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POWER AND ENERGY.

VARIABILITY.
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BACK TO BASICS - POWER AND ENERGY

 Charges  are transported during time t, 
thanks to a current I (which is assumed to be constant!).

 Energy  is associated with the charges Q 
that sit inside an electric field, at a potential V.

 Power dissipation  is 
energy E expended during time t.

 ,

which becomes ,
when current and voltage are constant.

Q I t=

E Q V=

P E t=

P E
t---

Q V 
t---------------- I t  V 

t------------------------= = =

P I V=
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CURRENT VARIES (OVER 10 CYCLES)

 Current drawn from VDD for an 8x8-bit multiplier.
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CLOSE UP OF ONE CLOCK CYCLE

 In a larger circuit, containing many gates,
the instantaneous current varies greatly with time.

 A large and diverse set of test vectors cause transitions 
to happen in a distributed fashion, over time and space.
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CHARGING AN INVERTER OUTPUT
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THE AVERAGE CURRENT - THE BLUE LINE
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ENERGY AND AVERAGE POWER 1(2)

0,0000

200,0000u

400,0000u

600,0000u

800,0000u

1,0000m

1,2000m

1,4000m

1,6000m

1,8000m

2,0000m

2,2000m

Time (lin) (TIME)0,00000000 100,00000000p 200,00000000p

Panel 1

Charge  drawn 
from VDD to output node

 
electric energy  

extracted from VDD
 

an average power of 

for the clock cycle.

Q Iavg T=

E Q VDD=

P
Q VDD

T----------------- Iavg VDD= =



Lecture 6: Power and Energy. Variability. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 9(56)

ENERGY AND AVERAGE POWER 2(2)
 An adder draws an average of 1 mA of current at a supply of 1 V; 

thus, its power dissipation is 1 mW.
 The adder energy that is expended for an application is

.
 If the adder performs 1024 one-cycle additions for the application,

the total execution time is
.

 Energy tradeoffs are complex; for example, 
an increasing circuit complexity (and power dissipation) 
can lead to faster execution and thus less total energy.

Energy 1 mW Execution time=

Execution time 1024 Clock period=
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DIFFERENT MECHANISMS OF POWER DISSIPATION

 Dynamic power dissipation, Pdynamic.
- Charging/discharging = switching power (Psw).
- (Short-circuit power, negligible in low VDD processes).

 Static power dissipation, Pstatic.
- Subthreshold leakage power (Psub).
- Gate oxide tunneling leakage.
- Junction leakage.

 The dominant portion has been, still is, and should be, 
switching power.
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... BUT STATIC POWER HAS BEEN INCREASING
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QUEST FOR LOW OFF CURRENTS

 Subthreshold swing (or subthreshold slope factor, S below):
Which change in VGS results in 10X less current ?

 The MOSFET’s swing is limited to 
>60 mV/dec (in practice >70 mV/dec).

 Research on new devices with steeper 
subthreshold slope is ongoing.
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MOSFET CURRENT IN THE SUBTHRESHOLD REGIME

, for VGS < VTIsub e

q VGS VT– 

kT-----------------------------
1 e

qVDS
kT------------–

–
 
 
 
 



Vthermal
kT
q----- 26 mV (room temp)= =

Source: “Band-to-Band Tunneling Field Effect Transistor for Low 
Power Logic and Memory Applications”, S. A. Mookerjea, PhD 

Thesis, Penn State Univ, 2010.

10  2.3ln
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CONSIDER SIMULATION OF SINGLE NMOSFET

VGS : 
0-0.6 V Isub

Isub e

q VGS VT– 

kT-----------------------------
 Isub e

q VT– 

kT-----------------
1 e

qVDS
kT------------–

–
 
 
 
 



VDS : 
0-1.2 V
Isub

VDS = 1.2 V

VGS = 0 V
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ISUB (LIN) VS VGS

 Simulation of 65nm NMOSFET with VDS = 1.2 V and VT = 0.25 V:
Graph0
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ISUB (LOG) VS VGS

 Simulation of 65nm NMOSFET with VDS = 1.2 V and VT = 0.25 V:
Graph0
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ISUB VS VDS FOR VGS = 0

VT varies with VDS, making Isub vary with VDS.

Graph0
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DIBL 1(2)

  

which for an offstate NMOSFET (VGS = 0, VDS = VDD) becomes

where VT varies with VDS. This is because of drain-induced
barrier lowering (DIBL) which is a short-channel effect (SCE).

 Thus,  has a strong dependency on VDD.

