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PRESENT SCENARIO: TIMING VERIFICATION
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synthesis

Custom 
design
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Place 
and 
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Arch. 
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Behavior 
design

Analog / RF design
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DESIGN FLOW

 Conventional design flow for ASICs [from Lecture 1].
1. RTL-specification  Generic gate netlist.
2. Generic gate netlist  Cell library.
3. Cell library  Placement & routing.

 Verification flow.
1. Functional verification of VHDL; testbench + RTL code.
2. Functional verification of netlist that results 

from synthesis of RTL VHDL to cell library.
3. Timing verification of netlist.
4. Place&route and further verification...
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DELAY MODELS FOR EVENT-DRIVEN SIMULATION

 Unit-delay models ...
- make all gates have the same delay; a delay of 1 unit.
- are slower than zero-delay models, 

but faster than full-delay models.
- can uncover logic mismatches between gates and RTL, 

and problems with, for example, reset signals.
 Zero-delay models ...

- yield something similar to cycle-based simulation; 
the difference being that only nodes with events are updated.

 Full-delay models ...
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UNIT DELAY MODEL

entity HS65_LSS_DFPHQNX18 is
port( QN : out STD_LOGIC ; CP : in STD_LOGIC ... );

end HS65_LSS_DFPHQNX18;

architecture VHDL_FUNCT of HS65_LSS_DFPHQNX18 is 
...
begin 
PIQ : Process (CP)

begin
if rising_edge(CP) Then
...

end Process;
QN <= to_X01(not IQ)   after 1 ns;

end VHDL_FUNCT;
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FULL-DELAY MODELS

 A more accurate delay model should consider 
input signal slope and output load capacitance: 
The full-delay model.

 The full-delay models are obtained from 
circuit characterization and model fitting.
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CHARACTERIZATION FLOW
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CELL-LIBRARY MODEL EXAMPLE

Intrinsic delay - 
no output load.
Kload multiplier - 
load dependent delay.

(Table assumes input 
slew of 0.020 ns)
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TWO SORTS OF TIMING ANALYSIS

 Static timing analysis (STA).
 Simulation-based timing analysis

[Lab exercise 2.3] using SDF information.



Lecture 5: Timing. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 11(56)

TIMING INFORMATION ALSO AT LOGIC LEVEL
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FINDING THE DELAY OF A CIRCUIT

 We want to know the critical path delay between 
register boundaries (combinational logic).

 Two options.
- Simulation (dynamic and iterative).
- Static timing analysis (static and deterministic).

Comb
logic

clock clock
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SIMULATION VS STATIC TIMING ANALYSIS (STA)

SIMULATION STA
Limited coverage (node wise) High coverage (node wise)
Very high accuracy Limited accuracy
Long run-time Short run-time
Limited capacity High capacity
Logic functions are evaluated Logic functions are not evaluated
Test vectors are required No test preparation
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BASIC STATIC TIMING ANALYSIS

 Priority 1 is to obtain information on ...
- the critical path delay.
- the critical path (which are the gates on this path).

 How is the critical path identified?  What algorithm can be used?

The following STA netlist example was adopted from 
a course from Technion: EE-046880 “CAD of VLSI systems”.
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A CIRCUIT FOR RADIX-4 ADDITION

b0
a0

b1
a1

ci

co

s0

s1

ci
a1 a0

+ b1 b0
co s1 s0
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EXAMPLE OF SIGNAL PROPAGATION

b1
a1

co
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TRANSISTOR-LEVEL VIEW OF PROPAGATION

b1

a1

co
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THE CRITICAL PATH (UNIT DELAYS) 1(10)

ci

co

s0

s1

0

0
0

0
0

1

1

1

1

The number inside a gate symbol represents the accumulated delay 
from primary inputs.

b0
a0

b1
a1

All gates have a unit delay = 1
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THE CRITICAL PATH (UNIT DELAYS) 2(10)

b0
a0

b1
a1

ci

co

s0

s1

0

0
0

0
0

1

1

21

2
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THE CRITICAL PATH (UNIT DELAYS) 3(10)
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THE CRITICAL PATH (UNIT DELAYS) 4(10)

b0
a0

b1
a1

ci
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s1
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0
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THE CRITICAL PATH (UNIT DELAYS) 5(10)

b0
a0

b1
a1

ci

co

s0

s1

0

0
0

0
0

1

1

21
3

4

2

1

4
5

Maximum of 4, 2, 5 gives 
the critical path delay
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THE CRITICAL PATH (UNIT DELAYS) 6(10)

b0
a0

b1
a1

ci

co

s0

s1

0

0
0

0
0

1

1

21
3

4

2

1

4
5

Backtrace to find 
the critical path
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THE CRITICAL PATH (UNIT DELAYS) 7(10)

b0
a0

b1
a1

ci

co

s0

s1

0

0
0

0
0

1

1

21
3

4

2

1

4
5



Lecture 5: Timing. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 25(56)

