CHALMERS

Department of Computer Science and Engineering
2018-08-20

DAT093
Introduction to Electronic System
Design

Introduction to Xilinx Vivado
Introduction

Vivado is an integrated GUI based tool from the FPGA vendor Xilinx for the development of
hardware applications that can be downloaded into a Xilinx FPGA. The tool can be used all
the way from creating source files to downloading the bitstream to the FPGA.

The source files can be written in a number of formats and languages as

e VHDL
e Verilog
e System C

We will only use VHDL.
There are basically three steps in the development process

e Synthesizing the design. The source code is converted to basic design blocks, but the de-
sign is so far not target at any specific FPGA device

e Implementing the design. The synthesized design is converted to the building blocks that
are available in the target FPGA device

e Place and route. The building blocks are placed within the FPGA. The port connections of
the design are connected to pins on the device

Throughout the process the design can be simulated with different objectives.

e Behavioral simulation. Simulation of the source code without any concern for the target
device. This is more or less the same thing that we have been doing in QuestaSim but
since the tool is different there might me slight differences

e Simulation of the design after synthesizing. We are simulating the primitive building blocks

e Simulation after implementation and place and route. We are simulating the actual con-
text of the FPGA

The simulation after synthesizing and after implementation can be done in two different ways

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1
Division of Computer Engineering

e Functional simulation. We are only simulating the functionality of the design and are not
looking at any timing issues
e Timing simulation. We are also looking at the timing of the design

Including timing will make the simulation run slower.

When it comes to tools, the simulation can be done using Vivados own simulator or using a
third part plugin, this includes QuestaSim. We will use QuestaSim since we have been using
that before and it’s more or less a standard tool in the industry.

When the design is finished the resulting bitstream can be downloaded to the FPGA on an
evaluation board from within Vivado using an USB connection.

Our description will assume that you are running Vivado on a Windows PC. It can also be run
under Linux, but you will have to figure out any differences.

There is a free version of the tool called Vivado Webpack that has some limitations but is
gualified enough for our designs. The webpack only supports a limited number of FPGA de-
vices and one of these is the Artix-7 XC7A100T that is being used on the evaluation board
that we are using in this course. The board comes in two versions called Nexys4 or
Nexys4DDR and they come from the vendor Digilent.

Goggle for “vivado webpack” and you will find the Xilinx webpage where the tool can be
downloaded. You will have to register with Xilinx to be allowed to do the download.

Document structure

This document will not be a full description of the Vivado tool, but it will hopefully include
the information that you will need in this course and some more. The description is based on
version 18.2.1 of Vivado although version 18.1 is installed in the labs. The differences be-
tween the versions are very small, so you might not notice any difference at all.

We do the presentation by going through the steps to implement and download one of the
designs from the first lab assignment, a 4-bit ripple carry adder. There will be some detours
from this that are not needed for this design, but they will make the description somewhat
more complete, these things might be useful in other designs later on.

The design process
Starting a Vivado design

You start the Vivado tool by clicking on the Vivado icon E on the Desktop or by open-
ing it from the Start Menu, Figure 1.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 2

Vivado 201221 — [m] x

File Flow Tools Window Help Q- Quick Access

VIVADO' & XILINX

HLx Editions

ALL PROGRAMMABLE .

Recent Projects

Quick Start project.1
Z:ftempivivado_test/project_1

Create Project » Vivado_test

_ Z/EDADATO93/1718/labs/lab_1/Vivado_test
Open Project >
. o lab2

CpEn Bk FEE Z/EDA/DATO36/1718/ILA |ab/dar06-ila-labs/dat096-ila-labs/lab2

lak1

Z/EDA/DATO26/1718/ILA _|ab/dat096-ila-labs/dat086-ila-labs/labi

baseline
Ta S kS ZJ/EDA/DATOS6/1718/ILA_lab/dat096-ila-labs/dat096-ila-labs/baseline
debug_ila
HEDA/DATO96/1718/ILA_|ab/dat096-ila-labs/dat06-ila-labs
Manage IP > Z/EDA/DATOSE, ILA_|zb/dat0%6-ila-labs/dat096-ila-labs/extra

lab_4 project

(G e (g o Z/EDA/DATO93/1718/labs/lab_4/solutionsVivado

Xilinx Tcl Store > lab2
Z/EDA/DATO96/ILA/dat096-ila-labs/lab2

Learning Center

Documentation and Tutorials >
Quick Take videos »