Isub e

q VGS VT– 

kT-----------------------------
1 e

qVDS
kT------------–

–
 
 
 
 



Isub e

qVT
kT---------–



Pstatic Isub VDD=
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DIBL 2(2)
 The drain voltage, which is decided by VDD, impacts channel 

electrostatic distribution. A higher VDD will deplete relatively more
of the channel when this is short, which in turn increases Isub.

 , where d is the DIBL coefficient.VT  – dVDS=
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LOW-VOLTAGE OPERATION IS ENERGY EFFICIENT...
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...SINCE STATIC POWER DOMINATES SLOW CIRCUITS
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SWITCHING POWER DISSIPATION

 It takes energy 

from VDD to charge the output node.

 During a full transition (output 010), 
the electric energy E turns into heat.

E Q VDD CL VDD  VDD= =

 Power dissipation = rate of energy conversion:

, 

where Ai is switching activity 
on node i (switching activity for 01).

Psw
1
T--- VDD

2 switched capacitance  f VDD
2 Ai Ci

i
 = =

CL
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SWITCHING ACTIVITY

regular data signal
with high Ai = 0.5

clock

glitchy data signal
with Ai > 0.5

regular data signal
with lower Ai = 0.25
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SWITCHING ACTIVITY AND PROBABILITY

 For a 3-bit truth table, 
the rightmost bit has a switching activity of 4/8 = 0.5,
while the leftmost bit has an activity of 1/8 = 0.125.
- 0.5 is the maximal activity of data signals.
- 1 is the activity of non-gated clock.

 For a 3-bit truth table, P(A) = P(B) = P(C) = 0.5. 
This means the probability of the bits 
being logical 1s is 0.5.

000
001
010
011
100
101
110
111
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EX OF SIMPLIFIED PROBABILITY PROPAGATION

a

P(a:1) probability of a being logical 1.
P01(a) probability of a switching from 0 to 1.

P(a:1) = 0.2  P01(a) = 0.16.
P(b:1) = 0.9  P01(b) = 0.09.
P(c:1) = 0.7  P01(c) = 0.21.
P(d:1) = 0.5  P01(d) = 0.25.

P(A:1) = 0.20.90.70.5 = 0.063 
P01(A) = (1-0.063)0.063  0.059.

Ab
c
d
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SWITCHING POWER ANALYSIS 1(2)
 Simulation-based (dynamic and iterative) techniques.

- Simulate the circuit and capture current/power.
- Choose input vectors - few but representative? 
- What models, what simulator to be used?

 Probabilistic (static and deterministic) techniques.
- Propagate signal switching activities at primary inputs, 

to find switching probabilities of all internal nodes of the circuit.
- How are primary activities obtained - just guesses or use cases? 
- Correlations (temporal and spatial) are hard to capture.

Read [3.2.4/3.1.4 Logic-Level Power Estimation in Vol 2/Ch 3].
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SWITCHING POWER ANALYSIS 2(2)
 In the lab exercises you will get a chance to work 

with, first, a probabilistic technique for approximative analyses.
 Then, for higher accuracy, simulation-based techniques 

can be employed:
1. logic simulation is used to establish actual switching activities 

for a particular set of test vectors (VCD/SAIF), by toggle counting.
2. the switching activities obtained from simulation are 

fed to a gate-level power analysis tool that considers 
both switching and leakage power.
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WORKING WITH SWITCHING INFORMATION 1(3)
 As a result of a simulation, consider a TCF 

(toggle count format) file: 
"Clk" : "0.50000 855432000";

The clock is logic 1 for half of the simulation time. 
The second number gives 855,432,000 / 1e+9 = 
0.855 toggle / ns = 
2 toggles / actual clock period (here 2.338 ns).

 VCD captures the waveform, while SAIF accumulates 
toggling count only, to save space:
- SAIF = 572 kB
- VCD = 7.907 MB.
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WORKING WITH SWITCHING INFORMATION 2(3)
 1,000 random vectors vs. 233,450 use-case vectors.
 TCF information for random: 

"A[15]" : "0.51520 225271000";
"A[16]" : "0.50570 220151000";

 TCF information for use case:
"A[15]" : "0.04130 29906000";
"A[16]" : "0.54440 143117000";
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WORKING WITH SWITCHING INFORMATION 3(3)
 TCF information for random: 

- 225,271,000 / 1e+9 = 0.222527 toggle/ns = 
0.5203 toggles / clock period

- 220,151,000 / 1e+9 = 0.220151 toggle/ns = 
0.5147 toggles / clock period

 TCF information for use case:
- 29,906,000 / 1e+9 = 

0.0699 toggles / actual clock period
- 143,117,000 / 1e+9 = 

0.3346 toggles / actual clock period
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THE PARAMETER CALLED TOGG (RC)
 togg (toggling rate) describes how many times a 

signal toggles during 1 ns. Thus, togg fuses information 

on f and Ai as defined in Psw: 

- togg=1 could either mean that you have a signal with 
f = 500 MHz and Ai = 1, or f = 1 GHz and Ai = 0.5, or ...