THE CRITICAL PATH (UNIT DELAYS) 8(10)
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THE CRITICAL PATH (UNIT DELAYS) 9(10)
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THE CRITICAL PATH (UNIT DELAYS) 10(10)

b0
a0

b1
a1

ci

co

s0

s1

0

0
0

0
0

1

1

21
3

4

2

1

4
5

The blue arrows highlight 
the critical path
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BACK TO BASICS: GATE DELAY

 Simple delay model: , where .td
CL

k VDD
---------------- k W

L----  Cox=

CL

 Empirical models can look like this: 

 The constants k0 - k4 can be obtained by 
simulation for the different cells in our library.

 Notice: intrinsic delay + input slope dependent 
delay + load cap dependent delay.

td k0 k1CL k2CL
3 k3 k4CL+ trf+ + +=
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GATES DO NOT HAVE UNIT DELAYS!

First-order 130-nm 
delay model:
k0 k1CL k2trf+ +

Cell libraries contain 
more complex models: 
See ECSM (Effective 
Current Source Model) 
or CCS (Composite 
Current Source).
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VARIATIONS CALL FOR CORNER-BASED DESIGN

 Worst case timing necessary to qualify an implementation.

 WC: Slow NMOS + Slow PMOS + High T + Low VDD [Lecture 6].

Source: Deriving effective corners 
for complex correlations,  

US patent 8819605,  2013
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 1(9)

b0
a0

b1
a1

ci

co

s0

s1

5

3

34
5

6

6

2

4
7

The number inside a gate symbol 
= 

individual gate delay

An effect of big CL !
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 2(9)

b0
a0

b1
a1

ci

co

s0

s1

5

3

34
5

6

6

2

4
7

A

B

G
C

E

H

F

D
I J
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 3(9)

b1

a1

ci

5
D

B

2

5
2

b0

a0
4

C

A

3

4
3

F

E3
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3

5
H
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I

J

5
6

4

4

7
7

G



Lecture 5: Timing. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 34(56)

THE CRITICAL PATH (“REALISTIC” CIRCUIT) 4(9)
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Add up worst-case delays
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 5(9)
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a1

ci
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 6(9)

b1

a1

ci

5
D

B

2

5
2

b0

a0
4

C

A

3

4
3

F

E3

6

6

3

5
H

6

I

J

5
6

4

4

7
7

2
5

3

4

10

7

G

(since 7+5 > 3+5)
12
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 7(9)

b1
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 8(9)

b1

a1

ci
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Maximum of 10, 23, 18 
gives the critical path delay
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THE CRITICAL PATH (“REALISTIC” CIRCUIT) 9(9)
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The blue arrows highlight 
the critical path
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ONE OR SEVERAL LONG PATHS?
 The simple method shown gives ...

- the critical path delay.
- the critical path.

 In a real design situation, 
information on only one critical path is not useful. 
- Actually, well-designed circuits should have 

many “almost” critical paths.
 To find a list of the N most critical paths 

(ordered according to delay) we need to employ 
a procedure called path enumeration.
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PATH ENUMERATION 1(9)

b1

a1

ci
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3
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4

7
7

G

7

Find max delay going backwards 
from the three primary outputs.
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16

19

0

0

0
16
11

7

19

16

16
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source

a0
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PATH ENUMERATION 2(9)

b1

a1

ci

5
D

B

2

5
2

b0
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3

4
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F

E3

6

6

3

5
H

6

I

J

5
6

4

4

7
7

G

7

Start from source and keep the N longest paths 
(= paths with largest max_path_delay). Define: 

max_path_delay = delay<S, vertex> + max_delay<vertex, T>
Example: Find the 4 longest paths!