Release Notes Guide >

Tcl Console

Figure 1 The Vivado GUI at start

You can see a menu at the top with some options but to get started we only need the links
in the green Quick Start field. Here we can

e Create a new project
e Open an already created project
e Open an example project included in the Vivado distribution

If you have been running Vivado before you will have a list of your recently opened pro-
jects in the white Recent Projects field to the right. In Figure 1 there are eight recent
projects.

From the Tasks field, you can create and open IP blocks. You can also open the hardware
manager and directly go to downloading a finished design to a FPGA. In the Tcl Store you
can download third party scripts that might support your design flow.

From the Learning center field, we can get documentation and tutorials.

DATO093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 3

Opening a Vivado project

If you already have created a Vivado project, you can open it from the File/Open pro-
ject... menu or from the Open Project link in the Quick Start field. In both cases a file
browser will open, and you can navigate to the project, Figure 2.

’

Look in: ripple_carry_adder_no_generic_project v tHoadE, mXC RS
ripple_carry_adder_no_generic_project.cache Recent Directories
ripple_carry_adder_no_generic_projectiw ZJ/EDADAT093/1819/docs ivadoVHDL v
ripple_carry_adder_no_generic_projectip_user_files
ripple_carry_adder_no_generic_projectruns File Preview
ripple_carry_adder_no_generic_project.sim Select afile to preview.

¢ ripple_carry_adder_no_generic_projectxpr

File name: ZIEDADATO93M819/docsVivadoNHDLUripple_carry_adder_no_generic_project

Files oftype: | Vivado, PlanAhead, and ISE Project Files (xpr, ppr, xise) hd

Figure 2 Open project window

In the project folder, you should look for the project file and this is called <project
name>. Xxpr.

If it’s a recent project, you can also start it from the list in the white field to the right in
the opening screen and in that case, you will directly start the project without having to
navigate to any project file.

Creating a Vivado project

To create a new Vivado project you start the same way as when you open a project, but
you select File/Create Project... or use the Quick Start link Create Project instead. In
this case, there is of course no recent project.

When you click to start a new project, you will first get an information window, Figure 3.

Create a New Vivado Project

VIVADO'

Hix Editions This wizard will guide you through the creation of a new project.

To create a Vivado project you will need to provide a name and a location for your project files. MNext, you
will specify the type of flow you'll be working with. Finally, you will specify your project sources and
choose a default part.

& AILINX

Cancel

()
z
=
W

Figure 3 Create project information window

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 4

Click on and you get Figure 4.

Project Name

Enter a name for your project and specify a directory where the project data files will be stored. '

Projectname: | ripple_carry_adder_project
Project location: | Z/EDADAT093/1819/docsNVivado/VHDL E

+| Create project subdirectory

Figure 4 Create project naming window

In this window, you give a name to the project. By default, the project is called pro-
ject_1 but here | have changed that to the more informative name rip-
ple_carry_adder_project.

You should define where the project should be placed within your file structure. This is

easiest done by clicking on the browser tool [-] and then navigate to where you want to
place the project. Make sure that Create project subdirectory is checked. By doing this
a new sub directory will be created where you decided to place the project and the project
directories and files will be placed in this directory. When the project is created, there will
be a complex structure of folders under the project folder and the structure expands as
you go on with the project.

Click on again and you get to Figure 5 where you can specify the type of project.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 5

Project Type
Specify the type of project to create. '

s RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time

Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation.

