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PRESENT SCENARIO: HARDWARE SYNTHESIS
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SYNTHESIS LEVELS

¢ General design flow.
1. Behavior (C code or HDL) — RTL
2. RTL — Physical implementation

¢ Conventional design flow for ASICs.
1. RTL-specification — Generic gate netlist.
2. Generic gate netlist — Cell library.
3. Cell library — Placement & routing.
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¢ Logic synthesis.

ToPICS OF TODAY

- Logic minimization.
- Technology mapping.

¢ High-level synthesis (HLS).
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Logic synthesis
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LOGIC SYNTHESIS
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TwO STEPS INSIDE LOGIC SYNTHESIS

¢ Logic minimization starts with RTL descriptions,
from which sets of Boolean expressions are extracted.

Two-level, multi-level and sequential minimization.
Manual methods: Karnaugh maps and Quine-McCluskey tables.
Automated methods: ESPRESSO (the first EDA tool for 2-level min.)

¢ Technology mapping takes a minimized logic expression and
maps this to the logic gates of a standard cell library.

The product of logic synthesis Is a standard-cell netlist (ASIC) or
reconfiguration data for FPGAs etc.
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Logic minimization
[some figures courtesy of Zhoul]
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BASIC DEFINITIONS
¢ B={0, 1}, Y ={0, 1, D}, where D Is don’t care.

¢ A Boolean function f: B™ — Y".

¢ mis input count (literals, I.e. variable and inverse variable),
n Is output count.

¢ Input variables: x1, x2, ...

¢ The value of the output divides B™ into three sets:
the ON-set, the OFF-set and the DC-set (= don'’t care).

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 10(62)



Lecture 4. Synthesis. 2018

MINTERMS AND CUBES

¢ A minterm is a product of all input variables or their negations.
A minterm corresponds to a single point in B" (one truth table row).

¢ A cube Is a product of the input variables or their negations.
The fewer the number of variables in the product,
the bigger the space covered by the cube.

X1‘X2'X3 X‘|.X3
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IMPLICANTS AND PRIMES

¢ Animplicant is a cube whose points are either in the
ON-set or the DC-set.

¢ A prime implicant is an implicant
that is not included in any other implicant.

¢ A set of prime implicants that together cover all points in the ON-set
(and some or all points of the DC-set) Is called a prime cover.

¢ An prime cover Is irredundant
when none of its prime implicants can be removed from the cover.

¢ An irredundant prime cover is minimal
when the cover has the minimal number of prime implicants.
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EXAMPLES OF COVERS

All prime implicants £

The on-set

Two irredundant covers

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 13(62)



Lecture 4. Synthesis. 2018

Two-LEVEL LOGIC MINIMIZATION

¢ Popular cost function:
the number of literals In ~
the sum of products expression (“a b + ¢ d”).

¢ The goalis to find a minimal irredundant prime cover.
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GLOBAL OR LocAL OPTIMUM?

Tl
2

X2 + X1 X3 + x1 x2 + x1 x3
X2 + X1 X3 + x2 X3

Il
X| X
R
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LET US CHECK THE OUTPUT RESULT, F1 AND F2

fl = x1I X2 + x1 x3 + x1 x2 + x1 x3
2 = x1 x2 + x1 X3 + x2 X3

X1 X2 X3 1 2

O 0O 11 1 1
O 0 1 1 1 1
O 10 1 1 1
O1 1

1 0O

1 0 1 1 1 1
1 1 O 1 1 1
1 1 1 11 1 1
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MINIMIZATION ...

¢ Outo

Fl = x1 x2 + X1 X3 + x1 x2 + x1 x3
2 = x1 x2 + x1 X3 + x2 X3

we choose 2 since it has fewer literals.
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CANONICAL FORM

¢ For the truth table (TT) used, we can create

the sum of minterms (a sum-of-products expression):

X1 X2 X3 + X1 X2 x3 + x1 x2 x3 +

X1 X2 X3 + X1 X2 X3 + x1 x2 x3

¢ This expression (and the TT) is on canonical form,
since it represents the logic function in a unigue way.

¢ Complex expressions = bad for implementation!

¢ Uniqueness = useful in e.g. formal verification,
since It becomes easy to compare expressions.

Per Larsson-Edefors, Chalmers University of Technology
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KARNAUGH MAPS

¢ Function f(x1, x2, x3, x4) =~Xm(4, 5, 6, 8, 9, 10, 13) + Xd(0, 7, 15)
represented in a Karnaugh map (1953):
x1

<

00 01 11 10
0 |D|1({0]1

01
- x4
0
1
X2

0
11
X3 0
0
Veitch maps (1952); these did not use Gray coding.

