 or no cubes of g) continue ;
¢ = largest cube dividing g//; evenly ;
if (forall k” i, I, ¢ c) /* Pruning Condition */
R= RUKERNEL1 (i, g/(I,N0));
}

return(R) ;

}
FIGURE 6.24

Procedure to determine all the kernels of a single-output logic function.
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literals. The procedure is repeated on the resulting functions until functions
with no kernels (called the level-O kernels of f) are found. A major efficiency
is obtained by noting that if the largest cube factor extracted contains an already
selected literal, then the current branch can be terminated, since all the kernels
that can be found by continuing have already been generated. This leads to an
algorithm in which no cokernel is duplicated.

Example 6.55 Consider
f=a-b-c-d+a-b-c-e+a-b-e-f

In the routine KERNELS c; = a - b. Therefore,
f/cr=c-d+c-e+e-f

In the next step we call KERNEL1(0,c-d +c-e +e-f).

InKERNEL1wesetR={c-d-+c-e+e-f}.Since the orderingis lexicographic, we have
Iy =a, l> = b, etc. Note that N = 6. The literals /1 and /> are in none of the terms of R, and we
move to /3 = ¢. The largest cube dividing (c - d + ¢ -e + e - f)/c, whichisd + e, is 1.

We therefore make arecursive callto KERNEL1(3, (c-d+c-e+e-f)=(cn1)). Thiscall
returns with {d + €}. In the parent KERNEL1 Rissetto{c-d+c-e+e-f,d + e}. We skip
14 =dand move to/s = e. The largest cube evenly dividing (c-d +c¢ - e + e - f)/e, whichis
c +f,is 1. We next call KERNEL1(5, (c - d + ¢ - e + e - f)/(e N 1)). This returns with ¢ + 1.

WeendwithK=R={c-d+c-e+e-f,d+e c+f}

If the largest cube factor extracted contains an already selected literal, then the
current branch can be terminated, since all kernels that can be found by
continuing have already been generated. We illustrate the pruning condition
with the following example.

Example 6.56 Consider
f=a-b-c-(d+e)-(k+)+a-f-g+h

In the first call to KERNEL1, we will generate the kernels corresponding to
fa=b-c-(d+e)-(k+)+f-g
KERNELA1 calls itself recursively to compute
f/la-b)=c-(d+e)-(k+])

Since f/(a - b) is not cube-free, the next recursive call to KERNEL1 will use (d + e) - (k + ).
All the kemels of this expression will be generated.
We move up one level in the recursion and compute

f/la-c)=b-(d+e)-(k+])
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At this stage, we note that f/(a - ¢) is not cube-free, and the largest cube dividing this
expression evenly is b. However, b is an already selected literal implying that we have
already generated the kernels for the cube-free expression (d+e)-(k+/). We do not have
to recursively call KERNEL1 for this branch and can go ahead to #/(a - d).

It is possible to modify the KERNEL1 procedure to generate only the level-0 ker-
nels which do not contain other kernels. This modification is based on the obser-
vation that if no kernels of g are found in the for loop, then g is a level-O kernel.

Factoring Algorithm. A function can be algebraically factored using the
generic factoring algorithm shown in Figure 6.25.

The procedure DIVIDE performs algebraic division and reexpresses fas g-b +r.
The procedure CHOOSE_DIVISOR is critical to obtaining a good factorization. One
alternative is to select an arbitrary level-O kernel as a divisor. This may not produce
the best final result. Another alternative is to select a kernel which when substituted
into the original function maximally reduces the total number of literals.

Example 6.57 Given

X=a-c+a-d+a-e+a-g+b-c+b-d+b-e+b-f+c-e+c-f+d-f+d-g

if, in the procedure CHOOSE_DIVISOR, we choose literals in lexicographical order, we
obtain

X=a-(c+d+e+g)+b-(c+d+e+f)+c-(e+f)+d-(f+9)
However, if we choose kernels, we obtain a better factorization
X=(c+d+e)-(a+b)+f-(b+c+d)+g-(a+d)+c-e

which has fewer literals.

Extraction and Resubstitution Algorithm. To identify cube-free expres-
sions that occur in multiple functions {f;}, we do the following.

1. Generate kernels for each f;.
2. Select a pair of kernels £, € K(f;) and R, € K(f;) for i # j such that &y N
k; is not a cube. If no such pair exists, stop.

GFACTOR(f){
if (number of terms in fis 1)
return(f) ;
g = CHOOSE_DIVISOR(f) ;
(h, r) = DIVIDE(f, 9) ;
f =GFACTOR(g) - GFACTOR(h) + GFACTOR(/) ;
return(f) ;

FIGURE 6.25
Procedure to algebraically factor a function.
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3. Set a new variable v equal &, N k,.
4. Update the associated functions to

ﬁ:U(ﬁ/(klmkz))+7}

where 7; is the remainder of the division f;/(k, N k2).
Common cubes are extracted as follows.

1. Select a pair of cubes ¢; € f;, ¢; € f; for i # j such that ¢; N ¢, consists of
two or more literals. If no such pair exists, stop.

2. Set a new variable u# equal ¢; N ¢;.

3. Update each function f; with the new variable z wherever possible in the
network.

Example 6.58 Consider the factored functions
X = a-b-(c-(d+e)+f+g)+h, and
Y = a-i-(c-(d+e)+f+j)+k

We have d + e being a level-0 kernel of both functions. Extraction results in

L = d+e,
X = ab-(c-L+f+g)+h, and
Y = a-i-(c-L+f+j)+k

Now, we select ¢ - L + f + g as a level-0 kernel of the reexpressed Xandc - L +f +j as
a level-0 kernel of reexpressed Y. We obtain

M = c-L+f

L = d+e

X = a-b-(M+g)+h, and
Y = a-i-M+j)+k

Now X and Y have no kernel intersections that are not cubes. We now extract common
cubes. Thecubesa -b -MinXanda -i- M in Y have two literals in common. Extraction

produces
N = a-M
M = c-L+f
L = d+e
X = b-(N+a-g)+h, and
Y = i-(N+a-j)+k

Because we are continually recomputing level-O kernels on the reexpressed func-
tions, it is possible to obtain decompositions corresponding to level-k kernels for
k > 0. If we collapse L into M into N above, we obtain

N a-(c-(d+e)+f)
X = b-(N+a-g9)+h, and
Y i-(N+a-j)+k
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where N contains a level-1 kernel of the original X and Y, since it contains the level-1
kernel M which contains the level-0 kernel d + e.

Algebraic Resubstitution with Complement. Algebraic factorization and
resubstitution can be performed with the complement of a given divisor.

Example 6.59 Consider
f=a-b+a-c+-b-—-c-d
where we choose b + ¢ as a level-0 kernel of f and decompose f as

f = a-X+-b--c-d, and
X = b+c

In many cases it is useful to check if the complement of the new variable is an algebraic
divisor for the function. In this case we can obtain

f = a-X+-X-d, and
X = b+c.

6.3.34 Common divisors

One of the key problems in algebraic optimization is the identification of good
(common) divisors. We have described the use of kernels for determining a
good set of divisors for algebraic factoring, decomposition, and extraction.
The problem of finding a kernel and finding a single-cube or multiple-cube divi-
sor can be reduced to the combinatorial optimization problem of rectangle
covering [Rudell 1989]. This formulation of the problem is not only elegant,
but it also favors the development of fast and effective algorithms.

Before introducing the method, we give some definitions.

A (combinatorial) rectangle (R, C) of a matrix B, with entries B;; € {0,1,%},
is a subset of rows R and subset of columns C such that B; € {1, *} for all i € R
and j € C. Note that the rows and columns forming the rectangle do not have to
be contiguous.

A rectangle (R;, Cy) is said to strictly contain rectangle (R,, C,) if R, C R,
and C, C Cj, or R, C Ry and C, C (.

A rectangle (R, C) of B is said to be a prime rectangle if it is not strictly
contained in any other rectangle of B.

The corectangle of a rectangle (R, C) is the pair (R, C") where C is the set
of columns not in C.

A set of rectangles {(R"", Ck)} forms a rectangle cover of matrix B if B,;=1
implies that 7 € R* and je€ C* for some k. Thus, each l-entry in B must be cov-
ered by at least one rectangle from the cover. A covering need not be disjoint, and
therefore a 1-entry in B can be covered by more than one rectangle. The *-entries
of B are not required to be covered by any rectangle in the cover and therefore
represent don’t-care points in the matrix.
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Example 6.60 In the following matrix

12345
1111100
21110~
3101101
4110111

The tuple ({1,2}, {2,3}) is a rectangle, but it is not prime as it is contained by the prime
rectangle ({1,2}, {1,2,3}). The tuple ({2,4}, {1,3,5}) is another prime rectangle while ({2,3},
{1,2}) is not a rectangle.

Each rectangle (R, C*) has an associated weight or cost defined by a weight
function w(R k‘, C""). The weight of a rectangle cover is then defined as the sum

Z w(R*, C*)
k
The minimum-weighted rectangle covering problem is that of finding a rectan-
gle cover of a matrix with minimum total weight.

Rectangles and Kernels. Rectangles provide an alternate way of looking at
the kernels of a function. By representing a Boolean expression as a cube-literal
matrix, where each row corresponds to a cube in the expression and the columns
correspond to all the distinct literals, each prime rectangle is a cokernel while each
corectangle of a prime rectangle is a kernel of the expression.

Example 6.61 Consider the expressiong=a-b-e+a-c-d+b-c-d. It can be represented using a
cube-literal matrix shown below.

abcde
a-b-el11001
a-c-d10110
b-c-di01110

Consider the prime rectangle (R, C) = ({2,3}, {3,4}) and its corectangle (R, C') = ({2,3},
{1,2,5}). The rectangle obviously corresponds to a cube ¢ - d that is common to all the prod-
uct terms corresponding to rows in R. Since the rectangle is prime, it is the largest cube
common to all the product terms in R. If this cube is extracted from these product terms,
the resulting expression is cube-free and is also a divisor of the original function g. In other
words, the resulting expression is a kernel of g. The expression resulting from the extraction
of the cube corresponds to the corectangle (R, C') = ({2,3}, {1,2,5}), whichis a + b.

From the rectangle interpretation of kernels, it is also possible to understand
more clearly the notion of the level of a kernel. A level-O kernel is the corectan-
gle of a prime rectangle which has no other rectangle containing its column set,
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i.e., a rectangle of maximal width. The corectangle of a prime rectangle of max-
imal height, 7.e., one whose row set is not contained in any other rectangle, cor-
responds to a kernel of maximal level.

Common-Cube Extraction. Common-cube extraction is the process of
finding cubes common to two or more expressions and extracting the common
cube to simplify each of the expressions. To optimize the network it is neces-
sary to find the particular cubes to introduce that provide an optimal decompo-
sition. The optimal decomposition can be defined as minimizing the total
number of literals summed over all expressions or minimizing the total number
of literals given a bound on the number of levels of logic in the final circuit.

Common cubes can be easily identified using the cube-literal matrix
described above.

Example 6.62 Consider the equations

F = ab-c+a-b-d+e-g
G = a-b-f-g, and
H = b-d+e-f

The cube-literal matrix for these expressions is

abcdefg
Fira-b-c 1110000
F,ra-b-d 1101000
Fsie-g 0000101
Gy:a-b-f-g|11000 11
Hi:b-d 0101000
Ho:e-f 0000110

The rectangle ({1,2,4}, {1,2}) corresponds to the common cube a-b which is present in
functions F and G. If this common cube is extracted as a new function X, the equations
can be rewritten as

= X-c+X-d+e-g
= X-f-g
b-d+e-f, and
= a-b

XTI O
I

The process of extracting a cube modifies a Boolean network. A new node is
added to the Boolean network with a logic function which is the common-cube
divisor. All functions which the cube divides are replaced with the algebraic
division of the function by the single cube. In order to extract cubes efficiently
in an iterative algorithm, it is necessary to modify the cube-literal matrix incre-
mentally to reflect the extraction of the cube. The advantage is that the cube-
literal matrix does not have to be recreated as each cube is extracted.

The modifications required to form the new cube-literal matrix are the fol-
lowing. A new row is added to reflect the new single cube expression added
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to the network. The entries covered by the rectangle are marked with a * to
reflect that the position has been covered. However, the * allows other rectan-
gles to cover the same position.

