CHAPTER

Electronic system-level
design and high-level
synthesis

Jianwen Zhu
University of Toronto, Toronto, Canada

Nikil Dutt
University of California, Irvine, California

ABOUT THIS CHAPTER

System designers conceptualize designs at an abstract functional level where
outputs are typically described as (algorithmic or transfer) functions of the sys-
tem inputs. This design abstraction level, called electronic system level (ESL),
enables ease of design capture and early design space exploration of multiple
design implementation alternatives. ESL designs can be refined into lower levels
of abstraction through a number of steps that gradually map abstract functions
into register-transfer level (RTL) components. An enabling technology for
ESL design is high-level syntbesis (HLS), also known as behavioral synthesis.
A high-level synthesis tool bridges the gap between an algorithmic description
of a design and its structural implementation at the register transfer level and
is the next natural step in design automation, succeeding logic synthesis. The
need for high-level synthesis becomes more pressing with the proliferation of
billion-transistor designs. High-level synthesis has been researched actively since
the 1980s, and has yielded several promising results. However, it also faces a
number of challenges that has prevented its wide adoption in practice.

In this chapter, we first introduce the notion of ESL design and an ESL design
method. Next, we describe high-level synthesis in the context of an ESL design
method. We then describe the generic structure of the high-level synthesis
process and the basic tasks accomplished by high-level synthesis. This is fol-
lowed by a detailed description of the key high-level synthesis algorithms and
exercises designed to reinforce understanding. The reader will have been
exposed to the basic principles of high-level synthesis and its applicability in
an ESL design flow by the end of the chapter.

235

236

CHAPTER 5 Electronic system-level design and high-level synthesis

5.1 INTRODUCTION

A key goal of electronic design automation (EDA) is to shrink the rapidly
growing “designer productivity gap” that exists between how many transistors
we can manufacture per chip, and how many person-years we need to complete
a design with that many transistors. Collectively, EDA provides to chip designers
a design method, which can be considered as a set of complementary design
tools built on a design abstraction (i.e., a mechanism to conceptualize the chip
design), as well as a set of processes and guidelines that indicate the flow of
design, ordering of tool application, strategies for incorporating late engineering
changes, etc. The software design tools include design entry tools, which cap-
ture design specification; design synthesis tools, which target different parts
of the design specification and bring them down to low level implementation;
and design verification tools, which either simulate/verify the specification or
compare a specification against its implementation.

As discussed in Chapter 1, the EDA design method has traditionally pro-
gressed by raising the abstraction at which designs are conceptualized and spe-
cified. As a step in this progression, the basic components used by designers
grow in complexity, which results in fewer, but more complex, components;
therefore, designer productivity improves because designers need to manipu-
late fewer components and can reason about the design at abstractions that
are closer to how systems are specified and conceptualized. Historically, the
basic design component has evolved from polygons, to transistors, to gates,
and then to register transfer level blocks. To cope with the challenges of design-
ing emerging billion transistor system-on-chips (BTSOCs), it is widely
believed that the chips have to be designed at an abstraction level well above
RTL. Indeed, system designers typically reason about and conceptualize designs
at an abstract functional level where system outputs are described as algorithms
or transfer functions of the system inputs. This design abstraction, called elec-
tronic system level (ESL), enables ease of design capture and early design
space exploration of multiple design implementation alternatives. ESL designs
can be refined into lower levels of abstraction through a number of steps that
gradually map abstract functions into register-transfer level (RTL) compo-
nents, which is the next level of design abstraction. In this section, we discuss
the main drivers and the basic elements of the emerging ESL design method.

5.1.1 ESL design methodology

Moore’s law, which states that chip complexity doubles every 18 months, has
been the key driver behind the paradigm shift in EDA methodology. Although
RTL design methods are dominant currently, rapid growth in chip complexity
coupled with shrinking time-to-market windows result in RTL design methods
not being able to scale with the complexity of emerging designs. This trend

Example 5.1

Example 5.2

5.1 Introduction

necessitates fundamental changes that force the move toward higher levels of
abstraction. Let us examine two such fundamental changes.

The first fundamental change is that the cost of a new chip design by use of
an RTL design method is no longer economically viable.

Consider a startup company designing a new chip at 65-nm technology. The average
design cost with the RTL design method is $30 milion. Assuming a fivefold return on
investment, the company has to make at least $150 million in sales. Assuming a 10% mar-
ket share (a respectable goal for a startup), the chip design has to target a $1.5 billion mar-
ket. The reality is that few such markets exist, and if they do, they would be very crowded.

To dramatically reduce the design cost, the basic building blocks have to be
one order of magnitude larger than what is used in RTL. It has been suggested
that the basic component becomes a design block with 10,000 to 50,000 gates.
The 50,000 gate limit is set so that contemporary RTL-to-GDSII tools can com-
fortably handle each block without running into issues relating to design com-
plexity explosion that lead to excessive memory requirements and long run
times. Note that the complexity of these new building blocks coincides with
the complexity of an embedded processor. Indeed, many view processors to
be the basic building blocks (Z.e., the “gates”) of an ESL method.

Figure 5.1 shows a prediction by the international technology roadmap for semi-
conductors (ITRS) as an implication of Moore’s law [SIA 2007]. Assume a constant
50 2,000
45 = 1,800

< 40 1,600
o
& 1435
2 35 :—1,400
o 7]
& | £
T 30 H 41,200 @
£ iy
o [~ | 10 o
€ 25 %B— 1,000 g
8 “878_ 8
(] o
> 20 o L] Heeo &£
2 5
[} H*
= 15 — [— [H600
Q
8
=10 — 1 400
5 G 161y — 1 |H200
2 44 S8 ,_rﬂ]--r‘il-- -
ol o L [][], AL,
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
3 Number of Processing Engines —&— Total Logic Size #- Total Memory Size
(Right Y Axis) (Normalized to 2007, Left Y Axis) (Normalized to 2007, Left Y Axis)
FIGURE 5.1

ITRS 2007 prediction of processing engine count.

237

238

CHAPTER 5 Electronic system-level design and high-level synthesis

Example 5.3

die size of 66 mm? and that the sizes of the main processor and peripherals remain
unchanged. The number of processing engines (PEs)—i.e., processors that perform
fixed functions—will grow from 32 in 2007 to 79 in 2010 and 268 in 2015. Conceivably,
chip designs with below a thousand components are easier to conceptualize and
implement.

The second fundamental change is the rapid growth in chip complexity that
enables integration of previously separate components on a printed circuit
board (e.g., CPU, Ethernet controller, or memory) into a single chip. This inte-
gration of heterogeneous “content” comprises not only hardware but also soft-
ware. Indeed, a chip is more often designed as a programmable computer
system, requiring not only hardware but also firmware, operating systems,
and application software, with applications often downloaded after the end
product is deployed to consumers.

Figure 5.2 shows a block diagram of Texas Instrument’'s OMAP platform designed for
the cellular phone market. On this chip, one can find a mixture of heterogeneous com-
ponents, including an ARM programmable processor, an image signal processor,
numerous hardware processing engines for acceleration, and peripherals that interface
with the outside world.

OMAP2420

DSP

sjesayduad
Peripherals

2D/3D Graphics ImagingVideo
Accelerator Accelerator

SharedMemoryController/DMA

Y
©
=3
°
=
5}
=
~
2

FIGURE 5.2
Texas Instrument’s OMAP platform.

5.1 Introduction 1 239

To better understand emerging ESL methods, we examine three necessary
elements of a design abstraction that allow a chip design to be conceptualized
as a connected set of components:

m Computation: How to specify what each component does?

m Composition: How to assemble different components and coordinate
their computation to form a larger system?

m Communication: How do the components exchange information?

It is instructive to first examine the RTL design abstraction against these three
elements, and consider the design method we build around the RTL abstraction.

Example 5.4 A component in an RTL abstraction can be captured with objects in a hardware
description language (HDL) (e.g., a module in Verilog, or an entity in VHDL). The com-
putation of a component is captured by its per-cycle behavior, specifying the transforma-
tion of register values at each clock cycle. The components can be composed together
into a larger design by connecting the ports of components with wires (e.g., with the port
map construct in Verilog or VHDL). The communication between components is effected
by the transfer of values through wires. With the three design abstraction elements
clearly defined, an RTL method can be constructed: RTL synthesis tools convert each
module into a gate level design according to its per-cycle behavior, and all modules
are stitched together with wires, after which gate level optimizations are performed;
RTL simulation tools convert each module into a concurrent software process triggered
by events such as the rising edge of a clock.

The ESL abstraction typically conceptualizes the computation of a component at
a more abstract level by use of untimed behavior. In other words, chip designers do
not make the decision as to how computation is mapped to a particular clock step.
Currently C/C++ and Matlab are among the most commonly used languages for
capturing system behavior. However, the mechanisms for composition and commu-
nication differ widely on the basis of the semantics of each specification language.

Next, we examine two ESL methods that are becoming increasingly
accepted. For each method, we examine the design abstraction used for compo-
sition and communication. We also examine how we map each component to
RTL (called component synthesis), how we map the full system into RTL (called
system syntbesis), and how we verify the full system.

5.1.2 Function-based ESL methodology

The function-based ESL design method uses a computational model [Lee 1996]
to compose different functional components into a complete system. The
computational model determines how the components execute in parallel
and how they communicate with each other. Note that the manner in which
components exchange information is also more abstract than RTL.

240

CHAPTER 5 Electronic system-level design and high-level synthesis

Example 5.5 A process network [Kahn 1974] is a design abstraction in which functional components,

called processes, communicate through data items called tokens. On each execution of a
process, input tokens are consumed, and output tokens are produced. A process is exe-
cuted whenever its input tokens are available. Compared with RTL, all three elements of com-
putation, composition, and communication are more abstract: the computation of each
process is an untimed algorithm; the execution of processes follow a partial order; and the
communication between processes are through unbounded first-in first-outs (FIFOs).

A plethora of computational models has been developed in the past. Some
are developed as special cases of a general model. For example, synchronous
data flow [Lee 1987] is a special case of process networks that imposes the con-
straint in which the number of input and output tokens consumed and
produced by each process is statically determined to be constant. The synchro-
nous data flow model is useful to capture multi-rate signal processing systems.
Other computational models are designed for particular application domains.
For example, synchronous models [Halbwachs 1991; Berry 1992], which cap-
ture a system as atomic actions in response to external events, are very expres-
sive in capturing control-dominated applications.

In practice, the most widely used computational models arise from models used
for the simulation of dynamic physical systems. This is not surprising: HDLs at the
RTL abstraction (e.g., Verilog/VHDL) were in fact languages originally used for the
simulation of digital systems. One of the most widely used ESL computation models
in the industry is Simulink developed by MathWorks. Like a process network, Simu-
link graphically captures a system as a connected network of components, called a
block diagram. Here each block captures the instantaneous behavior of a compo-
nent, in other words, how the component output changes given component input
and state variable. The connections between components, or signals, serve as con-
straints, subject to which the entire dynamic system can be solved to find the rela-
tionship between signals and state variables over a time period. As a result,
Simulink can be used to simulate both continuous time systems (often analog subsys-
tems) and discrete time systems (often digital subsystems). A certain execution order
of the blocks is imposed in each iteration of system solving. For example, if block A’s
output drives the input of another block B, it is required, according to the execution
semantics of Simulink block diagram, that A is executed before B. This execution
order coincides with process network. Therefore, Simulink can serve as an execut-
able modeling environment for process network and other computational models.

Verification in a function-based method is achieved through simulation.
A simulator respecting the underlying computational model is typically used.

In a function-based design method, component synthesis can be achieved
through a number of paths:

1. Direct translation to RTL
2. Direct mapping to predesigned intellectual property component

Example 5.6

5.1 Introduction

3. High-level synthesis to RTL
4. Compilation to software programs

The most widely used forms of system component synthesis are to directly
map each component into separate hardware or map all components into soft-
ware running on a single processor. In the former case, point-to-point communi-
cation is implemented by hardware FIFOs or ping-pong memories." In the latter
case, communication is trivially implemented by shared memory.

Consider the digital signal processor (DSP) builder product from Altera. It uses Simu-
link as the design specification and simulation environment. In addition, it supplies a large
library of predesigned, configurable intellectual property (IP) components, each with both
a Simulink simulation model, and an RTL implementation. When a DSP designer uses
Simulink to design a system with the predesigned components, DSP builder can auto-
matically generate a full-system RTL by mapping each component to its corresponding
IP component, as well as the top level interconnection. Xilinx” SystemGenerator product
and Berkeley’s Chip-In-A-Day, share a similar methodology.

5.1.3 Architecture-based ESL methodology

The architecture-based ESL method follows closely the traditional discipline of
computer organization. Here a design is conceptualized as a set of components,
including processors, peripherals, and memories. Because these components
are often available as reused designs, either from previous projects or acquired
from third parties, they are referred to in the industry as intellectual property
components, or simply IPs. The components are connected through buses,
switch fabric, or point-to-point connections. Components connected to buses
and switches typically contain a set of master and/or slave ports. Each slave port
is assigned an address range so that targeted communication can be identified.
Several bus-based communication protocols are commonly used for this pur-
pose, including AMBA from ARM and CoreConnect from IBM. Furthermore,
the industry-wide SPIRIT consortium has developed IP-XACT, a standard to help
specify the composition of architecture-based systems with IP blocks.

A key difference in the architecture-based method is that a processor compo-
nent is not required to implement a fixed function. Instead, the computation of
the processor can be “programmed.” Such programming can happen in the tra-
ditional sense in which the component is a programmable processor and is pro-
grammed post-silicon. Or it can happen in the design exploration phase in
which an accelerator is assigned a certain function to be synthesized into hard-
ware. In this context, it is important for a processor to present a programming

'Ping-pong memories are two SRAMs alternately accessed by a producer and a consumer
component. By switching the access of the SRAMs, data can be exchanged between the
producer and the consumer without the need for copying data.

211

242

CHAPTER 5 Electronic system-level design and high-level synthesis

model to facilitate software development. For example, a RISC processor
defines an instruction set into which application software can be compiled.
We use the term program broadly to refer to system software, application soft-
ware, as well as the accelerator functions.

Communication in the architecture-based method is abstracted as a set of
transactions. Typically, a transaction is either a bus transaction, which repre-
sents a (burst) read or write operation to peripherals or memories, or a point-
to-point data transfer. Transaction level modeling is a popular modeling style
in which a construct called channel is used to encapsulate or abstract away the
concrete protocols for such transactions [Zhu 1997]. The use of abstract chan-
nels allows faster high-level design exploration, because unnecessary details are
abstracted away. In addition, it significantly eases the task of verification
because testbenches can be written at a high abstraction level. The abstract
channel can be replaced easily by a transactor, which encapsulates the timed
protocol, whenever a detailed simulation or implementation is required.

In the architecture-based method, the system architecture and its program
are simulated together. Two popular approaches for simulation exist currently.
The SystemC-based approach [Grotker 2002] models the architecture and pro-
gram together in a single environment. Here the program for a processor is
directly modeled as a C++ class by extending a predefined SystemC class.
The communication ports (an architectural element) of the processor are
directly accessible to the program. On the other hand, the virtual prototyping
approach has a clear separation between the architecture and the program it
runs. Here a system is first constructed by connecting a set of virtual compo-
nents predesigned for emulating hardware devices. Such virtual components
are referred to in the industry as verification IPs. Together, they present a pro-
grammer’s view or a programming model. The program is typically captured
as a binary executable and can be loaded for simulation. The SystemC approach
is suitable for the design phase when the system architecture is not yet well
defined and requires extensive exploration. Virtual prototyping is more suitable
for use when the system architecture is relatively well defined, enabling concur-
rent development of the software and the hardware.

In the architecture-based design method, component (IP) synthesis can be
achieved by the following approaches:

1. Direct instantiation of a predesigned IP component.

2. Extension of the processor design with processor configuration and
instruction set extension.

3. Synthesis of the processor from an architecture description language
(ADL) specification [Mishra 2008].

4. High-level synthesis to RTL.

Approach 1 requires the least involvement with users. However, mechanisms
have to be established to ensure that the simulation model and the instantiated
RTL model are consistent with each other. Approaches 2 and 3 are used for

5.1 Introduction

application-specific instruction processors, with varying degrees of user freedom
in defining the processor instruction set and microarchitecture. Typically, suppli-
ers of such components create the compiler and simulator tool chain according
to the instruction set definition or extension. Approach 4 is used when a hard-
wired accelerator has to be created to meet exacting performance, power/energy,
or cost constraints, when an existing IP cannot satisfy such constraints.