111
D|D
10 110

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 19(62)



Lecture 4. Synthesis. 2018

REPRESENTATION

>m(4,5,6,8,9, 10, 13) +2d(0, 7, 15) means

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
O 1010

\

P OO~NOUDNWNEREO
PFRPRRUORRPRPRPFRPOOOOU
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MANUAL OPTIMIZATION USING A KARNAUGH MAP

¢ Embed all variables 1 or D with as large rings as possible.
The larger aring, the fewer the literals in a cube.

00 01 11 10

00
01
11
10

¢ The minimal expression Is
f = x1 X2 x4 + x1 x3 x4 + x1 Xx2.
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THE QUINE-MCCLUSKEY ALGORITHM

¢ Generation of all prime implicants, followed by
extraction of a minimum prime cover.

1. Inphase 1, we select ON-set and DC-set minterm indices,
and we group by number of logical ones.

2. In phase 2, compare the minterms of neighbor groups:
A 1-bit difference implies adjacency.
Eliminate the variable representing difference
(mark it with e.g. *-’) and place in next column.

3. Returnto phase 2, and treat the eliminated variables (-’) as variables.

¢ [Edward McCluskey, "Minimization of Boolean functions,"
Bell Syst. Tech. J., April 1956]. Based on work by Quine (1952-1955).
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Q-M EXAMPLE - PRIME IMPLICANTS 1(3)
¢ We have f(x1, x2, x3, x4)=~m(4, 5, 6, 8, 9, 10, 13) + Xd(0, 7, 15).

0000 (0 - adon't care value)
0100 (4 - a logical one)
1000 (8 - a logical one)
0101 (5 - alogical one)
0110 (6 - a logical one)
1001 (9 - a logical one)
1010 (10 - a logical one)
0111 (7 - adon't care value)
1101 (13 - a logical one)
1111 (15 - a don't care value)
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Per

Q-M EXAMPLE - PRIME IMPLICANTS 2(3)

0000

0100
1000

0101
0110
1001
1010

0111
1101

1111

Larsson-Edefors, Chalmers University of Technology

0-00 anc

010- anc
100- ano

01-1 and
011-
1-01

(has already been combined with 1000)

-111
11-1

(has already been combined with 0111 and 1101)

-000

01-0
10-0

-101
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PHOONSSO AN -

=
o
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Q-M EXAMPLE - PRIME IMPLICANTS 3(3)

0-00
-000
010-
01-0
100-
10-0
01-1
-101
011-
1-01
-111
11-1

01--
01--

O1--/-1-1

-1-1

-1-1

no further combinations are possible
no further combinations are possible
combined with row 9

combined with row 7

no further combinations are possible
no further combinations are possible
combined with row 4 / 12

combined with row 11

combined with row 3

no further combinations are possible
combined with row 8

combined with row 7

DAT110 Methods for Electronic System Design and Verification
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Q-M EXAMPLE - MINIMUM COVER 1(5)

¢ After all prime implicants have been identified,
0-00, -000, 100-,10-0,1-01,01--,-1-1
which Is the minimal cover? (Columns are ON-set rows.)

4 5 6 8 9 10 13
0-00 X
-000 X
100- X X
10-0 X X
1-01 X X
01- | X X X
-1-1 X X

er Larsson-Edefors, Chalmers University of Technology
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Q-M EXAMPLE - MINIMUM COVER

¢ 10-0and 01-- are special;
these essential prime implicants are unique for a column

and must appear in the minimum cover.
4 5 0 8 10 13
0-00 | X
-000 X
100- X
100 <
1-01 X
01- X X H
-1-1 X X

Per Larsson-Edefors, Chalmers University of Technology
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Q-M EXAMPLE - MINIMUM COVER 2(5)

¢ We will now take away the essential prime implicants ...

4 5 6 8 9 10 13
0-00 X
-000 X

100- X X
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Q-M EXAMPLE - MINIMUM COVER 3(5)

¢ ... and the columns that are covered by
these essential prime implicants.
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Q-M EXAMPLE - MINIMUM COVER 4(5)

¢ There isn’t all that much left to optimize.

9

13

0-00

-000

100- | X

1-01 | X

-1-1

¢ Here we choose 1-01.
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Q-M EXAMPLE - MINIMUM COVER $(5)

¢ We have now chosen the following prime implicants:
10-0and 01--and 1-01.

