2018

DAT110
METHODS FOR ELECTRONIC SYSTEM
DESIGN AND VERIFICATION

Per Larsson-Edefors
VLSI Research Group

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 1(46)

2018

LECTURE 2:
FUNCTIONAL VERIFICATION.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 2(46)

Lecture 2: Functional Verification.

CONVENTIONAL VERIFICATION

Design for test

> Chip teSt

! ! Chip
HW/SW « function timing — T
partitioning Design verification
P ———— i
Behavior| |Behavior
SPEC- == Arch, design [[synthesis| | Logic Place — !
analysis i synthesis and Parasitic . Layout
1 » RTL [extraction| verification
{23l Custom >

#

|

Floorplanning

A

Per Larsson-Edefors, Chalmers University of Technology

\i

Analog / RF design

7

DAT110 Methods for Electronic System Design and Verification

2018

3(46)

Lecture 2: Functional Verification.

SOME TYPES OF VERIFICATION

¢ Prototyping: PCB-based test (bread-boarding).

¢ Equivalence checking:
check consistency specification — implementation.

¢ Correctness-by-construction:
prove refinement preserves behavior.

¢ Simulation at different levels.
¢ Timing analysis (static) for delay verification.
¢ Layout verification (DRC, ERC, Extraction, LVS ...).

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

4(46)

Lecture 2: Functional Verification. 2018

VERIFICATION OPTIONS FOR HDL CODE 1(2)

¢ Logic (digital) simulation.
Slow (but not compared to circuit simulation).
Not exhaustive (depends on test vector set).
¢ Acceleration using special purpose hardware.

¢ Emulation; implementing advanced system (e.g. ASIC)
on a simpler platform (e.g. FPGA).

High NRE-cost (no reuse possible).
Slower than the final hardware, but faster than simulation.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 5(46)

Lecture 2: Functional Verification.

VERIFICATION OPTIONS FOR HDL CODE 2(2)

¢ Formal verification.
- Large state space - practical only for some problems.
- Non-intuitive - demands expert user.
¢ ‘Linters’ (from lint).
- A heuristic static parsing strategy for inspection of code.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

6(46)

Lecture 2: Functional Verification.

CONTEXT OF FUNCTIONAL VERIFICATION

1. Determine intent - specification.

2. Determine actual function - implementation.

3. Compare intended function and actual function.
4. Consider the confidence of comparison results.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

7(46)

Lecture 2: Functional Verification.

LOGIC SIMULATION

1. Given a piece of HDL code and a digital stimuli,
the test vectors, ...

2. evaluate the HDL code using a testbench ...

3. by, for each stimulus, checking the HDL code output result
against “golden” reference.

¢ Purpose:

- Find design implementation errors early, before circuit design.

- Verify that Implementation matches specification.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

8(46)

Lecture 2: Functional Verification. 2018

CHALLENGES WITH SPECIFICATION DEFINITION

¢ Even for derivative designs, application use-cases are often used to
determine the intended function - the specification.

- With system complexity and radically new consumer patterns,
calling for immature applications, how to establish use-cases?

¢ Specifications are often first expressed in natural languages.

- A natural language specification is ambiguous,
has gaps and may be full of mistakes/misunderstandings.

- Specifications in an executable form offer both
a conciseness and allow for
deliberations on HW/SW partitionings [Lecture 1].

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 9(46)

Lecture 2: Functional Verification. 2018

EXECUTABLE MODELS

¢ Clearly it is possible that mistakes are made
not only during implementation,
but also during the definition of a specification.

¢ Striving to express specifications and implementations
as some kind of (executable) models helps to eliminate
mistakes and ambiguities.

This Is Important as an implementation often
acts as specification for a lower design level.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 10(46)

Lecture 2: Functional Verification. 2018

CHALLENGES WITH IMPLEMENTATION PROCESS

¢ How do we implement the design specification correctly?

- This Is the obvious challenge that we
focus on in traditional engineering.

¢ Just as important though, and a bit forgotten is:

How do we implement the specification into a
verification reference correctly?

- For new designs: How do we create the golden reference?

