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PRESENT SCENARIO: TIMING VERIFICATION
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Lecture 5: Timing.

DESIGN FLOW

¢ Conventional design flow for ASICs [from Lecture 1].
1. RTL-specification — Generic gate netlist.

¢ Verification f

Per

2. Generic gate netlist — Cell library.
3. Cell library — Placement & routing.

1. Functiona

2. Functiona

OW.

verification of VHDL: testbench + RTL code.

verification of netlist that results

from synthesis of RTL VHDL to cell library.

3. Timing verification of netlist.

4. Place&route and further verification...
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Lecture 5: Timing. 2018

DELAY MODELS FOR EVENT-DRIVEN SIMULATION

¢ Unit-delay models ...
- make all gates have the same delay; a delay of 1 unit.

- are slower than zero-delay models,
but faster than full-delay models.

- can uncover logic mismatches between gates and RTL,
and problems with, for example, reset signals.

¢ Zero-delay models ...

- yield something similar to cycle-based simulation;
the difference being that only nodes with events are updated.

¢ Full-delay models ...
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UNIT DELAY MODEL

entity HS65 LSS DFPHQNX18 is

port( QN : out STD LOGIC ; CP : in STD LOGIC ... );
end HS65 LSS DFPHQNX18;

architecture VHDL FUNCT of HS65 LSS DFPHQONX18 1s
begin
PIQ - Process (CP)

begin
1T rising _edge(CP) Then

end Process;

QN <= to X0l1l(not 1Q) after 1 ns;
end VHDL FUNCT;
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Lecture 5: Timing.

FULL-DELAY MODELS

¢ A more accurate delay model should consider

Input signal slope and output load capacitance:

The full-delay model.

¢ The full-delay models are obtained from
circuit characterization and model fitting.
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CHARACTERIZATION FLOW

Input Stimuli
(Vectors)

Spice
Netlist
Process (corner)
Voltage
Temperature

Library

Characterizer

Liberty file

(Timing & Power)
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CELL-LIBRARY MODEL EXAMPLE

HS65_LS_AND2

Intrinsic delay -
Logical Symbol no output load.
. S Kload multiplier -
- load dependent delay.

(Table assumes input
slew of 0.020 ns)

Propagation Delay at 25C, 1.20V Typ process

Intrinsic Delay (ns) Kload (ns/pf)

X4 X9 X18 X27 X35 X4 X9 X18 X27 X35
AtoZzl 0.0413 1 0.0360 | 0.0338 | 0.0332 | 0.0331 | 2.3369 | 1.1767 | 0.5785 | 0.3870 | 0.2878
AtoZT 0.0454 | 0.0409 | 0.0368 | 0.0364 | 0.0359 | 3.2251 | 1.6479 | 0.8227 | 0.5452 | 0.4093
BtoZl 0.0391 |0.0341 | 0.0317 | 0.0307 | 0.0308 | 2.3337 | 1.1753 | 0.5776 | 0.3858 | 0.2872
BtoZl 0.0441 |0.0392 | 0.0349 | 0.0339 | 0.0335 | 3.2272 | 1.6489 | 0.8234 | 0.5456 | 0.4095

Description
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TwO SORTS OF TIMING ANALYSIS

¢ Static timing analysis (STA).

¢ Simulation-based timing analysis
[Lab exercise 2.3] using SDF information.
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Lecture 5: Timing.
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Lecture 5: Timing.

FINDING THE DELAY OF A CIRCUIT

¢ We want to know the critical path delay between

register boundaries (combinational logic).

clock clock

Y [comb] |7
logic

¢ Two options.
- Simulation (dynamic and iterative).

- Static timing analysis (static and deterministic).
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Lecture 5: Timing.

SIMULATION VS STATIC TIMING ANALYSIS (STA)

2018

SIMULATION

STA

Limited coverage (node wise)

High coverage (node wise)

Very high accuracy

Limited accuracy

Long run-time

Short run-time

Limited capacity

High capacity

Logic functions are evaluated

Logic functions are not evaluated

Test vectors are required

No test preparation
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BASIC STATIC TIMING ANALYSIS

¢ Priority 1 Is to obtain information on ...

- the critical path delay.
- the critical path (which are the gates on this path).

¢ How is the critical path identified? What algorithm can be used?

The following STA netlist example was adopted from
a course from Technion: EE-046880 “CAD of VLSI systems”.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 14(56)



Lecture 5: Timing.

