

DAT110

METHODS FOR ELECTRONIC SYSTEM

DESIGN AND VERIFICATION

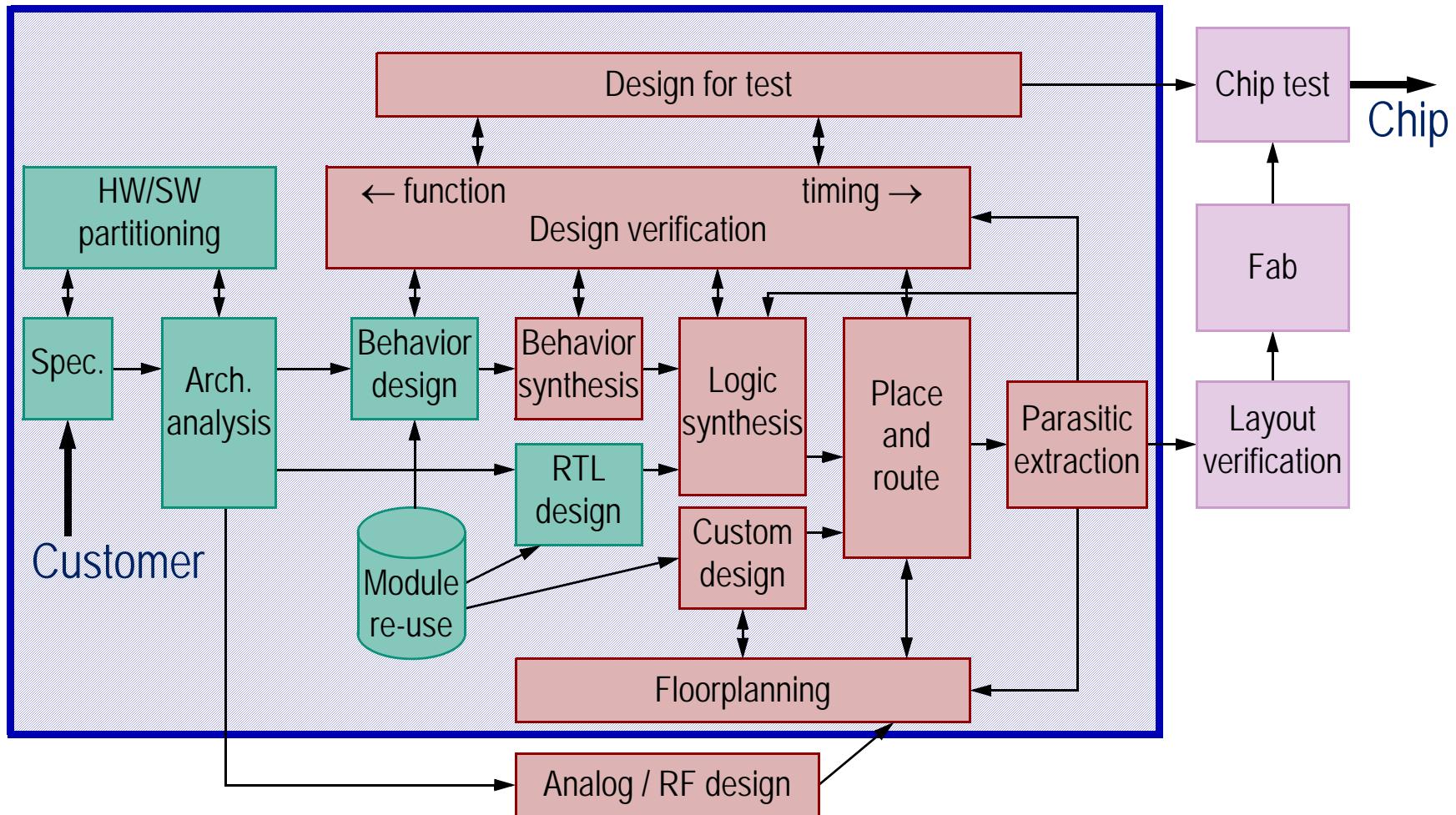
Per Larsson-Edefors
VLSI Research Group

LECTURE 9:

DISCRETE MATHEMATICS AND

OPTIMIZATION STRATEGIES FOR EDA.

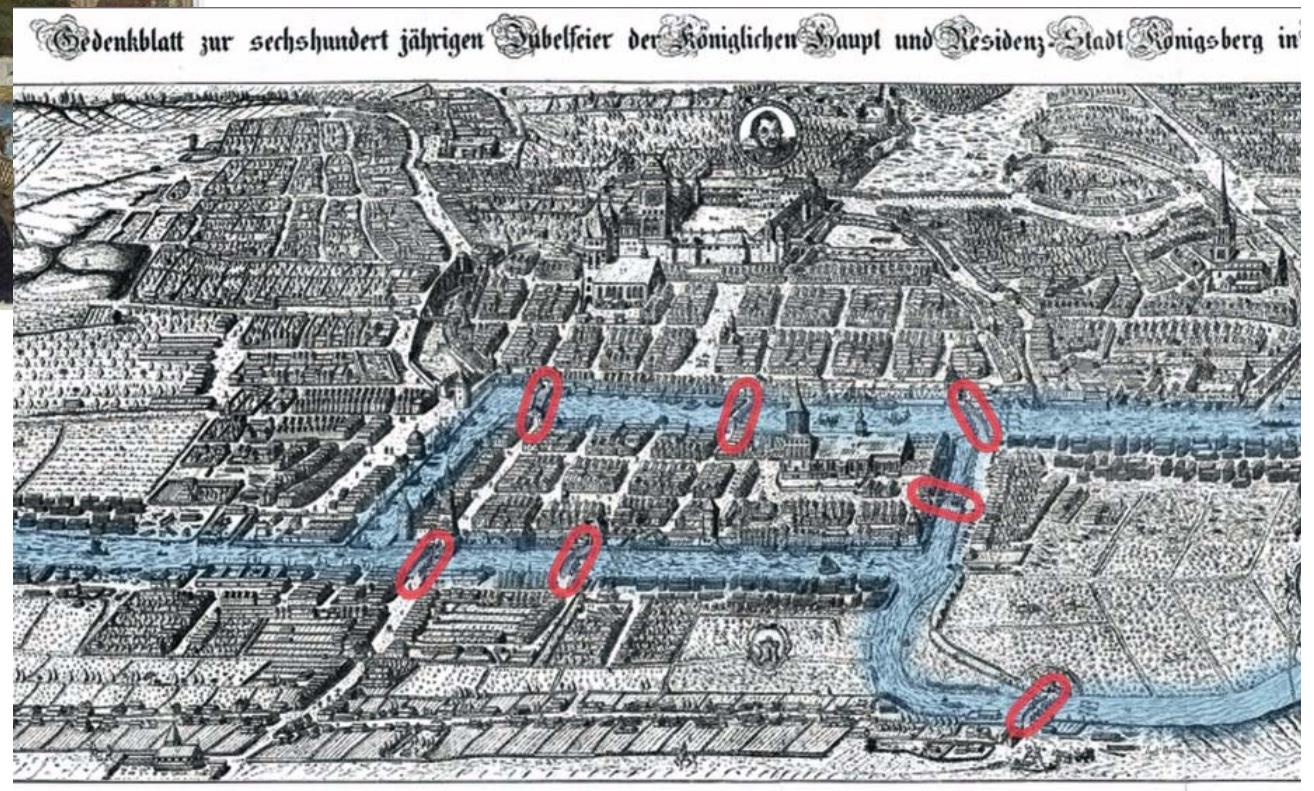
PRESENT SCENARIO: DISCRETE MATH



MATHEMATICS

- ◆ Language, an agreement of scientists and engineers:
"never divide something with 0" etc.
- ◆ Tool for modeling of our analog world; $f(x, \dots)$:
analysis and calculus.
- ◆ Tool for solving equations:
matrix descriptions and linear algebra.
- ◆ Tool for analyzing and optimizing structures/topologies.

