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BACK TO BASICS - POWER AND ENERGY

¢ Charges Q = | -t are transported during time t,
thanks to a current | (which is assumed to be constant!).

¢ Energy E = Q -V is associated with the charges Q
that sit inside an electric field, at a potential V.

¢ Power dissipation P = E/t IS
energy E expended during time t.

- E_QV)_ Y-V
t t t

which becomes P = |-V,
when current and voltage are constant.
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CURRENT VARIES (OVER 10 CYCLES)

type n - 8x8-bit multiplier
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¢ Current drawn from Vpp for an 8x8-bit multiplier.
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CLOSE UP OoF ONE CLocK CYCLE

¢ Inalarger circuit, containing many gates,
the Instantaneous current varies greatly with time.

¢ Alarge and diverse set of test vectors cause transitions
to happen in a distributed fashion, over time and space.

|

N
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CHARGING AN INVERTER OUTPUT

Panel 1
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THE AVERAGE CURRENT - THE BLUE LINE

Panel 1
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ENERGY AND AVERAGE POWER 1(2)

Charge Q = Iavg - T drawn

from Vpp to output node
p—

electricenergy E = Q - Vpp

FFFFFF

= extracted from Vpp
. =

~ 600,0000u

e an average power of
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for the clock cycle.
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ENERGY AND AVERAGE POWER 2(2)

¢ An adder draws an average of 1 mA of current at a supply of 1 V;
thus, its power dissipation is 1 mW.

¢ The adder enerqy that is expended for an application is
Energy = 1 mW - Execution time.

¢ Ifthe adder performs 1024 one-cycle additions for the application,
the total execution time is

Execution time = 1024 - Clock period.

¢ Energy tradeoffs are complex; for example,
an increasing circuit complexity (and power dissipation)
can lead to faster execution and thus less total energy.
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DIFFERENT MECHANISMS OF POWER DISSIPATION

¢ Dynamic power dissipation, Pgynamic:

- Charging/discharging = switching power (Pg,,).

- (Short-circuit power, negligible in low Vpp processes).

¢ Static power dissipation, Pagic.

- Subthreshold leakage power (Pg,p).

- (Gate oxide tunneling leakage.

- Junction leakage.

¢ The dominant portion has been, still is, and should be,
switching power.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 10(56)



Lecture 6: Power and Energy. Variability. 2018

... BUT STATIC POWER HAS BEEN INCREASING
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QUEST FOR Low OFF CURRENTS

¢ Subthreshold swing (or subthreshold slope factor, S below):

Which change in Vg results in 10X less current ?
log Ip 1

2018

VDs>VDSsat

¢ The MOSFET’s swing is limited to
>60 mV/dec (in practice >70 mV/dec).

¢ Research on new devices with steeper
subthreshold slope Is ongoing.

subthreshold
regime
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MOSFET CURRENT IN THE SUBTHRESHOLD REGIME

A(Vgs = V1) 4Vps\

kT kT
lsyp € € 1-e for Vg < Vg

—

w

—
=

_ KT _

— = 26 mV (room temp) ss_ 23mART

V —
thermal q

—_—

In(10) = 2.3 > 60mv/dec

Source: “Band-to-Band Tunneling Field Effect Transistor for Low
Power Logic and Memory Applications”, S. A. Mookerjea, PhD
Thesis, Penn State Univ, 2010.
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CONSIDER SIMULATION OF SINGLE NMOSFET

Vps =12V
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¢ Simulation of 65nm NMOSFET with Vpg = 1.2 Vand V1 =0.25 V:

ISUB (LIN) VS VGS

Graph0

2018

(Params) : v(vgs)(V

400u -

300u

par(ignd)

z
£
S 200u -
© .
o :
100u
0.0 : I : : : :
[ I I I I I I I I I I I I |
0.0 50.0m 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
v(vgs)(V)

Per

Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

15(56)



Lecture 6: Power and Energy. Variability.

ISUB (LOG) VS VGS

2018

¢ Simulation of 65nm NMOSFET with Vpg = 1.2 Vand V1 =0.25 V:

Graph0
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ISUB VS VDS FOR VGs = 0

(Params) : v(vds)(V
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V1 varies with Vpg, making Ig,, vary with Vps.
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DIBL 1(2)

4Ves— V1), AVps)

| kT 1 kT

\ J
which for an offstate NMOSFET (Vg = 0, Vpg = Vpp) becomes

qVy

| kT
sub * €

where V- varies with Vpg. This Is because of drain-induced
barrier lowering (DIBL) which is a short-channel effect (SCE).

¢ Thus, Poioni. = loyp - Vpp has a strong dependency on Vpp,.
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DIBL 2(2)

¢ The drain voltage, which Is decided by Vpp, Impacts channel
electrostatic distribution. A higher Vpp will deplete relatively more
of the channel when this is short, which in turn increases Ig .