The choice of the weight function for a rectangle measures the optimization
goal for cube extraction. To minimize the total number of literals in the net-
work, the weight of a rectangle is chosen so that the weight of a rectangle cover
of the cube-literal matrix equals the total number of literals in the network after
the new single-cube functions are added to the network. Hence, a minimum
weighted rectangle cover corresponds to the optimal simultaneous extraction
of a collection of cubes. The weight of a rectangle is defined as:

c if |[Rl=1
w(R,C) = {‘|C|| YR if iR} >1

If there is a single row in the rectangle, then it corresponds to leaving the cube
unchanged in the network. Hence, the weight of the rectangle counts the num-
ber of literals in the cube, which equals the number of columns. When the
number of rows is greater than one, this corresponds to creating a new single
cube function with |C]| literals and substituting this new function into |R]|
other cubes at a cost of |R]| literals.

Note that the above weight does not reflect the savings obtained in terms of
the number of literals by extracting a common cube. Therefore, when searching
for a cube to extract it is useful to define a second function called the value of
the rectangle. For cube extraction, the value of the rectangle should indicate the
savings obtained from extracting the corresponding cube. Since the number of
literals before cube extraction is the number of 1l-entries in the rectangle and
the number of literals after cube extraction is the weight of the rectangle, the
value v(R, C) of a rectangle is defined as

v(R,C) = |{(i.j)|By =1,i € R j e C}| —w(R,C)

Example 6.63 For the rectangle ({1,2,4}, {1,2}) in the cube-literal matrix of the previous example, the
weight is the number of rows plus the number of columns, which equals 5. There are
6 positions in this rectangle and each of them has a 1. Therefore, the value of the rect-
angle is 6 — 5 = 1. Therefore only one literal can be saved by extracting this rectangle, as
illustrated in the previous example.

Kernel Intersection. As described previously, intersections among the ker-
nels of a collection of expressions are useful for finding common multiple-cube
divisors between two or more expressions. If two functions share a common
multiple-cube divisor, then the common divisor can be found as the intersection
of a kernel from each of the functions.

The Boolean matrix associated with the optimal kernel intersection problem is
called the cokernel-cube matrix. A row in this matrix corresponds to a coker-
nel (and its associated kernel) and each column corresponds to a cube present in
some kernel, called a kernel-cube. The entry B, is set to 1 if the kernel
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associated with row 7 contains the cube associated with column j. Then a rectan-
gle of the cokernel-cube matrix identifies an intersection of kernels. The columns
of the rectangle identify the cubes in the subexpression, and the rows in the rect-
angle identify the particular functions the subexpression divides.

Example 6.64 Consider the functions

F = af+b-f+a-g+c-g+a-d-e+b-d-e+c-d-e
G = a-f+b-f+a-c-e+b-c-e, and
H a-d-e+c-d-e

The kernels and cokernels of each of the functions are shown below.

Function| Cokernel Kernel
F d-e+f+g
d-e+f
e |la+b+c
a+b
d-e+g
a+c
c-e+f
c-e+f
a+b
e |a+b
‘e |a+c

OO0 TV QO TO OO

Note that functions F and G are themselves kernels but have not been shown above for
ease of presentation. Let us number the cubes in the original function from 1 to 13, with
a - fbeing 1, b - f being 2, and so on. The cokernel-cube matrix for this set of kernels is
shown below. Note that instead of 1’s in the matrix, we have numbers. These numbers
indicate a cube of the original functions formed by multiplying the cokernel corresponding
to a row and the cube corresponding to a column. For example, in the third row under
column a we have the number 5 corresponding to the the fifth cube a - d - e.

b ¢c cedefg
F:a 0000513
F:b 0000620
F:d-e|56 70000
F:f 1200000
F:c 0000704
F:g 3040000
G:a 00010080
G:b 00011090
G:f 8900000
G:c-e |[10110 0 00 0
H:d-e |[120130 00 0
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Rectangle ({3,4,9,10}, {1,2}) identifies the subexpression a + b. This corresponds to
the factorization of the equations into the form

d-e-X+f-X+a-g+c-g+c-d-e
= c-e- X+7-X

a-d-e+c-d-eand

= a+b

XTI O
Il

Whenever a new subexpression is identified, it is inserted into the Boolean net-
work. This insertion consists of adding a new node to the network and dividing
the node into each of the expressions which this node divides. A new cokernel-
cube matrix is then created for the modified Boolean network.

To reduce the complexity of extracting each factor from the network it is
desirable to modify the cokernel-cube matrix incrementally as each subexpres-
sion is identified. To do this, new rows are added to the cokernel-cube matrix
for each kernel of the new subexpression. The cubes which are formed by
the insertion of this new factor into the network are then marked as covered.
This includes the points directly contained in the rectangle and other points
which are labeled with the same number. These points are marked * so that
other rectangles can cover them.

The weight of a rectangle of the cokernel-cube matrix is chosen to reflect the
number of literals in the network if the corresponding common subexpression is
inserted into the network. A minimum weighted rectangle cover of the cokernel-
cube matrix then corresponds to a simultaneous selection of a set of subexpres-
sions to add to the network in order to minimize the total number of literals.

Let w]c be the number of literals in the kernel-cube for column j. wf is also
called the column weight of column j. If a rectangle (R, O) is used to identify a
subexpression, then a new function is formed from the columns of C. This new
function has ZjEC wj literals. Let w; be 1 plus the number of literals the cokernel
corresponding to row Z. w/} is also called the row weight of row 7. The chosen
subexpression divides the expressions indicated by the rows R of the rectangle.
After algebraic division by the subexpression, each of these expressions consists
of a sum of the corresponding cokernel cubes multiplying the literal for the
new expression. The number of literals in the affected functions after the extrac-
tion of the subexpression corresponding to the rectangle is ), , w}. Therefore,
the weight of a rectangle (R, ©) in the cokernel-cube matrix is defined as:

w(R,C) =Y w+> uf
icR jec
The value of a rectangle measures the difference in the number of literals in the
network if the particular rectangle is selected. The number of literals after the
rectangle is selected is the weight of the rectangle as defined above. Let Vj; be
the number of literals in the cube which is covered by position (7, j) of the coker-
nel-cube matrix. Then the number of literals before extraction of the rectangle is
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simply .. R, jec Vi As elements of the cokernel-cube matrix are covered, their
values V; are set to 0. This includes the elements Vj; covered by the matrix and
all other elements which represent the same cube in the network. The value of
a rectangle (R, C) of the cokernel-cube matrix is thus defined as

v(R,C) = Z Vyj —w(R,C)

i€RjEC

Example 6.65 For the rectangle ({3,4,9,10}, {1,2}) of the cokernel-cube matrix in the previous example,

YueRjec Vi=3+3+2+2+2+2+3+3=203 2w =3+2+2+3=10,
Z/ec ch =1+ 1 = 2. Therefore, the value of the rectangle is 20 - 10 — 2 = 8. Eight literals
can be saved by extracting the expression corresponding to the rectangle, as can be
verified in the example above.

Rectangle Covering. Since minimum-weighted rectangle covering corre-
sponds to optimum algebraic extraction, it offers a unified approach to the extrac-
tion, factorization, and decomposition of Boolean expressions. However, the
minimum-weighted rectangle covering problem is NP-complete [Rudell 1989]
and thus heuristic algorithms are resorted.

There are two types of algorithms for rectangle covering. The first type of
algorithm is greedy and selects one rectangle at a time and modifies the matrix
to reflect the extraction of the rectangle. The advantage of this technique is that
it immediately takes into account common factors between the newly extracted
function and the rest of the logic network. The disadvantage of this approach is
that it selects only one rectangle at a time and does not easily account for the
simultaneous extraction of multiple rectangles. The second type of algorithm
finds the best collection of factors to extract at each step by solving the mini-
mum-weighted rectangle covering problem heuristically. First, all the prime rec-
tangles are generated, and a collection of rectangles are then extracted. Second,
the matrix is updated, and the entire process is repeated to find factors between
the new expressions and the remainder of the logic network. A detailed exposi-
tion of this approach can be found in [Rudell 1989].

6.3.3.5 Boolean division

So far we have primarily described algebraic optimization methods. Apparently
the optimality of algebraic division is limited. For example, the Boolean expres-
sion f = a—b + ad + —ab + bd + —ac + —bc + cd can not be factored into f =
(a + b + o(—a + b + d) through algebraic division. It motivates the develop-
ment of Boolean division.

To do so, in Boolean resubstitution we would like to reexpress a given
Boolean function f(x) in terms of a given divisor g(x). The computation can
be done by first building the function

h(x.y) =f(x) Ay = g(x))
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where y is a newly introduced Boolean variable representing the output signal
of function g. We then minimize function b with respect to the don’t care set
y # g(x) while insisting y to be a support variable of b. If b after minimization
is “simpler” than function f, then the resubstitution is successful.

Boolean resubstitution can be formalized more generally as functional
dependency [Jiang 2004]. We say that a function f(x) functionally depends
on a set of functions g;(x), . . . , g,(x) if there exists some function » such that

J(x) = b(g1(x), ..., gm(x))

The necessary and sufficient condition, informally speaking, is that the set {g, . . .,
g} of functions must be more distinguishing than fon the domain elements. That
is, for every a, b € B” with fla) # f(b) there must exist some g; such that g(a) #
£40). ROBDD and SAT based computation of functional dependency can be found
in [Jiang 2004] and [Lee 2007; Mishchenko 2007a], respectively.

To see that Boolean resubstitution is a special case of functional dependency,
forx=(xy,...,x,)wesetg(x)=x;fori=1,...,nand g, (x) = g(x). Thus
functional dependency reduces to Boolean resubstitution f{x) = h(x, g(x)). In
fact, we can minimize the support variables of » by setting as many g{x) =
0 (or 1) as possible to remove x; from the support set of b.

6.3.4 Combinational complete flexibility

The aforementioned multilevel logic minimization approaches, such as decom-
position, extraction, factoring, substitution, and elimination, change the struc-
ture of a Boolean network. In contrast, in this section we study how to
perform logic minimization without changing a multilevel network structure.
More specifically, given a structurally optimized multilevel network, we may fur-
ther minimize it by simplifying the logic expression within every node.

To minimize the logic function of a node « in a Boolean network, we would like
to characterize the don’t care conditions of the node #, such that we may choose
the best among the set of valid functions, called permissible functions, that can
implement # without changing the functionality of the entire Boolean network.
Notice that node # imposes a topological constraint on a permissible function
whose inputs are restricted to the fanins of node u in the Boolean network.

In fact, don’t cares exist pervasively in a multilevel logic netlist because the
Boolean space is largely expanded due to the existence of many intermediate
variables. Let X be the set of primary input variables and Y the set of all other
variables of a Boolean network. In the B* 1" Boolean space, only 2¥! valua-
tions are consistent because the valid valuations are determined by the assign-
ments on the primary input variables. Consequently a lot of invalid valuations
may not appear in the Boolean network and can be exploited for logic minimi-
zation. Moreover the effect of one signal may be conditionally blocked by other
signals and cannot affect the valuations of primary outputs. Based on these rea-
sons, flexibility may exist to some extent in a multilevel logic network.
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The don’t-care conditions arising in multilevel logic can either be specified
by the user or can be an artifact of the network structure. Essentially there
are three types of don’t cares: satisfiability don’t cares (SDC), observability don’t
cares (ODC), and external don’t cares (XDC). Internal don’t-cares arise in mul-
tilevel logic because of the structure of a Boolean network. They are divided
into satisfiability and observability don’t-cares. User specified don’t-cares or
don’t-cares derived from considerations other than the network structure are
called external don’t-cares.

In the following discussion, for a Boolean network, let X be the set of
primary input variables, Y the set of all other variables, and Z C Y the set of pri-
mary output variables. For a node 7 in a Boolean network, its output variable is
denoted as y; and its local or intermediate input variables, other than primary
input variables, are denoted as Y its local function is denoted as f(X, Y;) and
its global function, in terms of only primary input variables, is denoted as
g/X). Of course, since we consider only acyclic Boolean networks, f; depends
only on a subset of the Y variables that are not in the transitive fanout cone TFO;
of node 7.

External Don’t-Cares. External don’t-cares are specified for every primary
output, which indicate under what valuations on the primary input variables X
the value of the output is immaterial.

Satisfiability Don’t-Cares. Satisfiability don’t-cares are a result of the exis-
tence of the additional intermediate variables introduced at the intermediate
nodes of a Boolean network. A node with output variable y; and immediate
function f«(X, Y, of a Boolean network imposes the relation

i =fi(X,Y) (6.14)

which characterizes the set of valuations on variables X and Y that are consis-
tent under the constraint imposed by node 7. Therefore the set of satisfiability
don’t cares of the entire Boolean network is given by

SDC(X,Y) = \/ (i # f(X, Y2)) (6.15)

which gives all the valuations on variables X and Y that will never occur due to
the network structure and is so called because each of the relations y,; = f(X, Y)
must be satisfied during the correct operation of the network. In order to opti-
mize a given node 7 we are typically interested in the satisfiability don’t cares
imposed by the transitive fanin cone TFI; of node .