- Ai only counts 01 transitions, while 
togg counts both 01 and 10.

 togg = 'f normalized to 1 GHz' * (Ai*2), for example, 
(0.769 GHz/1 GHz) * (0.2*2) = 0.308.

f VDD
2 Ai Ci

i
 
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USE CASES VERSUS RANDOM DATA

 Power report for random data:
Leakage Dynamic Total    

Instance Cells Power(nW) Power(nW) Power(nW)  
----------------------------------------------------

ALU 949 314,465 8,791,824 9,106,290

 Power report for use-case test vectors 
Leakage Dynamic Total    

Instance Cells Power(nW) Power(nW) Power(nW)
----------------------------------------------------

ALU 949 319,967 4,218,725 4,538,692

 Power depends strongly on input data.
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CELL-LIBRARY POWER DISSIPATION PROPERTIES
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POWER COMPONENTS IN RTL COMPILER

 Leakage power dissipation.
- Leakage power annotation in the synthesis library. 
- Multi-VT cells (for example, high VT  low leakage power, 

slow = poor timing performance) are supported in RTL Compiler.
 Dynamic power dissipation.

- Includes switching and short-circuit power.
- Both internal to cell and wires between cells.
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EVALUATING POWER AND ENERGY

 To get low power dissipation, 
simply reduce clock rate; UNFAIR!

 When comparing circuits, use a reasonable metric:
- First, ensure the circuit fulfils the performance requirement.
- Use power-delay-product (this gives energy per clock cycle).
- Or use energy-delay-product.
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Variability
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DEVICE PARAMETERS VARY

Source: Qiang Zhang et al., Solid-
State Electronics 2001
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DIFFERENT TYPES OF VARIATION

 Variations manifest in different ways.
- Between dies on the same wafer - inter-die variations.
- Between cells/blocks on the same die - intra-die variations.

Source: Wang et al., 
Nano-CMOS Circuit and 
Physical Design, 2005
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COMBATTING VARIATIONS 
 Static power is a strong function of process 

and operational parameters. Thus, variations 
affect power dramatically.

 Performance and power 
binning is common to 
qualify processors.
- Body biasing can be 

used at production 
to fine tune threshold 
voltages.

IOFF e

q VGS VT– 

kT-----------------------------


Source: Adaptive Body Bias for Reducing Impacts of Die-
to-Die and Within-Die Parameter Variations on Micropro-

cessor Frequency and Leakage, IEEE JSSC, 2002.
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SCALING INCREASES PARAMETER VARIATIONS

 Static variations.
- Imperfect manufacturing (CMP, lithography): 

Systematic variations.
- Small devices means very few dopants:

Random fluctuations.
 Dynamic variations.

- Temperature changes.
- Different operating modes (power on/off) and 

different test vectors are used.
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RANDOM DOPANT FLUCTUATION

Source: Direct Tunnelling Gate Leakage Variability 
in Nano-CMOS Transistors, IEEE TED, 2010.

Source: Analog IC Reliability in Nanometer CMOS, 
Springer, 2013.
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VARIATION-AWARE DESIGN

 Given the I-V relation for MOSFETs, 
vary any of tox (  Cox), W, L or VT and 
think about impact on delay.
- For example, a reduced W increases delay.

 Consider variations by using design corners (PVT) 
or only process corners (P).

 Use variation-aware simulation strategies.
- Sigma-based simulation.
- Monte-Carlo (random) simulation.
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IMPACT OF DESIGN CORNERS ON DELAY
Graph0
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PROCESS, VOLTAGE AND TEMPERATURE (PVT)
 Static variations (P - process).

- Process variation captured in process corners.
- Fast, Typical/Nominal, Slow. 

 Dynamic variations (V - supply voltage, T - temperature).
- Supply voltage changes with current computation

(IR drop + switching noise are treated later).
- Die temperature depends on ambient temperature, 

cooling system, and on current and past computation pattern.
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PROCESS CORNERS

 Process corners refer to fabricated transistors 
turning out to be fast, slow or nominal/typical. 