2018

A CIRCUIT FOR RADIX-4 ADDITION
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EXAMPLE OF SIGNAL PROPAGATION

bl —
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TRANSISTOR-LEVEL VIEW OF PROPAGATION
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THE CRITICAL PATH (UNIT DELAYS) 1(10)

The number inside a gate symbol represents the accumulated delay

from primary inputs.
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All gates have a unit delay = 1
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THE CRITICAL PATH (UNIT DELAYS) 2(10)
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THE CRITICAL PATH (UNIT DELAYS) 3(10)
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THE CRITICAL PATH (UNIT DELAYS) 4(10)
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THE CRITICAL PATH (UNIT DELAYS) $5(10)
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Lecture 5: Timing.

THE CRITICAL PATH (UNIT DELAYS) 6(10)

Backtrace to find
the critical path _f)% (@
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THE CRITICAL PATH (UNIT DELAYS) 7(10)
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THE CRITICAL PATH (UNIT DELAYS) 8(10)

4
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THE CRITICAL PATH (UNIT DELAYS) 9(10)
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THE CRITICAL PATH (UNIT DELAYS) 10(10)
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BACK TO BASICS: GATE DELAY

. CL W
¢ Simple delay model: t, = Y ,Where k = T uC
VDD

)@

¢ Empirical models can look like this:
3
tg = Ko+ K Cp+ kG + (kg + Ky C )t

==C, ¢ The constants k- k, can be obtained by
T simulation for the different cells in our library.

¢ Notice: intrinsic delay + input slope dependent
delay + load cap dependent delay.
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Lecture 5: Timing.

GATES DO NOT HAVE UNIT DELAYS!

First-order 130-nm
delay model:

Ko + K Cp + Kot

Cell libraries contain
more complex models:
See ECSM (Effective
Current Source Model)
or CCS (Composite
Current Source).

Per Larsson-Edefors, Chalmers University of Technology
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AN2HS
AN2HSP
AN2HSX4
AN2HSX6
AN2HSXS8

Function: Function = 2 Input AND

Boclean Expression: Z= A®B

Propagation Delay
nanoSeconds, as a function of C (load in pF) and Tr (input transition time in nS)

Best 1.32V - | Worst 1.08V | Nominal 1.2V
Cell Path Event 40C 125C 25C

AN2HS A-7 A7 (fall) 0.045 + 0.106 + 0.067 +
0277*Tr + 0270 Tr + 0273 Tr +

0.995*C 2.065*C 1.360*C

AN2HS A-7 A 7 (rise) 0.038 + 0.091 + 0.056 +
0.111"Tr + 0.146"Tr + 0.125*Tr +

1 412FC 2.490*C 1.649*C

ANZ2HS B-7 B 7 (fall) 0.041 + 0.096 + 0.061 +
0.252*Tr + 0.250"Tr + 0.251"Tr +

0.997*C 2.064*C 1.362*C
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VARIATIONS CALL FOR CORNER-BASED DESIGN

¢ Worst case timing necessary to qualify an implementation.
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Source: Deriving effective corners
for complex correlations,
US patent 8819605, 2013

¢ WC: Slow NMOS + Slow PMOS + High T + Low VDD [Lecture 6].
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 1(9)

The number inside a gate symbol

individual gate delay
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Lecture 5: Timing.

THE CRITICAL PATH (“REALISTIC” CIRCUIT) 2(9)

2018
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 3(9)

43 - :
3
al 4 @
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 4(9)

Add up worst-case delays

6 ’-
05 3 (T} - Ol
S
al 4 4
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) S(9)

6 (B>
05 3 .Y . (e)

3 (B
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Lecture 5: Timing. 2018

THE CRITICAL PATH (“REALISTIC” CIRCUIT) 6(9)

6 (B>
05 3 .Y . (e)

CED 12
3 ~ . (since 7+5 > 3+5)
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 7(9)

6 ’-
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 8(9)

O
4 /4 7
L&D
v 4 23
al 5 @4 A
6 ’-
3
p0<——=(C) 2 (G 6 =
3 &5 U
5 3 A 7 Maximum of 10, 23, 18
4 4 gives the critical path delay
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 9(9)

St
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N
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the critical path
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Lecture 5: Timing.

ONE OR SEVERAL LONG PATHS?

¢ The simple method shown gives ...
- the critical path delay.
- the critical path.

¢ In areal design situation,
Information on only one critical path is not useful.

- Actually, well-designed circuits should have
many “almost” critical paths.