Example 6.66 Consider the network

Y1 X1 A X2
Yo = XoVXsz, and
Y3 = Y1 ®Y2="Vi¥YoVY17Vo
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It implements function gz = (X1 A x2) @ (X2 V Xx3). We have the option of eliminating y; and
y2 or expanding the Boolean space to include these variables. If we do the latter there
are assignments of variables which will never occur. For example, the assignment y; =
1 and y» = O will never happen. The assignments that will never occur are expressed by

SDC = (y1#(x1 AX2)) V (VoFE (X2 V X3)) V (V3F (V1D Y2))
To optimize fs, the satisfiability don’t care set
SDCs = (y1#(x1 AX2)) V (Y2# (X2 V X3))

imposed by the fanin nodes 1 and 2 of node 3 is of particular interest. Furthermore,
SDC3 in terms of the local input variables of node 3 can be computed by

VX1, X2, X3.(V1E (X1 AX2)) V (VoFE (X2 V X3)) = y17V>

which ensures that the computed SDC in term of variables y1 and y» is valid under any
valuation on the X variables. Accordingly, we may optimize f3 using the impossible con-
dition y1—ys. So f3 = =4y is another permissible function for node 3.

Observability Don’t-Cares. Observability don’t-cares occur in a network
because at each node there is a network structure that limits the observability
of the value of the node as seen at primary outputs.

To compute the observability don’t cares ODC; of a node 7 in a Boolean net-
work N. We construct a new Boolean network N from N by treating y, as a
(pseudo) primary input and removing node 7 and other induced nodes without
fanouts from N. The condition that node 7 is observable at primary output j is
given by

8gj’
Wi

= [g(X,3 = 0)%g/ (X,3, = 1)] (6.16)

where gj’ is the global function of j in network N'. That is, Formula (6.16) gives
the input conditions under which the g/ produces different values under differ-
ent y; values, Z.e., the conditions under which output j is sensitive to y,. There-
fore the conditions under which the value of y; cannot be observed at any
output are characterized by

oDC(X) = A (&X.pyi=0)=g/(X,3:i=1))

YjEZ A,
The above computation assumes the external don’t-care set is empty. For non-
empty XDC, the observability of a node at some primary output should be
conditioned on the external don’t care set of the primary output.

Local Don’t-Cares and Node Minimization. Note that SDC is in terms of
X and Y variables; XDC and ODC are in terms of X variables. To minimize a
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node 7, they are not directly useful unless they are expressed in terms of the
local input variables of node 7. Don’t cares in terms of the local input variables
are called local don’t cares. Let

DC,(X) = [\ XDCr(X) V ODCi(X)

Yr€Z

Let D; be the local don’t cares of node i. Then it can be computed by
Di(Y;) = - <3X A (yj Egj(X)> A ﬁDCz'(X)> (6.17)
J’jeYz

It should be noted that we cannot simply project DCA(X) to the local space
spanned by Y; using image computation. Rather we should project the care
set into the local input space and then take the complement. It is because the
former may mistakenly include some care minterm in the local space if there
exists some care minterm and don’t care minterm in the global space mapping
to the same image. On the other hand, notice that, even though SDC is absent
from Formula (6.17), it has been implicitly computed in the image computation.
With the local don’t cares DY) of node 7, we can minimize the SOP expres-
sion of node 7 using two-level logic minimization methods. The don’t-care gen-
eration and logic minimization procedure can be summarized as follows.

1. Select a node 7 in the Boolean network.
2. Compute its local don’t care set D,.
3. Minimize the cover of node 7 with respect to D,.

Therefore by treating a multilevel netlist as a network of PLAs, two-level minimiza-
tion methods can be applied as a baseline tool for multilevel logic minimization.

The above computation assumes that the rest of the Boolean network is not
changed. One generalization is to consider compatible don’t cares among mul-
tiple nodes simultaneously. Since the don’t care conditions of different nodes
may be conflicting with each other, they must be made compatible. The high
computational complexity however restricts the application of compatible
don’t cares. Often a network is iteratively optimized one node at a time with
respect to its local don’t cares.

Complete Flexibility. The characterization of don’t cares, including SDC,
ODC, and XDC, can be unified through the concept of complete flexibility
[Mishchenko 2002]. The complete flexibility (CF) of a node in a Boolean net-
work is a Boolean relation that characterizes the set of all possible input-output
behaviors of the node assuming that the rest of the network is not changed. The
complete flexibility subsumes all the above don’t cares. In addition, it is more
powerful in capturing non-determinism, and can be generalized for a non-
deterministic Boolean network [Mishchenko 2006a] where each node repre-
sents some relation allowing one-to-many mappings, not possible for functions.

Consider computing the complete flexibility of node 7 in a Boolean network
N. Let (X, Z2), given from specification, be the specification relation specitying



6.3 Combinational logic minimization

all the allowed input-output behavior of the Boolean network. Hence S(X, Z)
subsumes XDC. Let

E(X,Y;) = y,./e\n =8/ (X))

be the environment relation characterizing the set of consistent assignments
on variables X and Y;. Hence —E«(X, Y;) subsumes the SDC of node . Let

L(X,y:,Z) :V/éz =g (X, )

be the influence relation characterizing the allowed valuations on y; consistent
with those on X and Z, where g/ is a primary output function of network N,
same as that obtained in the ODC computation. Hence

R(X,y;) = VZ.[Ii(X,yi,Z) = S(X,Z)]

subsumes the ODC of node 7. The complete flexibility CF; of node 7 in terms of
the local input variables Y; can be obtained by

CFi(Y,yi) = VX.[E(X,Y;) = Ri(X,y;)]
= VX.[E(X,Y;) = VZ.[L(X,y:,Z) = S(X,Z)]]
= VX,Z.[-E/(X,Y:)V-L(X,y:,Z) V S(X,Z)]
VX, Z.AE(X,Y:) N(X,pi, Z) A =S(X, Z))] (6.18)

ROBDD Implementation. Notice that all of the above computations can be
realized using ROBDDs as operations over Boolean functions.

6.3.5 Advanced subjects

AIG-based Multilevel Logic Minimization. In addition to the division-based
transformations, we may approach the multilevel logic minimization problem
with a new view using the AIG representation.

Any Boolean expression can be converted into an AIG in polynomial time
while structural hashing can be applied during the AIG construction. The
obtained AIG can then be further simplified through rewriting [Bjesse 2004;
Mishchenko 2006b]. This simplification is in terms of AIG nodes and/or levels,
rather than the conventional literal or cube counts.

By grouping the nodes of the AIG into clusters (such that each cluster con-
sists of a set of connected nodes rooted at some node producing its output,
and the fanins of a cluster are outputs of some other clusters), each cluster
can be seen as a complex logic node in a Boolean network. Therefore an AIG
can be considered as a data structure that encompasses a set of multilevel logic
netlists subject to different interpretations of cluster boundaries, called cuts.
Given an AIG, the problem of multilevel logic minimization now boils down
to the enumeration of good cuts, see, e.g., [Ling 2007; Mishchenko 2007b]. This
approach to logic minimization is taken by the ABC package [ABC 2005].
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Sequential Logic Minimization. The aforementioned combinational logic
minimization methods can be applied to simplify sequential circuits. For a given
sequential circuit, treating the register outputs as primary inputs and register
inputs as primary outputs results in the combinational methods being applica-
ble to sequential circuit optimization. The optimization, of course, does not take
full advantage of sequential flexibilities.

We can in fact pursue more progressive logic transformations. State minimi-
zation [Kohavi 1978], state encoding [Villa 1997], and logic minimization using
unreachable states or state equivalence [Kohavi 1978] as don’t cares, for exam-
ple, are valid transformation methods because they do not change the input-out-
put behavior of a sequential circuit. Furthermore, it is possible to characterize
complete flexibility in the sequential domain [Yevtushenko 2001; Mishchenko
2005], similar to the combinational counterpart. In the computation, however,
we have to manipulate finite automata, rather than Boolean formulas.

The above approaches are state-based in the sense that we have to know
some state information for a given sequential circuit. The expensive derivation
of state information limits their applicability to large designs. In contrast, there
are structure-based transformations, which are carried out according to circuit
structures and do not rely on state information. Retiming [Leiserson 1983,
1991] and resynthesis [Malik 1991], for example, are practical transformation
methods for sequential logic minimization.

Although most designs are sequential and practical sequential optimization
techniques are available, logic synthesis flows for the industrial design typically
consist of only combinational optimization methods. This phenomenon can
be attributed to the hardness of sequential circuit equivalence verification
[Jiang 2006]. From the complexity viewpoint, sequential equivalence checking
is PSPACE-complete, which is considered much harder than the coNP-complete
combinational equivalence checking problem. In industrial practice, combina-
tional equivalence checking is considered “solvable” (In fact, equivalence
checking of industrial circuits with multi-million gates has been demonstrated
[Kuehlmann 1997]. Of course there are special cases of combinational circuits
that are hard to verify, e.g., multipliers with different circuit structures.) On
the contrary, for sequential equivalence checking, there are almost no good
approaches that are general enough and work for the majority of practical
test-cases. Making sequential circuit optimization scalable and verifiable is an
important research subject.

6.4 TECHNOLOGY MAPPING

The logic optimization algorithms described thus far operate on Boolean networks.
The optimization aims at simplifying logic expressions and is independent of the tar-
get implementation technology. To finish the logic synthesis steps, we need to
implement logic gates with physical layouts. One solution to it is to perform
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technology mapping, which is one of the most important tasks in technology
dependent optimization. It takes on a technology-independently optimized logic
netlist, and expresses the netlist using a set of pre-designed and pre-characterized
gate layouts from a technology library. Typically, the goal is to make optimal use
of all of the gates in the library to produce a circuit with minimum area subject to
the delay constraint for critical-path delay no greater than a target value.

Technology mapping algorithms are constrained by the structure of the logic
netlists produced by technology-independent optimization. It is not the role of
technology mapping to change the structure of the circuit radically, for exam-
ple, by finding common sub-expressions between two or more parts of the cir-
cuit. Likewise, it is not the main role of technology mapping to reduce the
number of levels of logic along the critical path. The role of technology
mapping is to make the actual gate choice to implement the logic netlist, for
example, choosing the fastest gates along the critical path and using the most
area-efficient combination of gates off the critical path.

A technology mapping algorithm should ideally achieve several goals. It
should be able to adapt to a variety of different libraries because an algorithm
which depends on characteristics of a particular library is of limited use, and
an algorithm which is geared to a subset of the gates in a library is limited in
its optimization potential. To practically achieve this goal of adaptability, a user
must be able to provide new gates to the technology mapper without under-
standing its detailed operation, and these gates should be used effectively.

6.4.1 Technology libraries

The introduction of gate arrays and standard cells brought comparable ben-
efits to IC designers. A gate array is an array of transistors and routing channels
which can be configured into an IC through a metalization process during semi-
conductor fabrication. The metalization phases are used for cell definition, such
as defining a NOR cell, and for interconnecting the cells. The electrical charac-
teristics of cells after metalization have been carefully defined and are embodied
in a databook. Standard cells are combinational and sequential logic gates whose
electrical characteristics have been carefully defined and embodied in a library.
Standard cells are similar to gate arrays in that they are precharacterized in a
databook, but they offer additional degrees of freedom since they go through
all the mask steps of semiconductor processing.

Logic gates of VLSI circuits, especially for ASICs, are usually restricted to be
implemented by selections from a technology library of gates. A gate is a prim-
itive element available in a particular implementation technology; a technology
library is a collection of these gates. A technology library is assumed to consist
of a finite collection of gates. For example, the gates in a static CMOS gate-array
(or standard-cell) design typically include inverters, NAND gates, NOR gates,
and a variety of complex gates, whereas the gates in an emitter-coupled logic
(ECL) gate-array are typically NOR gates and XOR gates.
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These libraries are typically composed of a few hundred gates and sequential
elements like latches and flip-flops for which highly optimized layouts have
been manually designed for a particular technology. Each gate is assigned a num-
ber of values associated with the different cost functions under which it will be
optimized. For example, each gate is assigned a value called the area of the gate
representing the physical area occupied by the gate. The logic designers are
then restricted to using these gates in their logic circuits.

Example 6.67 The combinational subset of a very simple library is shown in Figure 6.26. The library cell
names, associated area costs, their functions, and their representations in terms of two-
input NAND (NAND2) gates and inverters (INV’s) are shown.