001 nmes_physics/IdVd_nZ01_0000_ 0006 des,idr 0-0 002 nmes_physics/ldyVd_n227_ 0000 0006 des. dr 0-0

0.1 -0.05 a .05 0.1 .G -4 -0r 7 0z 0.4 05

& i) # [um]

¢ AV = —A Vg, Where Ay is the DIBL coefficient.
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LOW-VOLTAGE OPERATION IS ENERGY EFFICIENT...

12

® P LVT ® GP LVT

10

Energy (pJ)
()]
|

0 0.2 0.4 0.6 0.8 1 1.2

VDD (V)

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 20(56)



2018

e e e SINCE STATIC POWER DOMINATES SLOW CIRCUITS
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SWITCHING POWER DISSIPATION

¢ It takes energy
— E = Q-Vpp = (CL-Vpp) - Vpp
from Vpp to charge the output node.

al .

¢ Power dissipation = rate of energy conversion:

Paw = %-VDDZ - switched capacitance = f-VDD2 - ZAi - C;,
|

Loy During a full transition (output 0—1—0),

the electric energy E turns into heat.

where A; IS switching activity
on node | (switching activity for 0—1).

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 22(56)



Lecture 6: Power and Energy. Variability. 2018

SWITCHING ACTIVITY

clock |

regular data signal
with high A = 0.5
regular data signal
with lower A; = 0.25

glitchy data signal
Wi A 05 — 00X X
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SWITCHING ACTIVITY AND PROBABILITY

¢ For a 3-bit truth table,

the rightmost bit has a switching activity of 4/8 = 0.5,
while the leftmost bit has an activity of 1/8 = 0.125.

0.5 Is the maximal activity of data signals.

1 Is the activity of non-gated clock.

¢ For a 3-bit truth table, P(A) = P(B) = P(C)
This means the probability of the bits
being logical 1sis 0.5.

Per Larsson-Edefors, Chalmers University of Technology
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EX OF SIMPLIFIED PROBABILITY PROPAGATION

P(a:1) probability of a being logical 1.
Po_,1(a) probability of a switching from 0 to 1.

a —
b_} D
C —
d— D

D

1)=0.2 = Py_,4(a) = 0.16.
1)=0.9 = Py_,4(b) = 0.009.
1)=0.7 = Pgy_,4(

1)=0.5 = Py_,1(d) = 0.25.

(
(
(
P

a:
b:
C:
d:
A:

P(A:1) =0.2-0.9-0.7-0.5 = 0.063 =
Po_,1(A) = (1-0.063)-0.063 ~ 0.059.
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SWITCHING POWER ANALYSIS 1(2)

¢ Simulation-based (dynamic and iterative) technigues.
Simulate the circuit and capture current/power.
Choose input vectors - few but representative?
What models, what simulator to be used?

¢ Probabilistic (static and deterministic) techniques.

Propagate signal switching activities at primary inputs,
to find switching probabilities of all internal nodes of the circuit.

How are primary activities obtained - just guesses or use cases?
Correlations (temporal and spatial) are hard to capture.

Read [3.2.4/3.1.4 Logic-Level Power Estimation in Vol 2/Ch 3].
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SWITCHING POWER ANALYSIS 2(2)

¢ Inthe lab exercises you will get a chance to work
with, first, a probabilistic technique for approximative analyses.

¢ Then, for higher accuracy, simulation-based techniques
can be employed:

1. logic simulation is used to establish actual switching activities
for a particular set of test vectors (VCD/SAIF), by toggle counting.

2. the switching activities obtained from simulation are
fed to a gate-level power analysis tool that considers
both switching and leakage power.
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WORKING WITH SWITCHING INFORMATION 1(3)

¢ As a result of a simulation, consider a TCF

(toggle count format) file:
"CIk" : "0.50000 855432000";

The clock is logic 1 for half of the simulation time.
The second number gives 855,432,000 / 1e+9 =
0.855 toggle / ns =

2 toggles / actual clock period (here 2.338 ns).

¢ VCD captures the waveform, while SAIF accumulates
toggling count only, to save space:

SAIF =572 kB
VCD =7.907 MB.
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WORKING WITH SWITCHING INFORMATION 2(3)

¢ 1,000 random vectors vs. 233,450 use-case vectors.

