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PRESENT SCENARIO: DISCRETE MATH
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MATHEMATICS

 Language, an agreement of scientists and engineers:
“never divide something with 0” etc.

 Tool for modeling of our analog world; f(x, ...): 
analysis and calculus.

 Tool for solving equations: 
matrix descriptions and linear algebra.

 Tool for analyzing and optimizing structures/topologies.
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THE SEVEN BRIDGES OF KÖNIGSBERG

Source: http://www.leonhardeuler.com/
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KÖNIGSBERG = KALININGRAD

Source: http://www.eatingeuropetours.com/the-most-vegetarian-country-in-europe/
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KALININGRAD OF TODAY
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LEONHARD EULER’S FINDING (1735)
 “If there is a path along edges of a multigraph that traverses each 

edge once and only once, then there exist at most two vertices of 
odd degree; furthermore, if the path begins and ends at the same 
vertex, then no vertices will have odd degree.”
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SEVEN BRIDGES REPRESENTATION

 Bridges are edges and 
land/islands are vertices.

 Edges should be passed 
once; vertices can be 
visited many times.

 Three vertices have degree 
3, and one has degree 5.

 Odd degree vertices for start and finish, otherwise not acceptable.
- Multigraph: more than one edge between two particular vertices.
- Degree: number of edges at a certain vertex.
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PATHS AND CIRCUITS

 If it is possible to start at a vertex and move along a path 
so as to pass along each edge exactly once,
the graph has an Euler path.

 As you may recall from Introduction to integrated circuit design, 
Euler paths in a transistor representation for CMOS 
leads to single line of diffusion.

 If the path ends at the same vertex at which you started 
it is called an Euler circuit. 
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THE ICOSIAN GAME - W R HAMILTON (1857)
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HAMILTONIAN PATHS AND CIRCUITS

 A Hamiltonian circuit begins and ends at 
the same vertex, while passing through 
each vertex exactly once.

 For an Euler path you may visit 
each vertex more than once and 
in a Hamilton path it is not necessary to 
travel every edge. 

 In contrast to the problem of finding out if there exists 
an Euler circuit in a graph, it is not practically possible to ascertain 
the existence of a Hamilton circuit for big problem instances.
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OPTIMIZATION VS DECISION PROBLEMS

 “What is the cheapest round-trip route 
that visits each city exactly once and 
then returns to the starting city?” 
This is an optimization problem.

 Compare to a decision problem where 
we only need to know if there exists a 
solution, but where we do not really 
need to know the solution itself: 
“Does a route with length under 
a certain distance exist?” (Yes or No.)
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THE TRAVELING SALESMAN PROBLEM (TSP)
 In this problem we have 

assigned weights to the 
edges; a weight here means 
distance between two cities.

 A vertex signifies a city, 
so we are looking to find the 
Hamiltonian circuit that has 
the lowest cost (sum of 
weights).

 This is an optimization problem.

A C

B D

E19

4
9

3
5

7
4 17

17
21



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 15(53)

TSP EXAMPLE

 Want to visit major landmarks in the US using the shortest route?

Source: http://www.randalolson.com/2015/03/08/computing-the-optimal-road-trip-across-the-u-s/
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ANOTHER TSP EXAMPLE

 Since the TSP is a so-called NP-hard problem, 
it is impractical to solve TSP problems 
that have many vertices.

 However, in 2004, the TSP of visiting all 24,978 
villages and towns/cities in Sweden was solved: 
a tour of length (approx.) 72,500 kilometers was 
found and it was proven that no shorter tour exists.
- http://www.math.uwaterloo.ca/tsp/sweden/

 To the right, Kungälv is the top blue vertex, 
while Kungsbacka is the bottom vertex of 
the optimal TSP solution.
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COMPLEX PROBLEMS

 Problems with polynomial dependence on input size: .

 Problems with exponential dependence on input size: .
 In general, problems with exponential dependence on 

input size are not feasible to compute, 
while those with polynomial dependence can be solved.

 NP (Non-deterministic Polynomial) problems 
take too long time to compute exactly, 
at least for large-size problems. 
Such problems are computationally infeasible, e.g., 
brute-force TSP grows with n! .

nconstant

constantn
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COMPLEX PROBLEMS ... BUT INPUT SIZE MATTERS

 Consider an algorithm that has a worst-case complexity of .
 Consider another algorithm that has 

a worst-case complexity of .
 The first (exponentially dependent) algorithm 

is intrinsically viewed as computationally more challenging than 
the second (polynomially dependent) algorithm.

