
 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 1(46)

DAT110 
METHODS FOR ELECTRONIC SYSTEM 

DESIGN AND VERIFICATION

Per Larsson-Edefors
VLSI Research Group



 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 2(46)

LECTURE 2:
FUNCTIONAL VERIFICATION.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 3(46)

CONVENTIONAL VERIFICATION

Design verification
 function timing 

Behavior 
synthesis

Module 
re-use

RTL 
design

Design for test

Logic 
synthesis

Custom 
design

Floorplanning

Place 
and 

route
Parasitic 
extraction

Layout 
verification

Fab

Customer

Chip test
Chip

Arch. 
analysis

Spec.

HW/SW 
partitioning

Behavior 
design

Analog / RF design



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 4(46)

SOME TYPES OF VERIFICATION

 Prototyping: PCB-based test (bread-boarding).
 Equivalence checking: 

check consistency specification  implementation.
 Correctness-by-construction: 

prove refinement preserves behavior.
 Simulation at different levels.
 Timing analysis (static) for delay verification.
 Layout verification (DRC, ERC, Extraction, LVS ...).



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 5(46)

VERIFICATION OPTIONS FOR HDL CODE 1(2)
 Logic (digital) simulation.

- Slow (but not compared to circuit simulation).
- Not exhaustive (depends on test vector set).

 Acceleration using special purpose hardware.
 Emulation; implementing advanced system (e.g. ASIC) 

on a simpler platform (e.g. FPGA).
- High NRE-cost (no reuse possible).
- Slower than the final hardware, but faster than simulation.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 6(46)

VERIFICATION OPTIONS FOR HDL CODE 2(2)
 Formal verification.

- Large state space - practical only for some problems.
- Non-intuitive - demands expert user.

 ‘Linters’ (from lint).
- A heuristic static parsing strategy for inspection of code.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 7(46)

CONTEXT OF FUNCTIONAL VERIFICATION

1. Determine intent - specification.
2. Determine actual function - implementation.
3. Compare intended function and actual function.
4. Consider the confidence of comparison results.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 8(46)

LOGIC SIMULATION

1. Given a piece of HDL code and a digital stimuli, 
the test vectors, ...

2. evaluate the HDL code using a testbench ...
3. by, for each stimulus, checking the HDL code output result 

against “golden” reference. 
 Purpose:

- Find design implementation errors early, before circuit design.
- Verify that implementation matches specification.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 9(46)

CHALLENGES WITH SPECIFICATION DEFINITION

 Even for derivative designs, application use-cases are often used to 
determine the intended function - the specification.
- With system complexity and radically new consumer patterns, 

calling for immature applications, how to establish use-cases?
 Specifications are often first expressed in natural languages. 

- A natural language specification is ambiguous, 
has gaps and may be full of mistakes/misunderstandings.

- Specifications in an executable form offer both 
a conciseness and allow for 
deliberations on HW/SW partitionings [Lecture 1].



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 10(46)

EXECUTABLE MODELS

 Clearly it is possible that mistakes are made 
not only during implementation, 
but also during the definition of a specification.

 Striving to express specifications and implementations 
as some kind of (executable) models helps to eliminate 
mistakes and ambiguities. 

This is important as an implementation often 
acts as specification for a lower design level.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 11(46)

CHALLENGES WITH IMPLEMENTATION PROCESS

 How do we implement the design specification correctly?
- This is the obvious challenge that we 

focus on in traditional engineering.
 Just as important though, and a bit forgotten is:

How do we implement the specification into a 
verification reference correctly?
- For new designs: How do we create the golden reference?
- Since the verification reference implementation itself is not 

targeting a product, it may become a “second-class citizen”. 
Use separate design and verification teams!



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 12(46)

CORRECT FUNCTIONAL VERIFICATION

1. Determine intent - specification.
2a.Determine actual function - design implementation.
2b.Determine function in a different manner - 

verification implementation.
3. Compare design implementation and verification implementation.
4. Consider the confidence of comparison results.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 13(46)

SOME CATEGORIES OF SIMULATION

 Logic simulation (RTL and gate level) Digital
 Switch-level simulation (bidirectional data flow) Digital
 Circuit-level simulation (SPICE, Spectre) Analog



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 14(46)

LOGIC SIMULATION CONTEXT

Test vector
reference

DUT 
(RTL code)

Comparison

A, B, Op

Outs
(golden ref)

Outs
(simulated)

Testbench



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 15(46)

LOGIC SIMULATION STRATEGIES 1(3)
 Consider the use of assertions inside the testbench.

- ALU opcode should not be outside the valid range.
- A half adder should never deliver Sum = 1 and Carry = 1.
- Assertions become an ‘executable databook’ for blocks.