In the architecture-based design method, system synthesis mainly involves
the synthesis of system-level interconnect and the generation of the top level
design. Such a method is often referred to as a communication-centric design
method. Many computer-aided design (CAD) vendors offer IP assembly tools
to help assemble these architectural components into a computer system. For
instance, given a system description in the form of IP-XACT, tools such as
Synopsys coreAssembler and Mentor Graphics Platform Express can be used
to generate the top level netlist, as well as the interconnect fabric. Xilinx’s
EDK, and Altera’s SOPC Builder, fill the same role for field programmable
gate arrays (FPGAs). The generated fabric typically respects an on-chip bus
protocol standard. One of the most widely used bus standards is ARM'’s
AMBA/AXI bus. Commercial products are available to generate specialized
circuits for on-chip buses conforming to the AMBA bus standards.

5.1.4 Function architecture codesign methodology

A more ambitious form of ESL design methodology is function architecture
codesign. As shown in Figure 5.3, this method follows a top-down, stepwise
refinement approach in which designers start with design requirements fol-
lowed by the development of a functional model. As in the case of the
function-based ESL method, here the functional model consists of a network
of functional components under a specific computational model, thereby cap-
turing the system function as a relation between system output and input. This
functional model is gradually refined into an architectural model, which as in
the case of architecture-based ESL method, consists of a network of architec-
tural components that communicate at the transaction level. The architectural
model can be further refined into RTL by a step of high-level synthesis as
described in the next section. Finally, the RTL model can be implemented in
silicon by means of “RTL-bandoff” to the ensuing steps of logic synthesis
and physical design.

An important aspect of this method is verifiability. In an ideal function archi-
tecture codesign method, a common executable modeling language is used for
both functional and architectural modeling. This ensures that at every refine-
ment step, an executable model is created that can be simulated to confirm cor-
rectness or to collect performance metrics. Thus, this method is particularly
useful for system architects to perform architecture exploration. A pioneering
modeling language to support such methodology is SpecC developed at Univer-
sity of California at Irvine [Gajski 2000]. A pioneering commercial environment

243

244

CHAPTER 5 Electronic system-level design and high-level synthesis

application
requirements
algorithm selection
optimizaton @ TT===*= ’l,
HW/SW partitioning functionalimodel
behavior mapping .
architecture exploration l
Protocol generation
Topology synthesis architecture model
High level synthesis = - = - = = .l
RTL model
RTL-to-GDSIl = = = = = = -l
physical

implementation

FIGURE 5.3

Function architecture codesign method.

is the VCC tool developed in Cadence [Krolikoski 1999]. Today, SystemC-based
environments are widely used for this purpose.

Although top-down function architecture codesign is one of the earliest ESL
methods advocated by several researchers, its deployment as a commercially via-
ble method has not yet been realized. The reasons are twofold. First, many
system-on-chips (SOCs) are typically designed as a platform that can be
extended with many derivatives to serve many applications. The idealized top-
down approach, which ties the architecture to a particular function or applica-
tion, makes it difficult to extend the platform for derivatives. In this case, the
architecture-based method is more practical. Second, when a system is captured
in a domain-specific computational model, it is often the case that the best archi-
tecture template is already known, and the architecture instance is best gener-
ated by automation rather than through manual refinement. In this case, the
functional-based method may be more practical. However, in general, a more prac-
tical meet-in-the-middle method (that combines the top-down and bottom-up
approaches) may be best suited for a number of applications.

5.1.5 High-level synthesis within an ESL
design methodology

We now examine the role of high-level synthesis within an ESL design method.
High-level synthesis is an automated method of creating RTL designs from

Example 5.7

5.1 Introduction

algorithmic descriptions. Within an ESL design method flow, we consider the
following usage models of high-level synthesis:

1. Functional component synthesis
2. Co-processor synthesis
3. Application processor synthesis

Functional component synthesis is used in a function-based ESL method.
Because the communication semantics are well defined under a computation
model, high-level synthesis can be used to create the internal design of each
component, while respecting the communication constraints at the inputs
and outputs of each component. This enables the construction of larger sys-
tems. For example, in a process network-based ESL method, each component
has a set of FIFO ports for communication. Therefore, each component can
be synthesized to run asynchronously with respect to other components.

Coprocessor synthesis is used in an architecture-based ESL method when
part of an application is implemented as software running on a programmable
processor and part of the application is implemented as a hardware accelerator.
In this case, hardware/software partitioning, be it manual or automated, has to
be performed to decide on the division of responsibility. Two criteria are typi-
cally used to make partitioning decisions: performance/power and flexibility.
It is preferable to implement performance/power critical portions of the appli-
cation in hardware, and it is preferable to implement those that require post sil-
icon changes into software. Once the partitioning is performed, high-level
synthesis is used to create the accelerator, and interface synthesis is used to
create the software/hardware communications.

Consider the implementation of an MPEG video encoder. The algorithm divides a video
stream into frames, and each frame is divided into slices, where each slice contains a
sequence of macro blocks, which are 8 x 8 pixels. Although most of the algorithm deals
with management and configuration, the profiling result shows that much of the program
run time is spent on processing each macro block: including stages such as motion esti-
mation (ME), discrete cosine transform, Huffman encoding, and run length encoding.
Consequently, a typical hardware/software partitioner would synthesize the processing
pipeline (with high-level synthesis) into hardware accelerators, whereas the rest of the
design is implemented as software.

In many occasions where performance or power is more important than
post silicon programmability, application processor synthesis is used in an archi-
tecture-based method to synthesize the entire, stand-alone program into custom
hardware. Because in an architecture-based method, component processors
communicate through transaction-level ports (such as streaming or bus ports),
the mapping from a C programming model to interface hardware is well defined.
RTL synthesized by high-level synthesis can be considered as “drop-in”

245

246

CHAPTER 5 Electronic system-level design and high-level synthesis

replacement of programmable processors. Large systems can thus be con-
structed with the well-established IP assembly method.

High-level synthesis has seen intensive research in academia since the 1980s,
and many believed that it would succeed RTL synthesis as the dominant design
method. Unfortunately, this transition did not happen for a number of reasons.
One factor limiting the commercial success of high-level synthesis is its lack of
scalability: although large RTL designs can be constructed by composing smaller
RTL designs, it is not as easy to compose designs created by high-level synthesis
together with legacy RTL designs. Without a well-defined system-level design
method, there is no standard way of defining how algorithmic components
communicate with each other. Given today’s complex heterogeneous systems-
on-chip, high-level synthesis in practice has to become a component synthesis
tool in the context of an ESL method as opposed to a full chip synthesis method
originally envisioned in the early days of HLS research.

Furthermore, both functional and architecture-based ESL methods have
matured sufficiently that the standard design flow is converging in the industry.
Because the design of new hardware logic is often where it costs chip compa-
nies labor and where they achieve product differentiation, it has become
increasingly important to add high-level synthesis to the emerging design flow.

5.2 FUNDAMENTALS OF HIGH-LEVEL SYNTHESIS

In a nutshell, high-level synthesis (HLS) takes as input an algorithmic descrip-
tion (e.g., in C/C++) and generates as output a hardware implementation of a
microarchitecture (e.g., in VHDL/Verilog). Algorithmic languages such as
C/C++ capture what we refer to as the bebavioral-level (or high-level) descrip-
tion of the design; whereas hardware description languages such as VHDL/Ver-
ilog capture the register-transfer level (RTL) description of the design.

Figure 5.4a shows a typical example of an input behavioral level description.
Here a design is described as a sequence of statements and expressions
operating on program variables. Such description captures the function of the
design without any hardware implementation detail.

Figure 5.4b shows a typical output of HLS as an RTL description in a form
known as finite state machine with datapath (FSMD) [Gajski 1992]. The
FSM controller sequences the design through states of the machine by following
the flow of control in the algorithmic behavior, whereas the datapath performs
computations on the abstract data types specified in the behavior. The datapath
contains a set of registers, functional units, and multiplexers connecting the out-
put of registers to the inputs of functional units, and vice versa. The controller
takes as input a set of status signals from the datapath and outputs a set of con-
trol signals to the datapath. The control signals include those that control the
datapath multiplexers, the loading of datapath registers, and the opcode used
to select different functions in a functional unit. The state, that is, the control

5.2 Fundamentals of high-level synthesis 1 247

Controller :FE);t_a_;;a_tr_m __________ —:
int A[100], B[1oo;, ([l o~ | | A~ &_J :
int sum,i: {1 4 L | | J &= mi“" :

N 1 z \weal» R /
sum = i = 0; -2 JBasiimq R |
while (i< 100) { o (—-Jzeg——»! RO ,

sum = sum + A[i] * B[i]; °8 Feial !
i=i+ 1; /‘ 6 : 1
} o :
| |
| ApD mMuL | |
' l
I ______ 1
(a) (b)
FIGURE 5.4

High-level synthesis input/output.

step a circuit is currently in, is remembered in the controller with a set of flip-
flops. Thus, the datapath performs register transfers, or computations, that
transform values retrieved from some registers and stores the results to other
registers; whereas the controller determines “when” certain register transfers
are executed by specific valuation of control signals.

HLS effectively transforms an untimed behavioral specification into a clocked
RTL design, resulting in a substantial semantic gap between the RTL description
and the behavioral description. To bridge this gap, HLS involves a complex
sequence of design steps that gradually refines the design behavior into an
FSMD design. As shown in Figure 5.5, the structure of an HLS tool naturally
resembles a software compiler: it includes a set of compilation components.
Each component transforms one program form to another more detailed
program form. We distinguish between two types of program forms: we use
code to refer to the textual human-readable form, and representation to refer
to the in-memory machine-readable form (e.g., data structures such as graphs).

The front-end component performs the lexical and syntactical analysis of the
behavioral program code to build an intermediate representation (IR) in
memory. The IR can be considered as a sequence of operations transforming
values retrieved from memory or generated as the result of other operations.
The operations typically correspond to arithmetic (addition, subtraction, etc.)
or logic computations (AND, OR, etc.).

The optimizer component performs program analysis on the IR to extract useful
information about the program and transforms the IR to a semantically equivalent
but improved IR. Virtually all code optimization algorithms found in software com-
pilers can be applied here, although their effects may differ [Gupta 2003]. For exam-
ple, common subexpression elimination and dead code elimination can be used to
remove redundant code. Tree height reduction, strength reduction, and algebraic

248

CHAPTER 5 Electronic system-level design and high-level synthesis

C/C++ I
Code

Optimizer Frontend Backend
. Allocation
Partial redundancy
elimination, <«—> Intermediate
Strength rengtiop, Representation
Dead code eI|m|nat.|on, Scheduling
Constant propagation,
Code motion,
Tree height reduction, RTL
Algebraic optimization, Representation Binding
Loop unrolling,

Software pipelining

Code Generator

Verilog/VHDL II
Code

FIGURE 5.5

Typical high-level synthesis flow.

transformations can be used to simplify or speed up the evaluation of expressions.
Loop unrolling and software pipelining can significantly improve code in loops.

The core of high-level synthesis resides in the backend, which includes sev-
eral critical steps to transform the IR into an RTL representation. To facilitate
the generation of an FSMD in the form of Verilog/VHDL, which performs com-
putation one clock cycle at a time, the RTL representation has to capture more
detailed implementation information than initially available in the IR. These crit-
ical steps include allocation, scheduling, and binding.

The allocation step determines the hardware resources required to implement
the operations within the IR to satisfy certain performance requirements. The
resources required include storage resources such as registers and functional units
such as adders and multipliers. Often, a library of such resources, called modules,
is created and characterized in advance for a specific standard cell library. Then allo-
cation involves the choice of which module to use, among potentially many alterna-
tives with differing area and timing, and how many of them.

The scheduling step maps each operation in the IR into a particular clock
cycle, called a control step. Note that multiple operations can be mapped to
the same control step, in which case they run in parallel. In fact, the key objec-
tive of scheduling is to find and exploit the parallelism in the sequential code

5.2 Fundamentals of high-level synthesis

represented by the IR. The extent to which operations can run in parallel is lim-
ited by the dependency among them. For example, if operation A uses the result
of operation B, then A can only be executed in later steps than B. It is not
always easy to exactly determine the dependency relationship, especially when
indirect memory references are involved. In addition, the availability of
resources (determined in the allocation step) also constrains what can be sched-
uled in parallel.

The binding step maps each operation to a functional unit (functional unit
binding) and the value it computes into a storage resource (storage binding).
The purpose of binding is to recognize the fact that not all operations and
values require the use of hardware resources at the same time. The nonoverlap-
ping use can be exploited for hardware sharing, thereby minimizing the hard-
ware circuitry demand.

It is important to note that each of the allocation, scheduling, and binding
steps involves the solution of a complex optimization problem. These pro-
blems can all be elegantly formulated as mathematical optimization problems
solving for some decision variables to minimize an objective subject to certain
constraints. There are many challenges in solving these problems. First,
abstracting each problem mathematically inevitably introduces approxima-
tions. For example, the objective to optimize area through the minimization
of functional units is often an indirect measure of the true objective designers’
concern about reducing silicon area, because this includes not only functional
units but also the area of interconnects. Second, it has been shown that all
allocation, scheduling and binding problems are NP hard problems. There-
fore, one often devises heuristics-based algorithms for practical solution of
large-scale problems. Third, the allocation, scheduling, and binding tasks are
tightly interdependent. In fact, the preceding three-phase approach is not
necessarily the best. Often, one faces the phase-ordering problem, where
the optimal solution of one phase leads to the suboptimal solution of the
other phase. It is thus often necessary to have an iterative improvement solu-
tion where these tasks are applied multiple times.

Finally, the code generator generates the Verilog/VHDL code that is ready for
RTL and logic synthesis. The output code is in FSMD form. The datapath can be
derived directly from the allocation and binding decisions. The controller FSM
can be derived from scheduling and binding.

Without HLS, designers have to manually generate the RTL design, a pains-
taking process that requires the manual tasks of scheduling, allocation, and
binding. In contrast, HLS automates the task of RTL design, allowing designers
to more productively focus their design activities at the behavioral level. Often,
there is an order of magnitude difference between the size of the RTL descrip-
tion and the corresponding behavioral description. In addition, the automati-
cally generated RTL can be guaranteed to be correct by construction. This
design automation process results in a significant reduction of RTL development
and verification effort, yielding a large gain in design productivity.

249

250

CHAPTER 5 Electronic system-level design and high-level synthesis

Example 5.8

In the sequel, we use an example to illustrate the process of transforming a
behavioral code into Verilog code. For now, we treat compilation components
as black boxes and leave the discussion until Section 5.3, while focusing on
the series of program forms that are generated at each stage. To enhance under-
standing and allow for a hands-on treatment of HLS that will permit construc-
tion of simple HLS tasks/components, we present simple but completed
program forms, called TinyC, TinyIR, and TinyRTL; these can be used as vehicles
to construct software implementations of high-level synthesis tools. We begin
by defining the three exemplar program forms.

5.2.1 TinyC as an example for behavioral descriptions

The behavioral description of a design is typically captured by a program in a proce-
dural programming language, also known as an imperative programming language.
An imperative program captures the computation as a sequence of actions on pro-
gram state. The program state is defined by the set of all program variables. The
actions are statements that change program states by updating the values of one
or many variables. Because this style of programming prescribes the steps to solve
a problem, an imperative program is often called an algorithmic description.

We use an instruction language, TinyC, throughout this text. TinyC resem-
bles the commonly used C language, but a number of simplifying assumptions
are made to facilitate the discussion, as follows:

m All statements are captured in a single procedure, and there are no proce-
dural calls.

m Only 32-bit signed integer (int) and Boolean (bool) primitive types are
supported.