 However, it takes an n > 2.4 107 to make 
the complexity of the exponentially-dependent algorithm the larger!

2n 1000

n1000
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NP WHAT?
 “The complexity class of decision problems that are 

intrinsically harder than those that can be solved by a 
nondeterministic Turing machine in polynomial time. 
When a decision version of a combinatorial optimization 
problem is proved to belong to the class of NP-complete problems, 
then the optimization version is NP-hard.” 

Examples:
 “Is there a Hamiltonian cycle with length less than k?” 

is NP-complete. 
 However, the TSP optimization problem “What is the shortest tour?” 

is NP-hard.



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 20(53)

COMPLEXITY MEASURES

 Computational complexity is an abstract measure 
to describe how difficult it is to execute an algorithm.
- 1844 (G. Lamé): #computational steps of the Euclidean algorithm 

(CGD) are fewer than 5 log10 b, where b is the smaller number.
- Problem size: For the graph G(V, E), the number 

of vertices (|V|) and edges (|E|) represent input size.
 Different complexities:

- Worst case vs average case.
- Time (run time) vs space (memory): Count elementary 

computational steps (e.g., multiplications).
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COMPLEX DESIGN AND VERIFICATION PROBLEMS

 Many optimization problems in EDA
are too complex to solve. 
Here exact solutions can only be 
found when the problem size is small.

 One should otherwise be satisfied with 
suboptimal solutions found by...
- approximation algorithms: 

they can, for example, guarantee a solution 
within 20% of the optimum.

- heuristics: 
nothing can be said a priori about the quality of the solution.
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EXAMPLE: THE SHORTEST PATH PROBLEM

 Dijkstra's algorithm finds the shortest path between vs and vt:

dijkstra(set of struct vertex V, struct vertex vs, 
struct vertex vt)
{

set of struct vertex T;
struct vertex u, v;
V  V \ {vs};
T  {vs};
vs.distance  0;
...
...
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for each u  V
if ((vs, u)  E)

u.distance  w((vs, u))
else u.distance  +;
while (vt  T) {

u  “u  V, such that v  V : 
u.distance  v.distance”;

T  T  {u}; /* Add u to T. */
V  V \ {u}; /* Remove u from V. */
for each v “such that (u, v)  E”

if (v.distance > w((u, v)) + u.distance)
v.distance  w((u, v)) + u.distance;

}
}
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SHORTEST PATH EXAMPLE 1(7)
 Find shortest path: A to E:
 We start with

- T = { } 
- V = { A:(, ?), B:(, ?), 
C:(, ?), D:(, ?), 
E:(, ?), F:(, ?), G:(, ?) } 
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SHORTEST PATH EXAMPLE 2(7)
1. We start from A, so we move A to 

the T set and update the distances to 
all of its (A’s) neighbors. B, F, and G all 
have actual paths and distances.
We now have the following information :

- T = { A:(0, empty) }
- V = { B:(1, A), G:(3, A), F:(9, A), C:(, ?), D:(, ?), E:(, ?) } 
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SHORTEST PATH EXAMPLE 3(7)
2. The shortest distance is to B, 

so we move B to the T set and 
update its neighbors. 

A path to C is known and an improved 
path to F is revealed. (A  B  F has a 
cost 1 + 2 = 3). 
- T = { A:(0, empty), B:(1, A) } 
- V = { F:(3, B), G:(3, A), C:(5, B), D:(, ?), E:(, ?) } 
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SHORTEST PATH EXAMPLE 4(7)
3. F and G have equal distances: 

Still, we choose to move F. 

We discover a shorter path to C 
(A  B  F  C has cost 3, 
while A  B  C had cost 5) 
and a path to E. 
- T ={ A:(0, empty), B:(1, A), F:(3, B) } 
- V = { G:(3, A), C:(3, F), E:(9, F), D:(, ?) } 
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SHORTEST PATH EXAMPLE 5(7)
4. We can then move G or C to T; 

they have equal costs. Now choose G. 

Since G has no neighbors, 
there are no changes to V.