 Stimulate HDL code using test vectors for directed tests.
- Instruction Set Simulator (ISS) simulation using benchmarks.
- Test vectors that target blocks that are known to be prone to errors.

 Stimulate HDL code using random test vectors.
- Pseudo-randomization can uncover errors in unexpected places.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 16(46)

LOGIC SIMULATION STRATEGIES 2(3)
 Evaluate the simulation output either by ...

- waveform eyeballing (use only for debugging !).
- comparison against a “golden” reference file: 

An expected results file.
- comparison against a “golden” reference design: 

A behavioral model that we know is correct or 
a previous design with the same functionality and cycle behavior.

- checking the output log of assertions.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 17(46)

LOGIC SIMULATION STRATEGIES 3(3)
 Since we can never exhaustively simulate real systems, 

we need to decide on an acceptable confidence level.
 The metric of coverage - percentage of items verified 

out of all possible items:
- code coverage (syntax): % of RTL code lines simulated

(use metric sensibly... 100% code coverage on flawed design?)
- functional coverage (semantics):% of functional features simulated.
- parameter coverage (semantics): % of operational ranges simulated, 

for example, is the range of depth of a FIFO fully simulated?



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 18(46)

LOGIC SIMULATION FLOW

 Apply random test vectors.
 Check code coverage [Sec. 9.3 of Ch9_FunctionalVerification].

- Incisive averages block, expression and toggle coverage 
[pp. 409- in imc15.20_userguide.pdf].

- Block coverage: Proportion of blocks (collection of lines 
after control statements) visited.

- Expression coverage: Proportion of minterms [Lecture 4] visited.
- Toggle coverage: Proportion of toggling signals in instance/module.

 Add directed test vectors for corner cases that 
happened not to be covered.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 19(46)

BUGS!
 Handle bugs!
 The life of a bug ...

- opened:
when detected (by design or verification eng), the bug is logged.

- verified:
when the designer confirms it is indeed a bug.

- fixed:
when the designer has removed the bug.

- closed:
when the surrounding code works fine.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 20(46)

LOGIC SIMULATORS

Frontend:
parser, 

elaborator
Backend:
analysis &

optimization,
code generation

Simulation controlSimulation engine
source: Lam

Code generation:
 Interpreted code.
 High-level code (C etc.).
 Native code (common).
 Emulation / acceleration.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 21(46)

ACCELERATION AND EMULATION

 Indus of NVIDIA; emulation based on Palladium from Cadence.

source: NVIDIA



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 22(46)

EMULATION

 An emulator represents an 
exact replica of actual hardware.
- Fast!
- Limited observability.

 Once RTL has been developed, 
use emulation to develop software 
on top of emulator.

 Example to the right: Protium 
(1-8X Virtex UltraScale XU440).

source: Cadence



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 23(46)

ACCELERATION

 Simulation acceleration. 
- Slower than emulation.
- Faster than simulation on desktop.
- High, user-defined observability.

 Example to the right: Palladium. 

source: Cadence



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 24(46)

MIXING ACCELERATION AND EMULATION

source: Microsemi



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 25(46)

LOGIC SIMULATION ENGINES

 Cycle-based (time-driven) approaches.
- Evaluate logic states on all nodes between registers 
- Pursue the steady-state (per cycle) values.
- New data evaluation every clock cycle.

 Event-driven approaches.
- Evaluate only those nodes that change state.
- Can find timing information, if delay models are accurate.

 Cycle-based approaches are faster for 
signal switching activities above 1%.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 26(46)

LOGIC EVALUATION AND REPRESENTATION

 Unidirectional signal flow. (In contrast to lower-level simulators.)
 When the basic element is a gate, we call it gate-level simulation.
 Two-state representation: 0 and 1.
 Four-state representation: 0, 1, X and Z.

- X represents either an uninitialized state or 
that several drivers enforce conflicting values onto the node.

- Z represents a high-impedance (floating) node.
 Four-state representation is used during circuit power-up; then the 

simulator switches to two states to increase simulation speed.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 27(46)

Cycle-based logic simulation



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 28(46)

CYCLE-BASED SIMULATION

D

C1

1

0

B
A

1

1. A = 1 AND 1 = 1
2. B = A NOR 1 = 1 NOR 1 = 0
3. C = A XOR B = 1 XOR 0 = 1
4. D = B XOR 0 = 0 XOR 0 = 0

Evaluate all logic 
between register

boundaries
source: Lam



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 29(46)

PRIMARY INPUTS AND OUTPUTS

Generally the main inputs and outputs, 
those on the boundary of a block, 

are called primary inputs and outputs



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 30(46)

ORDER OF EVALUATION MATTERS

D

C

in2
B

A

FF outputs are the first event in an event-driven approach  
gates with inputs from FFs would evaluate first  

an outdated value of B would define D

in1



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 31(46)

LEVELIZATION OF GATES

D

C

in2
B

A

In cycle-based simulation approaches, the criterion of levelization 
ensures that a gate evaluates its output
only after its inputs have been updated. 