= Only one-dimensional arrays are supported for aggregate types.

m No pointers are supported, as a result, the address variables cannot be
taken, and no memory is allocated dynamically.

Although TinyC is a fully functional language that captures the essence of imper-
ative languages, it is important to recognize that the excluded features present
in the real-world languages make the job of high-level synthesis substantially
more difficult. We will deal with this subject in Section 5.4.

Figure 5.4a shows the dot product algorithm in TinyC. Dot product is widely used in engi-
neering. The dot product of two vectors, A and B, is defined to be the sum of products of
their respective elements. In TinyGC, the two vectors, A and B, are declared as arrays. Two
scalar variables, sum and i are declared. A while-loop is used to calculate the result, in
which each loop iteration is used to calculate the partial sum up until the it" iteration.

The language definition of TinyC can be defined with a set of production
rules in Backus-Naur Form (BNF). Each production rule defines a language
construct, called a non-terminal, by the composition of other non-terminals,

5.2 Fundamentals of high-level synthesis

or terminals. Like a word in English, terminals are atomic units of a language.
The non-terminals can be recursively defined.

Definition 5.1 The syntax of TinyC is defined as follows, which includes
the following constructs:

m Declarations, which define scalars or array variables

m Statements, which are either assignment statements, leading to a
change of program state, or control flow statements

m Expressions, which are either transformations of scalar values using
predefined operators, or defined primitive values, such as integer or
Boolean literals, or program variable values.

program: expression:

declaration* statement*

statement:
variable '=' expression ';',
if' '(" expression ')' statement
('else' statement)*,
‘while' (' expression ')’ statement ,
'break' "',
{' declaration* statement™ '}'

"' expression , 'l' expression ,
expression '+' expression ,
expression '-' expression ,
expression ' expression ,
expression '/ expression ,
expression "' expression ,
expression '>>' expression ,
expression '<<' expression ,
expression '&' expression ,

expression 'I' expression ,

expression '=' expression ,

expression 'l=" expression ,

expression '<' expression ,

expression '<=' expression ,
expression '>' expression ,

expression '>=' expression ,

‘(" expression)" ,

integer , identifier, TRUE' , 'FALSE' ,
identifier [expression "'

declaration:
type identifier ['=" expression]’;’,
type identifier [' expression ' ";'

type:
'int', 'bool'

The language can be used to construct a parser, which parses the textual
program into a data structure suitable for machine manipulation. In the case
of HLS, the parser generates an intermediate representation (as represented
by the front-end component in Figure 5.5).

5.2.2 Intermediate representation in TinyIR

The purpose of the intermediate representation (IR) is to separate the optimization
algorithms from input languages and target architectures.

Before we discuss the IR in detail, we need a notation to capture an IR.
In practice, an IR is implemented in software as a complex data structure. However,
presenting the IR in this form introduces unnecessary implementation details. To be
concise and precise, we elect to use a more abstract mathematical notation to
describe the IR. In the following, we outline how we can replace data structures
with mathematical objects. The readers should do the opposite when they translate
the algorithms presented in this chapter into software implementation.

251

252 | CHAPTER 5 Electronic system-level design and high-level synthesis

A data type T corresponds to a set T; in particular the integer type Z
corresponds to set Z.

m A linked list or arrays whose elements are of type T corresponds to the
power set of 7, or the set of all subsets of I, denoted as T/].

A record with fields a of type A, and b of type B corresponds to a set of
named tuples, denoted as (a : A,b : B).

A graph R whose nodes are of type A corresponds to a relation R : A x A.
A hash table or dictionary F that maps a value of type A4 to a value of type
B corresponds to a function F : A—B.

This mathematical notation is used later in Section 5.3 to present HLS algo-
rithms, because we can use it to represent complex operations on data struc-
tures. For example,

m Use function application F(a) to represent a dictionary lookup.

m Use a € A to perform a set membership test, and use Va € A to enumerate
all members in A; and use A/i] to retrieve the i element in A.

m Use a R b to check whether b is a predecessor of a in graph (relation) R.

We are now ready to discuss TinyIR, a simple IR designed to sufficiently capture
programs in TinyC.
Definition 5.2 A TinylIR is a tuple (O, S, ¥/ B) with the following elements:

m A set O = {lds, sts, lda, sta, ba, by, cnst, +, —, %, /, <<, >>, ... } of oper-
ation codes, which corresponds to the set of all virtual instruction types.

m A set S of symbols, which corresponds to the scalar and array variables.

m Aset V: (opcode: Osrcl: V, src2: V symb: SU BU Z) of virtual instructions,
which corresponds to the expressions and control transfers in the program.

m A set B: V[] of basic blocks, each containing a sequence of virtual
instructions.

Constructs in TinyC (e.g., declarations, statements, and expressions) have equiv-
alent representation in TinyIR: declarations correspond to symbols, and state-
ments and expressions correspond to virtual instructions. In particular, the
control transfer statements are converted into ba (branch always) or br (branch
if true) instructions. Variable accesses are converted to Ids (load scalar) or lda
(load array) instructions, and assignments are converted into sts (store scalar)
or sta (store array) instructions. Expressions in TinyC have a one-to-one corre-
spondence to virtual instructions in TinyIR.

Each instruction is a tuple with an opcode field; zero, one, or two source oper-
ands; and optionally a symb field. For branch instructions, the symb field defines
its branching target, that is, which basic block it branches to. For load/store instruc-
tions, the symb field defines the symbol corresponding to the scalar or array variable
it accesses. For constants, it defines the Boolean or integer constant value.

Although the sequence of virtual instructions completely defines the behav-
ior of the program, in TinyIR the virtual instructions are grouped within differ-
ent basic blocks. Only the last instruction of a basic block could be a branch

Example 5.9

5.2 Fundamentals of high-level synthesis

instruction. In the other words, the instructions in a basic block are what we
usually referred to as “straight line code”

In the following we show the dot product program in Example 5.8 in TinyIR form. There
are two basic blocks, B1 and B2. Each virtual instruction is uniquely numbered. When
the result of an instruction is used as an operand for another instruction, its number is
used. Note that B2 is a loop, indicated by the bt instruction (15), which is a branch
branching to the beginning of B2.

scalar sum; (4) Ida(3), A
scalar i; (5) Ida(3),B
array A[100]; (6) *(4)(5)
array B[100]; (7) Ids sum
(8) +(6)(7)
B1: (9) sts (8), sum
(0) cnstO (10) cnst1
(1) sts (0), sum (11) +(3) (10)
(2) sts(0),i (12) sts (11),i
(13) cnst 100
B2: (14) < (11) (13)
(3) Idsi (15) bt (14),B2

5.2.3 RTL representation in TinyRTL

An RTL representation is to HLS what assembly is to a software compiler. Like
assembly, the RTL representation captures key microarchitectural information.
In the case of a software compiler, the processor architecture is predetermined;
therefore, the assembly only exposes these microarchitecture features, for
example, the architectural registers available, the instruction set, etc. In the case
of HLS, the microarchitecture is synthesized; therefore, the RTL representation
has to convey what architecture resources are allocated and how they are used.

One key difference between an RTL representation and an IR is that micro-
architecture resources are introduced. There are two types of microarchitec-
tural resources: computational resources, which are functional units that
perform logical, relational, and/or arithmetic functions; and storage resources,
which include memories and registers. A memory typically corresponds to a
on-chip static RAM used to store scalar or array variables, whereas a register is
an array of flip-flops used to store scalar or temporary values.

An instruction in RTL representation is referred to as a register transfer.
A key difference between a register transfer and a virtual instruction in an IR
is that the former is annotated with microarchitecture resource use. For exam-
ple, most register transfers designate a destination register. Likewise, the source
operands of a register transfer are registers. In addition, each register transfer
designates the functional unit executing the instruction.

The register transfer representation is cycle accurate in the sense that
the clock cycle (control step) at which a register transfer is executed is fully
specified. This level of detail makes it possible to generate a sequential circuit
implementation of the program.

253

254 | CHAPTER 5 Electronic system-level design and high-level synthesis

Definition 5.3 A TinyRTL is a tuple (M, R, U, I, C) with the following
elements:

m A set M of memories used to store scalar and array variables.

m A set R of registers used to store scalar variables or temporary instruction
results.

m A set U of functional units, such as adders, subtractors, multipliers,
shifters, etc.

m Aset]: (unit: U opcode : O, dest: R, srcl1 : RUSUZU C, src2 :R> of reg-
ister transfers, each of which uses a functional unit to transform values,
which are either constants or retrieved from registers, and stores the
result back to a register.

m Aset C: If] of control steps, each of which contains a set of register transfers.

Example 5.10 The dot product algorithm of Example 5.8 is shown in TinyRTL form. Here C0-C4
corresponds to the set of control steps. Each control step contains one or more register
transfers. It is instructive to compare the TinyIR form and TinyRTL form. Note that most
virtual instructions in TinyIR are translated into register transfers. Some virtual instructions
(e.g., constants) degenerate into direct operands, because it takes nothing to compute
them. Also note that almost all register transfers are annotated with the computational
resources they use, with the exception of scalar store (in CO) and branch instructions
(in C4), because they involve simply copying values to registers but not computation.

register RO, R1, R2, R3;
memory M;
unit U0, U1;

CO0: sts 0, RO; sts 0, R1;

C1:M.lda R2, R1, A;

C2: M.lda R3, R1, B; U0.+R1, R1, 1;
C3: U1.*R2, R2, R3; U0.<R3, R1, 100;
C4:U0.+R0, RO, R2; bt C1, R3;

b.2.4 Structured hardware description in FSMD

Given an RTL representation in memory, we are ready to produce Verilog/VHDL
code to drive the downstream RTL-to-GDSII design flow. The key task of the
code generator is thus to convert the RTL representation, still in a functional
form, to a structural form, that is, as a connected network of components. We
use FSMD as a template and generate the controller and datapath separately.

Example 5.11 The FSM diagram and Verilog code for the controller are shown in the following. Note the
correspondence between the control steps in the RTL representation and the states in
the FSM. Also note the correspondence between the register transfers in each control
step and the control signal valuations.

5.2 Fundamentals of high-level synthesis

T
F
“define CO 3'b000 // control signals
“define C1 3'b001 always@(pstate) begin
“define C2 3'b010 we0 = 1'b0; wel = 1'D0;
“define C3 3'b011 we2 = 1'b0; we3 = 1'b0;
“define C4 3'b100 sel0 = 1'bx; sell = 1'bx;
sel2 = 1'bx; sel3 = 1'bx;
module ctrl (sel4 = 1'bx; sel5 = 1'bx;
clk, rst, statusoO, selé = 2'bxx; funcO = 1'bx;
wel, wel, we2, we3, case(pstate)
sel0, sell, sel2, sel3, sel4, sel5, sels, ~C0:begin
funco we0 = 1'bl; wel = 1'bl; sel0 = 1'b0;
) ; sell = 1'b0;
end
input clk, rst; ~Cl:begin
input statusO0; we2 = 1'bl; sel2 = 1'b0; sel4 = 1'b0;
output wel, wel, we2, we3; end
output sel0, sell, sel2, sell3, sel4, sel5; “C2:begin
output [1:0] sel6; wel = 1'bl; we3 = 1'bl; sell = 1'bl;
output funco; sel3 = 1'b0; seld = 1'bl; sel5 = 1'b0;
selé = 2'b00; funcO = 1'b0O;
reg [2:0] pstate, nstate; end
reg wel, wel, we2, we3; ~C3:begin
reg selo, sell, sel2, sel3, sel4, sels; we2 = 1'bl; we3 = 1'bl; sel2 = 1'bl;
reg [1:0] sels; sel3 = 1'bl; sel5 = 1'b0; sel6 = 2'b01;
reg funco; func0 = 1'bl;
end
// present state register ~C4:begin
always@(posedge clk or negedge rst) we0 = 1'bl; sel0 = 1'bl; sel5 = 1'bl;
if (lrst) selé = 2'bl0; func0=1'b0;
pstate <= ~CO; end
else endcase
pstate <= nstate; end
// next state logic endmodule
always@(pstate or statusO)
case (pstate)
SC0: nstate = “C1;
“Cl: nstate = ~C2;
“C2: nstate = “C3;
“C3: nstate = “C4;
“C4: if (statusO)
nstate = “C1;
else
nstate = ~CO;
default: nstate = ~CO;
endcase

Example 5.12 The datapath of the dot product example is shown in the following as a schematic dia-
gram and its corresponding Verilog code. Note that each r € R and u € U is mapped
directly to a hardware resource. Multiplexers are inserted at the input of each register
and inputs of each functional unit. A multiplexer degenerates into a wire if it has only
one input. For example, both inputs of the multiplier connect only to R2 and R3, respec-
tively; therefore, there is no need for multiplexers.

255

256

CHAPTER 5 Electronic system-level design and high-level synthesis

0 0
¢ "<_SEIO ¢ Y Vﬁs?lz
RO | yre0 R1 et R2 | yre2
(sum) (i)

[>

Y

A 4

1100

B
¢ sel4
/Q...

selé
/- [v v

sel5 ¢¢‘

(ADD/COMP) (MUL)

uo junco ul

statusO
=P

“define A 8'd0
“define B 8'd100

module datapath (
clk, rst,
we0, wel, we2, we3,
sel0, sell, sel2, sel3, sel4, sel5, sels,
func0, rdata,
status0, base, offs
)i

input clk, rst;

input we0, wel, we2, we3;

input sel0, sell, sel2, sel3, seld,
input [1:0] sel6;

input func0;

input [7:0] rdata;

output status0;

output [7:0] base, offs;

reg [7:0] RO, R1, R2, R3;
reg [7:0] nRO, nR1, nR2, nR3;
wire [7:0] U0, U1;

reg [7:0] baselIn, offsIn;

reg [7:0] UlIn0, UlInl;
reg [7:0] UOInO, UOInl;

// registers
always@(posedge clk or negedge rst)
if(!'rst) begin

RO <= 8'b0;
Rl <= 8'b0;
R2 8'b0;
R3 <= 8'b0;

end
else begin

if(wel)
if(wel)

if (we2) nR2;
if (we3) nR3;

end

// registers' input multiplexers
always@(sel0 or sell or sel2 or sel3 or
U0 or Ul or rdata) begin
case(sel0)
1'b0: nRO = 8'b0O;
1'bl: nRO = UO0;
endcase

sel5;

case(sell)
1'b0: nR1l = 8'b0;
1'bl: nR1 = UO;
endcase
case(sel2)
1'b0: nR2 = rdata;
1'bl: nR2 = Ul;
endcase
case(sel3)
1'b0: nR3 = rdata;
1'bl: nR3 = UO;
endcase
end

// functional units

assign Ul = UlIn0 * UlInl;

assign U0 = !funcO ? UOInO + UOInl :
U0In0 < UOInl;

// functional units'/memory input multiplexers
always@(seld or sel5 or sel6 or
RO or Rl or R2 or R3) begin
baseIn = R1;
case(seld)
1'b0: offsIn = A
1'bl: offsIn = "B
endcase
case (sel5)
1'p0: UOIn0 = R1;
1'bl: UOIn0 = RO;
endcase
case(sel6)
2'p00: UOInO = 8'dl;
2'p01: UOInO = 8'd1l00;
2'bl0: UOIn0 = R2;
endcase
UlIn0 = R2;
UlInl = R3;
end

// outputs

assign status0 = R3[0];
assign base = baseln;
assign offs = offslIn;

endmodule

5.2 Fundamentals of high-level synthesis 1 257

5.2.5 Quality metrics

When using high-level synthesis to create RTL hardware for a given application,
it is important to, first, satisfy the performance requirements of the application
and, second, choose among the best implementation alternatives. To quantify
both requirements and quality, we need to establish certain metrics.

Because most applications targeted by high-level synthesis consume and pro-
duce large volumes of data, the performance requirement is often dictated by
input/output bandwidth, defined to be the amount of data consumed/pro-
duced per second. The unit of bandwidth varies, depending on the domain of
application. For example, triangles per second for 3-D graphics; packets per
second for networking; and pixels per second for imaging or video.