THE SEVEN BRIDGES OF KÖNIGSBERG



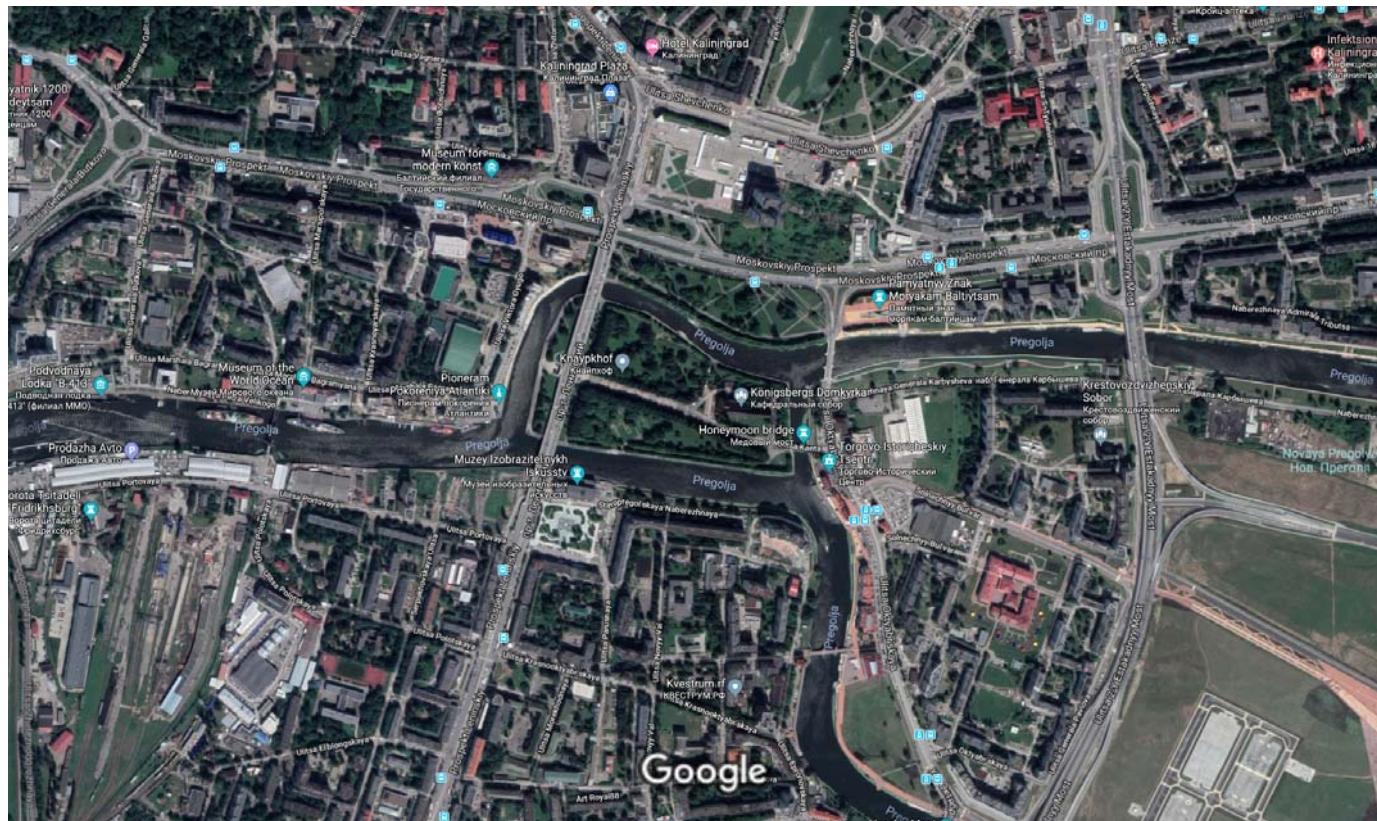
Source: <http://www.leonhardeuler.com/>

KÖNIGSBERG = KALININGRAD

Source: <http://www.eatingeuropetours.com/the-most-vegetarian-country-in-europe/>

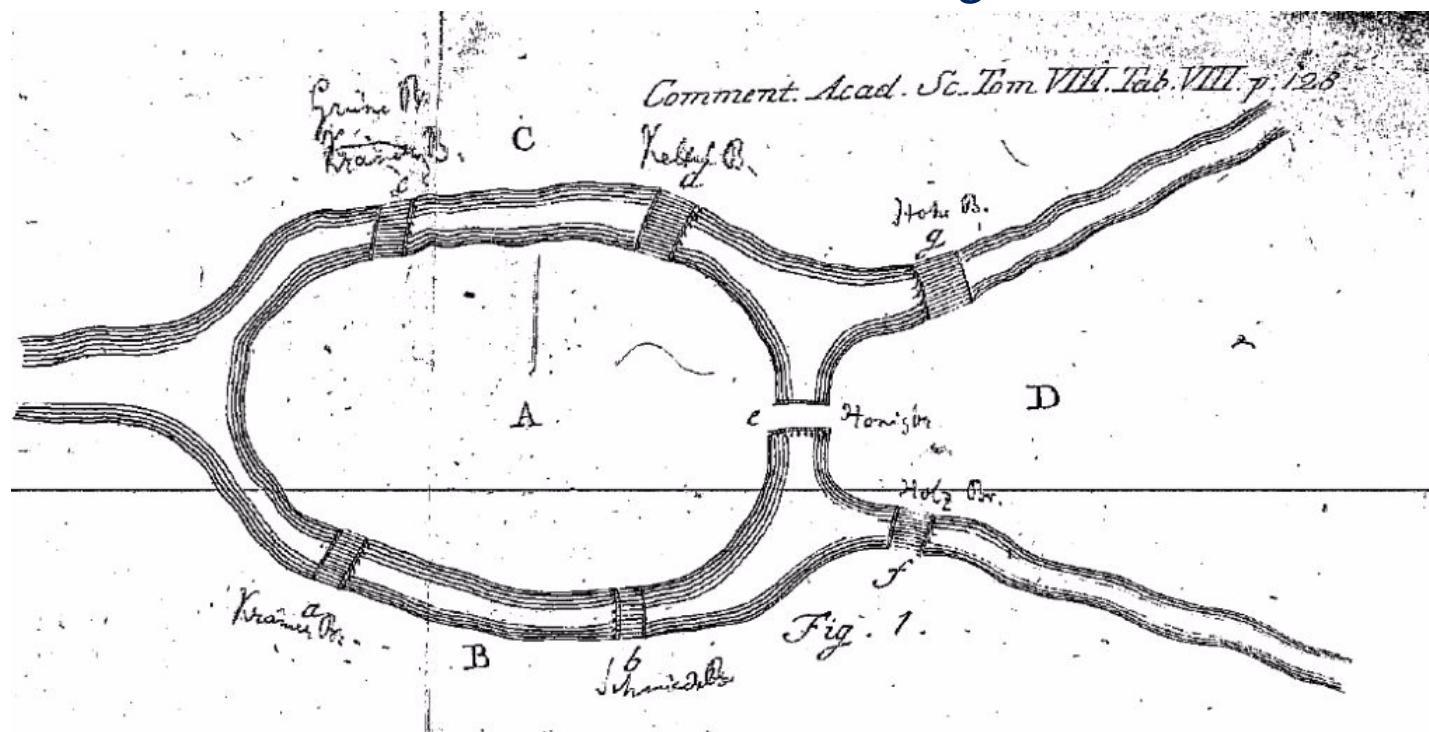
KALININGRAD OF TODAY

Google Maps



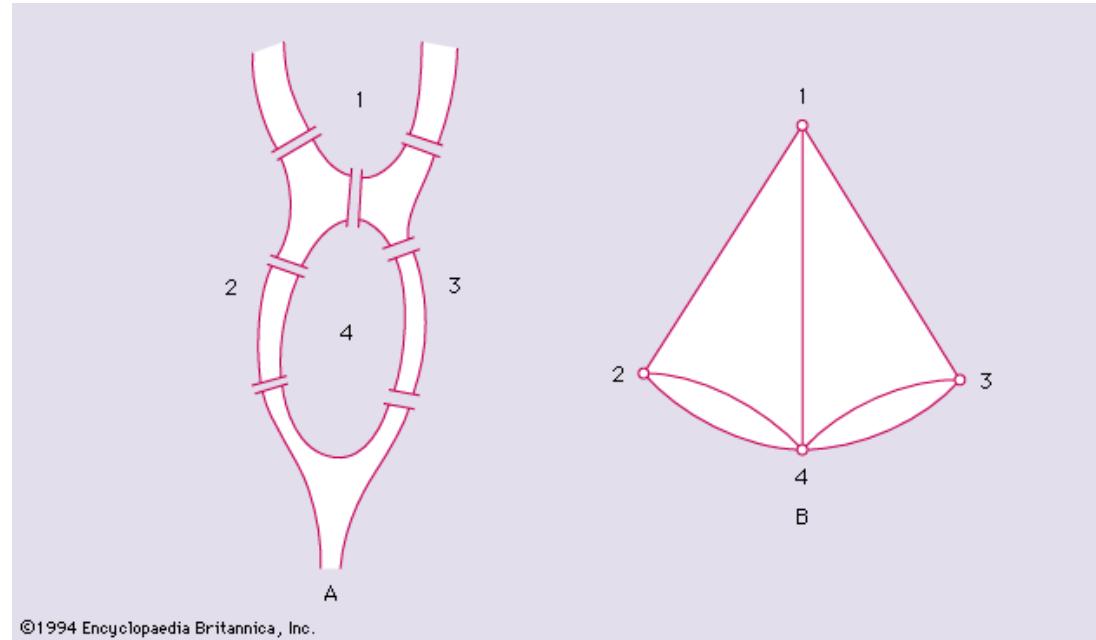
LEONHARD EULER'S FINDING (1735)

- ◆ "If there is a path along edges of a multigraph that traverses each edge once and only once, then there exist at most two vertices of odd degree; furthermore, if the path begins and ends at the same vertex, then no vertices will have odd degree."



SEVEN BRIDGES REPRESENTATION

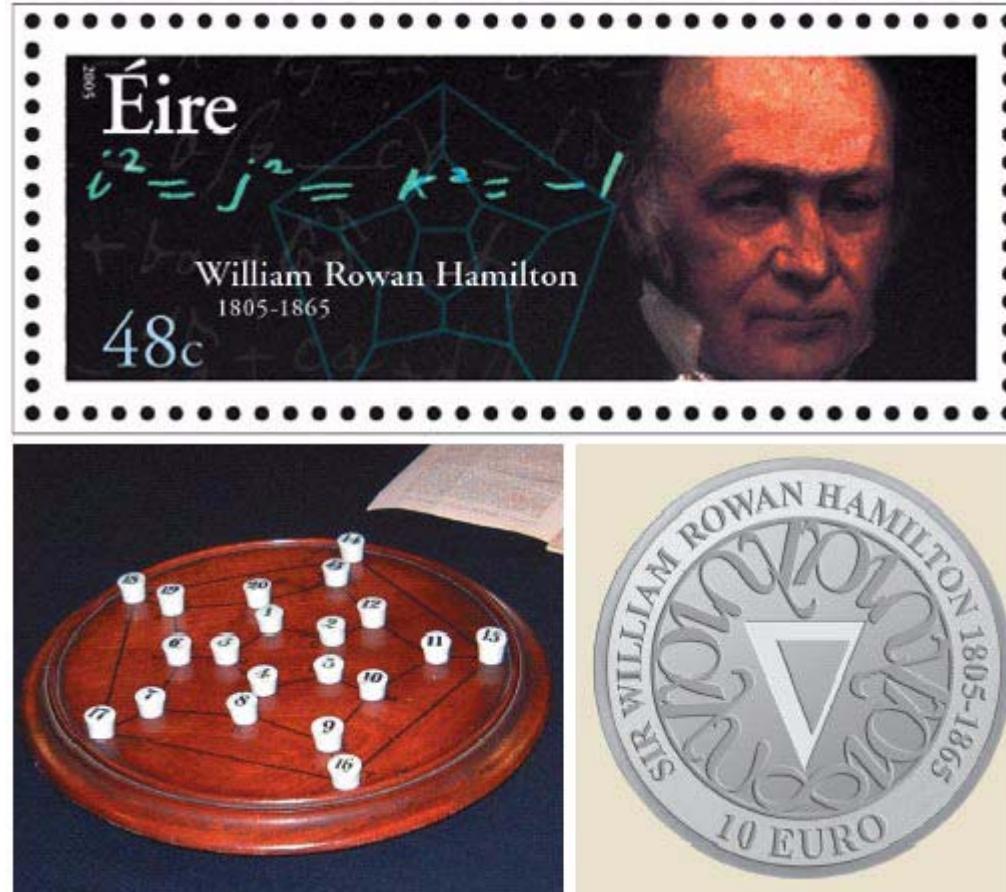
- ◆ Bridges are edges and land/islands are vertices.
- ◆ Edges should be passed once; vertices can be visited many times.
- ◆ Three vertices have degree 3, and one has degree 5.
- ◆ Odd degree vertices for start and finish, otherwise not acceptable.
 - Multigraph: more than one edge between two particular vertices.
 - Degree: number of edges at a certain vertex.