Gate Cost Symbol Pattern DAG

INV 2 T T~

NAND2 3 D :}

wos D Dby
NAND4 5 D—

pot 4 QD“ ] @D[
= B> Zo»

o0 > %

FIGURE 6.26
Gate library.
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Given a technology library, the problem of technology mapping is finding a
multilevel circuit equivalent to the given Boolean network such that it is com-
prised of gates in the library and has minimum cost, which could be the area,
delay, testability, or power consumption of the resulting circuit.

6.4.2 Graph covering

A systematic approach to technology mapping is based on the notion of graph
covering. With this formulation, the technology mapping problem can be
viewed as the optimization problem of finding a minimum cost covering of
the subject graph by choosing from the collection of pattern graphs for all
gates in the library. A cover is a collection of pattern graphs such that every
node of the subject graph is contained in one or more of the pattern graphs.
Moreover, one restriction of any cover is that the inputs of one pattern in the
covering must be the outputs of some other pattern in the covering. Otherwise
it would imply that the inputs of one pattern come from internal nodes in
another pattern. As these internal signal values are not visible outside the
pattern, any covering without such a restriction would not be meaningful.

Example 6.68 The cover shown in Figure 6.27a is legitimate while that in Figure 6.27b is not.

In graph covering, the Boolean network to be covered is often represented in
a special form, where each gate is either of a NAND2 or an INV. It is termed the
subject graph, or subject DAG. In addition to the Boolean network to be cov-
ered, each library gate is also represented in this special form. Each realization is
termed a pattern graph, or pattern DAG. Note that a gate may have more
than one associated pattern DAG.

Example 6.69 In Figure 6.26, the pattern DAGs of the library cells are shown. The NAND4 gate has
more than one pattern DAGs.

FIGURE 6.27
Graph coverings: (a) legal and (b) illegal.
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FIGURE 6.28
(a) Subject DAG example. (b) Subject DAG decomposed into a forest of trees.

Example 6.70 Figure 6.28a shows a subject DAG example.

The optimization problem of technology mapping can now be stated as: Find a
minimum cost covering of the subject DAG by the pattern DAGs.

6.4.3 Choice of atomic pattern set

The choice of which atomic patterns to use for the subject and pattern graphs is
an important consideration for graph covering algorithms. This decision influ-
ences the range of solutions for the covering problem and the number of
patterns needed.

Why subject and pattern graphs are in terms of NAND2 and INV is motivated
by the following observation. Adding additional functions such as a NOR2 gate,
an AND2 gate, or an OR2 gate cannot provide higher-quality solutions; likewise,
adding NAND, NOR, AND, or OR gates with more than two inputs cannot pro-
vide higher-quality solutions. This observation is based on the fact that given a
cover for a subject graph using a larger set of functions, it is possible to show
an equivalent cover where each function is replaced by an equivalent set of
NAND?2 gates and inverters.

Restricting ourselves to only a NAND2 gate and inverter does come at the
price of increasing the number of patterns needed to represent some logic func-
tions, as can be seen from the following example. Experience has shown that
the increase in the number of patterns (and hence the increase in the memory
and time required for technology mapping) is not significant.

Example 6.71 The logic function

f=a-b-c-d+e-f-g-h+i-j-k-l+m-n-o-p
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requires only one pattern corresponding to a tree of five NAND4 gates. However, repre-
senting all patterns for this same function using NAND2 gates and INV’s requires 18
patterns.

6.4.4 Tree covering approximation

One technique (following the paradigm established in the domain of code gener-
ation [Aho 1976)) for solving the graph covering problem is to partition the sub-
ject graph into a forest of trees and solve the covering problem on each of the
trees. A tree is a DAG where every node (including primary inputs) has a single fan-
out. The tree necessarily has a single sink (primary output) called the root and the
sources (primary inputs) of the tree are called the leaves of the tree.

Example 6.72 The subject DAG of Figure 6.28a can be partitioned into a forest of trees as shown in
Figure 6.28b.

The motivation for looking at the problem of tree covering is the existence of an
efficient algorithm for the optimal tree covering problem [Keutzer 1987].

The application of the tree covering to technology mapping proceeds as fol-
lows. The first step is to convert the Boolean network into the NAND2-INV form,
that is, every logic gate after the conversion is of type either NAND2 or INV. This
subject DAG is then partitioned into a forest of trees by cutting the graph at each
multiple-fanout stem. The resulting trees are optimally covered one tree at a time.
Finding the optimum covering of a tree is done by generating the complete set of
matches for each node in the tree (that is, the set of tree patterns which are can-
didates for covering a particular node) and then selecting the optimum match
from among the candidates using a dynamic programming algorithm.

Example 6.73 Consider a Boolean network given by

§><‘<N
Il

A NAND2-INV representation of the Boolean network is given in Figure 6.29a. The trivial
covering of the subject DAG by pattern DAGs from the library of Figure 6.26 is also illu-
strated in Figure 6.29a. The cost of this trivial covering corresponds to the cost for seven
NAND2 gates and five INV’s, giving a cost of 31. A substantially better covering that
exploits the larger gates in the library is shown in Figure 6.29b. The cost of this
covering is the cost of two INV’s, two NAND2’s, one NAND3, and one NAND4 for a total
cost of 19. A covering which utilizes an AOI gate with a lower cost of 17 is shown in
Figure 6.29c.
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(©)
FIGURE 6.29

Tree coverings: (a) Trivial covering. (b) Better covering. (c) Optimum covering.
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6.4.5 Optimal tree covering

A solution to establishing the initial set of candidate matches for a tree is to
attempt to match each pattern at each node in the tree. If there are p patterns
in the pattern set and 7 nodes in the subject graph, then this approach has com-
plexity O (n - p).

Having generated a set of candidate matches for each node in the subject
graph, an optimal tree cover must then be selected from among the candidates.
Dynamic programming can be used for this purpose. Dynamic programming is a
general technique for algorithm design which can be applied when the solution
to a problem can be built from the solutions of a number of sub-problems.

Consider the problem of finding a minimum area cover for a subject tree I
A scalar cost is assigned to each tree pattern, and the cost for a cover is the
sum of the costs for each pattern in the cover. The key observation is that the
minimume-area cover for a tree T can be derived from the minimum-area covers
for every node below the root of I. This is the principle of optimality for tree
covering and is used as follows to find an optimal cover for 7. For every match
at the root of the tree the cost of an optimal cover containing that match equals
the sum of the cost of the corresponding gate and the sum of the costs of the
optimal covers for the nodes which are inputs to the match.? Note that the optimal
covers for each input to the match at the root can be computed once and stored; it
is not necessary to recompute the optimal cover for each input of each match.

Because each node in the tree is visited only once, the complexity of this
algorithm is proportional to the number of nodes in the subject tree times the
maximum number of matches at any node in the subject tree. The maximum
number of matches is a function of the library size and is therefore a constant
independent of the subject tree size. As a result the covering algorithm has lin-
ear complexity in the size of the subject tree, and the memory requirements are
also linear in the size of the subject tree.

Example 6.74 \We illustrate the optimum covering algorithm on the tree of Figure 6.30. We walk from
the primary inputs to the primary output of the tree and determine the best match at
each gate output. At each gate output, the match selected for the sub-tree whose root
is the gate output has been shown along with the total cost of the optimal cover for this
sub-tree. For the first-level gates, only NAND2 and INV matches are possible. At the out-
put of gate 2 the only match is with a NAND2, and therefore the total cost is 8. At the
output of gate 12 two matches are possible, with a NAND2 or with a NAND3. The former
will result in a cost of 8, so we pick the latter which has a cost of 4. At the output of gate 4
the best match corresponds to an AOI gate with a cost of 9. The final cost at the primary
outputis 17. The optimum covering corresponds to that of Figure 6.29c.

?Recall the rules for legal coverings stated in Section 6.4.2.
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Dynamic programming for optimum tree covering.

6.4.6 Improvement by inverter-pair insertion

A simple way to improve the quality of circuits produced by the tree covering
algorithm is by inserting inverter pairs. Redundant inverters are added to each
tree to improve the number of patterns which can match at each node. This
leads to an examination of more possible covers for each tree, leading directly
to an improvement in the optimization quality.

The technique works as follows. Each edge in the subject tree and each edge
in a pattern which connects two NAND gates is replaced with a pair of inver-
ters. An extra pattern consisting of a pair of inverters is added to the matching
patterns. This extra pattern is given zero area cost and zero delay cost. The tree
covering algorithm is then applied unmodified.

Because of the optimality of the tree covering algorithm adding these extra
inverters cannot lead to a cover with a greater cost. Each pair of inverters can
be covered by the inverter-pair pattern, which leads to the solution which
existed before the inverters were added. However, the advantage is that the tree
covering algorithm is able to make the optimal choice between covering the
extra inverters with the inverter-pair pattern at no cost or splitting the inverters
between two patterns if this leads to a cover with less cost. The only disadvan-
tage is that the number of nodes in the subject tree and the pattern trees has
increased. The increase in the number of nodes is bounded by a factor of three
(two extra inverter nodes for each node in the subject tree); however, the actual
increase is typically less because redundant inverters are added only at the out-
put of a NAND gate and not at the output of each inverter in the subject tree.

6.4.7 Extension to non-tree patterns

Some gates in a technology library cannot be represented in a tree form. Com-
mon examples are the XOR gate shown at the bottom of Figure 6.26, a
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two-to-one multiplexor, and a three-input majority gate (logic function f=a - b +
a - ¢+ b - 0. However, a simple extension allows these patterns to be included.

A leaf-DAG is a DAG where the only nodes with fanout greater than one are
the primary inputs. Patterns which are trees, and patterns which are leaf-DAGs
can be used directly by the tree covering algorithm. Hence the leaf-DAG pat-
terns may include the XOR pattern shown in Figure 6.26. Note, however, that
because of the multiple-fanout of one of these matches, the XOR gate must
match at the leaves of the tree.

6.4.8 Advanced subjects

The success of the graph covering formulation has helped formulate the logic
synthesis and optimization problem as an integration of technology-independent
and technology-dependent portions. Graph covering based technology mapping
is able to address a morass of technology specific issues, such as technology
libraries and their area and timing characterization, which would significantly
complicate higher level optimizations. The major limitation of graph covering,
however, is its dependence on the structure of the given subject graph. This lim-
itation was overcome in [Lehman 1997], where logic decomposition during
technology mapping is proposed as a way of bridging the gap between technol-
ogy-independent optimization and technology mapping. The approach was fur-
ther developed in [Chatterjee 2000].

In our discussion, we focused on standard cell technology mapping. As the
mapping algorithms heavily depend on the target implementation technology,
different design styles may need different technology mapping methods. For
instance, technology mapping for FPGAs [Scholl 2001], and even for standard
cells [Kravets 2001], can be formulated very differently.

6.5 TIMING ANALYSIS

After correct logical functioning, the speed of an integrated circuit is one of the
most important design characteristics. Timing optimization is thus an important
aspect of logic synthesis. Any optimization system is only as good as the models
that guide it, and as a result good timing optimization is entirely dependent on
accurate timing analysis. For these reasons we spend a good deal of attention on
techniques for accurate timing estimation of synchronous sequential circuits.
Accurate timing estimation relies on component delay calculation and
circuit delay calculation. Component delay calculation is the method used
for actually calculating the delay of individual components, such as gates and
wires, within a circuit. In calculating gate delays, timing data such as the iner-
tial and propagation delays of gates are typically gathered from extensive
transistor-level and/or device-level simulation of the circuit components. In cal-
culating wire delays, timing data arising from the parasitic capacitances and
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resistances of wires can be estimated through simulation or can be back-
annotated from the final circuit layout. In our discussion we are mainly
concerned about gate delays as wire delays can be embedded into the gate
delays by the delay model to be introduced.

If we view a circuit as a graph, then the method used for delay calculation at
the vertices of the graph is gate delay calculation while circuit delay calculation
is the model used for calculating delay for the entire graph.

Below we present a simple gate delay model and then focus on the topic of
circuit delay calculation, which is the most challenging and relevant problem in
timing estimation for the developer of a logic optimization system.

Gate Delay Model. A popular (CMOS) gate delay model is a simple linear
model [Sutherland 1999]: The delay T, of a gate g is given by the equation

COM
Ta =Ty +Te x 22 (6.19)

where T}, is the parasitic delay of the gate, T, is the logical effort, C;, is the
input capacitance, and C,,,, is the capacitive load at the gate output. It does
not consider more refined details such as the effect of slow rising or falling tran-
sitions on the transistors associated with this gate. In this model, parameters
1), T, and Cj, are fixed constants for a standard cell whereas C,,,,, varies depend-
ing on the fanout load of a gate (which may include wiring capacitances).