The bandwidth requirement can be translated into a performance require-
ment for the datapath. Typically, the work, or the amount of computation an
algorithm applies per unit of data, can be measured by the number of instruc-
tions required for the computation. Although the precise meaning of an instruc-
tion varies depending on the architecture used for implementation, we can use
elementary operations, such as those defined by the virtual instruction set of
TinylIR, as a rough but implementation-independent measure. Combining band-
width and work, we can obtain the performance requirement for the datapath
in millions of instructions per second (MIPS).

perf (TinyIR) = bandwidth x work

Example 5.13 Consider an Ethernet application in which the wire speed is 4 gigabits per second (raw
bandwidth). Assuming a minimum packet size of 64 bytes and a 20-byte preamble
between packets, the application needs to process 5.95 million packets per second
(bandwidth). Assuming the work is 1000 instructions per packet, then the performance
requirement is 5.95 * 1000 = 5950 MIPS.

We now turn to quality metrics of the RTL implementation. Although it is possi-
ble to evaluate the metrics accurately after the Verilog/VHDL is generated and
synthesized, these metrics are often too late to be useful for HLS at these down-
stream stages. We, therefore, need an early, fast, yet reasonably accurate estimation
of important metrics. In this section, we develop a “back-of-the-envelope” method
that can quickly assess quality metrics directly from the RTL representation.

To calculate the performance of the RTL, we need to estimate the “wall
clock” time used for completion of the synthesized algorithm. Assuming the
algorithm processes one unit of data, we then have:

3

R
perf (TinyRTL) = o —
CycleCount(TinyRTL) * CycleTime(TinyRTL)
Here CycleCount is the number of clock cycles it takes to complete the algo-
rithm, whereas CycleTime is the shortest clock period for correct operation of
the synthesized circuit.

258

CHAPTER 5 Electronic system-level design and high-level synthesis

To estimate CycleCount(TinyRTL), we need to know the number of times
each control step is executed. This can be obtained by statically examining
the RTL. Alternately, functional simulation can be performed to collect execu-
tion count statistics, a process known as profiling.

Example 5.14 Consider the dot product algorithm in TinyRTL shown in Example 5.12. It can be shown

that CO will be executed once, whereas C1-C4 will be executed 100 times. Therefore
CycleCount(TinyRTL) = 1 + 4 * 100 = 401. Note that this is significantly less than the total
number of virtual instructions, which can be calculated from TinyIR as 3 + 13 * 100 =
1303. This type of speedup is achieved by executing multiple instructions in parallel in RTL.

CycleTime(RTL) is more difficult to estimate. Recall that the cycle time of a
sequential circuit equals the worst-case delay along all register-to-register paths.
To calculate such a delay, we first have to establish the delay of individual com-
ponents along a path.

The delay of a component (in nanoseconds or picoseconds)—if not already
available—can be obtained by precharacterizing commonly used components.
However, such a method depends on the cell library, as well as the fabrication
process. We choose to use fanout four delay (FO4) as the delay unit. FO4 is the
delay of a minimal sized inverter driving four identical copies of itself. It has been
shown that FO4 delay scales linearly with the feature size (the drawn gate length)
of the fabrication process and can be estimated with the following:

FO4 = 036ns/um * Larawn

With FO4 delay, we can express our delay estimation in a process-indepen-
dent manner and use the preceding formula when we need to find out the abso-
lute delay value.

Example 5.15 The FO4 delay of commonly used 32-bit components is shown in Table 5.1. Under

90nm fabrication technology, FO4 = 0.36ns/um*0.09um = 32.4ps. Therefore, Delay
(adder) = 10+32.4ps = 0.324ns. Delay(multiplier) = 35+32.4ps = 1.13ns.

Table 5.1 Component delays

register functional unit multiplexer SRAM
FO4 FO4 FO4 FO4
setup 2.0 adder 10.0 2-input 2.4 1KB 10.5
hold 0.0 comparator| 6.0 4-input 3.2 4KB 12.0
clock skewijitter 4.0 multiplier 35.0 8-input 4.8 8KB 12.8
clock to Q 4.0 inverter 1.0 16-input 8.0 64KB 15.0

Without examining the structural representation, we attempt to estimate the
cycle time from TinyRTL representation. We can find all frue register-to-register
paths by examining each register transfer in TinyRTL.

CycleTime(TinyRTL) = MAX,crDelay(rt)

5.2 Fundamentals of high-level synthesis

We now consider the delay of a register transfer 7t = (u,0p,dest,srcl,src2). Let us
denote the state register of controller to be pstate and the multiplexers for the two
operands of the functional unit and the destination register to be mux1, mux2, and
muxd, respectively. Recall that in an FSMD model, the register-to-register delays
involve paths within the datapath, to the FSM controller, and between the datapath
and the FSM controller. Accordingly, we have the following paths to consider:

Path 1: srcl—mux1—u—muxd—dest

Path 2: src2—mux2—u—muxd—dest

Path 3: pstate—cl—mux1—u—muxd—dest
Path 4: pstate—c2—mux2—u—muxd—dest
Path 5: pstate—cu—u—muxd—dest

Path 6: pstate—cd—muxd—dest

Paths 1 and 2 are from source operand to destination register in the datapath.
Paths 3 and 4 are from state register (FSM) to destination register (datapath)
through the source operand multiplexer. Here ¢/ and c¢2 correspond to control
logic for the select signals of the respective multiplexers. Path 5 is from state reg-
ister (FSM) to destination register (datapath) through the control logic cu used for
selecting the function used in the functional unit. Path 6 is from state register
(FSM) to destination register (datapath) through control logic cd used to select
the destination operand in multiplexer. Note that not all paths are realizable.
For example, mux] might not exist because there is no need for a multiplexer
before the unit’s only input. This happens in the case that only one register is
ever used as its first operand. In this case, the delay of mux1 should be taken
as 0 in Path 1, and Path 3 should be ignored. As another example, if a unit per-
forms a single function, the controller does not have to generate a control signal
for selecting the function to perform; therefore, Path 5 can be ignored.

For every path, time has to be reserved for the correct functioning of the reg-
isters. Their sum is called the sequential overbead.

SeqOverbead = Ty + Tog + Topew

We can, therefore, calculate the worst case delay of all paths in a register
transfer as follows:

Delay(rt) = SeqOverbead +

Delay(c1) + Delay(mux1),

Max Max | Delay(c2) + Delay(mux2), | + Delay(u), | +
Delay(cu)
Delay(cd)
Delay(muxd)

Although we can determine the delay of the functional unit by looking up Table 5.1,
delays of the multiplexers and the control logic are not readily available. There are
two complications. First, as discussed earlier, there are degenerate cases where
muxl1, mux2, muxd, c1, c2, cd, and cu are not needed. In these cases, they assume
a zero delay value. Second, when the multiplexers do exist, their delays depend on

259

260 | CHAPTER 5 Electronic system-level design and high-level synthesis

the number of inputs they have. This requires us to find, for each functional unit, the
total number of different operands for each input and the total number of different
opcodes by scanning the entire RTL representation.
Assuming the delay of all control signals assume a value of 7., we then have:
[0 |Opcodes(u)| =1
Delay(cu) = { T. |Opcodes(u)| > 1

where
Opcodes(u) = {rt.opcode| Vrt € T.[rt.u = u)}

Similarly, we have

0 |Srel(u)| =1
Delay(cl) =

T, |Srcl(u)| > 1

0 |Src2(u)| =1
Delay(c2) = { | (1)

T, |Sre2(u)] > 1

0 |Srcd(dest)| =1
Delay(cd) =

T. |Srcd(dest)| > 1

where
Srcl(u) = {rt.srcl|Vrt € T.[rt.u = u]}
Src2(u) = {rt.src2|Vrt € T.[rt.u = u]}
Srcd(dest) = {rt.u|Vrt € T.[rt.dest = dest]}.

Because the numbers of inputs of muxl, mux2, and muxd, are given by
[Srcl@) |, |Src2(w)|, and |Srcd(dest)| respectively, we can determine their
delays by looking up the multiplexer delays, which are listed according to the
input count in Table 5.1.

Example 5.16 To estimate the cycle time of the dot product example, we assume T, = 5 FO4.With the
method developed previously, we can find the delay of each register transfer and deter-
mine that the cycle time of the RTL is 47.4 FO4. In 90nm technology, this is equivalent to
32.4ps*47.4 = 1.54ns. In other words, the maximum speed at which the circuit can run
is 649Mhz. Recall that the cycle count is 401, and the work (number of virtual instruc-
tions) is 1303, we can conclude that

) 1303
Perf(TinyRTL) = 4= = 2108MIPS
Seq

Register transfer |overhead| u muxd | cd cu cl c2 | mux1| mux2| Delay
sts 0, RO 10.0 00| 24 5.0 | 0.0 0.0 0.0 | 0.0 | 0.0 17.4

sts 0, R1 10.0 00| 24 5.0 | 0.0 0.0 0.0 | 0.0 | 0.0 17.4
M.lda R2, R1, A| 10.0 |10.5| 2.4 5.0 | 0.0 0.0 50 [0.0 | 24 30.3
M.ldaR3,R1,B| 10.0 [10.5| 2.4 5.0 | 0.0 0.0 50 [0.0 | 24 30.3
U0.+ R1, R1, 1 10.0 [10.0] 24 50 | 5.0 5.0 50 | 24 | 3.2 33.2
U1.*R2,R2, R3| 10.0 |[35.0 24 5.0 | 0.0 0.0 0.0 [0.0 | 0.0 47.4
U0.< R3, R1,100, 10.0 | 10.0(2.4 50 | 5.0 5.0 50 | 24 | 3.2 33.2
UO.+ RO, RO, R2] 10.0 [10.0| 24 50 | 5.0 5.0 50 | 24 | 3.2 33.2

5.3 High-level synthesis algorithm overview | 261

Of course, other quality metrics such as silicon area and power consumption are
also very important. Similar procedures can be developed to estimate these metrics
directly from RTL representation and currently are active areas of research.

Walking through the dot product example reveals that to transform an appli-
cation in behavioral (C/C++) form to RTL (Verilog) form, several key decisions
have to be made to convert the application into an IR form and eventually into
RTL form. Performance analysis gives us further insight that these decisions
impact the performance the RTL implementation can achieve, both in terms
of cycle count, and cycle time, in a non-trivial manner. In the next section,
we develop CAD algorithms that allow these key decisions to be made to
optimize the various quality metrics.

5.3 HIGH-LEVEL SYNTHESIS ALGORITHM OVERVIEW

In the previous section, we outlined the steps required to transform a behav-
ioral description of the dot product algorithm in TinyC into its RTL implementa-
tion in Verilog. Although we defined the intermediate program forms, we did
not describe how the input form is transformed into the output form. For the
frontend and optimizer components, the techniques used are largely no differ-
ent from those used by software compilers. We refer the readers to [Aho
2006] for a detailed treatment. For the code generator component, it is relatively
simple to output the HDL code from the RTL representation. Thus in this sec-
tion we focus on the backend component containing the core synthesis algo-
rithms that take as input an IR in terms of virtual instructions, and generate as
output an RTL representation in terms of register transfers.

As discussed in Section 5.2.5, we are not only interested in generating the
correct RTL that is functionally equivalent to the IR, but also with the best
quality of result (QoR). Therefore, the synthesis problem can be formulated
as an optimization problem targeting multiple objectives such as performance,
area, and power. For example, the backend synthesis problem can be formu-
lated as the following.

PROBLEM 5.1
Given: TinylR = (O,S,V,B)
Find: TinyRTL = (M,R,U,I,C)

Maximize: Perf(TinyRTL)
Minimize: Area(TinyRTL)

Recall that because this is a complex, phase-coupled optimization, it is not obvi-
ous how this problem can be solved. As discussed in Section 5.2, a divide-and-
conquer strategy is usually followed, and high-level synthesis is further

262 | CHAPTER 5 Electronic system-level design and high-level synthesis

decomposed into allocation, scheduling, and binding problems, and solved
in sequence. To simplify the presentation, in this section we make further
simplifications:

m Assumption 1: The functional unit allocation (Z.e., the hardware resources
used in the implementation), is specified by the user as a constraint. The
rationale behind this assumption is that the user could try out different
hardware resource allocations, and let the automated synthesis tool gener-
ate solutions for comparison, a process known as design exploration. We
further assume that each allocated unit can implement all virtual
instructions.

m Assumption 2: Storage allocation and binding is performed partially by
assuming all array variables are mapped to a single memory, and all scalar
variables are mapped to separate registers. Therefore, only the temporary
values produced by virtual instructions need to be mapped to registers.

m Assumption 3: Other than the constant instruction, each virtual instruc-
tion is implemented by one and only one register transfer. This does not
have to be the case in a production synthesis tool, because a subset of vir-
tual instructions can be grouped together and implemented by a single
register transfer, a process known as chaining.

m Assumption 4: Each register transfer can be completed in a single clock
cycle without degrading cycle time. In practice, this is not true because
a virtual instruction could be implemented by a functional unit with lon-
ger delay than the desired cycle time, a process known as multicycling.

We can then refine Problem 5.1 as follows.

PROBLEM 5.2
Given: TinylR = (O,S,V,B)
Find: (1) Schedule Sched: B — (V — 2)

(2) Register binding B™: V — Z

(3) Functional unit binding BY: V — U
Minimize: ~ Objective (1) Vb € B, |range Sched(0) |

Objective (2) [range BY|

Objective (3) Zyey|Srcl (U)| + Zueu|Src2(u)| + Zrer|Sred(r)|
Subject to: Constraint Vb € B,Ys € Z,|Sched(b)™'(s) | < | U |

Here we attempt to make three key decisions. For each basic block, the sched-
ule Sched maps each instruction contained in the basic block to a control step.
The register binding BX maps the value computed by each instruction to a reg-
ister. The functional unit binding BY maps each instruction to a functional unit.
The decisions have to satisfy the resource constraint; in other words, the num-
ber of instructions scheduled at each control step cannot exceed the number of

5.4 Scheduling 1 263

available functional units. Combined with the simplifying assumptions, it is triv-
ial to find the TinyIR representation (M,R,UIC) from Sched, B¥, and B".

We now relate the objectives in Problem 5.1 to the objectives in
Problem 5.2. To maximize performance, Problem 5.2 states that it is equivalent
to minimizing the number of control steps in each basic block (objective 1).
Recall performance is the product of cycle count and maximum clock fre-
quency. Although cycle count is not the same as control step count (because
a control step could be executed many times), minimizing the latter does
minimize the former. Here we assumed that maximum clock frequency is inde-
pendent of scheduling and binding, which does not hold in general.
To minimize area, Problem 5.2 states that it is equivalent to minimizing the reg-
ister count (objective 2), and minimizing the total number of multiplexer inputs
(objective 3). This makes sense because the functional units, memory, and reg-
isters for scalar variables are pre-allocated and therefore fixed. Here we have
assumed that the area of the synthesized circuit is dominated by the datapath
(controller area is therefore ignored), and areas of multiplexers are proportional
to the input count.

The next two sections describe the scheduling and register allocation
steps.

5.4 SCHEDULING

5.4.1 Dependency test

Because the objective of scheduling is to minimize the total number of control
steps (Z.e., maximize performance), we wish to schedule as many instructions in
the same step as possible, thereby executing all of them in parallel to maximize
design performance. However, this is not always possible. For an RTL imple-
mentation to preserve the semantics of the original algorithm, data dependen-
cies have to be respected. We illustrate the notion of data dependency below.

Consider the following scenarios in a basic block, where virtual instruction 4
precedes virtual instruction B:

1. Instruction A is the operand of instruction B, in other words, instruction
A produces a value consumed by instruction B;

2. Instruction A stores a value to symbol x, whereas instruction B loads a
value from symbol y;

3. Instruction A loads a value to symbol x, whereas instruction B stores a
value to symbol y;

4. Instruction A stores a value to symbol x, whereas instruction B stores a
value to symbol y.

For scenario 1, there is a definite data dependency between A and B: B has to
be scheduled at least one step later than A, because the value of A has to be

264

CHAPTER 5 Electronic system-level design and high-level synthesis

produced first before it can be consumed. This relation is explicitly represented
in, and easily extracted from, the IR.