PATHS AND CIRCUITS

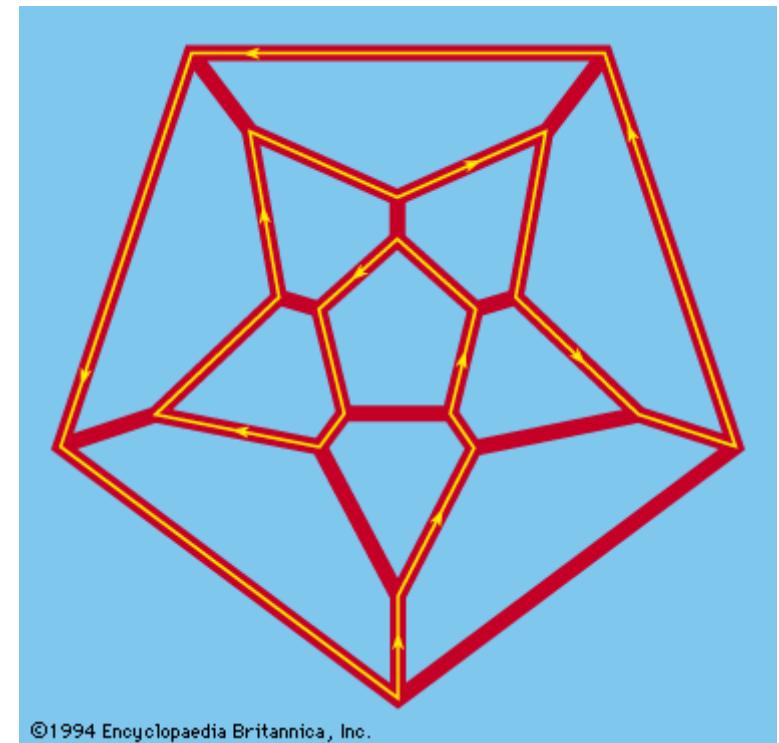
- ◆ If it is possible to start at a vertex and move along a path so as to pass along each edge exactly once, the graph has an Euler path.
- ◆ As you may recall from *Introduction to integrated circuit design*, Euler paths in a transistor representation for CMOS leads to single line of diffusion.
- ◆ If the path ends at the same vertex at which you started it is called an Euler circuit.

THE ICOSIAN GAME - W R HAMILTON (1857)



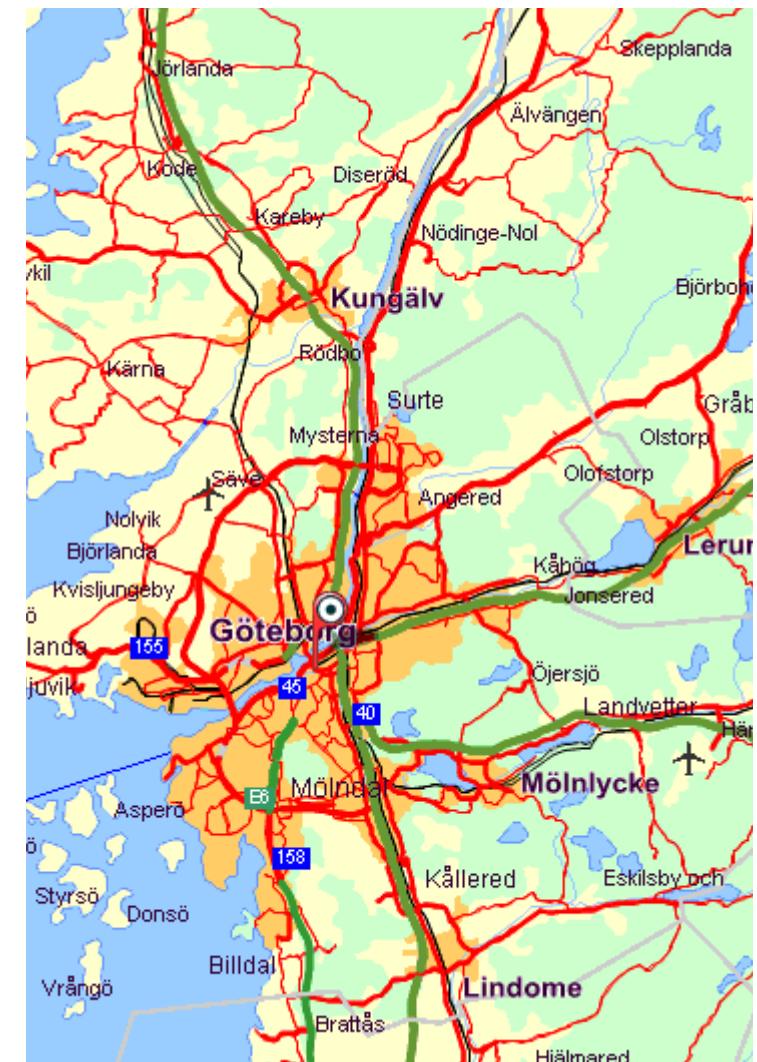
HAMILTONIAN PATHS AND CIRCUITS

- ◆ A Hamiltonian circuit begins and ends at the same vertex, while passing through each vertex exactly once.
- ◆ For an Euler path you may visit each vertex more than once and in a Hamilton path it is not necessary to travel every edge.
- ◆ In contrast to the problem of finding out if there exists an Euler circuit in a graph, it is not practically possible to ascertain the existence of a Hamilton circuit for big problem instances.



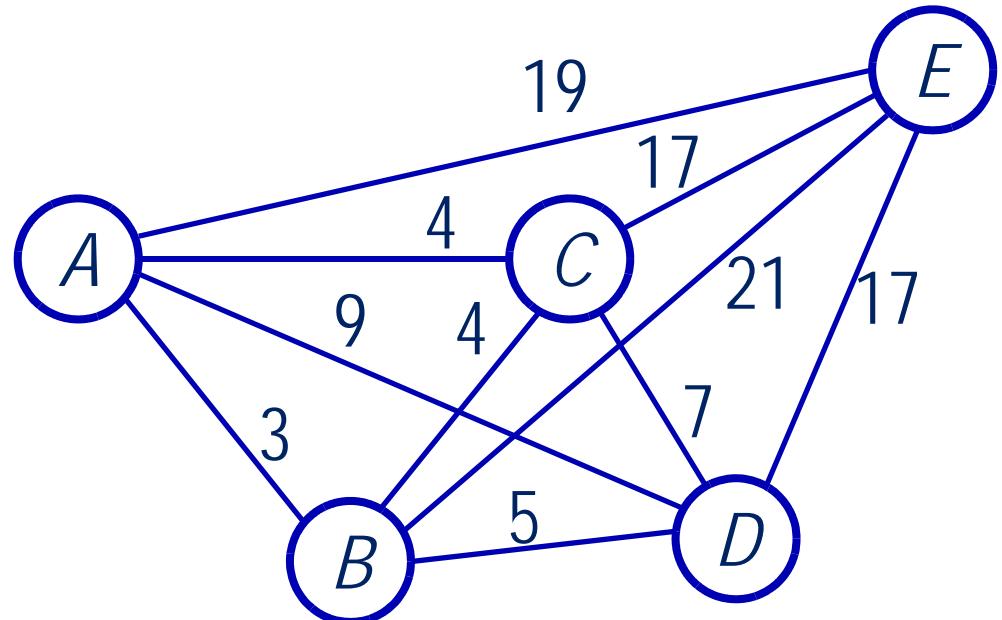
OPTIMIZATION VS DECISION PROBLEMS

- ◆ “What is the cheapest round-trip route that visits each city exactly once and then returns to the starting city?”
This is an optimization problem.
- ◆ Compare to a decision problem where we only need to know if there exists a solution, but where we do not really need to know the solution itself:
“Does a route with length under a certain distance exist?” (Yes or No.)