Gate delay calculations are performed extensively in timing analysis and
logic optimization, and as a result tradeoffs have evolved between the accuracy
of a model and the runtime of calculation. Although Equation (6.19) is a simple
approximation, it is good enough for logic optimization purposes. More accu-
rate nonlinear models are possible and often stored as look-up tables. Delay
calculation often depends on the circuit implementation method.

Circuit Delay Calculation. We explain how to use gate delay calculation to
compute the delay of an entire synchronous circuit. A simple implementation
model of a clocked, or synchronous, sequential circuit is shown in Figure 6.31,
where a clocked memory element (register), e.g., an edge-triggered flip-flop, is
used. At each active clock edge the next state is loaded into the flip-flops and
becomes the current state.

Registers have a propagation delay associated with the interval between a
clock edge and valid outputs. In order to guarantee that an input is not sampled
when invalid, a period of validity extending slightly before and after the active
edge is specified. Specification of a setup time #, and hold time #, dictates that
the register inputs must be valid and stable during a period that begins #; before
the active clock edge and ends ¢, after the edge.

Given a sufficiently long clock period and appropriate constraints on the
timing of transitions on the inputs, the inputs to the flip-flops can be guaranteed
to be stable at each active clock edge, ensuring correct operation. Correct oper-
ation depends on the assumptions that:
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FIGURE 6.31
Clocked model for a sequential circuit.

1. The clock period is longer than the sum of the maximum propagation
delay through the combinational logic, the setup time of the registers,
and the maximum propagation delay through the registers.

2. The circuit’s input signals are stable and valid for a sufficient period sur-
rounding each active clock edge to accommodate both the maximum
propagation delay through the combinational logic and the setup time
of the registers.

3. The minimum propagation delay through the combinational logic exceeds
the hold time requirement of the registers.

The most important constraint above is the first one. The length of the clock
period of a sequential circuit is directly related to the maximum propagation
delay through the combinational logic of the circuit.

Given that the delay calculation of the sequential circuit primarily depends
on the delay of the combinational logic, we will focus on the problem of cor-
rectly computing the maximum propagation delay of a multilevel combinational
circuit. We will show in the next section how to optimize a circuit so as to min-
imize the delay through the circuit.

For some time the most common approach to estimating and validating the
delay of a synchronous circuit was timing simulation. The approach is dimin-
ishing in utility because of the incompleteness and excessiveness of input sti-
muli required to accurately determine circuit performance. Instead, timing
verification is being used for validating the timing of circuits, and we will focus
exclusively on using timing verification for estimating and validating the timing
of a synchronous circuit.

Terminology. Before delving into timing analysis, we introduce terminology
that will allow us to discuss timing issues. A combinational circuit can be viewed
as a DAG G = (V] E) where vertices or nodes Vin the graph correspond to gates in
the circuit and edges E correspond to connections in the circuit. Primary inputs
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are sources C Vwhile primary outputs are sinks C V. A path in a combinational
circuit is an alternating sequence of vertices and edges, {vg, €, - - -, Uy, €5, Uyi1},
where edge e; = (v;, v;41), 1 < i< n, connects the output of vertex v; to an input
of vertex v;, 1. For 1 <i < m, v;is a gate g;, vy is a primary input, and v,,. ; is a pri-
mary output. Each e; is a wire (or a two-terminal net) in the actual circuit.

Let p = {vg, €o, - - -, Uy, €4, U, 1} De a path. The inputs of v; other than e;_ are
referred to as the side-inputs to p, that is, the set of signals not on p but feed-
ing to the gates on p.

Each gate g; (or wire e;) is assumed to have a delay which can be a fixed
quantity under the fixed delay model or can vary in a given range under the
monotone speedup delay model.

A controlling value at a gate input is the value that determines the value at
the output of the gate independent of the other inputs. For example, O is a
controlling value for an AND gate. A non-controlling value at a gate input
is the value which is not a controlling value for the gate. For example, 1 is a
non-controlling value for an AND gate. We say that a gate g has the controlled
value if one of its inputs has a controlling value; otherwise, we say that g has
the non-controlled value.

Path sensitization studies the conditions under which signals can propa-
gate from the primary inputs to the primary outputs of a combinational circuit.
The conditions depend on the delay models and modes of operation assumed
for the circuit.

We will precisely characterize the delay of a multilevel logic circuit, and see
that the delay of a multilevel circuit depends on various assumptions relating
to the mode of operation of the circuit and the delay model chosen. We begin
with the simplest topological timing analysis, which is conservative but
sound. The complexity of the analysis is linear in the circuit size. We will then
introduce functional timing analysis, which is accurate at the cost of compu-
tation overhead.

6.5.1 Topological timing analysis

Most timing analyzers fall into the topological timing analysis category, where
the topologically longest path in the circuit is assumed to dictate the critical delay
of the circuit. We describe a topological timing analyzer that determines the lon-
gest path in the circuit without regard to the Boolean functionality of the circuit.

Circuit speed is measured by most optimization systems using a fixed delay
model, where each gate and wire in the network has a given and fixed delay. Typ-
ically, a worst-case design methodology is followed, where the given delay for the
gate is an upper bound on the actual delay of the fabricated gate.

The arrival time of a signal s, denoted A, is the time at which the signal set-
tles to its steady state value. For a given circuit, using the arrival times of the pri-
mary inputs we can compute the arrival time of every signal in the circuit. For a
gate in the circuit, the arrival time of the gate output equals the maximum
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among the arrival times of the gate inputs plus the gate delay. That is, the arrival
time of the output signal o of a gate g with gate delay d can be computed by

A, = max {4;} +d
icFi(g)

where FI(g) denotes the set of fanin signals of g.

The required time of a signal s, denoted Ry, is the time at which the signal
is required to be stable. For a given circuit, using the required times of the pri-
mary outputs we can compute the required time of every signal in the circuit.
For a gate in the circuit, the required time of any input of the gate equals the
minimum among the required times of the gate outputs minus the gate delay.
That is, the required time of any input signal 7 of a gate g with gate delay d
can be computed by

Ri= iy Ued =4
where FO(g) denotes the set of fanout signals of g.

The slack time of a signal s, denoted S, is the difference between its
required time and arrival time, 7.e.,

Ss = Ry — As

The slack value of a signal measures its looseness in terms of timing criticality.
Negative slack values indicate timing violation.

Starting with the primary input arrival times, we can compute the arrival time
for every signal in a topological order from primary inputs to primary outputs.
Similarly, using the primary output required times, we can compute the required
times for every signal in a reverse topological order from primary outputs to pri-
mary inputs. Thus the slack at each node can be obtained as well.

Example 6.75 The arrival time, required time, and slack of each signal in Figure 6.32 are shown as a
3-tuple. We are given the arrival times for the four primary inputs and the required time
for the output. The delay of each node is indicated within the node. The arrival time of
signal e is the maximum of the arrival times of primary inputs a and b (= 1) plus the delay
of the node (= 1), equaling 2. Similarly the arrival times of the other signals can be calcu-
lated. On the other hand, given a required time of 8 at output h, the required times for-
signals £ and g can be computed as 8 minus the delay of the output node (= 2),
equaling 6. However, given the required time of 6 at £, the required times at signals
e and g are calculated to be 4. The required time for signal g is the minimum of the com-
puted required times, namely 4. This is intuitive because, if g does not stabilize by time 4,
£ will not stabilize by time 6 and the output h will not stabilize by time 8. Similarly, the
required times at the other signals can be calculated.

The topologically longest path of a circuit is a path where each signal has the
minimum slack. Static timing analyzers assume that the critical delay of the cir-
cuit is the delay of the topologically longest path. Under this (pessimistic)
assumption the longest path is also called the critical path.
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FIGURE 6.32

Topological timing analysis.

6.5.2 Functional timing analysis

The problem with topological analysis of a circuit is that not all critical paths in
a circuit need be responsible for the circuit delay. Critical paths in a circuit can
be false, i.e., not responsible for the delay of a circuit. The critical delay of a
circuit is defined as the delay of the longest true path in the circuit. Thus, if the
topologically longest path in a circuit is false, then the critical delay of the circuit
will be less than the delay of the longest path. The critical delay of a combina-
tional logic circuit is dependent on not only the topological interconnection
of gates and wires, but also the Boolean functionality of each node in the circuit.
Topological analysis only gives a conservative upper bound on the circuit delay.

Example 6.76 Assume the fixed delay model, and consider the carry bypass circuit of Figure 6.33. The

circuit uses a conventional ripple-carry adder (the output of gate 11 is the ripple-carry
output) with an extra AND gate (gate 10) and an additional multiplexor. If the propagate
signals p0 and p1 (the outputs of gates 1 and 3, respectively) are high, then the carry-
out of the block c2 is equal to the carry-in of the block c0. Otherwise it is equal to the
output of the ripple-carry adder. The multiplexor thus allows the carry to skip the
ripple-carry chain when all the propagate bits are high. A carry-bypass adder of arbitrary
size can be constructed by cascading a set of individual carry-bypass adder blocks,
such as those of Figure 6.33.

Assume the primary input cO arrives at time t = 5 and all the other primary inputs
arrive at time t = 0. Let us assign a gate delay of 1 for AND and OR gates and gate
delays of 2 for the XOR gates and the multiplexor. The longest path including the late
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FIGURE 6.33

2-bit carry-bypass adder.

p1

arriving input in the circuit is the path shown in bold, call it P, from c0 to ¢2 through
gates 6, 7, 9, 11, and the multiplexor (the delay of this path is 11). A transition can never
propagate down this path to the output because in order for that to happen the propa-
gate signals have to be high, in which case the transition propagates along the bypass
path from c0 through the multiplexor to the output. This path is false since it cannot
be responsible for the delay of the circuit.

For this circuit, the path that determines the worst-case delay of c2 is the path from
a0 to c2 through gates 1, 6, 7, 9, 11, and the multiplexor. The output of this critical path
is available after 8 gate delays. The critical delay of the circuit is 8 and is less than the
longest path delay of 11.

6.5.2.1 Delay models and modes of operation

Whether a path is a true or false delay path closely depends on the delay
model and the mode of operation of a circuit.

In the commonly used fixed delay model, the delay of a gate is assumed to be a
fixed number d, which is typically an upper bound on the delay of the component in
the fabricated circuit. In contrast, the monotone speedup delay model takes into
account the fact that the delay of each gate can vary. It specifies the delays as an inter-
val [0, d ], with the lower bound 0 and upper bound 4 on the actual delay.

Consider the operation of a circuit over the period of application of two con-
secutive input vectors v; and v,. In the transition mode of operation, the cir-
cuit nodes are assumed to be ideal capacitors and retain their values set by v,
until v, forces the voltage to change. Thus, the timing response for v, is also a
function of v, (and possibly other previously applied vectors). In contrast, in
the floating mode of operation the nodes are not assumed to be ideal capaci-
tors, and hence their state is unknown until it is set by v,. Thus, the timing
behavior for v, is independent of v;.

Transition Mode and Monotone Speedup. In our analysis of the carry-
bypass adder we assumed fixed delays for the different gates in the circuit
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and applied a vector pair to the primary inputs. It was clear that an event (a sig-
nal transition, either 0 — 1 or 1 — 0) could not propagate down the longest
path in the circuit. A precise characterization is that the path cannot be sensi-
tized, and thus false, under the transition mode of operation and under (the
given) fixed gate delays. Varying the gate delays in Figure 6.33 does not change
the sensitizability of the path shown in bold.

False path analysis under the fixed delay model and the transition mode of
operation, however, may be problematic as seen from the following example.

Example 6.77 Consider the circuit of Figure 6.34a, taken from [McGeer 1989]. The delays of each of

the gates are given inside the gates. In order to determine the critical delay of the circuit
we will have to simulate the two vector pairs corresponding to a, making a O — 1 transi-
tion and a 1 — O transition. Applying 0 — 1 and 1 — O transitions on a does not change
the output £ from 0. Thus, one can conclude that the circuit has critical delay O under the
transition mode of operation for the given fixed gate delays.

Now consider the circuit of Figure 6.34b which is identical to the circuit of
Figure 6.34a except that the buffer at the input to the NOR gate has been sped up from
2 to 0. We might expect that speeding up a gate in a circuit would not increase the criti-
cal delay of a circuit. However, for the 0 — 1 transition on a, the output £ switches both
at time 5 and time 6, and the critical delay of the circuit is 6.