- Since the verification reference implementation itself is not
targeting a product, it may become a “second-class citizen”.
Use separate design and verification teams!

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 11(46)

Lecture 2: Functional Verification. 2018

CORRECT FUNCTIONAL VERIFICATION

1. Determine intent - specification.
2a.Determine actual function - design implementation.

2b.Determine function in a different manner -
verification implementation.

3. Compare design implementation and verification implementation.
4. Consider the confidence of comparison results.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 12(46)

Lecture 2: Functional Verification. 2018

SOME CATEGORIES OF SIMULATION

¢ Logic simulation (RTL and gate level) Digital
¢ Switch-level simulation (bidirectional data flow) Digital
¢ Circuit-level simulation (SPICE, Spectre) Analog

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 13(46)

Lecture 2: Functional Verification.

LOGIC SIMULATION CONTEXT

A, B, Op
Test vector

mmmm=ms JeSthench ==m==as

reference o

(golden ref)

Comparison

" DUT

* | (RTL code)

E Outs
1! (simulated)
~ :

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

14(46)

Lecture 2: Functional Verification. 2018

LOGIC SIMULATION STRATEGIES 1(3)

¢ Consider the use of assertions inside the testbench.

ALU opcode should not be outside the valid range.
A half adder should never deliver Sum =1 and Carry = 1.
Assertions become an ‘executable databook’ for blocks.

¢ Stimulate HDL code using test vectors for directed tests.

Instruction Set Simulator (ISS) simulation using benchmarks.
Test vectors that target blocks that are known to be prone to errors.

¢ Stimulate HDL code using random test vectors.

Pseudo-randomization can uncover errors in unexpected places.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 15(46)

Lecture 2: Functional Verification. 2018

LOGIC SIMULATION STRATEGIES 2(3)

¢ Evaluate the simulation output either by ...

- waveform eyeballing (use only for debugging !).

- comparison against a “golden” reference file:
An expected results file.

- comparison against a “golden” reference design:
A behavioral model that we know is correct or
a previous design with the same functionality and cycle behavior.

- checking the output log of assertions.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 16(46)

Lecture 2: Functional Verification. 2018

LOGIC SIMULATION STRATEGIES 3(3)

¢ Since we can never exhaustively simulate real systems,
we need to decide on an acceptable confidence level.

¢ The metric of coverage - percentage of items verified
out of all possible items:

- code coverage (syntax): % of RTL code lines simulated
(use metric sensibly... 100% code coverage on flawed design?)

- functional coverage (semantics):% of functional features simulated.

- parameter coverage (semantics): % of operational ranges simulated,
for example, is the range of depth of a FIFO fully simulated?

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 17(46)

Lecture 2: Functional Verification. 2018

LOGIC SIMULATION FLOW

¢ Apply random test vectors.

¢ Check code coverage [Sec. 9.3 of Ch9 FunctionalVerification].

Incisive averages block, expression and toggle coverage
[pp. 409- in iImc15.20 userguide.pdf].

Block coverage: Proportion of blocks (collection of lines
after control statements) visited.

Expression coverage: Proportion of minterms [Lecture 4] visited.
Toggle coverage: Proportion of toggling signals in instance/module.

¢ Add directed test vectors for corner cases that
happened not to be covered.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 18(46)

Lecture 2: Functional Verification. 2018

BUGS!

¢ Handle bugs!

¢ The life of a bug ...

- opened:
when detected (by design or verification eng), the bug Is logged.

- verified:
when the designer confirms it is indeed a bug.

- fixed:
when the designer has removed the bug.

- Closed:
when the surrounding code works fine.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 19(46)

Lecture 2: Functional Verification. 2018

LOGIC SIMULATORS

Code generation:
Frontend:
parser, ¢ Interpreted code.

elaborator ¢ High-level code (C etc.).

Backend: ¢ Native code (common).

analysis & | |
optimization, ¢ Emulation / acceleration.

code generation

Y

Simulation engine ——{ Simulation control

source: Lam

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 20(46)

Lecture 2: Functional Verification. 2018

ACCELERATION AND EMULATION

¢ Indus of NVIDIA: emulation based on Palladium from Cadence.