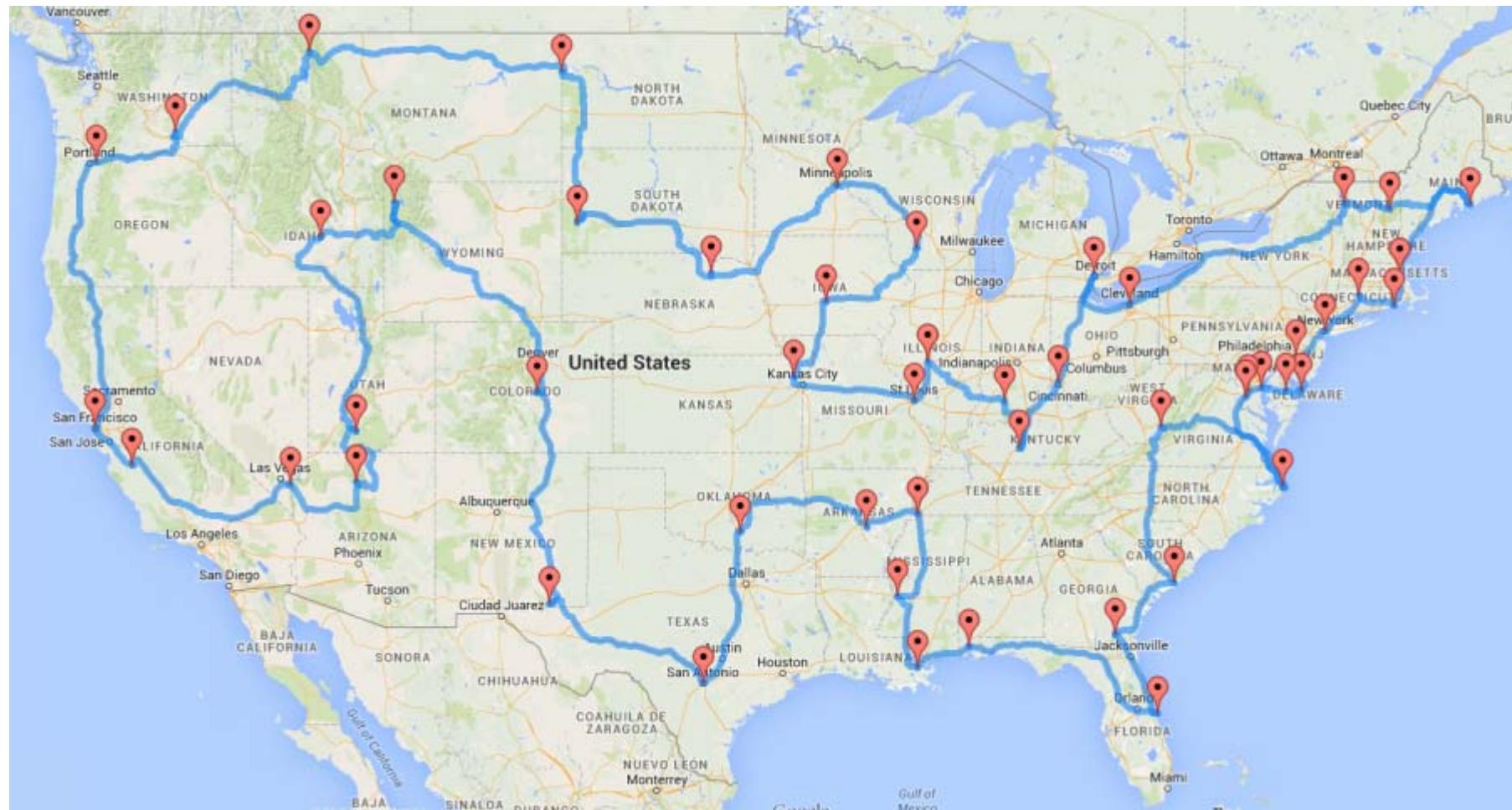
THE TRAVELING SALESMAN PROBLEM (TSP)

- ◆ In this problem we have assigned weights to the edges; a weight here means distance between two cities.
- ◆ A vertex signifies a city, so we are looking to find the Hamiltonian circuit that has the lowest cost (sum of weights).
- ◆ This is an optimization problem.



TSP EXAMPLE

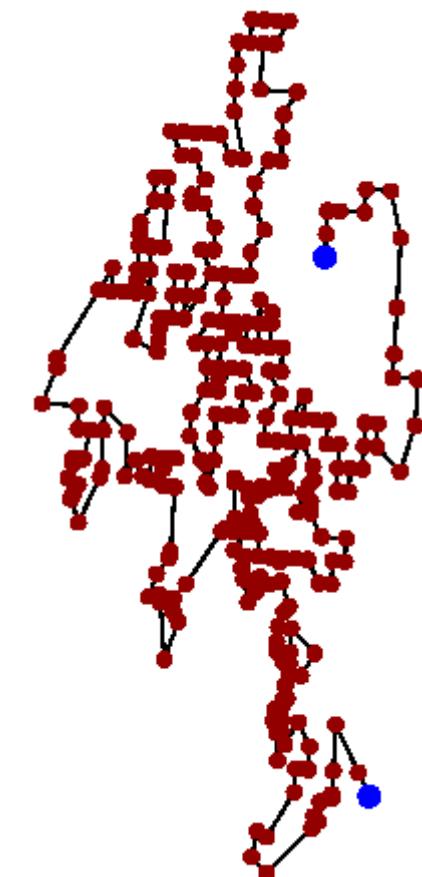
- ◆ Want to visit major landmarks in the US using the shortest route?



Source: <http://www.randalolson.com/2015/03/08/computing-the-optimal-road-trip-across-the-u-s/>

ANOTHER TSP EXAMPLE

- ◆ Since the TSP is a so-called NP-hard problem, it is impractical to solve TSP problems that have many vertices.
- ◆ However, in 2004, the TSP of visiting all 24,978 villages and towns/cities in Sweden was solved: a tour of length (approx.) 72,500 kilometers was found and it was proven that no shorter tour exists.
 - <http://www.math.uwaterloo.ca/tsp/sweden/>
- ◆ To the right, Kungälv is the top blue vertex, while Kungsbacka is the bottom vertex of the optimal TSP solution.



COMPLEX PROBLEMS

- ◆ Problems with polynomial dependence on input size: n^{constant} .
- ◆ Problems with exponential dependence on input size: constant^n .
- ◆ In general, problems with exponential dependence on input size are not feasible to compute, while those with polynomial dependence can be solved.
- ◆ NP (Non-deterministic Polynomial) problems take too long time to compute exactly, at least for large-size problems.
Such problems are computationally infeasible, e.g., brute-force TSP grows with $n!$.

COMPLEX PROBLEMS ... BUT INPUT SIZE MATTERS

- ◆ Consider an algorithm that has a worst-case complexity of $2^{n/1000}$.
- ◆ Consider another algorithm that has a worst-case complexity of n^{1000} .
- ◆ The first (exponentially dependent) algorithm is intrinsically viewed as computationally more challenging than the second (polynomially dependent) algorithm.
- ◆ However, it takes an $n > 2.4 \cdot 10^7$ to make the complexity of the exponentially-dependent algorithm the larger!

NP WHAT?

- ◆ *"The complexity class of decision problems that are intrinsically harder than those that can be solved by a nondeterministic Turing machine in polynomial time. When a decision version of a combinatorial optimization problem is proved to belong to the class of NP-complete problems, then the optimization version is NP-hard."*

Examples:

- ◆ *"Is there a Hamiltonian cycle with length less than k ?"* is NP-complete.
- ◆ *However, the TSP optimization problem "What is the shortest tour?" is NP-hard.*

COMPLEXITY MEASURES

- ◆ Computational complexity is an abstract measure to describe how difficult it is to execute an algorithm.
 - 1844 (G. Lamé): #computational steps of the Euclidean algorithm (CGD) are fewer than $5 \log_{10} b$, where b is the smaller number.
 - Problem size: For the graph $G(V, E)$, the number of vertices ($|V|$) and edges ($|E|$) represent input size.
- ◆ Different complexities:
 - Worst case vs average case.
 - Time (run time) vs space (memory): Count elementary computational steps (e.g., multiplications).

COMPLEX DESIGN AND VERIFICATION PROBLEMS

- ◆ Many optimization problems in EDA are too complex to solve.
Here exact solutions can only be found when the problem size is small.
- ◆ One should otherwise be satisfied with suboptimal solutions found by...
 - approximation algorithms:
they can, for example, guarantee a solution within 20% of the optimum.
 - heuristics:
nothing can be said *a priori* about the quality of the solution.

EXAMPLE: THE SHORTEST PATH PROBLEM

- ◆ Dijkstra's algorithm finds the shortest path between v_s and v_t :

```
dijkstra(set of struct vertex V, struct vertex  $v_s$ ,  
struct vertex  $v_t$ )  
{  
  
set of struct vertex T;  
struct vertex u, v;  
 $V \leftarrow V \setminus \{v_s\};$   
 $T \leftarrow \{v_s\};$   
 $v_s.distance \leftarrow 0;$   
  
...  
...
```

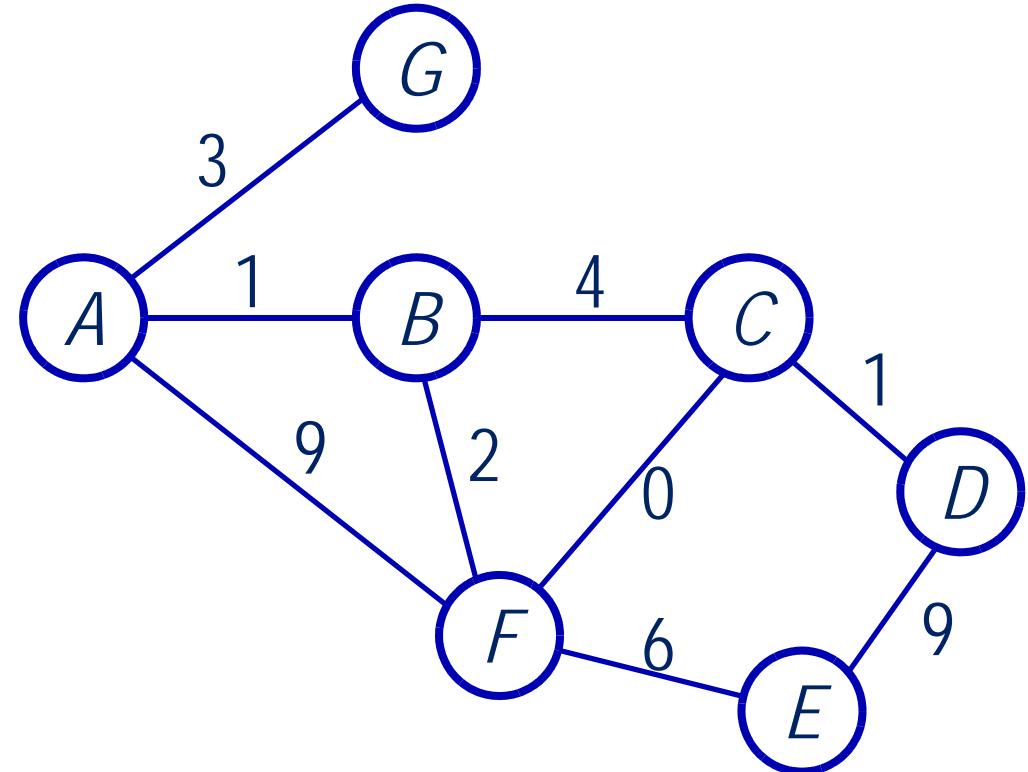
```
for each  $u \in V$ 
  if  $((v_s, u) \in E)$ 
     $u.\text{distance} \leftarrow w((v_s, u))$ 
  else  $u.\text{distance} \leftarrow +\infty$ ;
while  $(v_t \notin T)$  {
   $u \leftarrow "u \in V, \text{ such that } \forall v \in V :$ 
     $u.\text{distance} \leq v.\text{distance}"$ ;
   $T \leftarrow T \cup \{u\}; \quad /* \text{Add } u \text{ to } T. */$ 
   $V \leftarrow V \setminus \{u\}; \quad /* \text{Remove } u \text{ from } V. */$ 
  for each  $v$  "such that  $(u, v) \in E"$ 
    if  $(v.\text{distance} > w((u, v)) + u.\text{distance})$ 
       $v.\text{distance} \leftarrow w((u, v)) + u.\text{distance};$ 
}
}
```