¢ TCF information for random:

"A[15]" : "0.51520 225271000 ;
"A[16]" : "0.50570 220151000";

¢ TCF information for use case:

"A[15]" : *"0.04130 29906000";
"A[16]" : "0.54440 143117000";

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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WORKING WITH SWITCHING INFORMATION 3(3)

¢ TCF information for random:

225,271,000 / 1e+9 = 0.222527 toggle/ns =
0.5203 toggles / clock period

220,151,000 / 1e+9 = 0.220151 toggle/ns =
0.5147 toggles / clock period

¢ TCF information for use case:

29,906,000/ 1e+t9 =
0.0699 toggles / actual clock period

143,117,000/ 1e+9 =
0.3346 toggles / actual clock period
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THE PARAMETER CALLED ToGG (RC)

¢ togg (toggling rate) describes how many times a
signal toggles during 1 ns. Thus, togg fuses information

on f and Al as defined in Pg,: f - VDD2 YA -G
i

togg=1 could either mean that you have a signal with
f=500 MHzand Ai=1,orf=1GHz and Ai=0.5, or...

Al only counts 0—1 transitions, while
togg counts poth 0—1 and 1—0.

¢ togg = fnormalized to 1 GHz' * (AI*2), for example,
(0.769 GHz/1 GHz) * (0.2*2) = 0.308.
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USE CASES VERSUS RANDOM DATA

¢ Power report for random data:

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

ALU 949 314,465 8,791,824 9,106,290

¢ Power report for use-case test vectors

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

ALU 949 319,967 4,218,725 4,538,692

¢ Power depends strongly on input data.
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CELL-LIBRARY POWER DISSIPATION PROPERTIES

HS65_LS_AND2

Logical Symbol

" i
' m
A /
-—— //
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Average Leakage Power (mW) at 25C, 1.20V Typ process

X4
X9
X18
X27
X35

vdd
1.251e-07
2.207e-07
4.318e-07
6.691e-07
8.865e-07

Internal Energy (uW/MHz) at Minimum Output Load,

Pin Cycle (vdd)
A (stable)
B (stable)
AtoZ
BtoZ

X4 X9
5170e-05 | 9.591e
1.903e-04 = 3.556e
5500e-03 | 8.875e
5.203e-03 | 8.35%

Pin Capacitance (pf) at 25C, 1.20V Typ process

A
B

DAT110 Methods for Electronic System Design and Verification

H 0.0010
H 0.0012
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POWER COMPONENTS IN RTL COMPILER

¢ Leakage power dissipation.
- Leakage power annotation in the synthesis library.

- Multi-Vy cells (for example, high V1 = low leakage power,
slow = poor timing performance) are supported in RTL Compiler.

¢ Dynamic power dissipation.
- Includes switching and short-circuit power.

- Both internal to cell and wires between cells.
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EVALUATING POWER AND ENERGY

¢ To get low power dissipation,
simply reduce clock rate; UNFAIR!

¢ When comparing circuits, use a reasonable metric:
- First, ensure the circuit fulfils the performance requirement.
- Use power-delay-product (this gives energy per clock cycle).
- Or use energy-delay-product.
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Variability
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DEVICE PARAMETERS VARY
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DIFFERENT TYPES OF VARIATION

¢ Variations manifest in different ways.
- Between dies on the same wafer - inter-die variations.

- Between cells/blocks on the same die - Intra-die variations.

<™ O
g 8 00 0

: B OAE

Device to Die to Wafer to Line to S W tal
Device Die Wafer Lot to Lot Line ource. a”g € _a N
Nano-CMOS Circuit and
}‘ Intradie + Interdie " Physical Design, 2005
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COMBATTING VARIATIONS

¢ Static power Is a strong function of process d(Veg — V1)
and operational parameters. Thus, variations T kT
affect power dramatically. OFF

¢ Performance and power 1500m CMOS technology

binning Is common to
qualify processors.

- Body biasing can be

Frequehcy Leakaga 7
. tUD iﬂw R tﬂﬂ hlgh

110 C

Normalized Leakage
oD = N W B ;o

used at production RH vcﬂ 11V
to fine tune threshold ' 0:0.05]
925 1 1.075 1.15 1.225

voltages.

Normalized Frequency

Source: Adaptive Body Bias for Reducing Impacts of Die-
to-Die and Within-Die Parameter Variations on Micropro-
cessor Frequency and Leakage, IEEE JSSC, 2002.
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SCALING INCREASES PARAMETER VARIATIONS

¢ Static variations.

- Imperfect manufacturing (CMP, lithography):
Systematic variations.

- Small devices means very few dopants:
Random fluctuations.

¢ Dynamic variations.
- Temperature changes.

- Different operating modes (power on/off) and
different test vectors are used.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 40(56)



Lecture 6: Power and Energy. Variability. 2018

RANDOM DOPANT FLUCTUATION
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©
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Source: Direct Tunnelling Gate Leakage Variability Source: Analog IC Reliability in Nanometer CMOS,
in Nano-CMOS Transistors, IEEE TED, 2010. Springer, 2013.
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VARIATION-AWARE DESIGN

¢ Given the |-V relation for MOSFETS,
vary any of tox (= Cox), W, L or VT and
think about impact on delay.

- For example, a reduced W increases delay.

¢ Consider variations by using design corners (PVT)
or only process corners (P).