110 Planning Project
Do not specify design sources. You will be able to view partipackage resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

Figure 5 Create project setting project type

You have five project creation options to choose from

e RTL project (Register Transistor Logic). This is the basic project type. If Do not specify
sources at this time is checked, we will skip that phase and create a project without
source files. If it isn’t checked then we will move on to specify source files

e Post-synthesis project. You will create a project for an already synthesized design and
use the netlists created by Vivado or some other tool as the starting point

¢ 1/O Planning project. You start by creating a project where you only specify the ports
of the design by importing a definition or by creating the ports

e Import project. You import a design project from another tool. It could be a Synopsis
Synplify project or a Xilinx XST or ISE project

e Example project. You create a project from a predefined template

We will be creating RTL projects so check that option and leave Do not specify sources
at this time unchecked.

Click on .
Setting up a Vivado project

In the next window, Figure 6, you can add and create source files.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 6

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new source '
file on disk and add it to your project. You can also add and create sources later.

+.
Use Add Files, Add Directories or Create File buttons below
Add Files | | Add Directories | | Create File
Targetlanguage: VHDL ~ Simulator language: | Mixed “

©

Figure 6 Create project add source files

We will in most cases have started our design in QuestaSim so there will be VHDL files
from there to add to the Vivado project. Click on Add Files and navigate to the files and
select the ones that you want to include in the project. You can select more than one file
at the same time.

Make sure that Simulator Language is set to Mixed since some of the files that are cre-
ated when simulating an implemented design are generated in Verilog.

If you check Copy Sources into project, then the original source files will be kept intact
while you are using copies of the files in the project. If you use the original files they don’t
have to be placed in the project folder but will be referenced from where they are placed.
You decide if you use copies or not. | often find it better not to use copies since if | do there
will be two versions of the file and it can be confusing what file you are using at any one
time. If you want to use copies, then copy the source files to new files with new names
instead to lower the confusion.

Since we will use the ripple carry adder as an example in this introduction we will add the
files we used for that design in the earlier lab assignment in QuestaSim. In my case the
design of the ripple carry adder with saturation consisted of three files, the 1-bit full adder,
a ripple carry adder with overflow using the full adder as a component and finally a ripple
carry adder with saturation using the ripple carry adder with overflow as a component, so
| add these three files, Figure 7. There is also a testbench for the ripple adder, but this is
just for simulation and not for synthesis, so we leave it out for now. We will use it later on
when we simulate the synthesized design.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 7

Add Sources

Specify HOL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new source '
file on disk and add it to your project. You can also add and create sources later.

+.
Index MName Library HDL Source For Location
® 1 full_addervhdl wil_defaultlib Synthesis & Simulation = Z/EDADATC
L] 2 ripple_adder_subtracter_overflow vhdl wil_defaultlib Synthesis & Simulation = Z/EDADATC
L] 3 ripple_adder_subtracter_saturate_v2vhdl xil_defaultlip Synthesis & Simulation ~ ZJ/EDADATC
< 3
Add Files | | Add Directories | | Create File

Scan and add RTL include files into project

Copy sources into project

Target language: VHDL w Simulator language: | Mixed v

Figure 7 Create project add source files with added files

You can also create files here by clicking

.) ’
on Create File and then use the dia-
Iogue in Figure 8. Create a new source file and add it to your
By selecting File type, you make sure project
that the file gets a correct structure. You
can create files of the types R ® VHDL o
. File name: demo.vhdl
e Verilog
e Verilog header Filg location: ZJEDADATO93M1819doc.. v

e SystemVerilog .
®
e Memory file

Figure 8 Create file dialogue

We will use VHDL files.

If you don’t select a File location, then the file will be placed in the project folder.

If you set the VHDL file name without an ending a VHDL file will get the ending .vhd. |
prefer the ending .vhdl so | have added that to the file name.

A file with the basic VHDL structure will be created. At a later stage, you will be able to
define ports for the design in the file.

Now we have all the files for our design but let’s create a new file anyway as an illustration.
Since it’s not needed we will eventually remove the file from the project. Let’s call the file
demo.vhdl. | have placed the file in a separate folder since it is just for demonstration

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 8

purposes and will be removed from the project. The file will be added to the list in the
Add Sources window, Figure 9.