For each of the scenarios 2, 3, and 4, there is a potential data dependency
between A and B: as soon as one can determine that symbols x and y are the
same (i.e., they are aliased to each other), then B has to be scheduled at least
one step later than A. This relation is implicitly induced by the runtime value
of memory addresses, and thus not easy to extract from the IR.

A dependency tester is an algorithm that statically determines whether two
instructions depend on each other. In TinyRTL, all scalar symbols are explicitly
named, in other words, symbols x and y either have the same name, or they
are not aliased to each other. It is therefore straightforward to compute the
data dependency induced by scalar variables by comparing symbol names.
Dependency through indexed accesses to arrays is more difficult to detect.
Given array access x[7], and array access x[j], the dependency test amounts
to determining whether values 7 and j can be equal to each other at runtime.
The supercomputing research community has developed comprehensive
methods for array-based dependency tests [Aho 2006]. A simple dependency
tester for TinyRTL can be constructed by simply comparing symbol names,
even for array accesses (in other words, conservatively assume that all indices
are potentially equal).

In a real-world language (e.g., C/C++), anonymous symbols exist through
the use of pointer dereferences. Pointers can be created either by taking
the address of a named symbol, or by dynamic memory allocation. Because
pointers can be copied, manipulated, and stored as any other value, two poin-
ters in a program can assume the same value at runtime, in which case the
corresponding pointer dereferences become aliases. Computing runtime
pointer values statically, known as pointer analysis, or statically detecting if
two pointer dereferences alias, known as alias analysis, are both undecidable.
Many pointer/alias analysis algorithms have been developed, with varying preci-
sion and scalability. The simplest pointer analysis algorithm collects the set of all
symbols in the program whose addresses have been taken, as well as the set of
all dynamic memory allocation sites, and assumes all pointers in the program
can carry one of those values.

To facilitate scheduling, a precedence graph is first constructed to capture the
dependency relation among the instructions in a basic block. The precedence
graph is named so because it captures the partial order of instructions.

Definition 5.4 A precedence graph (E,s,t) is a polar graph where E C V X
Vis the set of edges, and s,t € V is the source and sink node, respectively.

The precedence graph is sometimes also referred to as the dataflow graph
in the literature. A minor difference is that the dataflow graph captures the data
dependency of all instructions in a procedure, whereas the precedence graph is
its subgraph for instructions within a basic block. In particular, the source and
sink nodes are introduced to lump all instructions defined outside the basic
block under consideration. All instructions outside the basic block that are

5.4 Scheduling 1 265

depended on by the instructions in the basic block are lumped into the source
node. All instructions outside the basic block that depend on the instructions in
the basic block are lumped into the sink node.

Example 5.17 Consider the TinyC code fragment in Figure 5.6a. The corresponding TinyIR is shown in
Figure 5.6b. A simple dependency test algorithm can establish the dependency relation
by examining the chain of operations in each instruction. For example, consider instruc-
tion (28) in basic block B4, whose chain of operands is shown in Figure 5.7a. It can be
inferred that it depends on instruction (26), which in turn depends on instructions (24)
and (25), and so on. This process can be repeated, which yields the precedence graph
for basic block B4, as graphically depicted in Figure 5.7b. Note that instructions (4) and
(6) are defined outside B4, and they are lumped together as source node s. Likewise
instructions (27) and (28) are also defined outside B4, and they are lumped together as
sink node t. Thus, we have the following edges defined E = {(s,15), (s,16), (s,24),
(s,25), (15,17), (16,17), (24,26), (25,26), (17,18), (18,20), (20,t), (26,1)}.

int a, b, ¢, d; scalar c;
: scalar d;

B3:

Q.

(4) 1ds a
) { (6) 1lds b
(((a + b) * (a - b)) * 13) + 16; 5o
(a + 12) * (a * 12); (
B4:

[
© o

IBE coop B3

cnst 13

+ (4) (o)

- (4) (6)

* (15) (16)
* (14) (17)
cnst 16

+ (18) (19)
cnst 12

+ (4) (23
* (23) (4
* (24) (2

. =c + d;

)
)
5
sts (20)
sts (26)

)
2 @
2 d

I S I I N N e e e
oUW WO OO U

(30) 1ds c
(31) 1lds d
(32) + (30) (31)

(a) o (b)

FIGURE 5.6
(@) TinyC code. (b) TinyIR representation.

266

CHAPTER 5 Electronic system-level design and high-level synthesis

(@) (b)

FIGURE 5.7
(@) Chain of instructions. (b) Precedence graph of basic block B4.

We are now ready to examine some commonly used scheduling formulations.

5.4.2 Unconstrained scheduling

We first consider the simple case where the allocation constraints are ignored.
In other words, we assume an unlimited number of functional units are avail-
able. The unconstrained scheduling problem for a basic block can then be
formulated as follows.

PROBLEM 5.3
Given: Precedence graph (E,s,t)
Find: SV Z

Minimize: S(t)—S(s)
Subject to: V(u,v) € ES(v) — S(u)>0

Assuming the control steps are sequentially numbered, then the total num-
ber of steps is defined as S(®)—S(s), which becomes the objective to minimize.
To respect data dependency, for every edge (u,v), the schedule of the sink,
S(v), has to be “later” than the schedule of the source, S(u).

To solve Problem 5.3, one can use an iterative approach. In each iteration, a
set of nodes (instructions) in the precedence graph is scheduled to a control step.

5.4 Scheduling

The set of nodes that can be scheduled, or are “ready,” should be those whose
predecessors are all scheduled; otherwise, the dependency constraint would
be violated. In addition, we will schedule all nodes as soon as they are ready.
This strategy is referred to as as-soon-as-possible (ASAP) scheduling.

To implement ASAP scheduling, one can maintain a set Ready, representing
the set of nodes ready to be scheduled in the current control step. Initially,
Ready contains a single element, s. In each iteration, one chooses a node v from
Ready, and assigns its schedule as the current control step. In addition, it needs
to examine each successor w of v, and add it to NextReady, if it becomes ready
because v is scheduled. To judge if w becomes ready, one could check if all
its predecessors have been scheduled. This results in an algorithm with a
complexity of O(| V|+|E|?).

A better approach is shown in Algorithm 5.1. The key insight is that one only
needs to maintain the number of unscheduled predecessors for each node, called
counterin line 4 of Algorithm 5.1. It is initialized to be the number of incoming edges
for each node in line 7-8. When node v is scheduled, this number is decremented for
each of its successors w. When this number becomes 0, node w becomes ready
(lines 14-16). Algorithm 5.1, therefore, has a complexity of O(| VI+|E|).

Algorithm 5.1 ASAP Scheduling
algorithm asapSched(E : (V x V)[],s:V,t: V) returns V — Z

. foreach (v € V)

counter(v) = |{ul|(u,v) € E}|;

. while (Ready #) do

10. NextReady = &;

11. foreach (v € Ready) begin
12. S(v) = step;

13. foreach ((v,w) € E) begin

1. var S: Ve Z

2. var Ready, NextReady : V[];
3. var step : Z;

4. var counter : V — Z,

5. step = —1;

6. Ready = {s};

7

8.

9

14. counter(w) = counter(w) —1;

15. If (counter(w) == 0)

16. NextReady = NextReady U {w};
17. end foreach

18. end foreach

19. step =step + 1;
20. Ready = NextReady;
21. end while

22. return S;

267

268

CHAPTER 5 Electronic system-level design and high-level synthesis

Example 5.18 Consider applying Algorithm 5.1 to the precedence graph shown in Figure 5.7b. The

source node s is first scheduled (step -1). Because all its successors {15, 16, 24, 25}
have only one predecessor s, they become ready next. Scheduling node 15 to step 0
decrements counter for node 17 from 2 to 1. Scheduling node 16 to step O further
decrements counter for node 17 from 1 to O, which triggers node 17 to become
ready in the next step. The same would apply to node 24 and node 25 to node 26.
So, {17, 26} are scheduled at step 1. In the subsequent iterations, node 18, with node
17 as the only predecessor, is scheduled at step 2; and its dependent, node 20, is
scheduled at step 3. The complete ASAP schedule is shown in Figure 5.8a; it shows that
it takes 4 steps at minimum to schedule all instructions, excluding s and t.

Note that ASAP scheduling is not the only possible solution to the unconstrained
scheduling problem. An equally viable solution is the as-late-as-possible
(ALAP) algorithm. Opposite to the ASAP, the ALAP starts scheduling in reverse
time order.

Example 5.19 Consider applying ALAP scheduling to the precedence graph in Figure 5.7b. In the first

iteration of the algorithm, all immmediate predecessors of the sink will be scheduled at the
last step of the schedule. So, {20, 26} are scheduled at step 3. In the subsequent itera-
tions, an instruction is scheduled as soon as all of its successors in the precedence
graph have been scheduled at some later step. For example, in the second iteration,
node 18 is scheduled at step 2, because it has the already scheduled node 20 as its only
successor. Figure 5.8b is the complete ALAP schedule.

5.4.3 Resource-constrained scheduling

We now turn to solving the scheduling problem under resource constraints.
In particular, a preallocation of functional units Uis available. To simplify discussion,

(@) (b) (c)

FIGURE 5.8
(@) ASAP schedule. (b) ALAP schedule. (c) Mobility.

5.4 Scheduling 1 269

we assume each unit # € U can implement a subset of virtual instructions.
The resource-constrained scheduling problem can then be formulated as follows.

PROBLEM 5.4
Given: Precedence graph (£, s, t)
Find: Schedule S: V — Z

Minimize: S(f)—S(s)
Subject to: Constraint (a) V(u,v)€E : S(v)—S(u)>0
Constraint (0) Vi € Z,|S™()|<|U]|

Note that compared with Problem 5.3, a new constraint is added such that the
number of instructions scheduled at any control step cannot exceed the num-
ber of functional units available. This seemingly simple constraint dramatically
changes the combinatorial structure of the problem. Although Problem 5.3
can be optimally solved in linear time, Problem 5.4 is shown to be an NP com-
plete problem and requires heuristics for practical implementations.

Example 5.20 Consider again the scheduling problem that we solved in Example 5.18 and
Example 5.19. The precedence graph is redrawn in Figure 5.9, where each node is
annotated with its corresponding opcode. Assuming that we only have 2 add/sub units
and 1 multiplier, both of our ASAP and ALAP schedules will become infeasible. Referring
to the ASAP schedule in Figure 5.8a, our resource constraint is violated by the schedule
at step O and that at step 1, because 3 add/sub units and 2 multipliers will be needed,

FIGURE 5.9

Precedence graph annotated with opcodes.

270

CHAPTER 5 Electronic system-level design and high-level synthesis

respectively. Referring to Figure 5.8b, the schedule at step 2 requires at least 2 multi-
pliers, so it also violates the constraint. To satisfy the resource constraint, we will use a
list-scheduling algorithm to schedule these operations again.

List scheduling, shown in Algorithm 5.2, is a modified version of the
ASAP scheduling algorithm. Like ASAP, a list of nodes ready for scheduling
is maintained, hence its name. The difference is that in each iteration, only a
subset of nodes can be scheduled depending on the availability of resources
at the current control step. The availability information is maintained with a
“reservation table” at line 5 of Algorithm 5.2. We define a Boolean vector restab,
in which each entry indicates the availability of a unit. At each control step,
restab is initialized to be all false. Whenever a resource # is available, one of
the instructions is selected for assignment to the current step. The case in
which a unit can only implement a subset of instructions can be trivially
handled by an additional test impl. Meanwhile, restab(u) is assigned to true,
indicating it is “occupied.” This ensures constraint (b) is always satisfied.

Algorithm 5.2 List Scheduling
algorithm /istSched (E: (V x V)[],s:V,t:V) returns V — Z

. foreach (v € V)

counter(v) = |{ul{u,v) € E}|;
10. while (Ready # @) do

11. NextReady = O;

12. foreach (u € V)

13. restab(u) = false;

14. while (Ju € U,y € Ready | lrestab(u) A impl(u, y)) do
15. v = choose(Ready, u);

16. restab(u) = true;

17. S(v) = step;

18. Ready = Ready — {v};

19. foreach ((v,w) € E) begin

1. var S:V—2Z

2. var Ready, NextReady : V[];
3. var step: Z;

4. var counter. V — Z;

5. var restab: U — {true, false};
6. step = 0;

7. Ready = {s};

8

9.

20. counter (w) = counter(w) —1;

21. If (counter(w) = = 0)

22. NextReady = NextReady U {w};
23. end foreach

24. end while

25. step =step + 1;

5.4 Scheduling | 271

26. Ready = Ready U NextReady;
27. end while
28. return S;

Note that at each scheduling step, the number of ready nodes is often more
than the resources available to implement them. Therefore, we need to decide
which subset of nodes should be chosen for scheduling, in other words, how
we implement the choose function in line 15 of Algorithm 5.2. It is this key step
that impacts the quality of the solution. If a node is chosen too late, then it can
potentially lengthen the total schedule. If a node is chosen too early, then poten-
tially more clock steps are needed to keep its value in a register before it is con-
sumed by all its successors. This is referred to as “register pressure,” which can
lead to an excessive use of registers.

A common way to solve this problem is to assign a priority for each node
indicating the desirability of scheduling the node early. The priority can be
assigned according to several heuristics or as a weighted sum of them.

One heuristic is to exploit the flexibility of the nodes: in general, there can
be potentially many different clock steps a node can be scheduled to. We have
already seen that ASAP and ALAP give different solutions, both satisfy the depen-
dency constraint. However, the degree of flexibility can differ. The less-flexible-
first heuristics says that we should assign high priority to those nodes that are
less flexible. On the other hand, we can afford to schedule highly flexible nodes
later because there are more options. To quantify the schedule flexibility, one
can use mobility range, defined to be the difference between the ALAP sched-
ule and the ASAP schedule for each node.

Example 5.21 The mobility range of all nodes in Figure 5.7b is shown in Figure 5.8c. It can be observed
that nodes {15, 16, 17, 18, 20} have zero mobility, whereas the others have a mobility
of 2.

We now consider the use of mobility range as the priority function for list
scheduling.

Example 5.22 Consider the application of Algorithm 5.2 on the precedence graph in Figure 5.7b, modified
in Figure 5.9 with each node annotated with the opcode they require. At step 0, each of {15,
16, 24} in the ready list is requesting an add/sub unit, and {15, 16} are chosen to fill the two
available resource slots because both of them have lower mobility than node 24. At the
same step, operation 25 is the only candidate requesting a multiplier in the ready list, so
it is selected without competition. Such competition happens again at step 2: the multiplier
is requested by both ready operations. With lower mobility than operation 26, operation 18

272

CHAPTER 5 Electronic system-level design and high-level synthesis

wins. As shown in the following, the schedule generated by this algorithm takes 4 steps,
which yields the same minimum latency for ASAP and ALAP scheduling without resource
constraints.

Ready List STEP | ADD/SUB 1 | ADD/SUB 2 MULT
{15, 16, 24, 25} 0 15 16 25
{24, 17} 1 24 - 17
{18, 26} 2 - - 18
{26, 20} 3 20 - 26

We can also deploy a priority function that selects randomly; it is instructive
to compare list scheduling with a mobility-based priority function and with a
random priority function.

Example 5.23 Assume the priority function in list scheduling gives random selections. This could lead to

two possible schedules. In the first case, nodes {15, 24} are selected to fill the two add/
sub slots instead of {15, 16}.

Ready List STEP | ADD/SUB 1 | ADD/SUB 2 MULT
{15, 16, 24, 25} 0 15 24 25
{16, 26} 1 16 - 26
17 z = : 17
{18} 3 = : 18
{20} 4 20 : :

In Figure 5.10b, we can see that the result of delaying operation 16 is taking 1 more
cycle than optimal to complete the computation. In the second case, we choose to
delay operation 18 at step 3 as shown in the following table, and it also leads to an
increase in latency by 1 as shown in Figure 5.10c.

Ready List STEP | ADD/SUB 1 | ADD/SUB 2 MULT
{15, 16, 24, 25} 0 15 24 25
{24, 17) 1 24 - 17
{18, 26} 2 - - 26
{18} 3 - - 18
{20} 4 20 - -

Because 16—17—18—20 is a critical path in the precedence graph as shown in
Figure 5.9, it is impossible to generate a schedule that takes less than 5 cycles if we
delay any node on this path.