This is important since each gate only is evaluated once!

in1



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 32(46)

ALGORITHM FOR LEVELIZATION 1(5)

To establish in which order to evaluate the gates, 
we have to use a systematic approach - an algorithm:

Graph theory - a branch of discrete mathematics [see later lecture].

in1

Q1
A C

B

D

in2

Q2



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 33(46)

ALGORITHM FOR LEVELIZATION 2(5)

Use so-called depth-first search, starting at any primary input: 

“Trace through graph until no more outgoing edge exists 
or until the next vertex has already been visited, 

backtrack and insert the visited vertex in an ordered evaluation list.”

in1

Q1
A C

B

D

in2

Q2

vertex

edge



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 34(46)

ALGORITHM FOR LEVELIZATION 3(5)
1. Start for example at in2 and 

follow the edge to B. 
2. Continue to C or D; 

here we (arbitrarily) choose D.
3. No edge: return and save D.
4. Go to C.
5. No edge: return and save C.
6. Return and save B.
7. Back at in2, we are done.

Thus, save in2.
Evaluation list so far: in2, B, C, D

in1

Q1
A C

B

D

in2

Q2



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 35(46)

ALGORITHM FOR LEVELIZATION 4(5)

1. Now start with in1 and 
follow the edge to A. 

2. In trying to continue to B or C,
we discover these vertices 
have already been visited: 
Thus, save A.

3. Return and save in1.
Evaluation list so far:
in1, A, in2, B, C, D

in1

Q1
A C

B

D

in2

Q2



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 36(46)

ALGORITHM FOR LEVELIZATION 5(5)
1. Now start with Q1. 
2. In trying to continue to A,

we discover this vertex has 
been visited: Thus, save Q1.

3. After trying Q2, we end up 
saving Q2.

Final evaluation list:
Q2, Q1, in1, A, in2, B, C, D

in1

Q1
A C

B

D

in2

Q2

An evaluation that follows the list 
guarantees that gate inputs always are 

evaluated before the gate’s output is evaluated.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 37(46)

THE LANGUAGE OF ALGORITHMS

“Trace through graph until no more outgoing edge exists 
or until the next vertex has already been visited, 

backtrack and insert the visited vertex in an ordered evaluation list.”

Input: G(V,E), Output: List of ordered nodes

TopologicalSort (G) 
{while (node v in V is not marked visited) VISIT(v)}

VISIT(v) {
mark v visited;
for each (u taken from the fanout of v)

if (u is not marked visited) VISIT(u);
insert u in front of List; }



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 38(46)

Event-driven logic simulation



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 39(46)

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 1(5)

e1

D

e1
Event queue

C1

0

0

B
A

source: Lam



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 40(46)

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 2(5)

e1

D

e1 e2
Event queue

C1

0

0

B
A

e2

1



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 41(46)

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 3(5)

e1

e1 e2 e3
Event queue

C1

0

0

B
A

e2

e3

e4 (B was 0)

e4

We implicitly assume NOR and XOR 
have identical delays - a unit delay



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 42(46)

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 4(5)

e1

D

e1 e2 e3
Event queue

C1

0

0

B
A

e2

e3

1

e4, e5

e4
e5



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 43(46)

EVENT-DRIVEN (GATE-LEVEL) SIMULATION 5(5)

e1

D

Time

C1

0

0

B
A

e2

e3

1

e4, e5

A

in

in

B
C

1u 2u 3u 4u



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 44(46)

FUNCTIONAL VS RTL SIGNOFF

 Functional signoff is not hardware centric (VHDL code in lab 1).
 RTL signoff is hardware centric (synthesized netlist in lab 2) 

and allows verification of 
- power up.
- shut down.
- configuration modes.
- reset.
- low power.



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 45(46)

FUNCTIONAL VERIFICATION: CONCLUSION

 Electronic systems grow more complex  
we have to take functional verification very seriously, 
to the point where designated verification engineers are appointed.

 Problem of university education: 
Limited complexity of engineering challenges  
verification is relatively easy.

 Knowledge of simulation principles helps 
handle the inevitable EDA tools.

 Make use of testbenches ... 
a topic of the next lecture; see next slide!



Lecture 2: Functional Verification. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 46(46)

VERIFICATION TASK BREAKDOWN