Add Sources

Specify HOL, netlist, Block Design, and IF files, or directories containing those files, to add to your project. Create a new source '
file on disk and add it to your project. You can also add and create sources later.

+,
Index MName Library HOL Source For Location
[] 1 full_addervhdl ¥il_defaultlib Synthesis & Simulation ~ ZJ/EDADAT(
® 2 ripple_adder_subtracter_overflow.vhdl ¥il_defaullic ~ Synthesis & Simulation ¥ ZJEDADATI
@ 3 ripple_adder_subtracter_saturate_v2vhdl xil_defaulllip ~ Synthesis & Simulation ~ ZJ/EDA/DATI(
[) 4 dema.vhdl ¥il_defaultlib Synthesis & Simulation ~ ZJ/EDADATC(
< >
Add Files | | Add Directories | | Create File

Scan and add RTL include files into project

Copy sources into project

Target language: YHDOL ~ Simulator language: | Mixed ~

If;\l

Figure 9 Create project add source files with added and created files

Click on
10.

. We will get a new window where we can add a constraints file, Figure

Add Constraints (optional)

Specify or create constraint files for physical and timing constraints. '
+,
Use Add Files or Create File buttons below
Add Files | | Create File

oy

Figure 10 Create project add constraints file

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 9

In the constraints file (XDC file) we define conditions for our design. This can for example
be requirements on the timing of the design. There is one type of constraint that we must
include and that is the definition of to what pins of the FPGA the in- and output ports of
our design should be connected. We will be using a user-board called Nexys4 or
Nexys4DDR, there are two versions of the board, that besides the FPGA contains a num-
ber of peripherals like switches, push buttons and LEDs and the objective is to use these
peripherals to give the input values to our adder and indicate the resulting outputs.
There are two predefined XDC files for the Nexus4 boards. There are two files since as we
mentioned there are two versions of the board, one with DDR memory and the other one
without that. We have a mix of both types of boards, so you must make sure to select the
appropriate XDC file. Both files are uploaded to the PingPong homepage. We will get back
to how to use the constraints files.

| have the Nexys4 board with the DDR memory for this demo, so | will add that XDC file. |
am not adding the template file but a copy of it so the template doesn’t get corrupted
when the XDC file for the project is edited, Figure 11. As you can see | have renamed the
copy to reduce confusion.

/’

Add Constraints (optional)

Specify or create constraint files for physical and timing constraints. '
+,
Constraint File Location

ripple_carry_adder_XDC_DDRxdc ~ Z\EDA\DAT093\1819\docsWivadoWHDLripple_adder_files

Add Files | | Create File

Copy constraints files into project

Fiqure 11 Create project with added constraints file

. Mext =
Click on .

We get a window where we can select the FPGA that is used. By using the filters, we can
limit the number of possible choices. The Nexys4 board has a Artix-7 FPGA onboard so we
select that as Family. The FPGA is placed in a csg324 package, so we select that as Pack-
age. Finally, we set the Speed grade to -1. Figure 12.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 10

Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '

Parts | Boards

Reset All Filters

Category: | All ~ | Package: csg324 w | Temperature: All Remaining

Family: Artix-7 ~ Speed: -1 ~

Search: hd

Part WO PinC... Availablel.. LUTElem... FlipFlo.. BlockR.. UllraR.. DS.. GbTranscei.. (
¥c7a15tcsg324-1 324 210 10400 20800 25 0 45] §
¥C7a3stcsg324-1 324 210 20800 41600 50 0 90 0 r
¥C7as0tcsg324-1 324 210 32600 65200 75 0 120 0 r
¥CTarstcsg324-1 324 210 47200 94400 105 0 180 0 r
¥c7a100tcsg324-1 324 210 63400 126800 135 0 240 0 C
4 >

()
(?) = Back Mext = Cancel

Figure 12 Create project default part

We get a list of devices that fit our description. Our actual device is the xc7a100tsg324-
1 so we select that one. We can change device later one in the project if we like but then
we will need a new XDC file that is adopted for that device.

click INEEE

We get a summary of our configuration, Figure 13.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 11

¢ Mew Project

VIVADO’

HLx Editions

New Project Summary

© Anew RTL project named ripple_carry_adder_project will be created.