Many other heuristics can be developed and are used in practice as well.
For example, the distance of a node v to the sink node; in other words, the differ-
ence of unconstrained schedules of ¢ and v, wither ASAP or ALAP, can be used as
penalty (the inverse of priority). The rationale being that the closer a node is
to the sink, the more likely it is to extend the overall schedule if not scheduled
early. As another example, the out degree of a node can be used as a priority

5.5 Register binding 1 273

a)

FIGURE 5.10
List scheduling with priority functions.

function: the more number of successors a node has, the more likely additional
nodes would become ready after the scheduling of such a node.

5.5 REGISTER BINDING

In an IR, a virtual instruction may compute a value, which needs to be kept in a
register and later used by other instructions as operands.? In a simplistic imple-
mentation, one could allocate a distinct register to hold each value. This leads to
excessive use of storage resources. In contrast, one could exploit the fact that
the values do not need to be held all the time, because they have limited Zife-
times. The values that have nonoverlapping lifetimes can then share the same
register to save silicon area. The task of mapping values to registers to maximize
sharing is called register binding.

5.5.1 Liveness analysis

To enable register binding, we have to establish the condition under which
variables can share a common register.

Definition 5.5 A value (instruction) v is live at a control step sl if there
exists another control step s2 reachable from sl1, such that v is used as an

2Not all virtual instructions compute a value, for example, the memory store instructions. For
most instructions that do compute a value, we do not distinguish the virtual instruction and
the value it computes.

274

CHAPTER 5 Electronic system-level design and high-level synthesis

operand by one of the instructions scheduled at s2. A live set at control step
sl is the set of all values alive at s1.

Clearly, a value v scheduled at control step s cannot share a common register
with a value w live at s, otherwise, the new value v would corrupt the value w,
that is used later.

We use a liveness analysis algorithm to compute the live set. We first
consider a single basic block.

The strategy we take is to start at the end of the schedule and scan each
control step backwards (in reverse order). At each control step s, we define,

Live(s): Set of live values at the beginning of step s
Def(s): Set of values defined at step s
Use(s): Set of values used at step s.

The relationship between them can be established as follows, assuming all
control steps are sequentially numbered.

Live(s) = Use(s) U [Live(s + 1) — Def(s)]

Note that, Def(s) is the set of all instruction scheduled at step s; and Use(s) is
the set of all operands used by instructions scheduled at step s.

A liveness analysis algorithm for a basic block can then be developed, as
shown in Algorithm 5.3. It takes the schedule of the basic block as input. An
additional input to the algorithm is the set of live values leaving the basic block,
called liveOut.

Algorithm 5.3 Basic Block Liveness Analysis

algorithm /iveBB (S : V — Z, liveOut : V[]) returns Z — V []
var Live:Z— V[];
var l:Z,
I=|range S |; Live(l) = liveOut,
foreach (s € [/[-1...0]) begin

Live(s) = Live(s + 1)-S~'(s);

foreach (v € S7(s))

Live(s) = Live(s) | {v.src?} U {v.src2};

end foreach
return Live;

©ONDO A~ WND

Example 5.24 Consider the scheduled basic block in Example 5.22, re-created in Figure 5.11a. The live

range of each value can be visualized by an interval, starting from just after the control
step when it is defined and ending at the control step when it is last used as shown in
Figure 5.11b. The live set of each control step can then be visualized as a horizontal
cut line through the live ranges, in other words, the set of all values crossing the control

5.5 Register binding

6 4 Live values <~©RL8E2QJ 88
y
step 0 16 {4, 6}
Y
step 1 @D {4, 15, 16, 25}
step 2 (17, 24, 25)
Y
step 3 @ 26 (18, 24, 25}
v v | |
{20, 26}
(a) (b)
FIGURE 5.11

(a) Results of liveness analysis. (b) Live ranges of values.

step. We now consider how Algorithm 5.3 can compute the correct live set. In the begin-
ning, the liveOut value is {20, 26}, because they are used by other basic blocks. As we
scan step 3, we remove {20, 26} from the live set (Line 5, where S~'(s) applies the
inverse function of schedule S on step s, or returning the set of a value scheduled at
step s), because they are defined in step 3, and add {18, 24, 25}, because they are used
by {20, 26}. This leaves {18, 24, 25} as the live set for step 3. This process repeats until
we reach step 0, where the live set is {4, 6}, defined in other basic blocks.

STEP Def Use Live
0 {15, 16, 25} | {4, 6} - - |»{4, 6}
1 {17, 24} {4, 15, 16} w 1»{4, 15, 16, 25}
2 {18} {17} !;.){17, 24, 25}
3 {20, 26} {18,24,25} & J»{18, 24, 25}
4 {20, 26}

We now extend liveness analysis to the whole program. As shown in Algo-
rithm 5.4, we are now given the schedule for all basic blocks and attempt to
find the live set for each control step in all basic blocks. We use a standard data-
flow analysis framework deployed for software compiler analysis. In this frame-
work, a control flow grapb (CFG) is constructed so that there is one edge
from basic block A to basic block B if there is an instruction in block A that
branches or jumps to B. The framework traverses all basic blocks following

275

276 | CHAPTER 5 Electronic system-level design and high-level synthesis

the CFG order and derives the information of interest by processing each basic
block. In this case, we use the post depth first order to make sure all successors
of a basic block are processed before a given basic block. As each basic block is
processed by calling /iveBB (in Line 12), the liveOut of the basic block is com-
puted by combining the set of live values flowing out of all its successors
(Lines 8-13). This process repeats and is terminated when reaching a fixed
point; in other words, the computed live set values no longer change.

Algorithm 5.4 Liveness Analysis

algorithm /ive(Sched: B — (V — Z)) returns B — (Z — V[])

1. var Live: B— (Z — V[));
2. var LiveQut: B — V[];
3. var New: V[1];
4. var changed: {true, false} = true;
5. while (changed) do
6. changed = false;
7. foreach (b € B in postorder) begin
8. New = |J Live (s,0);
sesucc(b)
9. if (New # LiveQut(b)) begin
10. LiveQut(b) = New;
11. changed = true;
12. Live(b) = liveBB(Sched(b), liveOut(b));
13. end if
14. end foreach
15. end while

16. return Live;

With liveness information, we can then capture the relation between values
with a graph, called an interference graph. In an interference graph, a node
represents a value, and an edge between two nodes indicates that they cannot
share a common register. The interference graph can be derived from liveness
information with Algorithm 5.5.

Algorithm 5.5 Interference Graph Construction

algorithm intf(Sched: B — (V — Z), Live: B — (Z — V[])) returns (V x V)[]
1. var Eiper = (V x V)];

2. foreach (b € B) foreach (v € b) begin

3. s=Sched(p, v),

4. Epr=Einr U {{uv),(v.u)lu € Livelb,s + 1) A u # vh;

5. end foreach

6. return £,

5.5 Register binding 1 277

Example 5.25 Figure 5.12 shows the interference graph constructed from the liveness information in
Example 5.24. For example, for instruction 20, it is scheduled at control step 3. The live
set for step 4 is {20, 26}. Therefore an interference graph edge between 20 and 26 is
created. This process is repeated for every instruction.

25 15

FIGURE 5.12
Interference graph.

5.5.2 Register binding by coloring

Given an interference graph, the register-binding problem reduces to assigning
each node to a register number, while ensuring that two nodes connected by an
edge are assigned different register numbers. This is equivalent to the classic
graphb coloring problem, if each register number is treated as a color.

PROBLEM 5.5

Given: Interference graph E:
Find: Register binding 8%V — Z
Minimize: | range B7|

Subject to: Y(u,v)€EnnB (U)#B7(Wv)

Minimizing the number of registers is then equivalent to minimizing the chro-
matic number, or the minimum number of colors used to color the interference
graph.

The coloring problem is an NP-complete problem and thus requires heuristic
solutions. A typical heuristic algorithm colors one node at a time by choosing
the minimum color not used by its neighbors. Of course, one can only choose
a color different from the neighbors that have already been colored. Therefore,

278

CHAPTER 5 Electronic system-level design and high-level synthesis

it is sufficient to consider only the remainder graph (i.e., the subgraph of the
interference graph where all uncolored nodes and their incident edges are
removed).

Algorithm 5.6 uses this strategy by first finding the so-called vertex elimina-
tion order o (Line 6), which can be considered as the order in which the
sequence of the remainder graph is generated by removing one node at a time
starting from the full interference graph. The inverse of the vertex elimination
order is, therefore, the order in which the nodes are colored. In fact, in each
iteration of the loop in Line 7, a node v is selected according to ¢ and added
to the remainder graph (Lines 9-10) and colored (Line 11).

Algorithm 5.6 Register Binding by Coloring

algorithm color(Ejq: (V x V)[]) returns V — Z

var C:V—2Z
var c:Vmr— Z
var V'V
var EEpd];
var v:V,

o = vertexElim(Ej;
foreach (i € [1...|V])) begin

v=o0 ")

Vi=V"uU {v}

E'=E"U {uv),(vu) |u e V' AuV) € Epl;
11. Cv)=min({c € Z| Y{(u,v) € E,Cu) # c});
12. end foreach
13. return C;

-
COXNDOTEWN

Example 5.26 Consider the interference graph in Example 5.25. Assume the vertex elimination order is

{6, 20, 26, 17, 18, 24, 4, 15, 16, 25}. Then the coloring order is {25, 16, 15, 4, 24, 18,
17, 26, 20, 6}. We start with an empty remainder graph. The first node chosen is node
25. Because it has no neighbors, color 1 is chosen. In the next iteration, node 16 is cho-
sen, and the remainder graph is expanded with the node, as well as the incident edges,
shown in Figure 5.13a. Color 2 is chosen as the minimum number besides 1. In the next
iteration, node 15 is added to the remainder graph, shown in Figure 5.13b, and assigned
color 3, the minimum color different from its neighbors 25 and 16. This process is
repeated in Figure 5.13b—-e. In the end, all 10 nodes in the interference graph are colored
with 4 colors. In other words, 10 values can share 4 registers. The mapping is as follows.

RO: {6, 25, 26}
R1: {16, 20, 24}
R2: {15, 17, 18}
R3: {4)

5.5 Register binding

FIGURE 5.13
Coloring with o = {6, 20, 26, 17, 18, 24, 4, 15, 16, 25}.

Although the coloring process itself is rather straightforward, the key
step requires computing the appropriate vertex elimination order, or the
coloring order.

We first consider the special case in which the interference graph is derived
from a basic block. As shown in Example 5.24, each value is associated with a
live range characterized by a control step when the value is defined, and a con-
trol step when it is last used. This live range can be considered as an interval on
the integer set. An interference graph constructed by creating one edge for each
pair of overlapping intervals is called an interval graph. For an interval graph,
one could pick a coloring order by sorting all intervals according to the left edge
of the interval. This left-edge algorithm is optimal for an interval graph.

279

280

CHAPTER 5 Electronic system-level design and high-level synthesis

We now consider the general case in which the interference graph may not
have the structural property of an interval graph. This may partly be due to the
presence of complex control structures, such as branches and loops. This may
also be due to the special requirements that certain values have to be mapped
to the same register.

A typical heuristic we can use is called less-flexible-first, which we have used
in list scheduling. Here, the more neighbors a node has, the less choices it may
have to assign a color, and, therefore, the earlier we should color it. We can,
therefore, pick a vertex elimination order according to the degree of a node.
This strategy is used in Algorithm 5.7.

Algorithm 5.7 Vertex Elimination

algorithm vertexElim (Ein : (V x V)[]) returns V — Z
1. var c:.V—Z

2. var V'V

3. var E(Vx V)]

4. var v:V,

5 V' =V,

6. E' = Epnrr;

7. foreach (i € [1..]V]]) begin

8. v=argminey | {{uv) € E'};
9. o) =i

10. V' =V'-{v};

1. E' =E'—{{uv),(vu) € E'}
12. end foreach

13. return c;

Example 5.27 The vertex elimination process is illustrated in Figure 5.14. Here we use a stack to keep

track of the vertex elimination order, which facilitates the use of its inverse as coloring
order. With one adjacent node, 6, 20, and 26 are pushed to the stack first, as shown
in Figure 5.14a. These nodes, as well as their incident edges, are removed, which results
in a remainder graph shown in Figure 5.14b. With the degree of 2, vertices 17 and 18
score highest to be the next two nodes to be eliminated. After removing both 17 and
18, vertex 24 has its degree reduced to 1 and becomes the next candidate to be
removed, as shown in Figure 5.14c. As we can see in Figure 5.14d, the remaining nodes
have the same degree, and vertex 4 is selected arbitrarily. The same happens in the
subsequent iterations, and we choose to push vertices 15, 16, and 25 to stack in order,
as shown in Figure 5.14e—f. With the vertex elimination order stored in the stack, coloring
can be performed by popping one node at a time from the stack and reconstructing the
remainder graph, as illustrated in Example 5.25.

5.6 Functional unit binding

18

17

26 26

20 20

6 738 6
stack <=~ (b) stack

4

24 24

18 18

17 17

26 26

20 20

6 6
stack

25

- 16

15 | 25/! 15

4 o S~ 4

24 T 24

18 NN

17 < 17

26 o 26

20 20

6 6
(e) stack () stack

FIGURE 5.14

Vertex elimination.

5.6 FUNCTIONAL UNIT BINDING

Although the coloring algorithm can minimize the register count, the register
sharing decision may affect the size of multiplexers. The silicon area of multi-
plexers can be quite significant. For example, in an application-specific
integrated circuit (ASIC), the area of a six-input multiplexer is close to the
area of an adder. For today’s FPGAs, the area of multiplexers, typically imple-
mented as lookup tables, is often larger than adders, typically available as hard-

wired logic.

281

282

CHAPTER 5 Electronic system-level design and high-level synthesis

Example 5.28 To see how register binding may affect multiplexer area, consider the code fragment in

Figure 5.15a. Assume both instructions will be mapped to the same adder. If all possi-
ble input operands, which are values {t0, t1, t3, t4}, are mapped to different registers,
as shown in Figure 5.15b, two 2-to-1 multiplexers will be needed. However, as shown
in Figure 5.15c, the multiplexers can be eliminated by mapping values {t0, t3} to the
same register and values {t7, t4} to another one. In general, even in the cases that only
a subset of possible input operands share the same register, there is still a benefit from
a smaller multiplexer. Sharing registers among the possible output values of a func-
tional unit can also simplify the interconnection between the functional unit and the
registers. This is as illustrated by the mapping of values {t2, t5} to register R3 in
Figure 5.15c.

t0 t3 t1 t4
[rRo |[Rt |[R2 |[R3 |
t0/t3 t1/t4
t2 = tO: + = w w
t5 = €3 + t4; adder adder
i—‘_ﬁ !
[R3]
| Ra_| [Rs | /5
t2 t5

(@) (b) (©)
FIGURE 5.15
Impact of register sharing on multiplexers.

Likewise, although the silicon area of functional units is determined by alloca-
tion, functional unit binding affects the area of multiplexers. Ideally, if the
source operand of one instruction A maps to the same register of the source
operand of another instruction B, then it is desirable to map A and B to the same
functional unit, because no extra multiplexer input needs to be introduced at
the functional unit input. This scenario is called common source. Likewise, if
the destination operand of instruction A maps to the same register as the desti-
nation operand of another instruction B, then it is desirable to map A and B
to the same functional unit, because no extra multiplexer input needs to be
introduced at the destination register input. This scenario is called common
destination.

Example 5.29 Consider the design in TinyRTL in Figure 5.16a. Here two addition operations scheduled

at CO are bound to UO and U1, respectively; whereas the one scheduled at C1 is bound
to UO. To share unit UO, as shown in Figure 5.16b, three 2-input multiplexers are

5.6 Functional unit binding

needed in the corresponding datapath. However, because the operation scheduled at
C1 shares common sources and common destinations with the other scheduled oper-
ation at CO, the multiplexers can be eliminated by binding both instructions to the same
unit, as shown in Figure 5.16¢.

register RO, R1, R2, R3, R4, R5;
unit uo, Ul;

CO:
U0 — Ul

c1: Ul.+ R5, R2, R3;
(a)
[[ro] [Rt] [[R2] [R3]
\MUX ~ N\MUX 7 Lo | Lrr | Lre | [8]
v I T T
[9]0) U1 uo U1
v N
e]
(b) (¢)
FIGURE 5.16

Impact of functional unit binding on multiplexers.