FIGURE 6.34
Transition mode with fixed delays.
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This example shows that a sensitization condition based on transition mode and
fixed gate delays is unacceptable in the worst-case design methodology,
where we are given the upper bounds on the gate delays and are required to
report the (worst-case) critical path in the circuit. Unfortunately, if we use only
the upper bounds of gate delays under the transition mode of operation, an
erroneous critical delay may be computed.

To obtain a useful sensitization condition, one strategy is to use the transition
mode of operation and monotone speedup as the following example illustrates.

Example 6.78 Consider the circuit of Figure 6.35, which is identical to the circuit of Figure 6.34a, except that
each gate delay can vary from 0 toits given upper bound. As before, in order to determine the
critical delay of the circuit, we will have to simulate the two vector pairs corresponding to a
making a 0 — 1 transition and a 1 — O transition. However, the process of simulating the cir-
cuitis much more complicated since the transitions at the internal gates may occur at varying
times. In the figure, the possible combinations of waveforms that appear at the outputs of
each gate are given for the O — 1 transition on a. For instance, the NOR gate can either stay
atO0ormake a0 — 1 — Otransition, where the transitions can occur between [0, 3]and [0, 4],
respectively. In order to determine the critical delay of the circuit, we scan all the possible
waveforms at output £ and find the time at which the last transition occurs over all the wave-
forms. This analysis provides us with a critical delay of 6.

Timing analysis for a worst-case design methodology can use the above strategy
of monotone speedup delay simulation under the transition mode of operation.
The strategy however has several disadvantages. Firstly, the search space is 2"
where 7 is the number of primary inputs to the circuit, since we may have to
simulate each possible vector pair. Secondly, monotone speedup delay simula-
tion is significantly more complicated than fixed delay simulation. These diffi-
culties have motivated delay computation under the floating mode of operation.

Floating Mode and Monotone Speedup. Under floating mode, the delay
is determined by a single vector. As compared to transition mode, critical delay
under floating mode is significantly easier to compute for the fixed or mono-
tone speedup delay model because large sets of possible waveforms do not need

FIGURE 6.35

Transition mode with monotone speedup.
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to be stored at each gate. Single-vector analysis and floating mode operation, by
definition, make pessimistic assumptions regarding the previous state of nodes
in the circuit. The assumptions made in floating mode operation make the fixed
delay model and the monotone speedup delay model equivalent.’

6.5.2.2 True floating mode delay
The necessary and sufficient condition for a path to be responsible for circuit
delay under the floating mode of operation is a delay-dependent condition.

The fundamental assumptions made in single-vector delay-dependent analy-
sis are illustrated in Figure 6.36. Consider the AND gate of Figure 6.36a. Assume
that the AND gate has delay 4 and is embedded in a larger circuit, and a vector
pair (vy, v,) is applied to the circuit inputs, resulting in a rising transition occur-
ring at time £, on the first input to the AND gate and a rising transition at time #,
on the second input. The output of the gate rises at a time given by max{#,, £} + d.
The abstraction under floating mode of operation only shows the value of v,. In
this case a 1 arrives at the first and second inputs to the AND gate at times #, and
1, respectively, and a 1 appears at the output at time max{t,, £,} + d. Similarly, in
Figure 6.36b two falling transitions at the AND gate inputs result in a falling transi-
tion at the output at a time that is the minimum of the input arrival times plus the
delay of the gate.

Now consider Figure 6.36¢, where a rising transition occurs at time #; on the
first input to the AND gate and a falling transition occurs at time #, on the sec-
ond input. Depending on the relationship between #; and ¢, the output will either
stay at O (for ¢; > t,) or glitch to a 1 (for #; < ;). It is possible to accurately deter-
mine whether the AND gate output is going to glitch or not if a simulation is car-
ried out to determine the range of values that #; and £, can have on (v, v,).
(This was illustrated in Figure 6.35.) However, under the floating mode of oper-
ation we only have the vector v,. The 1 at the first input to the AND gate arrives
at time #;, and the O at the second input arrives at time #,. The output of the
AND on v, obviously settles to 0 on v,, but at what time does it settle? If £; >
t,, then the output of the gate is always 0, and the 0 effectively arrives at time

3To understand this effect, consider a circuit € with fixed values on its gate delays. Let p be a path
through C and v be a vector applied to C. In order to determine if p is responsible for the delay of C
on v, we inspect the side-inputs of p. At any gate g on p, the side-inputs have to be at non-
controlling values when the controlling or non-controlling value propagates along p through g. If
the value at a side-input 7 to g is non-controlling on v, monotone speedup (under the transition
or floating mode) allows us to disregard the time that the non-controlling value arrives, since we
can always assume that it arrives before the value along p. Let the delay of all paths from the
primary inputs to 7 be greater than the delay of the sub-path corresponding to p ending at g.
Under monotone speedup, we can speed up all the paths to 7, ensuring that the non-controlling
value arrives in time. Under floating mode with fixed delays we cannot change the delays of the
paths to Z, but we can assume that v,, the vector applied before v, was providing a non-
controlling value! We do not have to wait for v to provide the non-controlling value. In either
case, the arrival time of non-controlling values on side-inputs does not matter.



6.5 Timing analysis

I -
t i t
_ MAX{t;, t,}+d MAX{t,, t,}+d
_
t, =
(a)
L
t, L ty :E)_
- MIN{t,,t,}+d MIN{t,,t,}+d
ty €2
(b)
s B S
t, L ty :IE)_
1 ti+d  t,y+d ty+d
€ €
()
FIGURE 6.36

Fundamental assumptions made in floating mode operation.

0. If ¢, < 1,, then the gate output becomes 0 at ¢, + d. In order not to underes-
timate the critical delay of a circuit all single-vector sensitization conditions
bhave to assume that the 1 (the non-controlling value for the AND gate) arrives
before the 0 (the controlling value for the AND gate), 7.e., that #; < f,. Under
the floating mode of operation this corresponds to assuming that the values
on the previous vector v; were non-controlling. (The above assumption also
captures the essence of transition mode delay under the monotone speedup
delay model. Given that the AND gate is embedded in a circuit, under the mono-
tone speedup model the sub-circuit that is driving the first input can be sped up
to cause the rising transition to arrive before the falling transition.)

The rules in Figure 6.36 represent a timed calculus for single-vector simula-
tion with delay values that can be used to determine the correct floating mode
delay of a circuit under an applied vector v, (assuming pessimistic unknown
values for v) and the paths that are responsible for the delay under v,. The
rules can be generalized as follows:

1. If the gate output is at a controlling value, pick the minimum among the
delays of the controlling values at the gate inputs. (There has to be at least
one input with a controlling value. The non-controlling values are ignored.)
Add the gate delay to the chosen value to obtain the delay at the gate output.

2. If the gate output is at a non-controlling value, pick the maximum of all
the delays at the gate inputs. (All the gate inputs have to be at non-
controlling values.) Add the gate delay to the chosen value to obtain
the delay at the gate output.
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To determine whether a path is responsible for floating mode delay under a vec-
tor v,, we simulate v, on the circuit using the timed calculus. As shown in
[Chen 1991], a path is responsible for the floating mode delay of a circuit on
v, if and only if for each gate along the path:

1. If the gate output is at a controlling value, then the input to the gate
corresponding to the path has to be at a controlling value and further-
more has to have a delay no greater than the delays of the other inputs
with controlling values.

2. If the gate output is at a non-controlling value, then the input to the gate
corresponding to the path has to have a delay no smaller than the delays
at the other inputs.

Let us apply the above conditions to determine the delay of the following circuits.

Example 6.79 Consider the circuit of Figure 6.34a reproduced in Figure 6.37. Applying the vector a = 1
sensitizes the path of length 6 shown in bold, illustrating that the sensitization condition
takes into account monotone speedup (unlike transition mode fixed delay simulation). Each
wire has both a logical value and a delay value (in parentheses) under the applied vector.

Example 6.80 Consider the circuit of Figure 6.38. Applying the vector (a, b, ¢) = (0, 0, 0) gives a
floating mode delay of 3. The paths {a, d, £, g} and {b, 4, £, g} can be seen to
be responsible for the delay of the circuit.

Example 6.81 Consider the circuit of Figure 6.39. Applying a = 0 and a = 1 results in a floating mode
delay of 5.

We presented informal arguments justifying the single-vector abstractions of
Figure 6.36 to show that the derived sensitization condition is necessary and
sufficient for a path to be responsible for the delay of the circuit under the float-
ing mode of operation. For a topologically oriented formal proof of the necessity
and sufficiency of the derived condition, see [Chen 1991].

1(2)

0(4)

FIGURE 6.37
First example of floating mode delay computation on a circuit.
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FIGURE 6.38

Second example of floating mode delay computation on a circuit.

0(1)
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1(1)
1(0)
a
1(2)
FIGURE 6.39

Third example of floating mode delay computation on a circuit.

6.5.3 Advanced subjects

There has been significant research done in an effort to arrive at the correct sen-
sitization criterion in the late 1980s and early 1990s. A detailed history may be
found in [McGeer 1991]. The computation of true critical delay of a circuit can
be formulated with satisfiability solving [McGeer 1991; Guerra E Silva 2002] or
timed automatic test pattern generation [Devadas 1992].

As for sequential circuit timing analysis, depending on the register types
(e.g., edge-triggered flip-flops and level-sensitive latches) and the number of
clock phases used, their timing correctness requires careful analysis and verifi-
cation. On the other hand, for IC manufacturing in the nanometer regime, pro-
cess variations may cause substantial variations in circuit performance. This
fabrication imperfection has motivated the development of statistical static
timing analysis in replacement of the traditional (worst-case) static timing
analysis (Z.e., the presented topological timing analysis). A good introduction
to sequential circuit timing analysis and statistical static timing analysis can be
found in [Sapatnekar 2004].
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6.6 TIMING OPTIMIZATION

Being able to meet timing requirements is absolutely essential in synthesizing
logic circuits. Timing optimization of combinational circuits can be performed
both at the technology-independent level and during technology mapping. We
consider the restructuring operations used in logic synthesis systems to improve
circuit speed. We give an overview of basic restructuring methods that take into
account timing constraints specified as input-arrival times of the primary inputs
and output-required times of the primary outputs. The goal is to meet the
timing constraints while keeping the area increase to a minimum. The methods
use topological timing analysis, described in Section 6.5.1, to compute arrival
times, required times, and slack times. Topological timing analysis is typically
deployed in timing optimization tools due to its simple and fast calculation;
functional timing analysis, in contrast, is mostly used for timing verification
purposes instead due to its expensive computation cost.

6.6.1 Technology-independent timing optimization

For a given circuit to be delay minimized, the timing constraints are specified as
the arrival times at the primary inputs and required times at the primary out-
puts. The optimization algorithm manipulates the network topology to achieve
improved speed until the timing constraints are satisfied or no further decrease
in the delay can be achieved.

The critical section of a Boolean network is composed of all the critical
paths from primary inputs to primary outputs. Given a critical path, the total
delay on the path can be reduced if any section of the path is sped up. Collaps-
ing and redecomposition are the basic steps taken in restructuring. The
nodes along the critical paths chosen to be collapsed and redecomposed form
the redecomposition region.

Example 6.82 In Figure 6.40a we have a critical path {a, %, y}. The critical path can be reduced by

first collapsing x and y and then redecomposing y in a different way to minimize the criti-
cal path as shown in Figure 6.40b.

Since a critical section usually consists of several overlapping critical paths,
we select a minimum set of subsections, called redecomposition points,
which when sped up will reduce the delays on all of the critical paths. (Note
that it is not always possible to do so.) A weight is assigned to each candidate
redecomposition point to account for possible area increase and for the total
number of redecomposition points required. The goal is to select a set of points
which cut all the critical paths and have the minimum total weight.
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FIGURE 6.40
Collapsing and redecomposition.

Once the redecomposition points are chosen, they are sped up by the col-
lapsing-decomposing procedure as described in Section 6.3.3. Since in a multi-
level network we can reduce the area by sharing common functions, we first
attempt to extract area saving divisors that do not contain critical signals. After
all such divisors have been extracted, we decompose the node into a tree and
place late arriving signals closer to the outputs, thus making them pass through
a smaller number of gates.

Example 6.83 In Figure 6.41, the critical paths in the original network are shown in bold and begin from
signals ¢ and d. Node £ is collapsed, and a divisor k is selected which has the desired
property that substituting k into £, places the critical signals ¢ and d closer to the output.

Note that the critical paths in the decomposed network may have changed.
The collapsing-decomposing procedure can be iterated by identifying a new

Collapsed Node

FIGURE 6.41

Basic idea of timing decomposition.
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critical section. The algorithm proceeds until the requirement is satisfied or no
improvement in delay can be made. A detailed exposition of speed optimization
algorithms can be found in, e.g., [Singh 1992; Devadas 1994].

