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MATHEMATICS

¢ Language, an agreement of scientists and engineers:
“never divide something with 0” etc.

¢ Tool for modeling of our analog world; f(x, ...):
analysis and calculus.

¢ Tool for solving equations:
matrix descriptions and linear algebra.

¢ Tool for analyzing and optimizing structures/topologies.
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THE SEVEN BRIDGES OF KONIGSBERG
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KALININGRAD OF TODAY

Google Maps
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LEONHARD EULER’S FINDING (1735)

¢ ‘If there Is a path along edges of a multigraph that traverses each
edge once and only once, then there exist at most two vertices of
odd degree; furthermore, If the path begins and ends at the same
vertex, then no vertlces WI|| have odd degree

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 8(53)



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA.

SEVEN BRIDGES REPRESENTATION

¢ Bridges are edges and

land/islands are vertices. ) ‘
8.
¢ Edges should be passed O
once; vertices can be 18] / 3
visited many times. \f \E
¢ Three vertices have degree o |

3, and one has degree 5.

¢ Odd degree vertices for start and finish, otherwise not acceptable.

- Multigraph: more than one edge between two particular vertices.
- Degree: number of edges at a certain vertex.
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PATHS AND CIRCUITS

¢ Ifitis possible to start at a vertex and move along a path
S0 as to pass along each edge exactly once,
the graph has an Euler path.

¢ As you may recall from Introduction to integrated circuit design,
Euler paths in a transistor representation for CMOS
leads to single line of diffusion.

¢ If the path ends at the same vertex at which you started
It Is called an Euler circuit.
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THE ICOSIAN GAME - W R HAMILTON (18357)

NN EE N SRR NN NEEE NN NN N R R R NN NN NN NNNN]

Eire

1

— ;'i'n -

William Rowan Hamilton

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 11(53)



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

HAMILTONIAN PATHS AND CIRCUITS

¢ A Hamiltonian circuit begins and ends at
the same vertex, while passing through
each vertex exactly once.

¢ For an Euler path you may visit 4 ‘

each vertex more than once and
In @ Hamilton path it is not necessary to
travel every edge.

1994 Encyclopaedia Britannica, Inc.

¢ In contrast to the problem of finding out if there exists
an Euler circuit in a graph, it is not practically possible to ascertain
the existence of a Hamilton circuit for big problem instances.
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OPTIMIZATION VS DECISION PROBLEMS

¢ “What is the cheapest round-trip route
that visits each city exactly once and
then returns to the starting city?”

This Is an optimization problem.

¢ Compare to a decision problem where
we only need to know If there exists a
solution, but where we do not really
need to know the solution itself:
“Does a route with length under
a certain distance exist?” (Yes or No.)
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THE TRAVELING SALESMAN PROBLEM (TSP)

¢ In this problem we have
assigned weights to the
edges; a weight here means
distance between two cities.

¢ A vertex signifies a city,
so we are looking to find the
Hamiltonian circuit that has
the lowest cost (sum of
weights).

¢ This Is an optimization problem.
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Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

ANOTHER TSP EXAMPLE

¢ Since the TSP Is a so-called NP-hard problem,
It Is Impractical to solve TSP problems
that have many vertices.

¢ However, in 2004, the TSP of visiting all 24,978
villages and towns/cities in Sweden was solved:
a tour of length (approx.) 72,500 kilometers was
found and it was proven that no shorter tour exists.

-  http://www.math.uwaterloo.ca/tsp/sweden/

¢ To the right, Kungalv Is the top blue vertex,
while Kungsbacka Is the bottom vertex of
the optimal TSP solution.
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¢ Problems with polynomial dependence on input size: n

COMPLEX PROBLEMS

constant

¢ Problems with exponential dependence on input size: constant'".

¢ In general, problems with exponential dependence on

In
W

¢ NP

nut size are not feasible to compute,
nile those with polynomial dependence can be solved.

(Non-deterministic Polynomial) problems

take too long time to compute exactly,

at least for large-size problems.