© 4 source files will be added.

@ 1 constraints file will be added.

€ The default part and product family for the new project:
Default Part: xc7a100tcsg324-1

Product: Artix-7
Family: Artix-7

Package: csg324
Speed Grade: -1

& XILINX

' _\I

[s
,

Figure 13 Project summary

The project will now be initial-
ized. Next a window opens
where we can continue setting
up the VHDL file demo.vhdl
that we just created, Figure 14.
Let’s say that our VHDL design in
that file has one 1-bit input
called enable, an 8-bit input
called a and a 1-bit output called
Y, Figure 15.

For each in- and output port we
give a Port Name. We set a Di-
rection that can be

e In
e QOut
e |nOut

To create the project, click Finish

Define a module and specify /0 Ports to add to your source file.

For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked
Ports with blank names will not be written.

Module Definition
Entity name: demo

Architecture name: Behavioral

/0 Port Definitions

PortName Direction Bus MSB LSB

n hd

where InOut should only be used if it’s absolutely necessary.

DAT093

Introduction to Electronic System Design
Introduction to Xilinx Vivado

page 12

Cancel

e

Figure 14 Module definition

That’s all for the 1-bit ports.

We use the sign to add a
line for a new port and by select-

ing a port and clicking we
can remove a port.

To create the 8-bit port we must
check Bus and then we select
the ports bit range. By setting
MSB higher than LSB we will
get a vector with the indexes de-
fined by DOWNTO. If we input
them the other way around, we
get indexes defined by TO.

Set the name of the entity to the
same name as the file name, ex-

Define a module and specify /0 Ports to add to your source file.

For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked '
Ports with blank names will not be written.

Module Definition
Entity name: demo

Architecture name: | arch_demo

IO Port Definitions

+

PortMame Direction Bus MSB LSB
enable in

a in 7 0

< ¢ %
<

¥ out
® o |

Figure 15 Port definitions for demo.vhd|

cluding the .vhdl ending. The architecture will by default be called Behavioral, but
we set the architecture name to arch_demo which is my preferred way of naming archi-
tectures with the same name as the entity headed by arch_.

The created file will look like Table 1. Here the file is slightly edited to fit to the page.

-— Company:
-- Engineer:

-- Create Date:
-- Design Name:

08/16/2018 11:28:40 AM

-— Module Name: demo - arch_demo

-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:

-- Dependencies:

—-- Revision:

——- Revision 0.01 - File Created

-- Additional

library IEEE;

Comments:

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values
-- use IEEE._NUMERIC_STD.ALL;

DAT093

Introduction to Electronic System Design
Introduction to Xilinx Vivado

page 13

-- Uncomment the following library declaration if instan-
-- tiating any Xilinx leaf cells in this code.

—-—library UNISIM;

--use UNISIM.VComponents.all;

entity demo is
Port (enable : 1n STD_LOGIC;
a - In STD_LOGIC_VECTOR (7 downto 0);
y - out STD _LOGIC);
end demo;

architecture arch_demo of demo is
begin
end arch_demo;

Table 1 demo.vhd

The file contains a template for a commented documentation part, the IEEE library we
always need, a commented library that might be needed, the entity with our given name
and specified ports and an architecture with the specified name. What’s missing is of
course the actual functionality, the context of the architecture.

In most cases | don’t find this way of creating the file structure that practical. It’s often
easier to open up an old VHDL file, delete all but the basic structure and then edit the file
directly to fill it with the wanted design. Don’t forget to save the file under a new name so
the old file is kept unchanged.