6.6.2 Timing-driven technology mapping

Technology-independent delay optimization algorithms cannot estimate the
delay of a circuit accurately, largely due to the lack of accurate technology-
independent delay models. Therefore, such algorithms are not guaranteed to
produce faster circuits, when circuit speed is measured after technology
mapping and physical design. We will present a more accurate approach to
delay optimization during technology mapping. The tree covering algorithm
presented in Section 6.4.5, in the context of technology mapping for minimum
area, will be modified to target circuit speed.

The most accurate estimation of the delay of a gate in a circuit can only be
obtained after the entire circuit has been placed and routed. Since technology
mapping has to be performed before placement and routing, an approximate
delay model with reasonable accuracy has to be used. We adopt the linear delay
model of Equation (6.19) of Section 6.5 in the following discussion.

6.6.2.1 Delay optimization using tree covering

The tree covering algorithm of Section 6.4.5 can only be used if the cost of a
match at a gate can be determined by examining the cost of the match and
the cost of the inputs to the match (for which the cost has already been deter-
mined). For area optimization the cost of a gate depends on the area cost of the
match and the area cost of the inputs of the match. For delay optimization, the
cost is signal arrival time at the output of the match. Therefore, the cost of a
match for delay optimization depends not only on the structure of the tree
beneath the gate, but also on the capacitive load seen by the match. This load
cannot be determined at the time of the selection of the match as it depends
on the unmapped portion of the tree. Several attempts have been made to gen-
eralize tree covering to produce minimum delay implementations [Rudell 1989;
Touati 1990; Chaudhary 1992].

Load-Independent Tree Covering. The tree covering algorithm of Section
6.4.5 can be used to produce a minimum delay implementation of a circuit
provided the loads of all the gates in the circuit are the same. Under the assump-
tion that the delay of a gate is independent of the fanout of the gate, the tree
covering algorithm provides the minimum arrival time cover, if we compute
and store the arrival time at each node and choose the minimum arrival time
match at each node.

Example 6.84 Consider the technology library shown in Figure 6.42 and the circuit shown in Figure 6.43a.

For each gate in the library, its name, area, symbol, and pattern DAG are presented. In
addition, the delay parameters for our delay model are shown. By Equation (6.19), the
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:

AOI21 3

Gate Area Symbol Pattern DAG Delay Parameters
INV 1 1> 1> A=0,B=1,G=1
NAND2 2 :D— :Do— A=1,B=1,G=2
NAND3 3 D— % A=1B=2,G=3
NAND4 4 D A=5,B=2,G=5

- )_c tl:: [: A=1.5,B=1,G=3

FIGURE 6.42
Gate library.

FIGURE 6.43
Circuit and its mapped implementation.

intrinsic delay, T, is denoted by A, the load dependent coefficient T./Cj, is denoted by B, and
the load C;, presented by the gate to any input gate is denoted by G. Note that in order to cal-
culate the delay of a gate using Equation (6.19), we will use A and B for the gate and sum up
the G values for all its fanout gates.
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If the load of each gate in the circuit is considered to be 1, then the perfect match at
each gate can be determined in one bottom-up pass, as in Section 6.4.5. For gate 1, this
corresponds to a 2-input NAND gate with a delay of 2. The best match at gate 2 is a
3-input NAND gate with a delay of 3. The best covering for this circuit under the fixed
load assumption is shown in Figure 6.43b.

Load-Dependent Tree Covering. The above load-independent tree cover-
ing does not necessarily produce the optimal solution because the load of all
gates is not the same. As can be seen from the library in Figure 6.42, different
gates provide different load values to their inputs.

An algorithm, originally presented in [Rudell 1989], can be used to take into
account the effect of different loads. The first step of the algorithm is a pre-proces-
sing step over the technology library in order to create n load bins and quantize the
load values for all the pins in the library. For each load bin, a representative load
value is selected, and the remaining load values are mapped to their closest value
in the chosen set. The value of 7 determines the accuracy and the run time of the
algorithm. If » is equal to the number of distinct loads in the library, then the algo-
rithm is most accurate. However, the larger the value of 7, the more computation
will be required. Instead of quantizing load values a priori based on the library infor-
mation, a better way is to adapt the quantization intervals to each gate. In one
pre-computation phase, we can determine all possible load values at a gate by exam-
ining all the possible matches at the gate. These load values can then be used to
determine the values of the quantization intervals.

For a match at a gate, an array of costs (one for each load value) is calculated.
The cost is the arrival time of the signal at the output of the gate. For each bin or
load value, the match that gives the minimum arrival time is stored. For each
input 7 of the match, the optimum match for driving the pin load of pin 7 of
the match is assumed, and the arrival time for that match is used. This calcula-
tion can be done by traversing the tree once forward from the leaves of the tree
to its root. The tree is then traversed backward from the root to the leaves,
whereby the load values are propagated down and, for each gate, the best
match at the gate is selected depending on the value of the load seen at the gate.

Example 6.85 Weillustrate the algorithm using the circuit of Figure 6.43a and the library of Figure 6.42. Con-

sider the best matches shown in Figure 6.44. Since the number of distinct load values in our
example is only four, four bins are considered. For gate 1 the only matchisa NAND2 gate. For
each load value, the delay of this gate then gives the arrival time at the output of the match
(assuming zero arrival time at the inputs). For the inverter at the output of this NAND gate,
the only match is that of an inverter. Since the inverter presents a load of 1 to the NAND gate,
the arrival time at the input of the inverter is the arrival time corresponding to the first bin of the
NAND gate. Using this arrival time, the arrival times at the output of the inverter for all possible
load values are computed and are shown in the figure.
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load=1: NAND3: delay=3 load=1: NAND3: delay=10
load=2: NAND3: delay=5 load=2: NAND2: delay=11.5
load=3: NAND3: delay=7 load=3: NAND2: delay=12.5
load=5: NAND2: delay=10 load=5: NAND2: delay=14.5

load=1: NAND2: delay=2 load=1: NAND2: delay=7
load=2: NAND2: delay=3 load=2: NAND2: delay=8
load=3: NAND2: delay=4 load=3: NAND2: delay=9
load=5: NAND2: delay=6 load=5: NAND2: delay=11

load=1: INV: delay=3 load=1: INV: delay=1 load=1: AOI21: delay=7.5

load=2: INV: delay=4 load=2: INV: delay=2 load=2: AOI21: delay=8.5

load=3: INV: delay=5 load=3: INV: delay=3 load=3: AOI21: delay=9.5

load=5: INV: delay=7 load=5: INV: delay=5 load=5: AO0I21: delay=11.5
FIGURE 6.44

Technology mapping considering load values.

At gate 2, there are two possible matches corresponding to 2-input and 3-input
NAND gates. If we consider the NAND2 gate, the two arrival times at the inputs of the
match are 0 (corresponding to the primary input connection to gate 2) and 4
(corresponding to the inverter connection to gate 2 seeing a load of 2). The maximum
arrival time at the inputs is 4. The arrival times at the output of the gate for the four
different load values are 6, 7, 8, and 10. E.g., for a load value of 5, a NAND2 gate has
adelay 1 + 1 x 5 = 6. This delay added to the arrival time of 4 at the input of the NAND
gate produces an arrival time of 10 at the output. For the NANDS gate, the arrival times
of all inputs are 0, and therefore the arrival times at the output are 3, 5, 7, and 11. There-
fore, for the first three load values, the NANDS is a better choice, while for the last load
value the NAND2 is a better choice.

The final mapping is determined during backward traversal and depends on the load
seen by gate 4. Assuming a load of 1, the best match at gate 4 is a NAND3 gate. This
gate presents a load of 3 to its inputs, implying that the best match for a load value of
3 at gate 2 has to be chosen. This match is another NAND3 gate. The resulting mapping
is shown in Figure 6.45a, which is coincidentally the same mapping obtained assuming
constant load (Figure 6.43b). However, if the load is greater than 1, then the mapping of
Figure 6.45b is better.

To improve the computation, we may apply adaptive quantization of load values. For
instance, for gate 1 in the circuit of Figure 6.44, only a load value of 1 has to be consid-
ered because all possible matches at the inverter consist of only an inverter; for gate 2,
load values of 2 and 3 have to be considered. This type of adaptive quantization pro-
duces results close to the optimum within reasonable amounts of computation time.
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FIGURE 6.45

Two different implementations of the circuit depending on load value.

Note that, under the more general linear delay model, the principle of opti-
mality of tree covering does not apply.

6.6.2.2 Area minimization under delay constraints

The tree covering algorithm used above can be generalized to minimize the area
under a delay constraint. It may not be necessary to obtain the fastest circuit,
but instead we may want to obtain a circuit that meets certain timing con-
straints and has the minimum possible area. This timing constraint is expressed
as a required time at the root of the tree and can be propagated down the tree
together with load values during backward traversal. In this case the cost of a
match at a gate includes not only the arrival time but also the area of a match.
During backward traversal the minimum area solution that meets the required
timing constraint is chosen. If no such solution is available, then the minimum
delay solution is chosen. Since not all of the sub-trees need to be maximally fast,
the area of the circuit can be minimized.

Example 6.86 Consider the mapping shown in Figure 6.46a. The circuit has been mapped for minimum

delay, and the arrival time at the output of gate 7 is 7. However, the required time at the
output of this gate is 9, and the other match at gate 7 has an arrival time of 9 but a smal-
ler area. Selecting this match gives us a circuit with the same delay but a smaller area, as
shown in Figure 6.46b.
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FIGURE 6.46

Example illustrating area recovery.

6.6.3 Advanced subjects

Fanout Optimization. Tree covering alone does not generate good quality solu-
tions because most circuits are not trees but DAGs. In such circuits, a signal may
feed two or more destinations. Due to the large amount of capacitance that has to
be driven, the delay through the gate that drives this signal could be large. The
optimization of this delay is called fanout optimization. Buffer insertion and gate
sizing, among other techniques, are important approaches to fanout optimization.
A survey on fanout optimization can be found in [Hassoun 2002].
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Sequential Circuit Timing Optimization. In addition to logic restructur-
ing, we may exploit optimization techniques special for sequential circuits.
Promising sequential timing optimization methods include, for instance, retim-
ing [Leiserson 1983, 1991] and clock skew scheduling. See, e.g., [Sapatnekar
2004] for introduction.

6.7 CONCLUDING REMARKS

This chapter presents some important classic problems in combinational logic
synthesis and basic techniques to solve them. Since logic synthesis has become
very broad and continues to evolve, many important developments cannot be
covered and only a few of them are mentioned here.

To invite and motivate future investigations, we list some logic synthesis trends:

Scalable Logic Synthesis. The capacity of logic synthesis tools is con-
stantly being challenged by the ever-increasing complexity of modern industrial
designs commonly consisting of millions of gates. The data structures and algo-
rithms of logic synthesis tools must be effective and robust enough in order to
handle large problem instances. It is interesting to note that every capacity leap
in the history of logic synthesis can be attributed to some data structure revolu-
tion, e.g., from truth tables to covers, from covers to BDDs, and from BDDs to
AIGs and SAT. As SAT solvers have become much faster in recent years, a para-
digm shift is taking place in logic synthesis. More and more SAT-based algo-
rithms emerge in replacement of BDD-based ones. Searching for new effective
data structures may transform logic synthesis tools.

Verifiable Logic Synthesis. As noted earlier, due to the hardness of verifi-
cation, industrial synthesis methodologies are often conservative and mostly
conduct only combinational optimization, despite the existence of practical
sequential synthesis techniques.4 This phenomenon is changing because pro-
gressive optimization methods are necessary to meet more stringent timing con-
straints, and also verification techniques are made more effective, especially for
circuits optimized in particular ways [Jiang 2007]. To completely overcome the
verification barrier, a general consensus is that essential synthesis information
should be revealed to verifiers. Verifiable logic synthesis sets forth the criterion
that whatever can be synthesized can be verified effectively [Brayton 2007].

Parallelizable Logic Synthesis. One way to speed up logic synthesis algo-
rithms is to take advantage of hardware and software technologies. As multi-
core computers support more and more parallelism, EDA tools can benefit from
this technology advancement. How to utilize parallelism in logic synthesis algo-
rithms is a challenge for EDA companies.

‘One exception is FPGA synthesis, where sequential optimization methods find wide
applications. The reconfigurability of FPGAs makes verification not as critical as general ASIC
designs because incorrect logic transformations can be rectified later through reconfiguration.
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Statistical Logic Synthesis. The continuous miniaturization of semiconduc-
tor devices imposes serious threats to circuit design robust against process var-
iations and environmental fluctuations. Various uncertainties appear in both
pre- and post-design phases. How to synthesize a robust circuit optimal in a sta-
tistical sense with respect to design constraints is an important challenge that
needs to be addressed.