Mathematically, the register binding and functional unit binding problems for
multiplexer area minimization are equivalent, although they depend on each
other (called the phase ordering problem). Recall in Section 5.5 that the regis-
ter-binding problem can be formulated as the coloring of an interference graph.
Each edge indicates that the connected nodes cannot be assigned the same
color, or they cannot share the same register. We now take a different perspec-
tive. Two instructions are said to be compatible if they can be mapped to the
same resource. Like the interference graph, we can establish a compatibility
graph whose nodes are instructions, and edges between nodes indicate that
they are compatible. The binding problem can then be formulated as a clique
partitioning problem, or an integer labeling of nodes in the compatibility graph,
such that all nodes with the same label are fully connected to each other. In
other words, all nodes with the same label form a clique, or a complete sub-
graph of the compatibility graph.

Interestingly, the interference graph and compatibility graph are dual of each
other: one can find the compatibility graph as the inverse of interference graph
and vice versa, and clique partitioning of a compatibility graph is equivalent to
the coloring of the corresponding interference graph. Thus, an alternate way of
performing register binding is to inverse the interference graph to obtain the

283

284 | CHAPTER 5 Electronic system-level design and high-level synthesis

compatibility graph, and then solve the clique partitioning problem. Likewise,
we can solve the functional unit binding problem by clique partition. The com-
patibility graph for functional unit binding can be established directly: an edge is
created for every pair of instructions that satisfy the following:

» Their opcodes are of the same class.’
m They are not scheduled at the same control step.

Example 5.30 Consider the example in Figure 5.6. Consider only the instructions that perform additions
and subtractions, which belong to the same class. This gives the set of instructions
{15, 16, 20, 24}. Given the schedule in Example 5.22, shown in Figure 5.10a, we con-
clude that only 15 and 16 interfere with each other, because they are scheduled at the
same clock step and, as a result, cannot be bound to the same functional unit. This is
reflected in the interference graph in Figure 5.17a. The compatibility graph is shown in
Figure 5.17b, essentially by complementing the edges in the interference graph.

@@ ®_ S

FIGURE 5.17
Interference graph and compatibility graph.

We can then refine functional unit binding problem as follows.

PROBLEM 5.6
Given: Compatibility graph Ecomp
Find: Unit binding BY: V — U

Minimize: X,ecy|Srcl (u)] 4+ Zyeu|Src2(u)| + Zyeu|Dest(u))|
Subject to: Vu,v € V,BY(u) = BY W)= (u,v) € Ecomp

>Two instruction opcodes are of the same class if there is significant chance of logic sharing if
they are bound to the same functional unit. Addition and subtraction are of the same class,
because it requires only a few extract logic gates to convert an adder into an adder/subtractor.

5.6 Functional unit binding

Note that the third term X,cy|Dest(u)| of the objective in Problem 5.6,
where Dest(u) is defined as the different registers a functional unit z connects
to, is derived from Srcd(r) of each register » from the third term of objective (3)
in Problem 5.2, where Srcd(r) is the different functional units outputs to
register . In fact, they are just different ways of estimating the total number
of multiplexer inputs to the registers.

Like graph coloring, clique partitioning that minimizies the number of cli-
ques is also an NP-hard problem. Problem 5.6 is harder, because its objective
is the total number of multiplexers, which nontrivially depends both on func-
tional unit binding and register binding.

To solve the problem heuristically, we again take the iterative approach,
which makes one decision at a time. More specifically, as we show in Algorithm
5.8, we start by assuming each node in the compatibility graph forms its own
clique. In each iteration, we select and contract one edge (u,v) in the graph
(Lines 11-17); in other words, we merge the pair of nodes incident to the edge
into a larger clique. With some bookkeeping (Line 16), the larger clique is repre-
sented by one of the pair, say u; therefore, edges incident to the other node v
are removed (Line 14). To ensure further merging leads to cliques, any edges
incident to # that do not share a common neighbor with v should also be
removed (Line 13). This process repeats until all edges are removed, and what
is left is a set of nodes, each representing a clique. After this, all virtual instruc-
tions in a clique v are assigned a common unit z# (line 18-22).

The key step of the algorithm is the criterion used to select the edge in each
iteration, so that it positively improves, if doesn’t optimizes, our objective. Algo-
rithm 5.8 uses the partial binding result to approximate the objective. It assumes
that each clique corresponds to a functional unit and maintains its Src1, Src2, and
Dest, calculated as the set of registers for the corresponding operands of all nodes
in the clique they are mapped to, according to register binding B¥. These sets are
called the operand sets. In each iteration, when two nodes (cliques) are merged,
their corresponding operand sets are merged as well by unions (Line 15). With
operand sets defined for each node, we can, in turn, define the edge weight as
the total number of common operands in respective operand sets. The edge that
leads to the least changes, that is, having the most number of common sources and
destinations, is greedily selected (Line 11).

Algorithm 5.8 Weighted Clique Partitioning

algorithm CliquePartition(Ecpmpar : (V x V)], Bf:V— 2 returns V — Z
var Vivi=V

var E:(VxV[]=E

var Clique : V — V[],

var BY:V—Z

var Src1,Src2,Dest : V — Z[];

foreach (v € V') begin

OO~ w =

285

286 | CHAPTER 5 Electronic system-level design and high-level synthesis

7. Src1(v) = {BR(v.src)); Src2(v) = {BR(v.src2)}; Dest(v) = {BF(v.dest));
8. Clique(v) = {v};
9. end foreach
10. while (E’ # @) do
1. (uv) = argmax, e e | Sre(u) N Src1(v)| + [Src2(u) N Src2(v)|
+ |Dest(u) N Dest(v)|;
12. V’ V’ {v}
13, —{uw), W)l (w,
—{{v,

v) ¢ E'};
14. ><WV>6E},

v);

v);

15. Src7() Src1(u) U Src1(v); Sre2(u) = Src2(u) U Src2(v);
Dest(u) = Dest(u) U Dest(

16. Clique(u) = Cligue(u) U Clique(v);

17. end while

18. foreach (v € V') begin

19. u=next(U);

20. foreach (w € Clique(v))

21. B'w) = u;

22. end foreach

23. return BY;

We now illustrate the application of Algorithm 5.8 for Example 5.30.
We start by computing the initial operand sets.

Example 5.31 From the TinyIR representation in Figure 5.6b, we can find the source operands of the
instructions as follows,

INSTRUCTION SRC 1 SRC 2
15 4 6
16 4 6
20 18 16>
24 4 A2

Note: constant inputs are bracketed by «»
From the register allocation result of the previous section (Example 5.26), we have

RO: {6, 25, 26}
R1: {16, 20, 24}
R2: {15, 17, 18}
R3: {4}

We can, therefore, establish the operand sets in Figure 5.18a. In addition, we mark
each edge with a weight, valued as the number of common elements in the respective
operand sets.

We can now start the iterative clique partitioning process.

5.6 Functional unit binding | 287

lteration 1
INSTRUCTION SRC 1 SRC 2 DEST
15 R3 RO R2
16 R3 RO R1
20 R2 R1
24 R3 R1
(a)
Iteration 2
INSTRUCTION SRC 1 SRC 2 DEST
15 R3 RO R2
16, 24 R3 RO R1
20 R2 R1
(c)
After iteration 2
INSTRUCTION SRC1 SRC 2 DEST
15 R3 RO R2
16, 24, 20 R3, R2 RO R1
(e)
FIGURE 5.18

Operand sets and iterative clique partitioning.

Example 5.32 From Figure 5.18a, the edge (16,24) is the only edge with the maximum weight of 2. Soin
the first iteration it is selected first for contraction. In doing so, nodes 16 and 24 are
merged into one node. Note in particular that the original edge (75,24) is removed,
because 15 and 16 are not compatible. Also note that the operand sets are updated
in Figure 5.18c, as well as the edge weights in Figure 5.18d. In the second iteration,
the edge between 20 and the merged node in the first iteration has the maximum
weight of 1 and is selected next for contraction. The result of this step is shown in
Figure 5.18e-f. Examining the remainder of the compatibility graph, there are no more
edges left, and the iterative process terminates.

We now have enough information to generate the full datapath.

288

CHAPTER 5 Electronic system-level design and high-level synthesis

Example 5.33 Combining scheduling, register binding, and functional unit binding, we can summarize
the decisions made in high-level synthesis by the following tables.

REGISTER | VALUES UNIT INSTRUCTIONS
RO 6, 25, 26 ADD/SUB 0 16, 20, 24

R1 16, 20, 24 ADD/SUB 1 15

R2 15,17, 18 MULT 17,18, 25, 26
R3 4

With the resource binding result, we can complete the datapath of the design by
adding multiplexers before functional unit and register input ports. To accomplish this,
we need to identify the set of all possible unit-to-register and register-to-unit transfers,
given the virtual instructions, as well as the binding result. According to the resource bind-
ing result in the above tables, we can identify the sources of registers as in the following
table. For example, register RO takes values {25, 26} from the MULT unit and takes value
6 from an external input, so it needs a 2-input multiplexer to take values from the both

sources.
REGISTER | INPUTS VALUES
RO external input 6
MULT 25, 26
R1 ADD/SUB 0 16, 20, 24
R2 ADD/SUB 1 15
MULT 17,18
R3 external input 4

To identify the sources of functional units, we first identify the source registers of each
instruction, as follows,

INSTRUCTION SRC 1 SRCReg 1 SRC 2 SRCRgg 2

15 4 R3 6 RO
16 4 R3 6 RO
17 15 R2 16 R1
18 13> 17 R2
20 18 R2 16>

24 4 R3 2>

25 2 4 R3
26 24 R1 25 RO

Note: constant inputs are bracketed by «»

Then, the sources of each functional unit are the union of the sources of all instructions
bound to the unit. For example, the sources of input port 1 of the add/sub O unit is the
union of {R3}, {R2}, and {R3}, which are the corresponding sources of instructions 16,

5.7 Concluding remarks 1 289

20, and 24, respectively. So, a 2-input multiplexer is needed at the port. The sources of the
rest of the functional unit ports are summarized as follows,

UNIT INPUT PORT 1 INPUT PORT 2
ADD/SUB 0 R2, R3 RO, 125, <16»
ADD/SUB 1 R3 RO

MULT R1, R2, 2, «13» | RO, R1, R2, R3

The complete synthesized datapath is as illustrated in Figure 5.20a.

It is constructive to examine whether the heuristic in Algorithm 5.8 is effective.
To see this, we apply the same clique partitioning process, except that in each iter-
ation, an edge is randomly selected for contraction. Figure 5.19 shows a possible
result, and the corresponding datapath is as illustrated in Figure 5.20b. It shows
that the random unit binding-based datapath takes 20 multiplexer inputs com-
pared with 17 multiplexer inputs from the clique-partitioning unit binding. In
terms of wiring complexity at the output port, it has a total of 16 destinations from
all sources, whereas the clique partitioning unit binding synthesizes a datapath
with only 15, which shows that in this instance the clique partitioning heuristic
yielded a superior design.

FIGURE 5.19

Random unit binding.

5.7 CONCLUDING REMARKS

In this chapter, we described a complete, although simplified high-level synthesis
system. The presented algorithms are distilled from a rich body of research since
the 1980s. The representative early academic efforts include CMU [McFarland
1978; Gyrczyc 1984; Thomas 1988], IMEC [De Man 1986], USC [Parker 1986],
and Illinois [Pangrle 1987; Brewer 1988]. The representative early industry efforts
include IBM [Camposano 1991] and Bell Lab [Bhasker 1990]. Readers are referred

290 | CHAPTER 5 Electronic system-level design and high-level synthesis

© _
selo ¥ selt LY =
A 4
il RO el R 2 R2 el R3
I
IGe Jils
f J.Z“»\\V A 4 ff_li_i_»‘\' YVYY _Sel‘}.g\" Y ff_'f’_s\'
MUL lne,l ADD/SUB 0 Im ADD/SUB 1
L - L
(a)

° >
selo Y sell A 4 A4 sel2 A 4 A4 =
---------------- » N\

Py RO AN R1 s R2 LN R3

e g k
R s T s (Yt sas oY o 5
MUL _,_— ADD/SUBO | e > ADD/SUB 1

] =

(b)

FIGURE 5.20
Synthesized datapaths.

to [Gajski 1992] and [De Micheli 1994] for a comprehensive treatment of
development in this period. In particular, list scheduling is due to [Landskov
1980]. Left edge algorithm for register binding is due to [Kurdahi 1987]. Clique
partitioning based binding is due to [Tseng 1986].

Although in this chapter we chose to present a resource-constrained-based
formulation of high-level synthesis, a large body of literature was devoted to

5.7 Concluding remarks

performance-constrained (or time-constrained) formulations of scheduling. A
representative work in this area is force-directed scheduling [Paulin 1989],
which attempts to minimize resource count under a cycle count constraint of
a basic block.

Despite the intensive research efforts, high-level synthesis was not embraced
by the design community as much as it was intended. As discussed in Section 5.1,
one reason behind the reluctance of acceptance is methodologic: because the
chip content has become increasingly heterogeneous, high-level synthesis has
to be integrated into an electronic system-level design method before it can
replace register transfer level synthesis as the dominant synthesis technology.
Toward this end, bardware/software codesign [Gupta 1992; Gajski 1994]
emerged in the mid-1990s as a research field to address the issue of how
one can partition an application into software and hardware components,
select the processors, and generate the interface between them. Attempts to
fully automate the task, called bhardware/software cosyntbesis [Ernst 19906;
Yen 1996], largely failed in practice because the partitioning decisions are
often dictated by non-technical factors, such as the availability of legacy intel-
lectual property (IP) components that populate the ecosystem of processor
IPs. Although the cosynthesis approach will remain effective for domain-
specific subsystems, the full system-level design method has given way to
the architecture-based method described in Section 5.2, which gives more dis-
cretion to system architects, enables concurrent development of hardware and
software, and allows for derivative implementations to amortize the design
cost to multiple products.

A restricted form of hardware/software codesign that has gained success in
practice is application-specific instruction set processor (ASIP) design.
Here a programmable processor is designed; however, the instruction set is
adapted to a family of applications. The main attractiveness of ASIPs is that it
allows for post-silicon programmability (which is not possible for traditional
high-level synthesis that generates custom hardware); furthermore, ASIPs can
achieve a certain level of application acceleration through the use of custom
instructions. The ASIP based design methodologies pioneered in [Marwedel
19861, [Fauth 1995], [Halambi 1999], and [Hoffmann 2001] are summarized in
[Mishra 2008], where different forms of architecture description languages
(ADLs) are advocated to specify processor architectures. Often, both the proces-
sor RTL and a compiler/simulator tool chain can be generated automatically.
Recent efforts attempt to automatically extract custom instructions from appli-
cation, given a tight budget of available instruction slots. Because the main
mechanism of application customization is through instruction extension, the
amount of acceleration an ASIP can achieve is limited. Therefore, ASIP designs
cannot completely replace what can be offered by high-level synthesis. Further-
more, they have to compete against the existing design ecosystem (including
legacy software) made available by dominant embedded processor vendors
who continually enhance their instruction sets for each processor generation.

291

292

CHAPTER 5 Electronic system-level design and high-level synthesis

For high-level synthesis to be successful as a component technology within
an ESL design method, many advanced issues beyond the scope of this chapter
have to be solved. The key drivers for these issues are that design productiv-
ity and quality of result (QoR) have to be substantially better than RTL to jus-
tify the departure from a mature, well-tested design flow.