- T = { A:(0, empty), B:(1, A), F:(3, B), G:(3, A) } 
- V = { C:(3, F), E:(9, F), D:(, ?) } 
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SHORTEST PATH EXAMPLE 6(7)
5. It is time to move C, 

which allows us to update 
the distance to D. 

- T = { A:(0, empty), B:(1, A), F:(3, B), 
G:(3, A), C:(3, F) } 
- V = { D:(4, C), E:(9, F) } 
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SHORTEST PATH EXAMPLE 7(7)
6. Time to move D. 

- T = { A:(0, empty), B:(1, A), F:(3, B),
G:(3, A), C:(3, F), D:(4, C) } 
- V = { E:(9, F) } 

7. E is left, move it.
- T = { A:(0, empty), B:(1, A), F:(3, B),
G:(3, A), C:(3, F), D:(4, C), E:(9, F) } 
- V = { } 
Shortest path from A to E is E-F-B-A with distance cost 9. 
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SHORTEST PATH EXAMPLE USING DIJKSTRA

 In our example, we were unlucky 
to have the sought destination E as last vertex. 
The statement while (vt  T) can potentially 
stop the search before all vertices have been visited.

 The Dijkstra algorithm has worst-case complexity 

of , thanks to the skipping of paths 
that cannot be on the shortest path.

V 2 E+
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ALGORITHMS IN LECTURE 2 ...

in1

Q1
A C

B

D

in2

Q2

Depth-first search to find proper levelization.
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ALGORITHMS IN LECTURE 5...
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An introduction to optimization
[flow according to Gerez]
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THE PRAGMATIC ENGINEERS

 EDA problems are often too complex for exact solutions; 
those problems are intractable.

 Tractable and intractable problems can appear very similar.
- The shortest-path problem for undirected graphs is

tractable ... solved,for example, by Dijkstra’s algorithm.
- However, the longest-path problem is intractable.
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OPTIMIZATION

 Optimization problem: 
finding a legal configuration 
such that its cost is minimum (or maximum).
- “legal” implies constraints are met.

 An instance I = (F, c) where ...
- F is the set of feasible solutions, and
- c is a cost function, assigning a cost value to 

each feasible solution c : F  R (eal numbers)

 The solution to the optimization problem is the 
feasible solution with optimal (minimal/maximal) cost.



Lecture 9: Discrete Mathematics and Optimization Strategies for EDA. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 37(53)

OPTIMIZATION STRATEGIES

 Approximation algorithms.
- Guaranteed to be a fixed percentage away from the optimum.

 Pseudo-polynomial time algorithms.
- A polynomial function for the complexity, but n is not the problem size.

 Restriction: Work on some subset of the original problem.
 Dynamic programming (divide and conquer) [Lecture 4].
 Exhaustive search/Branch and bound: Small problem sizes.
 Local search.

- Simulated annealing (hill climbing), genetic algorithms, etc.
 Heuristics: No guarantee of performance or quality.
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BASIC OPTIMIZATION - LP PROGRAMMING

 A production of two products P1 and P2 with ingredients I1 and I2.
- P1 uses a11 units of I1 and a21 units of I2. 

Its unit price is c1. Its daily production is x1 units.
- P2 uses a12 units of I1 and a22 units of I2. 

Its unit price is c2. Its daily production is x2 units.
- The company cannot receive more than b1 units of I1 

and b2 units of I2 per day.
 Problem: maximize the daily revenue c1 x1 + c2 x2 subject to ...

- a11 x1 + a12 x2 b1, x1  0
- a21 x1 + a22 x2 b2, x2  0
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LP PROGRAMMING AND THE INTEGER VERSION

 Linear Programming - optimization in the continuous domain.
- The LP problem can be solved using the Simplex method.
- Simplex has exponential complexity in the worst case, 

but is mostly still feasible in practice. 

 Integer Linear Programming - the discrete domain.
- With the condition that variables (x1 and x2) are integers, 

the problem turns into ILP: An NP-hard optimization problem.
- However tempting, rounding the result of LP is not possible; 

the solution may be infeasible or nonoptimal.
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ILP FOR TSP
 The graph G(V, E) with edge weights w.
 Introduce a variable xi for each edge ei  E, 1  i k. 

Here xi = 1 if and only if ei is part of the TSP solution.

 Cost function to minimize: 

 Constraints to obey are ...
- that only two edges per vertex are selected.
- that there are no multiple disjoint tours.

w ei xi
i 1=

k


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EXAMPLE OF APPROXIMATION - GLOBAL ROUTING

 The minimal rectilinear spanning tree problem is tractable, 
while the minimal rectilinear Steiner tree is intractable.