Most of the configuration is now done and the GUIs main window will open, Figure 16.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 14

’

Eile Edit Flow Tools Reports Window Layout View Help Quick Access Ready
=, « >, LI - TN Default Layout -
Flow Navigator S PROJECT MANAGER - ripple_carry_adder_project ? X
~ PROJECT MANAGER A
Sources ?_00 X Project Summary x demo.vhdl X 00
£} Settings =
Qa2 +
Add Sources Settings Edit

v Design Sources (2
Language Templates

> @ ripple_adder_subtracter_saturate_v2(zrch_ripple Project name: ripple_carry_adder_project
1} IP Catalog @ demo(arch Project location: Z:/EDADAT093/1819/docs/Vivado/VHDUripple_carry_ac
v Constraints (1) Product family: Artix-7
v |PINTEGRATOR ~ [constrs_1(1 Project part ¥c7a100tcs g324-1
Create Block Design 1" ripple_carry_adder_XDC_DDR.xdc Top module name: ripple_adder_subtracter_saturate_v2
b Simulation Sources (2 e
Open Block Design Target language: WVHDL
. _ A S Simulator language Mixed
Generate Block Design Hierarchy | Libraries Compile Order
~ SIMULATION Source File Properties ? 00X Synthesis Implementation
Run Simulation ® ripple_adder_subtracter_saturate_v2vhdl - o Status: Not started Status
~ Messages: Mo errors or wamings Messages:
v RTLANALYSIS | Enabled Part XC7a100tcs0324-1 Part
> Open Elaborated Design Location Z/EDAIDAT093/1819/docs NivadoHDLiripple_ Strategy. Vivade Synthesis Defaults Strategy:
Sy
Type VHDL E Report Strategy: Vivado Synthesis Default Reports Report Strategy.
v SYNTHESIS Ny Incremental compile
P Run Synthesis < L
General ~ Properties
> Open Synthesized Design 5 < L
TclConsole | Messages | Log | Reports | Design Runs X ?_00
~ IMPLEMENTATION
= = 9
P RunImplementation Q = 2 + %
> OpenImplemented Design MName Constraints Status WNS TNS WHS THS TPWS Total Power FailedRoutes LUT FF BRAMs URAM Df
B v synth_1 constrs_1 Mot started
impl_1 constrs_1 Mot started
~ PROGRAM AND DEBUG
i Generate Bitstream o LS 2

Copy the current selection on the clippoard

Figure 16 Main window

We can see a number of frames. So far, the only frame that is populated is the Sources
frame. Let’s look a little closer at that frame and at the same time open the file structures
within the frame, Figure 17.

Here we have turned the window into a floating window by clicking at “ in the top right

. . . . |
corner of the window. We can put it back into the GUI by clicking at “ .
We have now removed the demo . vhdl file since it was just for demonstration purposes
and should not be part of the project from now on.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 15

Sources ?2 -0aXx
a x & + o
~ [Design Sources (1)
v @ ripple_adder_subtracter_saturate_v2{arch_ripple_adder_subtracter_saturate_v2) (ripple_adder_subiracter_saturate_v2 vhdl) (1)
~ @ ripple_adder_subtracter_overflow_comp ripple_adder_subtracter_overflow(arch_ripple_adder_subtracter_overflow) (ripple_adder_subtracter_overflow vhdl) (4

@ full_adder_comp_0: full_adder(arch_full_adder) (full_add

@ full_adder_comp_N_1 : full_adder(arch_full_
@ G[1full_adder_comp_i : full_adder(arch_full_adder)
@ GI21full_adder_comp_i : full_adder(arch_full_adder) (full_addervhdl
v Constraints (1)
~ constrs_1 (1)
I ripple_carry_adder_XDC_DDR.xdc
b Simulation Sources (1

~ sim_1(1

~ @2 ripple_adder_subtracter_saturate_v2(arch_ripple_adder_subtracter_saturate v2) (ripple_adder_subtracter_saturate_v2.vhdl) (1)

~ @ ripple_adder_subtracter_overflow_comp : ripple_adder_subtracter_overflow(arch_ripple

dder_subtracter_overflow) (ripple_adder_subtracter_overflow.vhdl) (4}

@ full_adder_comp_0 : full_adder(arch_full_adder) (full_addervhdl)