11
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0
16
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PATH ENUMERATION 3(9)

b1

a1

ci

5
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path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0 0 23 23
b0 0 23 23
ci 0 19 19
a1 0 16 16

11
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0

0
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11

7
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16

23

23

T

S
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PATH ENUMERATION 4(9)

b1
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ci
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3

5
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4
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G

7

path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0, A 4 19 23
b0, A 4 19 23
ci, E 3 16 19
a0, C 3 16 19

11
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0

0

0
16
11

7
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16

16

23

23

T

S
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PATH ENUMERATION 5(9)

b1
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7
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G

7

path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0, A, E 7 16 23
b0, A, E 7 16 23
ci, E, G 8 11 19
a0, C, G 8 11 19
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0

0
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7
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T

S
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PATH ENUMERATION 6(9)
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path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0, A, E, G 12 11 23
b0, A, E, G 12 11 23
ci, E, G, I 12 7 19
a0, C, G, I 12 7 19
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PATH ENUMERATION 7(9)
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path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0, A, E, G, I 16 7 23
b0, A, E, G, I 16 7 23
ci, E, G, I, J 19 0 19
a0, C, G, I, J 19 0 19
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PATH ENUMERATION 8(9)
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path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0, A, E, G, I, J 23 0 23
b0, A, E, G, I, J 23 0 23
ci, E, G, I, J, T 19 0 19
a0, C, G, I, J, T 19 0 19
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PATH ENUMERATION 9(9)
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path = <S, ..., v> delay <S, ..., v> max_delay <v, T> max_path_delay
a0, A, E, G, I, J, T 23 0 23
b0, A, E, G, I, J, T 23 0 23

ci, E, G, I, J, T 19 0 19
a0, C, G, I, J, T 19 0 19
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WEAKNESSES OF TIMING ANALYSIS

 Some input changes won’t make output values change.
- False paths can give rise to too pessimistic delay values.

 If the circuit is not working properly, 
the reported paths might be erroneous. 
- A circuit must be extensively (functionally) verified 

before subjected to timing analysis.
 Hard to capture dynamic events.

- For example, crosstalk effects between wires,
in deep submicron process technologies.
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A SIMPLE EXAMPLE OF FALSE PATH

t

t

t

The bottom path is false, 
since it does not affect the output.
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TIMING ANALYSIS OUTPUT

Pin               Type      Fanout Load   Slew Delay  Arrival
                                   (fF)   (ps)  (ps)   (ps)
--------------------------------------------------------------
ALUOp_reg[2]/CP                             0             0 R 

ALUOp_reg[2]/Q    FD2QHSP        6  30.8   83  +106     106 F 

g1410/Z           NR2HSP        33 185.9  859  +300     407 R 

g1409/Z           ND2HSP        33 206.2  683  +448     855 F 

g1407/Z           F_ENHSX05      1   8.2  265  +207    1062 F 

U1/OpB[0] 

  FA0/B 

    g27/CO        F_FA1HS        1  10.7   76  +175    1237 F

... 
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TIMING TERMINOLOGY 1(2)
 Slack:
... 
g4310/Z            ND2AHSX4       1  6.5   33   +24    2272 F 
Outs_reg[31]/D     FDD2QHSP                      +0    2272   
Outs_reg[31]/CP    setup                    0   +17    2289 R 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
(clock main_clk)   capture                             1250 R 
--------------------------------------------------------------
Timing slack :   -1039ps (TIMING VIOLATION)

 When experiencing negative slack, like above, 
you need to redesign your RTL or
resynthesize using higher effort.
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TIMING TERMINOLOGY 2(2)

 Setup time = the time that D must be stable before the clock edge.
 Hold time = the time that D must be stable after the clock edge.
 Recovery = the time FF reset must be stable before a clock edge.
 Removal = the time FF reset must be stable after a clock edge.

positive 
edge-trigg 

FF



D

Q

data

tsetup thold

td

D Q


data
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EXAMPLE OF TIMING CONSTRAINTS

Cell: FD1QHS (130-nm CORE9GPHS_1.2V_databook.pdf)
Conditions: Nominal 1.2V/25C
Constraint: Expression:

D_CP_HOLD (fall) 0.005+0.080*Tr(CP)
D_CP_HOLD (rise) 0.005+0.027*Tr(CP)
D_CP_SETUP (fall) 0.116-0.092*Tr(CP)+0.136*Tr(D)
D_CP_SETUP (rise)  0.089-0.064*Tr(CP)+0.197*Tr(D)
Pulse Width High CP0.040
Pulse Width Low CP 0.140
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TIMING: CONCLUSION

 Timing analysis is essential to guaranteeing performance.
 Two options exist:

- Simulation.
- Static timing analysis.

 When applied in a design flow, timing analysis is 
closely connected to timing closure.