 FS = Fast NMOS, Slow PMOS, while 
TT= Typical NMOS, Typical PMOS.

Source: Wang et al., 
Nano-CMOS Circuit and 

Physical Design, Wiley, 2005
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CORNER-BASED DESIGN

 Important to run setup time analysis 
for worst-case timing conditions, that is,
Slow NMOS + Slow PMOS + High T + Low VDD.

 Conversely it is important to check 
for hold time violations under best-case timing conditions:
Fast NMOS + Fast PMOS + Low T + High VDD.

 Power analysis can be done for typical conditions, 
while worst-case static power can be analyzed 
using best-case timing.
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IMPACT OF WORST- AND BEST CASE CONDITIONS
Graph0
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METHODS LABS

 /usr/local/cad/stm-cmos065-5.4/CORE65LPSVT/5.2.c/libs/
CORE65LPSVT_nom_1.20V_25C.lib

 [Assignment 3.3.2]: CORE65GPSVT_nom_1.10V_125C.lib
 mmmc.tcl:

# Define delay corners and analysis views.
create_delay_corner -name typical_corner \

-library_set typical_lib \
-rc_corner typical_rc



Lecture 6: Power and Energy. Variability. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 49(56)

STANDARD NORMAL DISTRIBUTION

 Random parameters are described with a probability density
function (PDF) that follows a normal distribution.

 The standard deviation is denoted sigma, .

�6 �4 �2 2 4 6

0.1

0.2

0.3

0.4

Left graph: 
 = 1 and  = 0.
x  [-3, 3] captures 99.73% 
of the total area of curve. 
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MEASUREMENTS VS MODEL

Source: Qiang Zhang et al., Solid-
State Electronics 2001
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APPLYING STATISTICS TO MEASUREMENTS

1. Standard deviation known a priori (experience) as 2 nm.
2. Make 15 measurement samples  sample mean = 20 nm

3. Assume 95% confidence is sought for   

since x  [-1.96 ,1.96 ]  95% of standard normal curve area. 

4. The true mean is: .

1
2 

------------------e

x – 2

22-------------------–

dx
-1.96

1.96



20 1.96 2
15

---------
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SOME SIGMA-BASED SIMULATIONS FOLLOW
$ Polysilicon Critical Dimensions
+ polycd=agauss(0,0.06u,1) xl='polycd-sigma*0.06u' 

$ Active area Critical Dimensions
+ nactcd=agauss(0,0.3u,1) xwn='nactcd+sigma*0.3u' 
+ pactcd=agauss(0,0.3u,1) xwp='pactcd+sigma*0.3u' 

$ Gate Oxide Critical Dimensions
+ toxcd=agauss(200,10,1) tox='toxcd-sigma*10'

$ Threshold voltage variation
+ vtoncd=agauss(0,0.05v,1) delvton='vtoncd-sigma*0.05'
+ vtopcd=agauss(0,0.05v,1) delvtop='vtopcd+sigma*0.05'

$ Active layer resistivity variation
+ rshncd=agauss(50,8,1) rshn='rshncd-sigma*8'
+ rshpcd=agauss(150,20,1) rshp='rshpcd-sigma*20'
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INVERTER CHAIN DELAY AS FUNCTION OF SIGMA

 Varying sigma in all parameters, -3, -2.5, ..., 2.5, 3. 
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MONTE-CARLO SIMULATIONS

 In statistical simulations, each variable that follows 
the standard normal distribution is sampled randomly.

 Notice how the delay span reduces from 160ps-360ps.

Graph0

(−
)

150p

200p

250p

300p

350p

index(−)

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0

(−) : index(−)

m_delay



Lecture 6: Power and Energy. Variability. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 55(56)

CORNERS, SIGMA, AND MONTE CARLO

 Simulations using process corners give pessimistic 
view of performance and power, but they have low run time.

 Monte Carlo simulation is the most accurate method, 
but it is very time consuming.
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POWER, ENERGY AND VARIABILITY: CONCLUSION

 Power and energy analysis.
- Depends on implementation, operating conditions 

and test vectors, thus, very complex.
- Combination of simulation and static analysis; 

identify where is the weakness in terms of accuracy.
For example, do you need detailed implementation data 
if you have no use case information?

 Variability.
- Impacts delay and power dissipation.
- Simulation methods like Monte Carlo 

work only for small circuits.