@ full_adder_comp_N_1: full_adder(arch_full_add
® G[11full_adder_comp_j: full_adder(arch_full_adder) (full_
@ G[21full_adder_comp_i : full_adder(arch_full_adder) (full_

er) (full_adder.vhdl)

vhdl)

Hierarchy Libraries Compile Order

Figure 17 Sources frame

Under Design Sources we can see all the VHDL files in the project and the tool has ana-
lyzed the files, so it can display the hierarchical structure between the files. If the structure
isn’t there, then there is something wrong with the binding between the higher-level
sources and their components. In most cases the reason is that the entity of one of the
components doesn’t match the component declaration and/or instantiation at the higher
level.

Under Constraints we see our constraints file (XDC).

There is also a Simulation Sources group that contains the same thing as the Sources
group. In this group, we see what will be simulated if we run a simulation.

We can add a testbench to this group by right clicking on the Simulation Sources heading
and select Add Sources.... We get Figure 18. We can do the same from the Project Man-
ager to the left in the GUI by selecting Settings/Add Sources.

We could have added the testbench at the same time as we added the source files but
then Vivado can’t separate the source files from the testbench and we need to edit the
structure.

Add Sources

VIVADO'

HLx Editions This guides you through the process of adding and creating sources for your project

Add or create constraints

Add or create design sources

i: XILINX * Add or create simulation sources

Pt

Figure 18 Add sources dialogue

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 16

As can be seen we can add source files, constraint files and simulation source files here.

We check Add or create simulation sources. Click to get Figure 19.

Add or Create Simulation Sources
Specify simulation specific HDL files, or directories containing HOL files, to add to your project. Create a new source file on disk and add it '

to your project.

Specify simulation set. | & sim_1

+

4

aries or Create File buttons below

Add Files | | Add Directories | | Create File

()
W) = Back Cancel

Figure 19 Add simulation sources and specify simulation set

In this dialogue, we add or create the file. We have a testbench from the earlier lab, so we

add that one.
We must also declare what simulation set it belongs to, we can have several simulations

with different configurations. We have only one set, so we select sim_1, Figure 20.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 17

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk and add it '
to your project.

Specify simulation set. | &= sim_1 -
+,
Index Mame Library Location
[] 1 ripple_adder_subtracter_saturate_v2_tb3wvhdl xil_defaultio ZJ/EDADATO093/1819/docs/Vivado/VHDUripple_z
< ¥
Add Files | | Add Directories | | Create File

Scan and add RTL include files into project

Copy sources into project

¥ Include all design sources for simulation

o . —
\Z) MNext = Finish | | Cancel

Figure 20 Simulation source added

If we look at the Sources frame again the Simulation Sources heading have changed,
Figure 21.

Sources
Q = & +

~ - Design Sources (1)

? -0aX

~ @ ripple_adder_subtracter_saturate_v2(arch_ripple_adder_subtracter_saturate v2) (ripple_adder_sublracter_saturate

_v2.whdl) (1)

~ @ ripple_adder_subtracter_overflow_comp - ripple_adder_subtracter_overflow(arch_ripple_adder_subtracter_overflo
@ full_adder_comp_0 : full_adder(arch_full_adder) (
@ full_adder_comp_N_1 : full_adder(zrch_full_
@ G[M]full_adder_comp_i - full_adder(arch_full_ad

w) (ripple_adder_subtracte

® G[2)full_adder_comp_i: full_adder(zrch_full_.
b Constraints (1)

w constrs_1(1}
I ripple_carry_adder_XDC_DDR.xdc
~ Simulation Sources (1)
v sim_1(1)

e .-'- ripple_adder_subtracter_saturate_v2_tb3(arch_ripple_add

er_subtracter_saturate_v2_tb3) (ripple_adder_subtracter_saturate_v2

~ @ ripple_adder_subtracter_saturate_v2_comp - ripple_adder_subtracter_saturate_v2(arch_rippl r_subtracter_saturate_»
@ ripple_adder_subtracter_overflow_comp : ripple_adder_subfracter_overflow(arch_ripple_adder_subtracter_overT