SHORTEST PATH EXAMPLE 1(7)

- ◆ Find shortest path: A to E :

- ◆ We start with

- $T = \{ \}$
- $V = \{ A:(\infty, ?), B:(\infty, ?), C:(\infty, ?), D:(\infty, ?), E:(\infty, ?), F:(\infty, ?), G:(\infty, ?) \}$

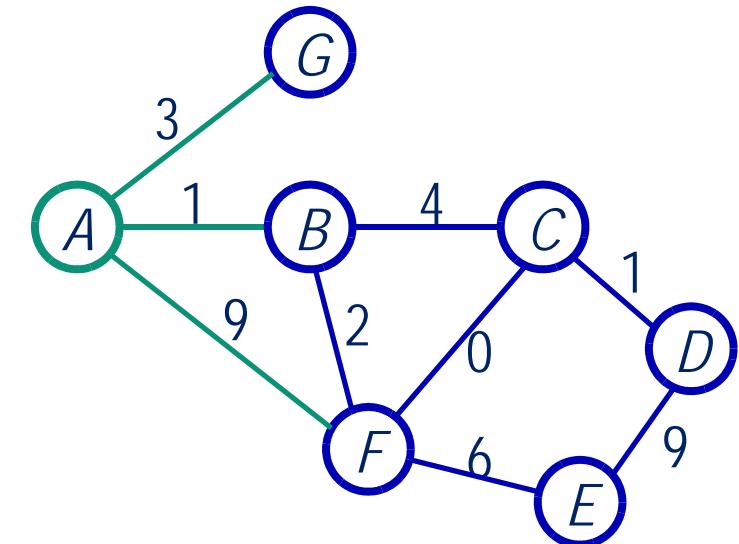


SHORTEST PATH EXAMPLE 2(7)

1. We start from A , so we move A to the T set and update the distances to all of its (A 's) neighbors. B , F , and G all have actual paths and distances.

We now have the following information :

- $T = \{ A: (0, \text{empty}) \}$
- $V = \{ B: (1, A), G: (3, A), F: (9, A), C: (\infty, ?), D: (\infty, ?), E: (\infty, ?) \}$

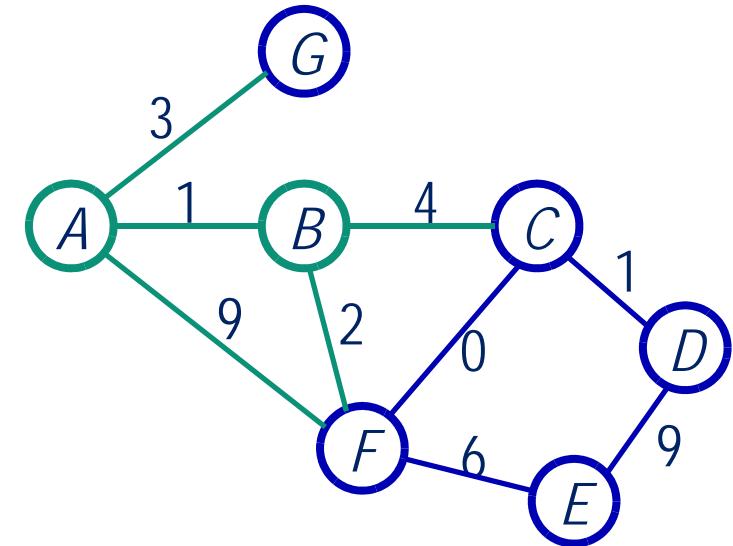


SHORTEST PATH EXAMPLE 3(7)

2. The shortest distance is to B , so we move B to the T set and update its neighbors.

A path to C is known and an improved path to F is revealed. ($A \rightarrow B \rightarrow F$ has a cost $1 + 2 = 3$).

- $T = \{ A:(0, \text{empty}), B:(1, A) \}$
- $V = \{ F:(3, B), G:(3, A), C:(5, B), D:(\infty, ?), E:(\infty, ?) \}$



SHORTEST PATH EXAMPLE 4(7)

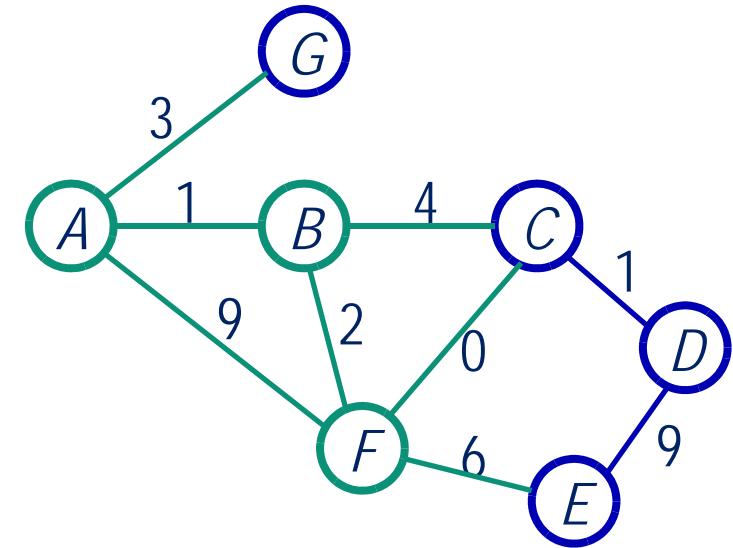
3. F and G have equal distances:

Still, we choose to move F .

We discover a shorter path to C

($A \rightarrow B \rightarrow F \rightarrow C$ has cost 3,
while $A \rightarrow B \rightarrow C$ has cost 5)
and a path to E .

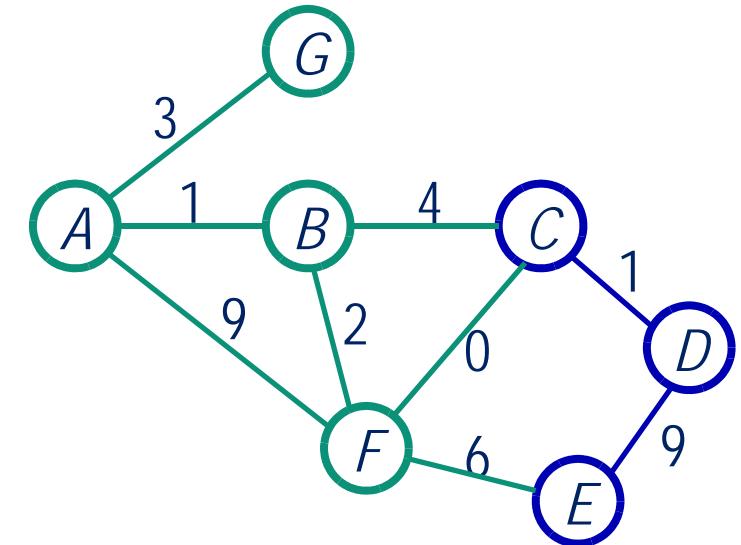
- $T = \{ A:(0, \text{empty}), B:(1, A), F:(3, B) \}$
- $V = \{ G:(3, A), C:(3, F), E:(9, F), D:(\infty, ?) \}$



SHORTEST PATH EXAMPLE 5(7)

4. We can then move G or C to T ;
they have equal costs. Now choose G .

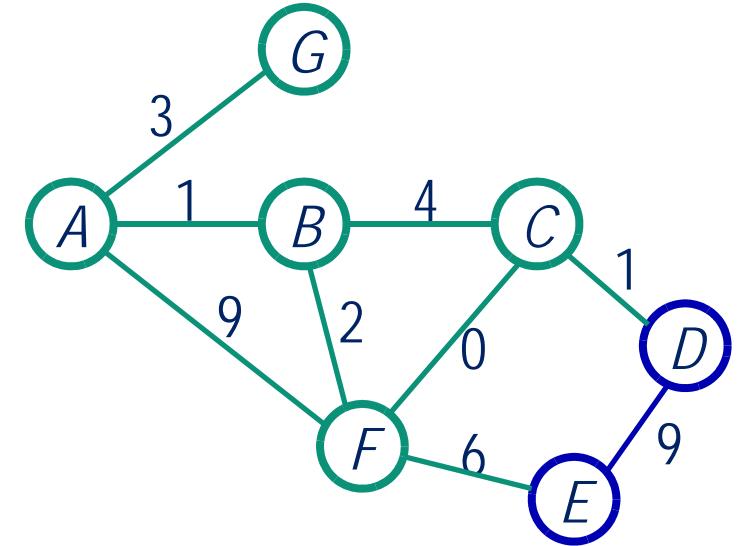
Since G has no neighbors,
there are no changes to V .