Such problems are computationally infeasible, e.g.,
brute-force TSP grows with n! .
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COMPLEX PROBLEMS ... BUT INPUT SI1ZE MATTERS
n,/1000

¢ Consider an algorithm that has a worst-case complexity of 2
¢ Consider another algorithm that has

. 1000
a worst-case complexity of n

¢ The first (exponentially dependent) algorithm
IS Intrinsically viewed as computationally more challenging than
the second (polynomially dependent) algorithm.

¢ However, it takes an n > 2.4 107 to make
the complexity of the exponentially-dependent algorithm the larger!
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NP WHAT?

¢ “The complexity class of decision problems that are
intrinsically harder than those that can be solved by a
nondeterministic Turing machine in polynomial time.
When a decision version of a combinatorial optimization
problem is proved to belong to the class of NP-complete problems,
then the optimization version is NP-hard.”

Examples:

¢ ‘Is there a Hamiltonian cycle with length less than k?”
IS NP-complete.

¢ However, the TSP optimization problem “What is the shortest tour?”
IS NP-hard.
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COMPLEXITY MEASURES

¢ Computational complexity is an abstract measure
to describe how difficult it Is to execute an algorithm.

- 1844 (G. Lame): #computational steps of the Euclidean algorithm
(CGD) are fewer than 5 logy b, where b is the smaller number.

- Problem size: For the graph G(V, E), the number
of vertices (|V|) and edges (|E|) represent input size.

¢ Different complexities:
- Worst case vs average case.

- Time (run time) vs space (memory): Count elementary
computational steps (e.g., multiplications).

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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COMPLEX DESIGN AND VERIFICATION PROBLEMS

¢ Many optimization problems in EDA
are too complex to solve.
Here exact solutions can only be
found when the problem size is small.

¢ One should otherwise be satisfied with
suboptimal solutions found by...

- approximation algorithms:
they can, for example, guarantee a solution
within 20% of the optimum.

- heuristics:
nothing can be said a priori about the quality of the solution.
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EXAMPLE: THE SHORTEST PATH PROBLEM

¢ Dijkstra's algorithm finds the shortest path between v and v;.

dijkstra(set of struct vertex V, struct vertex vg,
struct vertex Vi)

1

set of struct vertex T;
struct vertex u, V;
V.« V \ {vg};

T « {Vs};
Vg.distance « O;

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 22(53)



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

for each u € V
1T ((vg, U) € E)
u.distance « w((vg, U))

else u.distance <« +owj;
whille (vg ¢ T) {
u < “u e V, such that Vv € V :
u.distance < v.distance”;
T« T u {u}; /* Add u to T. */
V. « V \ {u}; /* Remove u from V. */
for each v “such that (u, v) € E”
iIT (v.distance > w((u, v)) + u.distance)
v.distance < w((u, v)) + u.distance;
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SHORTEST PATH EXAMPLE 1(7)

¢ Find shortest path: A to E:

¢ We start with

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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Lecture 9: Discrete Mathematics and Optimization Strategies for EDA.

SHORTEST PATH EXAMPLE 2(7)

1. We start from A, so we move A to
the T set and update the distances to
all of its (A’'s) neighbors. B, F, and G all
have actual paths and distances.

2018

We now have the following information
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SHORTEST PATH EXAMPLE 3(7)

2. The shortest distance Is to B,
S0 we move B to the T set and
update its neighbors.

A path to C is known and an improved
pathto F is revealed. (A—> B — F has a
costl+2=23).

- T ={A:(0, empty), B:(1, A) }
-V ={F:(3, B), G:(3, A), C:(5, B), Di(e0, ?), Ei(0, ?) }
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SHORTEST PATH EXAMPLE 4(7)

3. Fand G have equal distances:
Still, we choose to move F.

We discover a shorter path to C
(A— B —> F — Chas cost 3,
while A— B — C had cost 5)
and a path to E.
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SHORTEST PATH EXAMPLE 5(7)

4. We canthenmove GorCto T,
they have equal costs. Now choose G.

Since G has no neighbors,
there are no changes to V.
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SHORTEST PATH EXAMPLE 6(7)

5. Itis time to move C,
which allows us to update
the distance to D.
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SHORTEST PATH EXAMPLE 7(7)

6. Time to move D.

- T ={A:(0, empty), B:(1, A), F:(3, B),
G:(3, A), C:(3, F), D:(4,C) }
-V={E:(9,F)}