= -
— ———— . e r——— —
it il y

source: NVIDIA

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 21(46)

Lecture 2: Functional Verification. 2018

EMULATION

¢ An emulator represents an
exact replica of actual hardware.

- Fast!

- Limited observability.

¢ Once RTL has been developed,
use emulation to develop software
on top of emulator.

¢ Example to the right: Protium
(1-8X Virtex UltraScale XU440).

source: Cadence

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 22(46)

Lecture 2: Functional Verification. 2018

ACCELERATION

¢ Simulation acceleration.
- Slower than emulation.
- Faster than simulation on desktop.
- High, user-defined observability.

¢ Example to the right: Palladium.

source: Cadence

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 23(46)

Lecture 2: Functional Verification. 2018

MIXING ACCELERATION AND EMULATION

Palladium QTDB
Design Libraries

Compile
Compile & PNR

Full Vision!!

source: Microsemi

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 24(46)

Lecture 2: Functional Verification.

LOGIC SIMULATION ENGINES

¢ Cycle-based (time-driven) approaches.
- Evaluate logic states on all nodes between registers

- Pursue the steady-state (per cycle) values.
- New data evaluation every clock cycle.

¢ Event-driven approaches.
- Evaluate only those nodes that change state.

- Can find timing information, if delay models are accurate.

¢ Cycle-based approaches are faster for
signal switching activities above 1%.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification

2018

25(46)

Lecture 2: Functional Verification. 2018

LOGIC EVALUATION AND REPRESENTATION

¢ Unidirectional signal flow. (In contrast to lower-level simulators.)
¢ When the basic element is a gate, we call it gate-level simulation.

¢ Two-state representation: 0 and 1.

¢ Four-state representation: 0, 1, X and Z.

- Xrepresents either an uninitialized state or
that several drivers enforce conflicting values onto the node.

- Zrepresents a high-impedance (floating) node.

¢ Four-state representation Is used during circuit power-up; then the
simulator switches to two states to increase simulation speed.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 26(46)

Lecture 2: Functional Verification. 2018

Cycle-based logic simulation

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 27(46)

Lecture 2: Functional Verification. 2018

CYCLE-BASED SIMULATION

—————————————————————————————————

1. A=1AND1=1
2. B=ANOR1=1NOR1=0
3. C=AXORB=1XOR0=1
4, D=BXOR0O=0XOR0=0 e

Evaluate all logic
between register
boundaries

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 28(46)

Lecture 2: Functional Verification. 2018

PRIMARY INPUTS AND OUTPUTS

——

Generally the main inputs and outputs,
those on the boundary of a block,
are called primary inputs and outputs

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 29(46)

Lecture 2: Functional Verification. 2018

ORDER OF EVALUATION MATTERS

SR
. 3
o Inl J
—___/

in2 ADO

FF outputs are the first event in an event-driven approach =
gates with inputs from FFs would evaluate first =
an outdated value of B would define D

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 30(46)

Lecture 2: Functional Verification. 2018

LEVELIZATION OF GATES

L inl_D R ;)DT
In2 ADO °

2

In cycle-based simulation approaches, the criterion of levelization
ensures that a gate evaluates its output
only after its inputs have been updated.

This Is important since each gate only is evaluated once!

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 31(46)

Lecture 2: Functional Verification. 2018

ALGORITHM FOR LEVELIZATION 1(S5)

To establish in which order to evaluate the gates,
we have to use a systematic approach - an algorithm:

Graph theory - a branch of discrete mathematics [see later lecture].

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 32(46)

Lecture 2: Functional Verification. 2018

ALGORITHM FOR LEVELIZATION 2(5)

Use so-called depth-first search, starting at any primary input:

“Trace through graph until no more outgoing edge exists
or until the next vertex has already been visited,
backtrack and insert the visited vertex in an ordered evaluation list.”