- $T = \{ A:(0, \text{empty}), B:(1, A), F:(3, B), G:(3, A) \}$
- $V = \{ C:(3, F), E:(9, F), D:(\infty, ?) \}$

SHORTEST PATH EXAMPLE 6(7)

5. It is time to move C ,
which allows us to update
the distance to D .



- $T = \{ A:(0, \text{empty}), B:(1, A), F:(3, B), G:(3, A), C:(3, F) \}$
- $V = \{ D:(4, C), E:(9, F) \}$

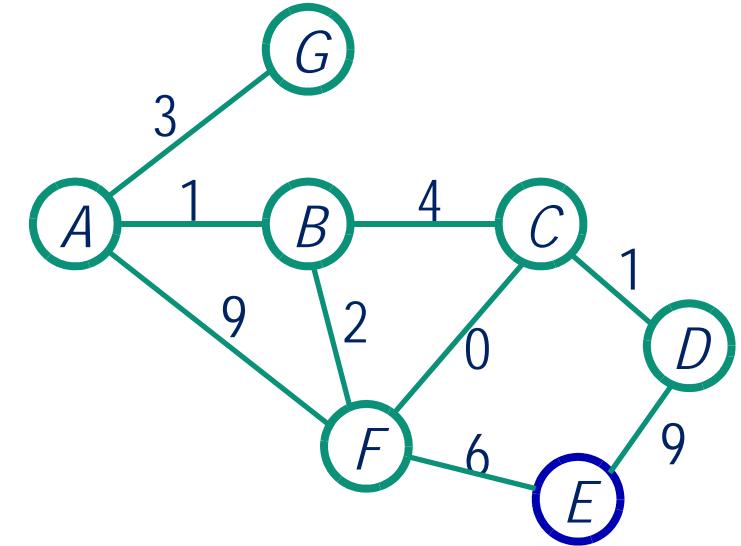
SHORTEST PATH EXAMPLE 7(7)

6. Time to move D .

- $T = \{ A:(0, \text{empty}), B:(1, A), F:(3, B), G:(3, A), C:(3, F), D:(4, C) \}$
- $V = \{ E:(9, F) \}$

7. E is left, move it.

- $T = \{ A:(0, \text{empty}), B:(1, A), F:(3, B), G:(3, A), C:(3, F), D:(4, C), E:(9, F) \}$
- $V = \{ \}$

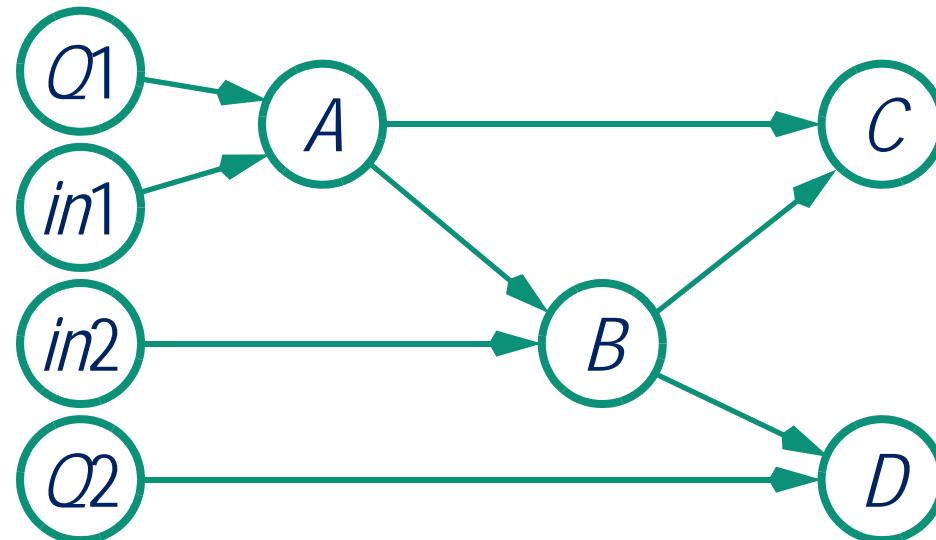


Shortest path from A to E is $E-F-B-A$ with distance cost 9.

SHORTEST PATH EXAMPLE USING DIJKSTRA

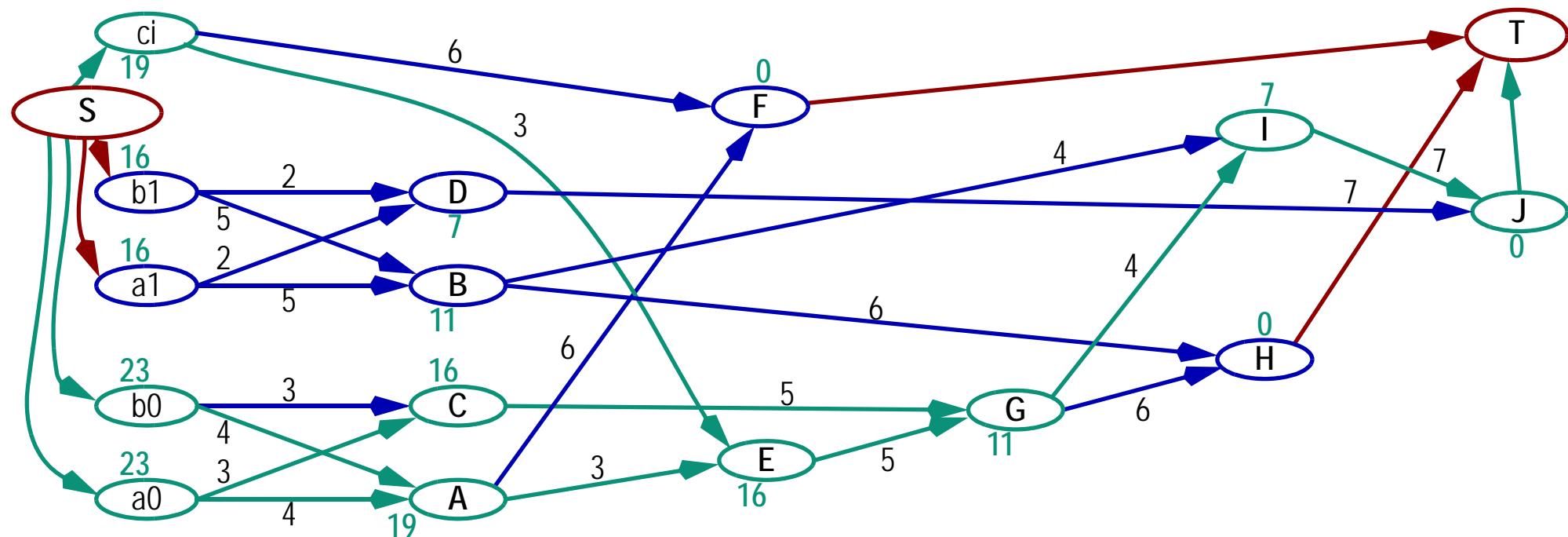
- ◆ In our example, we were unlucky to have the sought destination E as last vertex. The statement **while** ($v_t \notin T$) can potentially stop the search before all vertices have been visited.
- ◆ The Dijkstra algorithm has worst-case complexity of $|V|^2 + |E|$, thanks to the skipping of paths that cannot be on the shortest path.

ALGORITHMS IN LECTURE 2 ...



Depth-first search to find proper levelization.

ALGORITHMS IN LECTURE 5...



Breadth-first search (from right to left),
followed by
depth-first search (from left to right)

An introduction to optimization *[flow according to Gerez]*

THE PRAGMATIC ENGINEERS

- ◆ EDA problems are often too complex for exact solutions; those problems are intractable.
- ◆ Tractable and intractable problems can appear very similar.
 - The shortest-path problem for undirected graphs is tractable ... solved, for example, by Dijkstra's algorithm.
 - However, the longest-path problem is intractable.

OPTIMIZATION

- ◆ Optimization problem:
finding a legal configuration
such that its cost is minimum (or maximum).
 - "legal" implies constraints are met.
- ◆ An instance $I = (F, c)$ where ...
 - F is the set of feasible solutions, and
 - c is a cost function, assigning a cost value to
each feasible solution $c: F \rightarrow \mathbb{R}$ (real numbers)
- ◆ The solution to the optimization problem is the
feasible solution with optimal (minimal/maximal) cost.

OPTIMIZATION STRATEGIES

- ◆ **Approximation algorithms.**
 - Guaranteed to be a fixed percentage away from the optimum.
- ◆ **Pseudo-polynomial time algorithms.**
 - A polynomial function for the complexity, but n is not the problem size.
- ◆ **Restriction:** Work on some subset of the original problem.
- ◆ **Dynamic programming (divide and conquer)** [[Lecture 4](#)].
- ◆ **Exhaustive search/Branch and bound:** Small problem sizes.
- ◆ **Local search.**
 - Simulated annealing (hill climbing), genetic algorithms, etc.
- ◆ **Heuristics:** No guarantee of performance or quality.

BASIC OPTIMIZATION - LP PROGRAMMING

- ◆ A production of two products P1 and P2 with ingredients l_1 and l_2 .
 - P1 uses a_{11} units of l_1 and a_{21} units of l_2 .
Its unit price is c_1 . Its daily production is x_1 units.
 - P2 uses a_{12} units of l_1 and a_{22} units of l_2 .
Its unit price is c_2 . Its daily production is x_2 units.
 - The company cannot receive more than b_1 units of l_1 and b_2 units of l_2 per day.
- ◆ Problem: maximize the daily revenue $c_1 x_1 + c_2 x_2$ subject to ...
 - $a_{11} x_1 + a_{12} x_2 \leq b_1, \quad x_1 \geq 0$
 - $a_{21} x_1 + a_{22} x_2 \leq b_2, \quad x_2 \geq 0$

LP PROGRAMMING AND THE INTEGER VERSION

- ◆ Linear Programming - optimization in the continuous domain.
 - The LP problem can be solved using the Simplex method.
 - Simplex has exponential complexity in the worst case, but is mostly still feasible in practice.
- ◆ Integer Linear Programming - the discrete domain.
 - With the condition that variables (x_1 and x_2) are integers, the problem turns into ILP: An NP-hard optimization problem.
 - However tempting, rounding the result of LP is not possible; the solution may be infeasible or nonoptimal.

ILP FOR TSP

- ◆ The graph $G(V, E)$ with edge weights w .
- ◆ Introduce a variable x_i for each edge $e_i \in E$, $1 \leq i \leq k$.
Here $x_i = 1$ if and only if e_i is part of the TSP solution.