7. E s left, move It.

- T={A(0, empty), B:(1, A), F:(3, B),
G:(3, A), C:(3,F), D:(4,C), E(9, F) }
-V ={}

Shortest path from A to E is E-F-B-A with distance cost 9.
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SHORTEST PATH EXAMPLE USING DIJKSTRA

¢ In our example, we were unlucky
to have the sought destination E as last vertex.
The statement whille (v¢ ¢ T) can potentially

stop the search before all vertices have been visited.
¢ The Dijkstra algorithm has worst-case complexity

of |V|2 + |E[, thanks to the skipping of paths
that cannot be on the shortest path.
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ALGORITHMS IN LECTURE 2 ...

Depth-first search to find proper levelization.
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ALGORITHMS IN LECTURE S...

Breadth-first search (from right to left),

followed by
depth-first search (from left to right)
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An introduction to optimization
[flow according to Gerez]
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THE PRAGMATIC ENGINEERS

¢ EDA problems are often too complex for exact solutions;
those problems are intractable.

¢ Tractable and intractable problems can appear very similar.

- The shortest-path problem for undirected graphs is
tractable ... solved,for example, by Dijkstra’s algorithm.

- However, the longest-path problem is intractable.
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OPTIMIZATION

¢ Optimization problem:
finding a legal configuration
such that its cost IS minimum (or maximum).

- “legal” Implies constraints are met.

¢ Aninstance | = (F, c) where ...
- F s the set of feasible solutions, and

- cls acost function, assigning a cost value to
each feasible solution ¢ : F — R (eal numbers)

¢ The solution to the optimization problem is the
feasible solution with optimal (minimal/maximal) cost.
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OPTIMIZATION STRATEGIES

¢ Approximation algorithms.
- Guaranteed to be a fixed percentage away from the optimum.

¢ Pseudo-polynomial time algorithms.
- A polynomial function for the complexity, but n is not the problem size.

Restriction: Work on some subset of the original problem.
Dynamic programming (divide and conquer) [Lecture 4].
Exhaustive search/Branch and bound: Small problem sizes.

® & o o

Local search.
- Simulated annealing (hill climbing), genetic algorithms, etc.

¢ Heuristics: No guarantee of performance or quality.
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BASIC OPTIMIZATION - LP PROGRAMMING

¢ A production of two products P1 and P2 with ingredients I, and |,.

- P1 uses aqq units of I; and a,q units of I,.
ts unit price Is c. Its daily production is x; units.

- P2 uses ay, units of 1; and a,, units of |,.
tS unit price Is c,. Its daily production is x, units.

- The company cannot receive more than b4 units of I,
and b, units of |, per day.

¢ Problem: maximize the daily revenue ¢q X1 + €y X, Subject to ...
- 8.11X1+312X2§b1, XIZO

- 3.21X1+3.22X2§b2, X220
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LP PROGRAMMING AND THE INTEGER VERSION

¢ Linear Programming - optimization in the continuous domain.
- The LP problem can be solved using the Simplex method.

- Simplex has exponential complexity in the worst case,
but is mostly still feasible in practice.

¢ Integer Linear Programming - the discrete domain.

- With the condition that variables (x; and x,) are integers,
the problem turns into ILP: An NP-hard optimization problem.

- However tempting, rounding the result of LP Is not possible;
the solution may be infeasible or nonoptimal.
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ILP FOR TSP
¢ The graph G(V, E) with edge weights w.

¢ Introduce a variable x; for each edge e; € E, 1 <i1<k.
Here x; = 1 if and only If e; Is part of the TSP solution.

k
¢ Cost function to minimize: '} w(e;)X;
=1
¢ Constraints to obey are ...
- that only two edges per vertex are selected.
- that there are no multiple disjoint tours.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 40(53)



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

EXAMPLE OF APPROXIMATION - GLOBAL ROUTING

¢ The minimal rectilinear spanning tree problem is tractable,
while the minimal rectilinear Steiner tree is intractable.