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 33(46)

Lecture 2: Functional Verification. 2018

ALGORITHM FOR LEVELIZATION 3(5)

1. Start for example at In2 and
follow the edge to B.

2. Continue to C or D;
@ here we (arbitrarily) choose D.

3. No edge: return and save D.
4. Goto C.

5. No edge: return and save C.
6

I

QD
@

@

. Return and save B.

. Back at in2, we are done.
Thus, save In2.

Evaluation list so far: in2, B, C, D

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 34(46)

Lecture 2: Functional Verification. 2018

ALGORITHM FOR LEVELIZATION 4(S5)

1. Now start with in1 and
follow the edge to A.

,@ 2. In trying to continue to B or C,
we discover these vertices

have already been visited:
Thus, save A.

Q 3. Return and save inl.
Evaluation list so far:
Inl, A, in2,B,C,D

@
@
@

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 35(46)

Lecture 2: Functional Verification. 2018

ALGORITHM FOR LEVELIZATION 5(S5)
1. Now start with Q1.

2. In trying to continue to A,
we discover this vertex has

@ been visited: Thus, save Q1.

3. After trying Q2, we end up
saving Q2.

Final evaluation list:
Q Q2,01,in1,A 1n2,B,C,D

Q@
@
@

An evaluation that follows the list
guarantees that gate inputs always are
evaluated before the gate’s output is evaluated.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 36(46)

Lecture 2: Functional Verification. 2018

THE LANGUAGE OF ALGORITHMS

“Trace through graph until no more outgoing edge exists
or until the next vertex has already been visited,
backtrack and insert the visited vertex in an ordered evaluation list.”

Input: G(V,E), Output: List of ordered nodes

TopologicalSort (G)
{while (node v In V 1s not marked visited) VISIT(v)}

VISIT(V) {

mark v visited;

for each (u taken from the fanout of v)
IT (u 1s not marked visited) VISIT(u);

insert u in front of List; }

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 37(46)

Lecture 2: Functional Verification. 2018

Event-driven logic simulation

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 38(46)

Lecture 2: Functional Verification. 2018

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 1(5)

el _L_ﬁ N
1 —

Event queue T T 1

source: Lam

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 39(46)

Lecture 2: Functional Verification.

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 2(5)

el 1 —
1 —

— €2 |

_/

A

Event queue

Per Larsson-Edefors, Chalmers University of Technology

e2

DAT110 Methods for Electronic System Design and Verification

Lecture 2: Functional Verification. 2018

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 3(5)

e4 (B was 0)

el_l__ﬁ ez_l— ~N

; B

0 We implicitly assume NOR and XOR
have Identical delays - a unit delay

Event queue o T 1
el e2 e3

ed

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 41(46)

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 4(5)
el —— €2 < ed, e5
S D
A /) C u
m
0
0 Pt
Event queue o T
el e2 e3 €9
ed
Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 42(46)

Lecture 2: Functional Verification. 2018

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 5(5)

A

: P!
0 DO[Tl

el 'Lilﬂ e2 L < ed, e5
! __/ /% _I_l_
B

OW0>=

lu 2u 3u 4u

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 43(46)

Lecture 2: Functional Verification. 2018

FUNCTIONAL VS RTL SIGNOFF

¢ Functional signoff is not hardware centric (VHDL code in lab 1).

¢ RTL signoff is hardware centric (synthesized netlist in lab 2)
and allows verification of

- power up.
- shut down.

- configuration modes.
- reset.

- low power.

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 44(46)

Lecture 2: Functional Verification. 2018

FUNCTIONAL VERIFICATION: CONCLUSION

¢ Electronic systems grow more complex =
we have to take functional verification very seriously,
to the point where designated verification engineers are appointed.

¢ Problem of university education:
Limited complexity of engineering challenges =
verification Is relatively easy.

¢ Knowledge of simulation principles helps
handle the inevitable EDA tools.

¢ Make use of testbenches ...
a topic of the next lecture; see next slide!

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 45(46)

Lecture 2: Functional Verification. 2018

VERIFICATION TASK BREAKDOWN

Average Time Spent on Verification Tasks

2013 independent
survey, IC Manage

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 46(46)