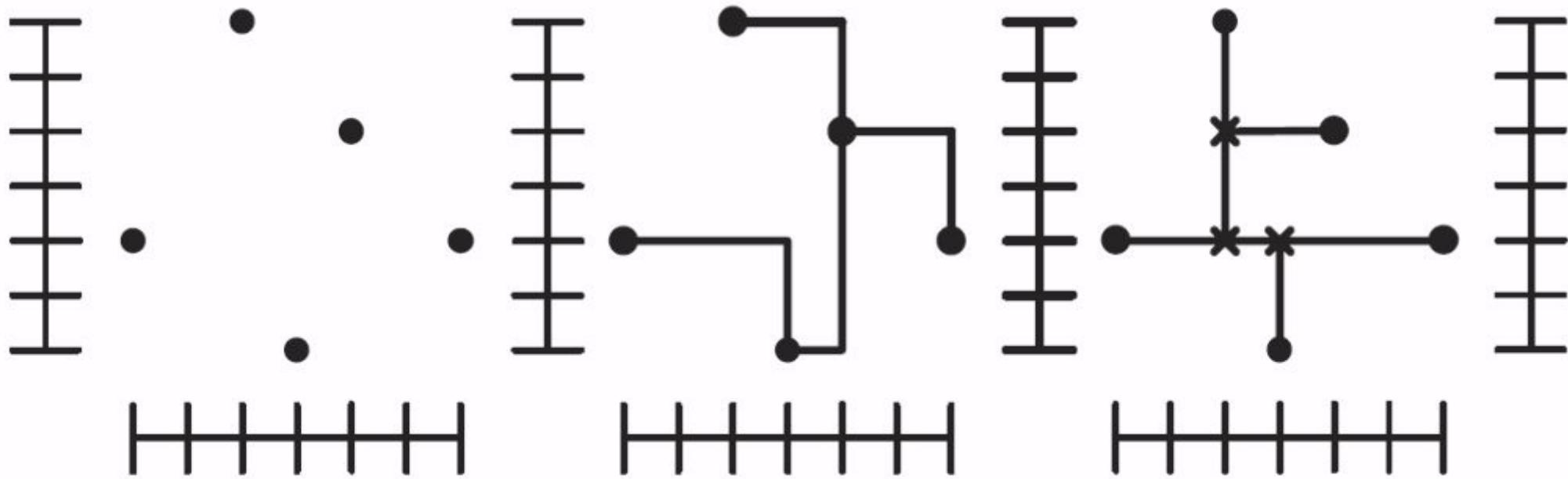
k

- ◆ Cost function to minimize:
$$\sum_{i=1}^k w(e_i)x_i$$

- ◆ Constraints to obey are ...
 - that only two edges per vertex are selected.
 - that there are no multiple disjoint tours.

EXAMPLE OF APPROXIMATION - GLOBAL ROUTING

- ◆ The minimal rectilinear spanning tree problem is tractable, while the minimal rectilinear Steiner tree is intractable.

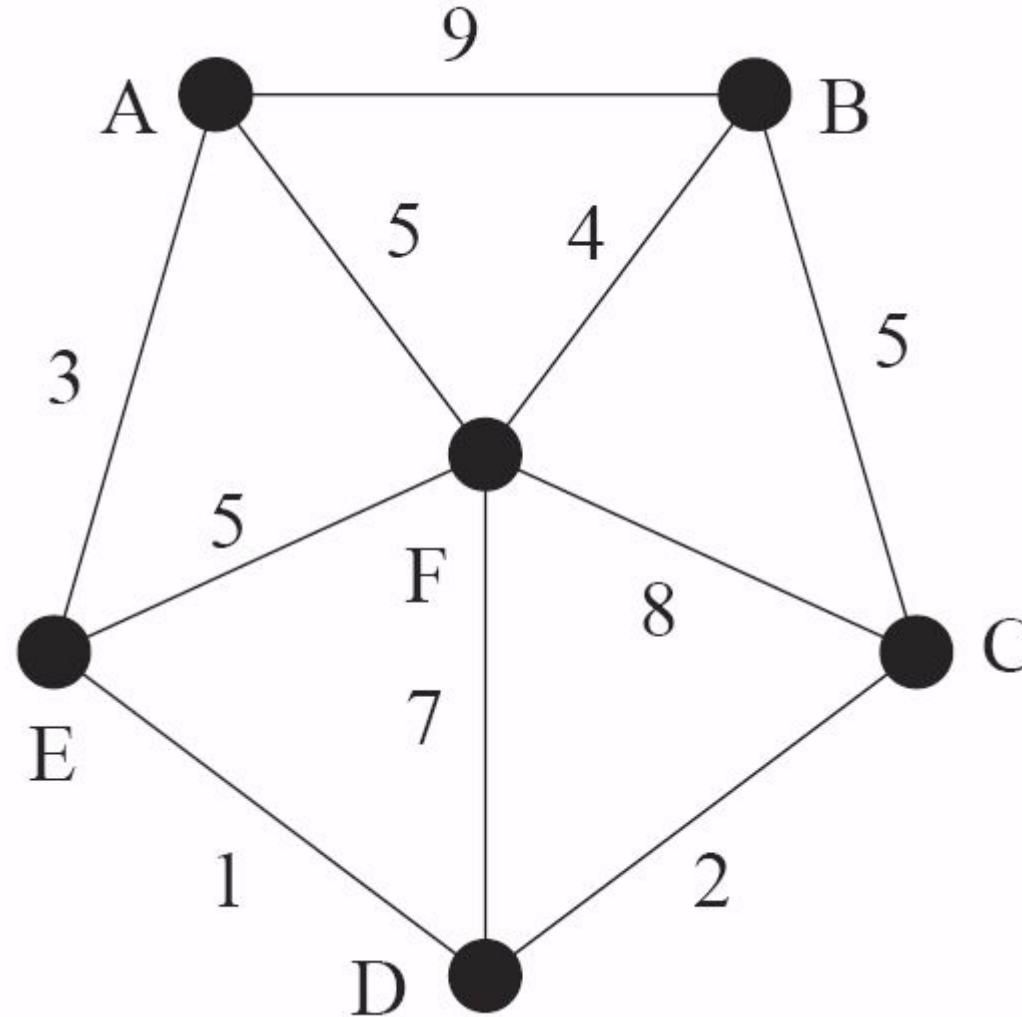


- ◆ The Minimum Spanning Tree (MST) algorithm (middle) can be an approximation for the Steiner tree problem (right).

ROUTING TERMINOLOGY + RESULT

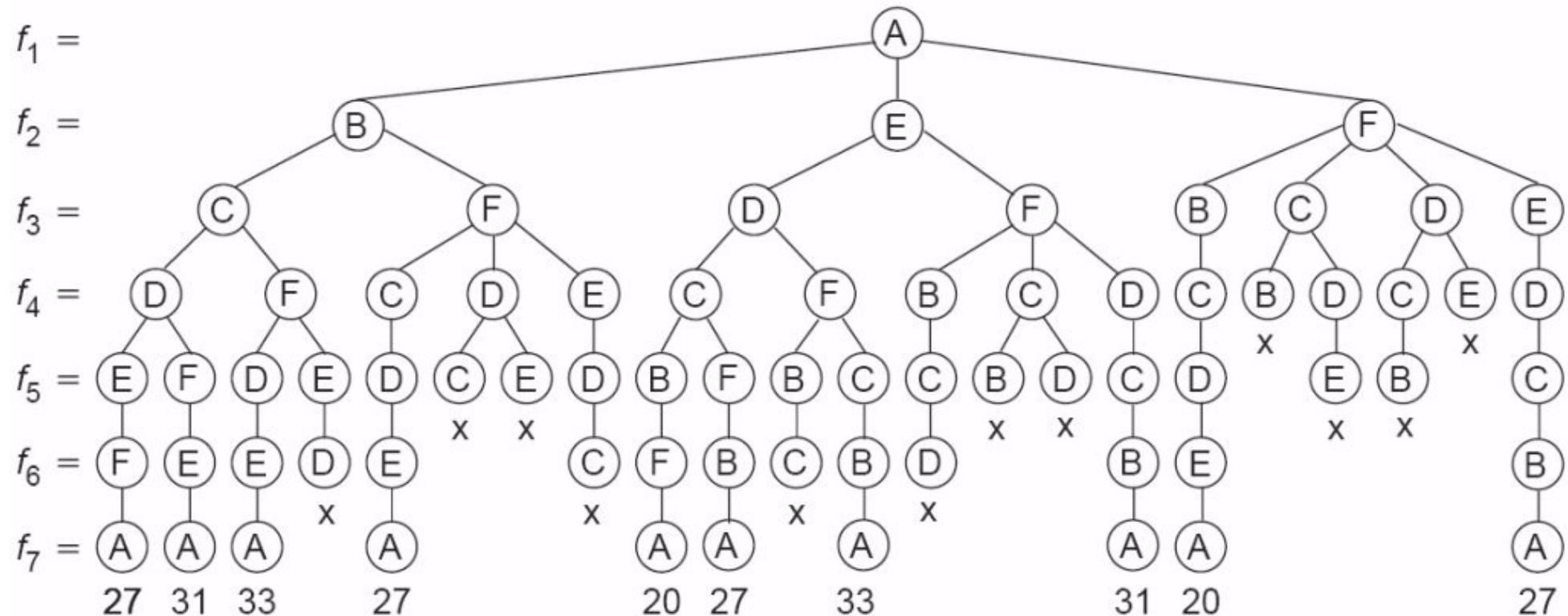
- ◆ Manhattan distance: If two points (nodes) are located at coordinates (x_1, y_1) and (x_2, y_2) , the Manhattan distance between them is given by $d_{12} = |x_1 - x_2| + |y_1 - y_2|$.
- ◆ Rectilinear spanning tree: A spanning tree that connects its nodes using Manhattan paths.
- ◆ In a Steiner tree, additional points (Steiner points) are permitted to be used for the connections.
- ◆ MST approximates the Steiner tree problem solution with a quality that is less than 50% away from optimum!