Eo t

H+++H H+H B

¢ The Minimum Spanning Tree (MST) algorithm (middle) can be
an approximation for the Steiner tree problem (right).
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ROUTING TERMINOLOGY + RESULT

¢ Manhattan distance: If two points (nodes) are located
at coordinates (xq, y1) and (Xo, y»),

the Manhattan distance between them is given
Dy d1p = [Xq-Xo| + [y1-Yol.

¢ Rectilinear spanning tree: A spanning tree that
connects its nodes using Manhattan paths.

¢ Ina Steiner tree, additional points (Steiner points) are
permitted to be used for the connections.

¢ MST approximates the Steiner tree problem solution with
a quality that Is less than 50% away from optimum!
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EXACT SOLUTIONS - THE TSP AGAIN
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EXHAUSTIVE SEARCH GIVES LARGE SEARCH SPACE

¢ The Hamiltonian circuits of the graph
can be searched exhaustively.
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BRANCH AND BOUND OF SEARCH SPACE

¢ After we have visited the leftmost leaf with cost 27, we compare all
coming branches to this: Known path + expected path (MST).

o+13
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LOCAL SEARCH

¢ The simplest form of local search Is gradient search.
In a continuous representation, follow the gradient %f(x);

uphills (maximization) or downhills (minimization).

¢ When there exist several local optima, local search has a risk
of getting stuck in a local optimum that is not the global optimum.

¢ Initial guess Is very important.

¢ There are approaches that perturb the search,
so there Is a small probability that you make a “bad” move:
Tabu search, simulated annealing and genetic algorithms.
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THE WEAKNESS OF GRADIENT SEARCH

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 47(53)



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

IDEA OF SIMULATED ANNEALING

¢ High enough temperature to ensure random state +
cooling process slow enough to

ensure thermal equilibrium
9
the atoms will place themselves in a pattern that

corresponds to the global energy minimum
of a perfect crystal.

¢ Key mechanism:
Bad moves may be accepted,
which allows us to leave local optimal!
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SIMULATED ANNEALING 1(2)

¢ “A material cools down slowly and
settles to a minimal energy state.”

- Energy <> cost function.
- Molecule movement <> movement in search space.
- Temperature <> control parameter T.

¢ Move strategy for f (current position) and g = m(f) (next position).
- Ac=c(g) - c(f).
- If Ac £0, always accept transition to g.
_Ac
- If Ac >0, accept with a probability limit of e
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SIMULATED ANNEALING 2(2)

1. Initialize; Start with a random initial condition
and a high temperature.

2. Move: Perturb for example initial placement through a move.
3. Calculate cost: Calculate cost change due to the move made.
4. Choose: Accept or reject the move.

Probability of acceptance depends on the current temperature.

5. Update and repeat: Update the temperature value
(perhaps it is time to lower the temperature).
Check if “freezing point” is reached, then quit,
else go back to step 2.
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SA ALGORITHM FOR PLACEMENT

begin
temp = 1nitial_temperature;
place = 1nitial _placement;
while (temp > freezing point) do
while (inner_loop criterion = FALSE) do
new _place = PERTURB(current place);
AC = COST(new_place) - COST(current place);
1T (AC < 0) then
current place = new place;
else 1t (RANDOM(0,1) > e™~(AC/T)) then
current place = new place;
temp = SCHEDULE(temp);

end;
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SA ISSUES

¢ Cooling schedule Is very important for quality of result.
- Number of iterations in inner and outer loops.
- Temperature update strategy.

¢ Optimal cooling schedule guarantees optimal solution with
probability = 1, but requires infinite number of iterations.

¢ In practice, simulated annealing ...
- degrades to heuristic due to nonoptimal cooling schedule.
- Is the best method known for (standard-cell) placement.
- cannot compete with good problem-specific heuristics, If such exist.
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DISCRETE MATH AND OPTIMIZATION: CONCLUSION

¢ Can you solve an optimization problem exactly, do so.

¢ Application of approximation algorithms and heuristics
usually requires understanding of context;
that Is, It requires experience.

¢ General optimization algorithms,
such as simulated annealing, are generic.
Do not expect too much from such algorithms;
they are often used as the last resort
for “Inexperienced” users or “hopeless” problems.

¢ Read more [Ch4 Algorithms.pdf].
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