Physically Aware Logic Synthesis. Logic synthesis and physical design are
traditionally separated to enable a divide-and-conquer approach to VLSI design
automation. This separation becomes problematic when interconnect becomes
the dominating factor of circuit delays. Lacking wiring information, logic synthe-
sis cannot produce accurate timing estimation and precise timing optimization;
lacking logic information, physical design cannot exploit logic flexibility and has
limited optimization power. Therefore, before timing constraints are met, often
several iterations of logic synthesis and physical design are performed in order
to reach timing closure. Unfortunately there is no guarantee that the process will
converge. This phenomenon leads to a serious design closure problem, which
slows down design cycles and therefore time to market. Even though there are
approaches to timing closure, such as gain-based synthesis, incremental place-
ment and resynthesis, etc., there is still plenty of room for improvement.

Logic Synthesis for Emerging Technologies. As the miniaturization of
electronic devices approaches physical limits, Moore’s Law is expected to be
broken sooner or later. Alternatives to silicon-based computation devices are
actively being researched. For the next computation model, we might need very
different logic synthesis tools, perhaps even beyond propositional logic and
Boolean algebra.

6.8 EXERCISES

6.1. (Commutativity between Cofactor and Boolean Operations)
Given two Boolean functions f and g and a Boolean variable v, prove
or disprove the following equalities:

(@ o = (D
() (f (o) ©v = (f) (0P) (8w for (op) = (A, &)

6.2. (Boolean Difference) Let f(x, y, 2) = h(g(x, ¥, 2), ) 2). Prove or dis-
prove the following equalities:

OxQy Oyox

ox ou ox
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6.3.

6.4.

6.5.

6.6.

6.7.

© Y&22) _ Oy 2)dgx.y.2) @82h(u7y7z) dg(x,y,2) dy
Ay N ou Ay Oudy gy Oy

(Quantified Boolean Formula) For Boolean functions f and g, show
that

(@ ~(Fxf (x,)) = Vx.~f (x,7)
b) —(Vxf(x,9)) = Ix.~f (x,9)
(© Fx.(f(x,0) Ng(x,)) # (xS (x,)) A (Fxg(x,7))
(@ Vo, 32.(f (2x,9) A g(x,2)) = Fe.(—f (x,) V Vz.mg(x, )

(Boolean Function Bi-decomposition) For a given Boolean function
fX,, Xp) with non-empty variable sets X, and Xz, with X, N Xz = 0,
what is the condition on f(X,, Xp) such that the rewriting (X, Xp)
= fuXp AN fp(Xp) is possible for some f4(X,) and fp(Xp) to exist?
(Express the condition with a quantified Boolean formula.)

(Characteristic Functions) Let f: B’— B be the vector (f;, f>) of
Boolean functions with f; = x; V —wx; and 5, = x3 A (7 V 7x1X);
let ys = x; V x> be a characteristic function representing a set § C B3.

(a) Write down the characteristic function Img,(S) (in terms of a quan-
tified Boolean formula) of the image of § under the mapping of f,
that is, the set {g € B* | ¢ = f(p), p € S).

(b) Perform quantifier elimination to obtain a quantifier-free formula
equivalent to Imgg(S) in (a).

() Justify that the formula in (b) indeed represents the image of §
under f by enumerating all the truth assignments of (x;, Xz, x3)
and the corresponding valuations of y¢ and f.

(BDD APPLY) Let F and G be the ROBDDs of Boolean functions f =
abc and g = bd + b'd, respectively, under the variable ordering index
(a) < index(b) < index(c) < index(d).

(a) Draw F and G.

(b) Derive the ROBDD of F-G using the BopArpLy procedure.
(c) Derive the ROBDD of F 4+ G using the BobArprry procedure.
(d) Derive the ROBDD of F & G using the BopArpry procedure.

(ROBDD Variable Ordering) Let F be the ROBDD of an arbitrary
Boolean function f(a, b, c, d, e) under variable ordering
index(a) < index(b) < index(c) < index(d) < index(e).
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Show that the new ROBDD F' under variable ordering
index(a) < index(b) < index(d) < index(c) < index(e),
must have the same BDD structure as F except for the nodes con-
trolled by variables ¢ and d.
6.8. (ROBDD Variable Ordering) Consider the Boolean function
f: a1b1 + ﬂzbz + o+ anbn-

(a) Show that the ROBDD under variable ordering
index(a,) < index(b,) < - < index(a,,) < index(b,,)
has 27 + 2 nodes.
(b) Show that the ROBDD under variable ordering
index(a,) < - < index(a,,) < index(b,) < --- < index(b,,)
has 2! nodes.

6.9. (ROBDDs of Symmetric Functions) Totally symmetric functions
are characterized by the fact that the value of each such function is
determined by the number of variables which are 1 under a truth
assignment; it does not matter which particular variables are. For
example, functions f; = x;A\ - Ax,, 2 = x1V - V x,, and f3 = x; O
-+ @ x,, are totally symmetric. A totally symmetric function on 7 vari-
ables can be described by a set § C {0, 1, . . ., n} such that for a min-
term a € B”, fla) = 1 iff the number of 1’s in a is a member of S.
Prove that the ROBDD of any n-ary totally symmetric function has at
most O(1?) nodes under any variable ordering.

6.10. (Circuit-to-CNF Conversion) Convert each of the following circuits
to a CNF formula representing the consistency condition. In each
case, list the truth assignments to the input/output variables that
make the CNF true.

(a) An inverter with input @ and output b.
(b) An OR2 gate with inputs @, b and output c.
(c) An XOR gate with inputs a, b and output c.

6.11. (Global Function Derivation) Consider the AIG of Figure 6.16.
Derive the global function of x5 (in terms of primary inputs x;, X,
x3) using the following two methods.

(a) Existentially quantify out the intermediate variables x4, x5, X from
its corresponding consistency CNF formula and then perform a
positive cofactor with respect to the variable x-.

(b) Derive the global function of x- by recursively substituting inter-
mediate variables with their local functions.

Verify that the above two methods yield the same result. Explain why
these two approaches are equivalent.

6.12. (SOP and Tautology) Show that the tautology checking of any SOP
formula with at most 2 literals in each product term can be done with
time complexity polynomial in the formula size.
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6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

(Remark: The dual problem is the 2SAT problem in computer science,
which is checkable in polynomial time.)
(Prime and Irredundant Cubes) Let

Cc={ddd, abd, dv'd, advc, ab'd, a'v'c, abc, a'bd}
be a cover of a completely specified function f.

(a) For each cube in C, determine whether it is prime and/or
irredundant.

(b) Can we delete all the redundant cubes at once without affecting
the function of f? Which redundant cubes can we delete from C if
we successively delete removable cubes from left to right? How
about from right to left? (Assume the cubes listed in C is ordered.)

(Quine-McCluskey Two-Level Logic Minimization) Given function
f=wxy7 +wx'z + wxz +wx'z
with don’t care set
d=uwxyz + wx'yz + wxyz

minimize f using the Quine-McCluskey procedure.

(Column Covering) Column covering is an essential computation

step in Quine-McCluskey procedure. It can be solved in different ways.

(a) Show that the column covering problem can be formulated as a
CNEF satisfiability problem. Give an algorithm that performs such
conversion. (The so-derived covering need not be minimum.)

(b) Show that the minimum column covering problem can be formu-
lated in term of ROBDD. Give a polynomial-time algorithm solving
the problem.

(Number of Prime Implicants) Show that

cr - 2n 5
]

is a lower bound on the number of prime implicants for any n-ary
Boolean function.

(Node Value and Elimination) Recall that the value of a node repre-
sents the saved literal count due to the existence of the node rather
than collapsing it into its fanouts. Given the Boolean network of Fig-
ure 6.47, what are the values of nodes 5 and 6? What is the new value
of node 6 after collapsing node 5 into its fanouts? (Here we treat Bool-
ean formulas as polynomials in an algebraic sense, and assume that
Boolean simplifications, suchasx A ~x =0, xV x =1, x A X = x,
and x V x = x, are not involved.)

(Algebraic Division) Prove that algebraic division produces a unique
quotient and remainder. (Note that by definition the remainder is
made as few cubes as possible.)
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FIGURE 6.47

Boolean network.

6.19.

6.20.

6.21.

6.22.

(Kernels and Cokernels) Let expression

F = aefb + aegh + aei + befb + begh + bei + cdefb + cdegh + cdei.
Apply KERNEL1(0, F) to compute the kernels and corresponding
cokernels of E Identify which kernels are of level 0.

(Factoring) Continuing Exercise 6.19, apply GFACTOR to factor the
function F Use different level-0 kernels as divisors. What is the best
factoring for F? For an arbitrary expression, can GFACTOR always pro-
duce a minimum-literal factoring with some proper level-O kernels as
divisors?

(Common Divisor Extraction) Let expressions

F =ac + ad + bc + bd + adf + aef + ag + bcdf + beef + beg, and
G = ag + bcg + bcf + beg + bdf + bdg + bef + beg

(a) Tteratively reexpress F and G in terms of a common expression
that yields the most reduction in literal count until no more com-
mon expressions exist. (A common expression can be a cube-free
expression or a cube.)

(b) Extract an optimal common divisor of F and G by finding rectan-
gles in the cokernel-cube matrix.

(Kernel Intersection) For two expressions F and G, suppose any
kernel Ry of F and any R, of G have at most one term in common.
Show that F and G have no common algebraic divisor with more than
one term.
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X1 Xo X3 X4

FIGURE 6.48

Boolean network.

6.23. (SDC and ODC) Consider the Boolean network of Figure 6.48.

6.24.

(a) Write down a Boolean formula representing the SDC of the entire
circuit. That is, it represents the inconsistency condition of the
circuit.

(b) Write down a Boolean formula for the satisfiability don’t cares
SDC; of node 4 (with output yy). Since SDCjy is induced by the
transitive fanins of node 4, the formula should depend on vari-
ables xq, ..., X4, Y1, - .. , 3. How can you make SDCj refer only
to ¥1, ¥2, ¥5 such that we can minimize node 4 directly?

(c) Compute the observability don’t cares ODCy of node 4.

(Don’t Cares in Local Variables) Continuing Exercise 6.23, suppose
the XDC for z; is —x; X3 x4 and that for 2, is xx0003%x4.

(a) Compute the don’t cares D, of node 4 in terms of its local input
variables 4, ¥», and y3;. (Note that in general the computation
of ODC may be affected by XDC especially when there exist dif-
ferent XDCs for different primary outputs.)

(b) Based on the computed don’t cares, what is the best implementa-
ble function for node 4 (in terms of the literal count and cube
count)?
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6.25. (Complete Flexibility) Continuing Exercise 6.24, let Y = {y1, ¥, ¥3}
and Z = {z}, z2}.

(a) Suppose the XDC for z; is —x;—x,—x3—x4 and that for z, is
x1%x3x4. Write down the specification relation S(X,2).

(b) What is the influence relation I,(X, y4,Z) of node 4?

(c) What is the environment relation E4(X, Y) of node 4?

(d) What is the complete flexibility CF4(Y; y) of node 4?

(e) Is the previously computed don’t care set D4 of node 4 subsumed

6.26. (Static Timing Analysis) Given the circuit of Figure 6.49 with gate
delays shown, assume the arrival times for the primary inputs are
0 except for input b with arrival time 1ns, and the required times
for the primary output are 8ns. Compute the arrival time, required
time, and slack of every net. Identify the critical path(s).

6.27. (Time Slack and Critical Path) Prove or disprove the following state-
ment: The most critical path (with the smallest slack) must be a thorough
path all the way from some primary input to some primary output.

6.28. (Arrival/Required Time Computation) Given a black box that
computes arrival times for a Boolean network with specified gate
delays and input arrival times, devise a way of reusing this black box
to compute required times for a Boolean network.

6.29. (Tree Mapping) Decompose the subject DAG of Figure 6.50 into
trees and perform dynamic programming to find optimum tree

FIGURE 6.49

Circuit for timing analysis.

FIGURE 6.50
Subject graph.
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mappings with respect to the pattern graphs of Figure 6.26. What is
the optimum solution that you can get among different decomposition
approaches?

6.30. (DAG Mapping as SAT Solving) Formulate the DAG mapping feasi-
bility problem as a satisfiability problem. For the subject graph of Fig-
ure 6.50 and the pattern graphs of Figure 6.26, what is the CNF
formula representing feasible DAG mappings?
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