On the design productivity front, classical high-level synthesis only tackles
behavioral description with loop kernel level complexity and accepts only a sub-
set of software program constructs. As a result, the design flow requires signifi-
cant manual partitioning and rewriting effort from designers, diminishing the
productivity gain promised by high-level synthesis. To succeed, high-level synthe-
sis has to scale analysis and optimization algorithms to handle applications in their
entirety and target architectures beyond FSMD. For example, performance-
constrained-based algorithms work only on a basic block, and it is impractical
to ask users to specify the cycle count constraint of every basic block in a com-
plex program. Therefore, either resource-constrained algorithms driven by a
design exploration environment have to be applied or new performance-budget-
ing algorithms capable of distributing end-to-end performance constraints to indi-
vidual blocks have to be developed. As another example, classical high-level
synthesis does not permit the use of pointers in the behavioral description, yet
pointers are pervasively used in C/C++ programs. Pointer analysis [Hind 2000]
was demonstrated to relax such limitations [Panda 2001a; Semeria 2001; Zhu
2002]. As another example, multi-processor system-on-chip (MPSOC) archi-
tectures [Dutt 2001; Helmig 2002; Intel 2002; Artieri 2003] were explored to
enable coarse-grained parallelism, and both bus-based communication schemes
[Pasricha 2008] and network-on-chips (NOC) [Dally 2001] were proposed to
provide on-chip communication support among the processing elements.

Although it is debatable whether the new acronyms above truly advance the
state-of-the-art in high-level synthesis, it is the QoR a synthesis tool can achieve
that would finally earn acceptance by designers. As a discipline, high-level syn-
thesis sits at the intersection of multiple domains, including parallelizing com-
pilers, computer architecture, and circuit optimization. Therefore, it has to
exploit and adapt existing techniques in these domains, and innovations likely
result by crossing boundaries of these domains. For example, presyntbesis
transformations were shown to have significant impact on QoR [Bhasker
1990; Nicolau 1991; Gupta 2003], yet a different strategy needs to be taken
from those in optimizing compilers. As another example, like in general pur-
pose computing, memory accesses are often the performance bottleneck. The
freedom in creating a customized memory system in high-level synthesis led
to many innovative memory optimization algorithms exploiting memory
access patterns at the application side and available bandwidth at the architec-
ture and circuit level [Panda 2001b; Wolf 2003]. Another problem that led to
the poor performance of classical high-level synthesis is the lack of a link to
downstream logic synthesis and place-and-route tools. The classical methods
abstract away the effects of downstream tools by use of area and timing

5.8 Exercises

estimation models that are often too crude to be useful. This leads to the well-
known timing closure problem. A promising direction is the so-called C-to-gate
methodology in which behavioral and logic synthesis are integrated in an effec-
tive fashion. Finally, there is an urgent need to tightly couple physical design
with high-level synthesis to allow for better predictability of design results at
the later stages of chip design [Xu 1998; Um 2003].

5.8 EXERCISES

5.1. (Frontend/IR Design) Use lex/yacc to build a frontend for TinyC, which
is given in Section 5.2.1.

5.2. (Resource-Constrained Scheduler) Implement the list scheduler with
the frontend built in Problem 5.1. The resource constraint is passed as
command line in the following format:

m behsyn -R constraint_spec foo.c

m constraint_spec: = component [; component]*

m component: = opcode [, opcode]* : num

For example, bebsyn -R “OP_ADD: 2; OP_MUL: 1” foo.c specifies that two
adder components (which implements OP_ADD) and one multiplier com-
ponent (which implements OP_MUL) are allocated. Your program should
optimize the expected cycle count under the specified resource
constraint.

5.3. (Register Binder) Implement a register binder with one of the following
algorithms:

m Left edge algorithm

m Coloring algorithm

m Weighted clique partitioning algorithm

Your program should optimize the number of registers used while
respecting the result of scheduling in Exercise 5.2.

5.4. (Functional Unit Binder) The goal of this exercise is to implement a func-
tional unit binder. The result of binding should respect the result of sched-
uling (Problem 5.2) and register allocation (Problem 5.3) in the previous
exercises, while minimizing the cost of multiplexers.

5.5. (HDL Generation) The goal of this exercise is to export the result of
behavioral synthesis to a form that is acceptable to commercial logic syn-
thesis and backend tools:

m A component generator that can output VHDL/Verilog code that uses
the Synopsys DesignWare components to implement the necessary
RTL component in your synthesis result.

m A controller/datapath generator that outputs the VHDL/Verilog code
for the controller, datapath, and the top-level design, respectively.

293

294 | CHAPTER 5 Electronic system-level design and high-level synthesis

5.6. (Multicycling and Functional Unit Pipelining) Modify Algorithm 5.1 to
incorporate realistic timing:
m Functional unit latency is larger than one.
m Functional unit latency is larger than one, but can process data every
cycle.

5.7. (Register Binding) It has been shown in [Golumbic 1980] that the color-
ing problem can be optimally solved in linear time, if the interference
graph is chordal.

m Show that the interference graph for values in a basic block is chordal.
m Show that the interference graph for values in a TinyC program is
chordal.

5.8. (Phase Ordering) Create an example to demonstrate that scheduling can

significantly impact the register allocation result. Devise a strategy to miti-
gate this so-called phase ordering problem.

ACKNOWLEDGMENTS

‘We thank Rami Beidas and Wai Sum Mong of University of Toronto for their help in preparing the
examples used in the text. We also thank Professor Jie-Hong (Roland) Jiang of National Taiwan Uni-
versity, Professor Preeti Ranjan Panda of Indian Institute of Technology, Delhi, and Dr. Sumit Gupta
of Nvidia, for their valuable feedback on this chapter.

REFERENCES
R5.0 Books

[Aho 2006] A. Aho, R. Sethi, J. Ullman, and M. Lam, Compilers: Principles and Techniques and
Tools, Second, Addison-Wesley, Reading, MA, 2006.

[De Micheli 1994] G. De Micheli, Syntbesis and Optimization of Digital Circuits, McGraw-Hill,
Hightstown, NJ, 1994.

[Gajski 1992] D. D. Gajski, N. D. Dutt, A. C-H. Wu, and S. Y--L. Lin, High-level Syntbesis: Introduc-
tion to Chip and System Design, Kluwer Academic, Norwell, MA, 1992.

[Gajski 1994] D. D. Gajski, E Vahid, Narayan, and J. Gong, Specification and Design of Embedded
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[Gajski 2000] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC: Specification
Language and Methodology, Kluwer Academic, Norwell, MA, 2000.

[Golumbic 1980] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
1980.

[Grotker 2002] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with SystemC, Kluwer
Academic, Norwell, MA, 2004.

[Mishra 2008] P. Mishra and N. Dutt, Processor Description Languages, Morgan Kauffman, San
Francisco, 2008.

[Pasricha 2008] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System on Chip
Interconnect, Morgan Kauffman, San Francisco, 2008.

[Yen 1996] T-Y. Yen and W. Wolf, Hardware-Software Co-syntbesis of Distributed Embedded
Systems, Kluwer Academic, Norwell, MA, 1996.

References

R5.1 Introduction

[Berry 1992] G. Berry and G. Gonthier, The Esterel Synchronous Programming Language: Design,
Semantics, Implementation, Science of Computer Programming, 19(2), pp. 87-152, November
1992.

[Halbwachs 1991] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchronous data flow
programming language LUSTRE, Proceedings of the IEEE, 79(9), pp. 1305-1320, September
1991.

[Kahn 1974] G. Kahn, The semantics of a simple language for parallel programming, in Information
Processing, pp. 471-475, August 1974.

[Krolikoski 1999] 8. J. Krolikoski, F Schirrmeister, B. Salefski, J. Rowson, and G. Martin, Methodology
and technology for virtual component driven hardware/software co-design on the system-level,
in Proc. IEEE Int. Symp. on Circuits and Systems, 6, pp. 456-459, July 1999.

[Lee 1996] E. Lee and A. Sangiovanni-Vincentelli, Comparing models of computation, in Proc. IEEE/
ACM Int. Conf. on Computer-Aided Design, pp. 234-241, November 1996.

[Lee 1987] E. A. Lee and D. G. Messerschmitt, Static scheduling of synchronous data flow programs
for digital signal processing, IEEE Trans. on Computers, 36(1), pp. 24-35, January 1987.

[SIA 2007] Semiconductor Industry Association, The International Technology Roadmap for Semi-
conductors: 2007 Edition, http://public.itrs.net, 2007.

[Zhu 1997] J. Zhu, R. Doemer, and D. Gajski, Syntax and semantics of SpecC+ language, in Proc.
Seventh Workshop on Synthesis and System Integration of Mixed Technologies, pp. 75-82,
December 1997.

R5.7 Concluding Remarks

[Artieri 2003] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins, and M. C. Rossi, Nomadik™ open mul-
timedia platform for next-generation mobile devices, STMicroelectronics Technical Article
TA305, http://www.si.com, 2003.

[Bhasker 1990] J. Bhasker and H.-C. Lee, An optimizer for hardware synthesis, IEEE Design & Test of
Computers, 7(5), pp. 20-36, September-October 1990.

[Brewer 1988] E D. Brewer, Constraint driven behavioral synthesis, Ph.D. thesis, Dept. of Computer
Science, University of Illinois, May 1988.

[Camposano 1991] R. Camposano, Path-based scheduling for synthesis, IEEE Trans. on Computer-
Aided Design, 10(1), pp. 85-93, January 1991.

[Dally 2001] W. J. Dally and B. Towles, Route packets, not wires: On chip interconnection networks,
in Proc. ACM/IEEE Design Automation Conf., pp. 684-689, June 2001.

[De Man 1986] H. De Man, J. Rabaey, P. Six, and L. Claesen, Cathedral-II: A silicon compiler for digi-
tal signal processing, IEEE Design & Test of Computers, 3(6), pp. 73-85, November-December
1986.

[Dutt 2001] S. Dutt, R. Jensen, and A. Rieckmann, Viper: A multiprocessor SOC for advanced set-top
box and digital TV systems, IEEE Design & Test of Computers, 18(5), pp. 21-31, September-
October 2001.

[Ernst 1996] R. Ernst, J. Henkel, T. Benner, W. Ye, U. Holtmann, D. Herrmann, and M. Trawny, The
COSYMA environment for hardware/software cosynthesis of small embedded systems,
J. Microprocessors and Microsystems, 20(3), pp. 159-166, May 1996.

[Fauth 1995] A. Fauth, J. Van Praet, and M. Freericks, Describing instruction set processors with
nML, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf., pp. 503-507, March
1995.

[Gomez 2004] J. I. Gomez, P. Marchal, S. Verdoorlaege, L. Pinuel, and E Catthoor, Optimizing the
memory bandwidth with loop morphing, in Proc. IEEE Int. Conf. on Application-Specific Sys-
tems, Architectures and Processors, pp. 213-223, September 2004.

295

296

CHAPTER 5 Electronic system-level design and high-level synthesis

[Grun 2001] P. Grun, N. Dutt, and A. Nicolau, APEX: Access pattern based memory architecture
exploration, in Proc. Int. Symp. on System Synthesis, pp. 25-32, September 2001.

[Gupta 1992] R. K. Gupta, C. N. Coelho, and G. De Micheli, Synthesis and simulation of digital sys-
tems containing interacting hardware and software components, in Proc. ACM/IEEE Design
Automation Conf., pp. 225-230, June 1992.

[Gupta 2003] S. Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau, SPARK: A high-level synthesis frame-
work for applying parallelizing compiler transformations, in Proc. IEEE Int. Conf. on VLSI
Design, pp. 461-466, January 2003.

[Gyrczyc 1984] E. Gyrczyc, Automatic generation of micro-sequenced data paths to realize ADA cir-
cuit descriptions, Ph.D. thesis, Carleton University, 1984.

[Halambi 1999] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. D. Dutt, and A. Nicolau, EXPRESSION:
A language for architectural exploration through compiler/simulator retargetability, in Proc.
1IEEE/ACM Design, Automation and Test in Europe Conf., pp. 485-490, March 1999.

[Helmig 2002] J. Helmig, Developing core software technologies for TI's OMAP™ platform, Texas
Instruments, http://www.ti.com, 2002.

[Hind 2000] M. Hind and A. Pioli, Which pointer analysis should I use?, in Proc. ACM SIGSOFT Int.
Symp. on Software Testing and Analysis, pp. 113-123, August 2000.

[Hoffmann 2001] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr, A meth-
odology for the design of application specific instruction set processors (ASIP) with the machine
description language LISA, in Proc. IEEE/ACM Int. Conf on ComputerAided Design,
pp. 625-630, November 2001.

[Intel 2002] Intel, Product Brief: Intel IXP2850 Network Processor, http://www.intel.com, 2002.

[Kurdahi 1987] E J. Kurdahi and A. C. Parker, REAL: A program for register allocation, in Proc. ACM/
IEEE Design Automation Conf., pp. 210-215, June 1987.

[Landskov 1980] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett, Local microcode compac-
tion techniques, ACM Computing Surveys, 12(3), pp. 261-294, September 1980.

[Marwedel 1986] P. Marwedel, A new synthesis for the MIMOLA software system, in Proc. ACM/
IEEE Design Automation Conf., pp. 271-277, June 1986.

[McFarland 1978] M. C. McFarland, The Value Trace: A database for automated digital design, Tech-
nical Report DRC-01-4-80, Design Centre, Carnegie-Mellon University, December 1978.

[Nicolau 1991] A. Nicolau and R. Potasman, Incremental tree height reduction for high-level synthe-
sis, in Proc. ACM/IEEE Design Automation Conf., pp. 770-774, June 1991.

[Panda 2001a] P. R. Panda, L. Semeria, and G. De Micheli, Cache-efficient memory layout of aggre-
gate data structures, in Proc. Int. Symp. on System Synthesis, pp. 101-1006, September 2001.
[Panda 2001b] P. R. Panda, E Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarani,
A. Vandercappelle, and P. G. Kjeldsberg, Data and memory optimization techniques for embed-
ded systems, ACM Trans. on Design Automation of Electronic Systems, 6(2), pp. 149-200,

February 2001.

[Pangrle 1987] B. M. Pangrle and D. D. Gajski, Slicer: A state synthesizer for intelligent silicon com-
pilation, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 42-45, November 1987.

[Parker 1986] A. C. Parker,]J. Pizarro, and M. Mlinar, MAHA: a program for datapath synthesis, in
Proc. ACM/IEEE Design Automation Conf., pp. 461-466, June 1986.

[Paulin 1989] P. Paulin and J. Knight, Force-directed scheduling for the behavioral synthesis of
ASIC’s, IEEE Trans. on Computer-Aided Design, 8(6), pp. 661-679, June 1989.

[Semeria 2001] L. Semeria and G. De Micheli, Resolution, optimization, and encoding of pointer
variables for the behavioral synthesis from C, IEEE Trans. on Computer-Aided Design, 20(2),
pp. 213-233, February 2001.

[Thomas 1988] D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajan, J. A. Nestor, and R. L. Blackburn,
The system architect’s workbench, in Proc. ACM/IEEE Design Automation Conf., pp. 337-343,
June 1988.

[Tseng 1986] C.J. Tseng and D. P. Siewiorek, Automated synthesis of data paths in digital systems,
IEEE Trans. on Computer-Aided Design, 5(3), pp. 379-395, March 1986.

References 1 297

[Um 2003] J. Um and T. Kim, Synthesis of arithmetic circuits considering layout effects, IEEE Trans.
on Computer-Aided Design, 22(11), pp. 1487-1503, November 2003.

[Wolf 2003] W. Wolf and M. Kandemir, Memory system optimization of embedded software,
Proceedings of The IEEE, 91(1), pp. 165-182, January 2003.

[Wuytack 1999] S. Wuytack, E Catthoor, G. D. Jong, and H. J. De Man, Minimizing the required mem-
ory bandwidth in VLSI system realizations, IEEE Trans. on Very Large Scale Integration Systems,
7(4), pp- 433-441, April 1999.

[Xu 1998] M. Xu and E J. Kurdahi, Layout-driven high level synthesis for FPGA based architectures,
in Proc. IEEE/ACM Design, Automation and Test in Europe, pp. 446-450, February 1998.

[Zhu 2002] J. Zhu, Symbolic pointer analysis, in Proc. IEEE/ACM Int. Conf. on Computer-Aided
Design, pp. 150-157, November 2002.