EXACT SOLUTIONS - THE TSP AGAIN



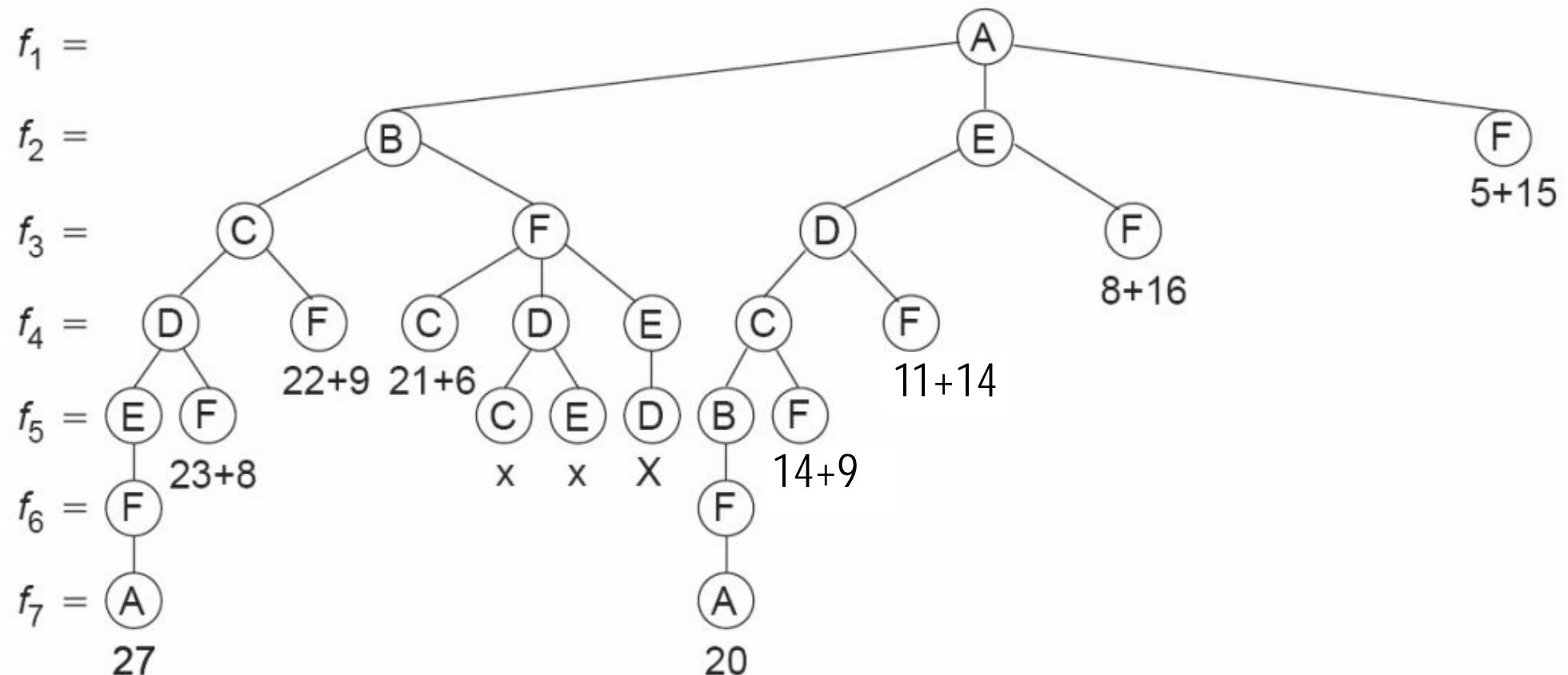
EXHAUSTIVE SEARCH GIVES LARGE SEARCH SPACE

- ◆ The Hamiltonian circuits of the graph can be searched exhaustively.



BRANCH AND BOUND OF SEARCH SPACE

- ◆ After we have visited the leftmost leaf with cost 27, we compare all coming branches to this: Known path + expected path (MST).



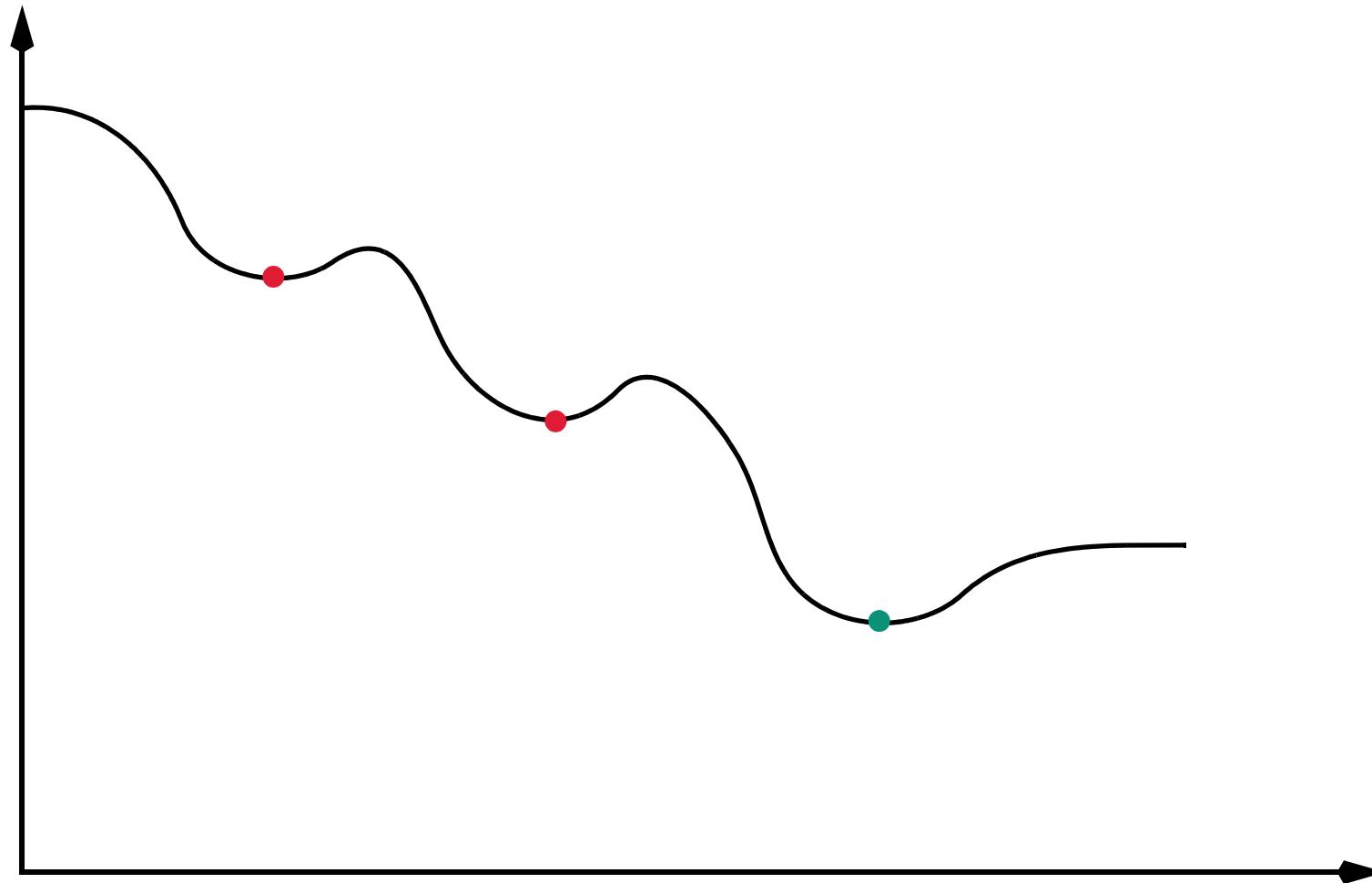
LOCAL SEARCH

- ◆ The simplest form of local search is gradient search.

In a continuous representation, follow the gradient $\frac{d}{dx}f(x)$;
uphills (maximization) or downhills (minimization).

- ◆ When there exist several local optima, local search has a risk of getting stuck in a local optimum that is not the global optimum.
- ◆ Initial guess is very important.
- ◆ There are approaches that perturb the search, so there is a small probability that you make a “bad” move:
Tabu search, simulated annealing and genetic algorithms.

THE WEAKNESS OF GRADIENT SEARCH



IDEA OF SIMULATED ANNEALING

- ◆ High enough temperature to ensure random state + cooling process slow enough to ensure thermal equilibrium

→

the atoms will place themselves in a pattern that corresponds to the global energy minimum of a perfect crystal.

- ◆ Key mechanism:
Bad moves may be accepted, which allows us to leave local optima!

SIMULATED ANNEALING 1(2)

- ◆ "A material cools down slowly and settles to a minimal energy state."
 - Energy \leftrightarrow cost function.
 - Molecule movement \leftrightarrow movement in search space.
 - Temperature \leftrightarrow control parameter T .
- ◆ Move strategy for f (current position) and $g = m(f)$ (next position).
 - $\Delta c = c(g) - c(f)$.
 - If $\Delta c \leq 0$, always accept transition to g .
 - If $\Delta c > 0$, accept with a probability limit of $e^{-\frac{\Delta c}{T}}$.

SIMULATED ANNEALING 2(2)

1. Initialize: Start with a random initial condition and a high temperature.
2. Move: Perturb for example initial placement through a move.
3. Calculate cost: Calculate cost change due to the move made.
4. Choose: Accept or reject the move.
Probability of acceptance depends on the current temperature.
5. Update and repeat: Update the temperature value (perhaps it is time to lower the temperature).
Check if “freezing point” is reached, then quit, else go back to step 2.

SA ALGORITHM FOR PLACEMENT

begin

```
    temp = initial_temperature;
    place = initial_placement;
    while (temp > freezing_point) do
        while (inner_loop_criterion = FALSE) do
            new_place = PERTURB(current_place);
            ΔC = COST(new_place) - COST(current_place);
            if (ΔC < 0) then
                current_place = new_place;
            else if (RANDOM(0,1) > e-(ΔC/T)) then
                current_place = new_place;
            temp = SCHEDULE(temp);
    end;
```

SA ISSUES

- ◆ Cooling schedule is very important for quality of result.
 - Number of iterations in inner and outer loops.
 - Temperature update strategy.
- ◆ Optimal cooling schedule guarantees optimal solution with probability = 1, but requires infinite number of iterations.
- ◆ In practice, simulated annealing ...
 - degrades to heuristic due to nonoptimal cooling schedule.
 - is the best method known for (standard-cell) placement.
 - cannot compete with good problem-specific heuristics, if such exist.

DISCRETE MATH AND OPTIMIZATION: CONCLUSION

- ◆ Can you solve an optimization problem exactly, do so.
- ◆ Application of approximation algorithms and heuristics usually requires understanding of context; that is, it requires experience.
- ◆ General optimization algorithms, such as simulated annealing, are generic. Do not expect too much from such algorithms; they are often used as the last resort for “inexperienced” users or “hopeless” problems.
- ◆ Read more [[Ch4_Algorithms.pdf](#)].