 The Minimum Spanning Tree (MST) algorithm (middle) can be 
an approximation for the Steiner tree problem (right).
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ROUTING TERMINOLOGY + RESULT

 Manhattan distance: If two points (nodes) are located 
at coordinates (x1, y1) and (x2, y2), 
the Manhattan distance between them is given 
by d12 = |x1-x2| + |y1-y2|.

 Rectilinear spanning tree: A spanning tree that 
connects its nodes using Manhattan paths.

 In a Steiner tree, additional points (Steiner points) are 
permitted to be used for the connections.

 MST approximates the Steiner tree problem solution with 
a quality that is less than 50% away from optimum!
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EXACT SOLUTIONS - THE TSP AGAIN
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EXHAUSTIVE SEARCH GIVES LARGE SEARCH SPACE

 The Hamiltonian circuits of the graph 
can be searched exhaustively.
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BRANCH AND BOUND OF SEARCH SPACE

 After we have visited the leftmost leaf with cost 27, we compare all 
coming branches to this: Known path + expected path (MST).

14+9

11+14
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LOCAL SEARCH

 The simplest form of local search is gradient search.

In a continuous representation, follow the gradient ; 

uphills (maximization) or downhills (minimization). 
 When there exist several local optima, local search has a risk 

of getting stuck in a local optimum that is not the global optimum.
 Initial guess is very important.
 There are approaches that perturb the search, 

so there is a small probability that you make a “bad” move: 
Tabu search, simulated annealing and genetic algorithms.

xd
d f x 
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THE WEAKNESS OF GRADIENT SEARCH
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IDEA OF SIMULATED ANNEALING

 High enough temperature to ensure random state +
cooling process slow enough to 
ensure thermal equilibrium
 
the atoms will place themselves in a pattern that 
corresponds to the global energy minimum 
of a perfect crystal.

 Key mechanism: 
Bad moves may be accepted, 
which allows us to leave local optima!
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SIMULATED ANNEALING 1(2)
 “A material cools down slowly and 

settles to a minimal energy state.”
- Energy  cost function.
- Molecule movement  movement in search space.
- Temperature  control parameter T.

 Move strategy for f (current position) and g = m(f) (next position).
- c = c(g) - c(f).
- If c  0, always accept transition to g.

- If c > 0, accept with a probability limit of .e
c
T------–
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SIMULATED ANNEALING 2(2)
1. Initialize: Start with a random initial condition 

and a high temperature. 
2. Move: Perturb for example initial placement through a move.
3. Calculate cost: Calculate cost change due to the move made.
4. Choose: Accept or reject the move. 

Probability of acceptance depends on the current temperature. 
5. Update and repeat: Update the temperature value 

(perhaps it is time to lower the temperature). 
Check if “freezing point” is reached, then quit, 
else go back to step 2.
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SA ALGORITHM FOR PLACEMENT
begin
 temp = initial_temperature;
 place = initial_placement;
 while (temp > freezing_point) do

while (inner_loop_criterion = FALSE) do
new_place = PERTURB(current_place);
C = COST(new_place) - COST(current_place);
if (C < 0) then

current_place = new_place;
else if (RANDOM(0,1) > e^-(C/T)) then

current_place = new_place;
temp = SCHEDULE(temp);

end;
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SA ISSUES

 Cooling schedule is very important for quality of result.
- Number of iterations in inner and outer loops.
- Temperature update strategy.

 Optimal cooling schedule guarantees optimal solution with 
probability = 1, but requires infinite number of iterations.

 In practice, simulated annealing ...
- degrades to heuristic due to nonoptimal cooling schedule.
- is the best method known for (standard-cell) placement.
- cannot compete with good problem-specific heuristics, if such exist.
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DISCRETE MATH AND OPTIMIZATION: CONCLUSION

 Can you solve an optimization problem exactly, do so. 
 Application of approximation algorithms and heuristics 

usually requires understanding of context; 
that is, it requires experience.

 General optimization algorithms,
such as simulated annealing, are generic.
Do not expect too much from such algorithms; 
they are often used as the last resort 
for “inexperienced” users or “hopeless” problems.

 Read more [Ch4_Algorithms.pdf].