¢ This corresponds to
f = x1 X2 x4 + X1 x2 + x1 x3 x4,
which can be compared to the result of the Karnaugh map
f = x1 X2 x4 + x1 x3 x4 + x1 x2.
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EXACT SOLUTIONS ARE HARD TO COMPUTE

2018

¢ In Quine-McCluskey, the number of prime implicants grows rapidly
with the number of inputs: G =py +py + ... + P,
where o, = 3" /n 3 and n is the number of inputs:
1. Generate cover of all primes.

2. Make G irredundant (in optimum way). Q-M gives an exact minimum.

¢ ESPRESSO attempts an approximative solution - a heuristic:
1. Don't generate all prime implicants (as in Q-M phase 1).

2. Select a subset of primes that still covers the ON-set
(similar to Karnaugh maps).

5 [Hong et al., “MINI: A heuristic approach for logic minimization,” IBM J. Res. Dev., 1974]
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ESPRESSO CORE 1(2)

Procedure ESPRESSO (F, D, R) /*F - ON set, D - don't care, R - OFF*/
R = COMPLEMENT(F+D);  /* Com

F = EXPAND(F, R) ; J*
F = IRREDUNDANT(ED);  /*
F = ESSENTIAL(F,D) f¥

F=F-E; &

nitia
nitia

oute complement */
expansion */

Irredundant cover */

Detecting essential primes */

Remove essential primes from F */

D=D+E; [* Add essential primes to D */
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ESPRESSO CORE 2(2)
WHILE Cost(F) keeps decreasing DO

F = REDUCE(F,D); [* Perform reduction */
F = EXPAND(FR); [* Perform expansion */
F = IRREDUNDANT(F,D); /* Perform irredundant cover */

ENDWHILE;

F=F+E;

RETURN F;
END Procedure;
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ESPRESSO PHASES 1(3)

IRREDUNDANT 4®

Local minimum
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ESPRESSO PHASES 2(3)

00 01 11 10 00 01 11 10
ooff 1] L]0]0 ooff 1100
01':ri111:< 01~i111:<
111010111 111010111

~\
10 10
(:1 1[1]1] (:1 1D1 1]
Initial set “Reduce” implicants
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00
01
11

ESPRESSO PHASES 3(3)

00 01 11 10

(1

1 ][0

0

1

10(1

—

0

1)1
0] 1
11

1
1
1

\
=N
—
>

“Expand” implicants
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EARLY EDA ToOLS
¢ MINI from IBM 1974.

¢ ESPRESSO-| 1981.

Robert Brayton et al., "A comparison of logic minimization
strategies using ESPRESSQO", ISCAS'82.

¢ ESPRESSO-II developed in 1982 was the first widespread
two-level logic minimization EDA tool.

¢ Read more in Brayton et al.
[Logic Minimization Algorithms for VLSI Synthesis]
from Kluwer 1984. (Available from CHANS / SpringerLink.)
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LoGIC MINIMIZATION: CONCLUSION

¢ All considerations so far are for two-level minimization.

¢ But multi-level logic minimization Is required for efficient solutions.

abeg + abfg + a_bgg + ac_eﬁ + acfg + aceg + deg + dfg + deg =
(a(b + c) + d)(eg + g(f + €)) [see example In coming slides...].

Read more [Sec. 6.3.3 of Ch6 _LogicSynthesis.pdf]

¢ Since ESPRESSO was introduced,
other, more efficient techniques have been developed:
Binary Decision Diagram (BDD) representations.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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Technology mapping
[inset courtesy of Robert Brayton, Berkeley]
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Technology Mapping A
A

Example:
t;=a+bc;
t,=d+e
t3=ab + d; it + fg —
T, = 11, + fg; T

T5 - T4h + T2T3;
F =t a+bc d+e

This shows an unoptimized set of logic equations
consisting of 16 literals

Slides by Robert Brayton




Optimized Equations

Using technology independent optimization, these
equations are optimized using only 14 literals:
t,=d+e
t,=b+h;
T3=at,+cC
ty=titge fghy o F
F =1, ty
’_f
s tah+ Tyt

fit,+ fg
12*_|9 - .

slide g+b ¢ |Br d+e ab+d




Optimized Equations

Implement this network using a set of gates
which form a /ibrary. Each gate has a cost (i.e.
its area, delay, etc.)

Slides by Robert Brayton




d+e

Slides by Robert Brayton

Subject graph
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Algorithmic Approach

A coveris a collection of pattern graphs such that

1. every node of the subject graph is contained in one (or more)
pattern graphs

2. each input required by a pattern graph is actually an output
of some other graph (i.e. the inputs of one gate must exists
as outputs of other gates.)

For minimum area, the cost of the cover is the sum of
the areas of the gates in the cover.