¢ Use variation-aware simulation strategies.
- Sigma-based simulation.
- Monte-Carlo (random) simulation.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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IMPACT OF DESIGN CORNERS ON DELAY

2018
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PROCESS, VOLTAGE AND TEMPERATURE (PVT)

¢ Static variations (P - process).
- Process variation captured in process corners.
- Fast, Typical/Nominal, Slow.

¢ Dynamic variations (V - supply voltage, T - temperature).

- Supply voltage changes with current computation
(IR drop + switching noise are treated later).

- Die temperature depends on ambient temperature,
cooling system, and on current and past computation pattern.
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¢ Process corners refer to fabricated transistors
turning out to be fast, slow or nominal/typical.

PROCESS CORNERS

¢ FS =Fast NMOS, Slow PMOS, while
TT= Typical NMOS, Typical PMOS.
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Source: Wang et al.,
Nano-CMOS Circuit and
Physical Design, Wiley, 2005
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CORNER-BASED DESIGN

¢ Important to run setup time analysis
for worst-case timing conditions, that Is,
Slow NMOS + Slow PMOS + High T + Low VDD.

¢ Conversely it Is Important to check
for hold time violations under best-case timing conditions:
Fast NMOS + Fast PMOS + Low T + High VDD.

¢ Power analysis can be done for typical conditions,
while worst-case static power can be analyzed
using best-case timing.
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IMPACT OF WORST- AND BEST CASE CONDITIONS

2018
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METHODS LABS

¢ /usr/local/cad/stm-cmos065-5.4/COREGB5LPSVT/5.2.c/libs/
COREG5LPSVT nom 1.20V_25C.lib

¢ [Assignment 3.3.2]: CORE65GPSVT nom 1.10V_125C.lib

¢ mmmc.tcl:

# Define delay corners and analysis views.
create_delay corner -name typical _corner \
-library _set typical lib \
-rc_corner typical _rc
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STANDARD NORMAL DISTRIBUTION

¢ Random parameters are described with a probability density
function (PDF) that follows a normal distribution.

¢ The standard deviation Is denoted sigma, .

| 1 (x-p)?
e — 2 o2
V2o
Left graph:
c=land u=0.
X € [-3, 3] captures 99.73%
\ of the total area of curve.
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MEASUREMENTS VS MODEL
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APPLYING STATISTICS TO MEASUREMENTS

1. Standard deviation known a priori (experience) as 2 nm.
2. Make 15 measurement samples = sample mean =20 nm

2
1.96 (xX=w)

2
3. Assume 95% confidence Is sought for = j . e “° dx

21 o

-1.96
since X € [-1.96 5,1.96 o] = 95% of standard normal curve area.

4. The true mean Is; 20i1.96i.

J15
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+ 4+ ++PH +H + B+

SOME SIGMA-BASED SIMULATIONS FoLLOW

Polysilicon Critical Dimensions
polycd=agauss(0,0.06u,1) xI="polycd-sigma*0.06u"

Active area Critical Dimensions
nactcd=agauss(0,0.3u,1) xwn="nactcd+sigma*0.3u”
pactcd=agauss(0,0.3u,1l) xwp="pactcd+sigma*0.3u”

Gate Oxide Critical Dimensions
toxcd=agauss(200,10,1) tox="toxcd-sigma*10-"

Threshold voltage variation
vtoncd=agauss(0,0.05v,1) delvton="vtoncd-sigma*0.05"
vtopcd=agauss(0,0.05v,1) delvtop="vtopcd+sigma*0.05"

Active layer resistivity variation
rshncd=agauss(50,8,1) rshn="rshncd-sigma*8*
rshpcd=agauss(150,20,1) rshp="rshpcd-sigma*20*
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INVERTER CHAIN DELAY AS FUNCTION OF SIGMA

¢ Varying sigma in all parameters, -3c, -2.5¢, ..., 2.50, 3c.
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MONTE-CARLO SIMULATIONS

¢ In statistical simulations, each variable that follows
the standard normal distribution is sampled randomly.

mmmmmmm

¢ Notice how the delay span reduces from 160ps-360ps.
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CORNERS., SIGMA, AND MONTE CARLO

¢ Simulations using process corners give pessimistic
view of performance and power, but they have low run time.

¢ Monte Carlo simulation Is the most accurate method,
but it is very time consuming.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 55(56)



Lecture 6: Power and Energy. Variability. 2018

POWER, ENERGY AND VARIABILITY: CONCLUSION

¢ Power and energy analysis.

- Depends on implementation, operating conditions
and test vectors, thus, very complex.

- Combination of simulation and static analysis;
identify where is the weakness in terms of accuracy.
For example, do you need detailed implementation data
If you have no use case information?

¢ Variability.
- Impacts delay and power dissipation.

- Simulation methods like Monte Carlo
work only for small circuits.
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