¢ Tofind a list of the N most critical paths
(ordered according to delay) we need to employ
a procedure called path enumeration.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

40(56)



Lecture 5: Timing. 2018

PATH ENUMERATION 1(9)

4
3 , (5 U |
a0>— CA) 16  Find max delay going backwards

19 from the three primary outputs.
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PATH ENUMERATION 2(9)

10 6 a
!
C S O 3 , ap
2 D 7
L <D
7 4 ’
GDE S :
11 /\ 0
6
5

23 3 16

mjo

—_
»

<> T6

Start from source and keep the N longest paths
(= paths with largest max_path_delay). Define:

max_path_delay = delay<sS, vertex> + max_delay<vertex, T>
Example: Find the 4 longest paths!
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PATH ENUMERATION 3(9)

16 CHD
C — CG O 6
3 CE>—5 &
19 16
delay <S, ..., v>  max_delay <v, T> max_path_delay
0 23 23
0 23 23
Ci 0 19 19
al 0 16 16
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PATH ENUMERATION 4(9)

path=<§, ..., v> delay <S, ..., v>  max_delay <v, T> max_path_delay
a0, A 4 19 23

b0, A 4 19 23
cl, E 3 16 19
a0, C 3 16 19
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PATH ENUMERATION S$(9)

path=<§, ..., v> delay <S, ..., v>  max_delay <v, T> max_path_delay
a0, A E 7 16 23

b0, A E / 16 23
cl,E G 8 11 19
a0, C, G 8 11 19
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PATH ENUMERATION 6(9)

<P ; (T

19
e >/ |

mjo

path=<§, ..., v> delay <S, ..., v>  max_delay <v, T> max_path_delay
a0, A E G 12 11 23
b0, A E G 12 11 23
c,E G, 12 7 19
a0, C, G, | 12 7 19
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PATH ENUMERATION 7(9)
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delay <S, ..., v>  max_delay <v, T> max_path_delay
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PATH ENUMERATION 8(9)
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delay <S, ..., v>  max_delay <v, T> max_path_delay
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PATH ENUMERATION 9(9)
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delay <S, ..., v>  max_delay <v, T> max_path_delay
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WEAKNESSES OF TIMING ANALYSIS

¢ Some input changes won’'t make output values change.
- False paths can give rise to too pessimistic delay values.

¢ [f the circuit is not working properly,
the reported paths might be erroneous.

- A circuit must be extensively (functionally) verified
before subjected to timing analysis.

¢ Hard to capture dynamic events.

- For example, crosstalk effects between wires,
In deep submicron process technologies.
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A SIMPLE EXAMPLE OF FALSE PATH

} _ i t
Iy

The bottom path Is false,

since It does not affect the output.
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TIMING ANALYSIS OUTPUT

Pin Type Fanout Load Slew Delay Arrival
(fF)  (ps) (ps) (ps)
ALUOp reg[2]/CP 0 OR
ALUOp_reg[2]/Q FD2QHSP 6 30.8 83 +106 106 F
g1410/Z NR2HSP 33 185.9 859 +300 407 R
gl1409/Z ND2HSP 33 206.2 683 +448 855 F
g1407/Z F ENHSXO05 1 8.2 265 +207 1062 F
U1/0pB[ 0]
FAO/B

g27/CO F_FA1HS 1 10.7 76 +175 1237 F
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TIMING TERMINOLOGY 1(2)

¢ Slack:

g4310/Z ND2AHSX4 1 6.5 33 +24 2272 F
Outs _reg[31]/D FDD2QHSP +0 2272
Outs_reg[31]/CP setup o) +17 2289 R
(clock main_clk) capture 1250 R
Timing slack : -1039ps (TIMING VIOLATION)

¢ When experiencing negative slack, like above,
you need to redesign your RTL or
resynthesize using higher effort.
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TIMING TERMINOLOGY 2(2)

tsetup thold |

-0

D positive 0
—1 edge-trigy F—=

FF D ¥ dam X
7 Q 5 X dat
Lo dld
(I) P,
g

¢ Setup time = the time that D must be stable before the clock edge.
¢ Hold time =the time that D must be stable after the clock edge.
¢ Recovery = the time FF reset must be stable before a clock edge.
¢ Removal = the time FF reset must be stable after a clock edge.
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Lecture 5: Timing.

EXAMPLE OF TIMING CONSTRAINTS
Cell: FD1QHS (130-nm CORE9GPHS 1.2V _databook.pdf)
Conditions: Nominal 1.2V/25C

Constraint: EXpression:

D CP_HOLD (fall) 0.005+0.080*Tr(CP)

D CP_HOLD (rise) 0.005+0.027*Tr(CP)

D CP_SETUP (fall) 0.116-0.092*Tr(CP)+0.136*Tr(D)
D CP_SETUP (rise) 0.089-0.064*Tr(CP)+0.197*Tr(D)
Pulse Width High CP0.040

Pullse Width Low CP 0.140

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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TIMING: CONCLUSION

¢ Timing analysis Is essential to guaranteeing performance.

¢ Two options exist:
- Simulation.
- Static timing analysis.

¢ When applied in a design flow, timing analysis is
closely connected to timing closure.
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