Technology mapping problem: Find a
of the subject graph by choosing from the
collection of pattern graphs for all the gates in the
Stigbe/oyragpeyBrayton




Subject Graph
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Pattern Graphs for the
IWLS Library
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Subject graph covering

f
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d

Total cost =
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Better Covering

Total area =
Slides by Robert Brayton




Alternate Covering

Total area =
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TECHNOLOGY MAPPING

¢ Graph covering (algorithmic) approaches.
nspired by code generation in compilers (K. Keutzer, DAGON,1987).

Dynamic programming provides optimization with linear complexity,
nowever, partitioning into forest of trees makes optimization local.

Choice of base functions in subject graph is critical.
¢ Rule-based approaches iteratively perform local transformations.
Can merge technology-independent and -dependent phases.

¢ Technology mapping for remapping one design to
a different process technology: design migration.

¢ Read more [Sec. 6.3.4 of Ch6_LogicSynthesis.pdf].
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LOGIC SYNTHESIS: CONCLUSION

¢ Multi-level logic minimization

. RTL
followed by technology mapping are » . .
. ‘ v Logic synthesis
used In present-day systems. | !
. . Gates | -
¢ Technology scaling = wires % Foorplanning
become more important for each l / Place-and-route
tech generation: Gate-based Layout | °

synthesis is not sufficient.

¢ Physically knowledgeble synthesis is needed to avoid problems with
timing closure; this would entail either better models of
physical hardware earlier or use of rapid prototyping
(quick and dirty “optimization” that resembles true optimization).

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 52(62)



Lecture 4. Synthesis. 2018

High-level synthesis
[some text courtesy of Gerez]
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HIGH-LEVEL SYNTHESIS

Design for test

2018
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HIGH-LEVEL SYNTHESIS (HLS)

¢ Logic synthesis ...

starts from a register-transfer level (RTL) description;
where circuit behavior in each clock cycle is established.

uses logic minimization/tech mapping techniques
to optimize the design.

generates a standard-cell netlist.

¢ High-level (architectural/behavioral) synthesis on the other hand ...
starts from an abstract behavioral description (for example C code).
generates an RTL description.
HLS is still far less widespread than logic synthesis.
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STRICT MAPPING TARGETS

¢ Efficient design exploration would require flexible hardware targets,
to enable optimal implementations. This is a challenge!

¢ The mapping of behavioral code to RTL is done,
assuming a certain number of RTL building blocks
(the architectural template), for example:

- functional units.

- registers.

- multiplexers.

- buses.

- tri-state bus drivers.
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DESIGN PARAMETERS FOR HARDWARE MODEL

¢ Clocking strategy: single or multiple phase clocks.
¢ Interconnect: allowing or disallowing buses.

¢ Clocking of functional units: allowing or disallowing ...
- multicycle operations.
- chaining.
- pipelined units.
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CONTROL AND DATAPATH SYNTHESIS

¢ Hardware is normally partitioned ...

datapath (arithmetic):
a network of functional units, registers, multiplexers and buses.
The actual “computation” takes place in the datapath.

control (FSM and memory):

ensures data are present at the right place at

a specific time (memory handling),

presents the right instructions to a programmable unit, etc.

¢ Traditionally high-level synthesis has concentrated
on datapath synthesis.
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HLS TooLs

¢ Mentor/Siemens:
Catapult C represents general-purpose HLS.

¢ Cadence:

Stratus includes Forte Cynthesizer data-centric HLS
and C-to-Silicon Compiler general-purpose HLS.

¢ Synopsys:

Synphony C Compiler (previously PICO from Synfora)
represents general-purpose HLS.

SPW represents data-centric HLS.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification
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HLS FLOW

¢ Input: Either a conventional programming language,
such as C, or an HDL (better at expressing HW parallelism).

¢ The description has to be parsed and
transformed Into an internal representation;
here conventional compiler techniques can be used.

¢ As internal representation, a data-flow graph (DFG)
may be suitable (hence no explicit information on control flow).
In a DFG there are ...

- vertices (nodes) that represent computations/operations.
- edges that represent precedence relations.
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CoMPUTATION, DFG AND RTL

F = E*(A+B): _ ~ Only datapath here,
G = (A+B)*(C+D); @ 2 muxes need control
= = | signals of course.
Limited A C
resources !—ﬁ
— Mux ‘Mux
scheduling, -
allocation, ® P
binding. =

¢ Read more [Ch5 ESL and HLS.pdf].
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SYNTHESIS: CONCLUSION

¢ High-level synthesis:
Behavior (C code or HDL) — RTL blocks visible.

¢ Logic synthesis:
RTL code of blocks — Physical implementation.

- Logic minimization.
- Technology mapping.
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