@ full_adder_comp_0 : full_adder(arch_full_adder) (full_addervhc

_adder_subtracter_saturatd

(ripple_adder_subiracter_overf

@ full_adder_comp_N_1 - full_adder(arch_full_ad

@ G[1full_adder_comp_i: full_adder(arch_full_ac
@ G[2)full_adder_comp_i: full_adder(arch_full_ac

Hierarchy = Libraries Compile Order

Figure 21 Updated Sources frame

Now the testbench is the top design that will be used at simulation, but it will not affect
the synthesis chain.

The testbench has some limitations when it comes to simulating synthesized or imple-
mented designs. When we do that the simulation will be done on the processed design,

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 18

not the VHDL code, and in the processed code things like the size of vectors is set meaning
that we can’t simulate designs where we control these through GENERICS. We must have
fixed values.

This complicates things and it is often simpler to skip the testbench and instead simulate
the design directly and assign values using a do file. But if we do this we lose the possibility
to do the testing of the out signals that we can do in a testbench. We will have to check
them ourselves. We simulate the actual top level VHDL file, so we are back to Figure 17.
To keep both options without adding and removing files we can disable the testbench file
by right clicking on it and select Disable File. The testbench file will now be moved to a
group called Disabled sources, Figure 22.

Sources ? -0aX
Q & + &

~ = Design Sources (1)
~ @ ripple_adder_subtracter_saturate_v2(zrch_ripple_adder_subtracter_saturate_v2) (ripple_adder_subtracter_saturate_v2.vhdl} (1)

~ @ ripple_adder_subtracter_overflow_comp : ripple_adder_subtracter_overflow(arch_ripple_adder_subtracter_overlow) (ripple_adder_subfracter_overflow vhdl) (4)
@ full_adder_comp_0 : full_adder(=rch_full_add
@ full_adder_comp_N_1:full_adder(arch_full_a
@ G[M]full_adder_comp_i - full_adder(arch_full_ d
@ G[2)full_adder_comp_i : full_adder(arch_full_adder) (full_addervhdl)

(full_addervhdl)

w [Constraints (1)
~ constrs_1 (1)
I ripple_carry_adder_XDC_DDR.xdc
~ [Simulation Sources (2
~ sim_1(2
v @ ripple_adder_subtracter_saturate_v2(arch_ripple_adder_subiracler_saturate_v2) (ripple_adder_subtracter_saturate_v2.vhdl) (1)
> @ ripple_adder_subtracter_overflow_comp : ripple_adder_subtracter_overflow(arch_ripple_adder_subtracter_overflow) (ripple_adder_sublracter_overflowvhdl) (4)
v Disabled Sources (1)

Hierarchy | Libraries Compile Order

Figure 22 Updated Sources frame

We can take back the testbench into the project by right Flow Navigator

b
L3
L]

clicking on the file and select Enable File. > PROJECT MANAGER
With this the initial setup is done and we can move on to
actually do some simulation and synthesis. ? IPINTEGRATOR

Let’s look at the Flow Navigator frame, Figure 23. From
this frame, we control the steps of the design process and
we will take the items one by one staring by opening the > RTLANALYSIS
Project Manager, Figure 24.

> SIMULATION

> SYNTHESIS
> IMPLEMENTATION

> PROGRAM AND DEBUG

Figure 23 Flow Navigator

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 19

~ PROJECT MANAGER
£} Settings
Add Sources
Language Templates

iF P Catalog

Figure 24 Project Manager

Let’s look at the Settings by clicking on that heading, Figure 25. We start with the General

tab.

¢ Settings

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

> 1P

Tool Settings
Project

IP Defaults
Source File
Display
WebTalk
Help

Text Editor

w

3rd Party Simulators

R W .

General
Specify values for various settings used throughout the design flow. These settings apply to the '
current project.

MName: ripple_carry_adder_project
Project device: {8 xc7a100tcsg324-1 (active) IZ‘
Target language: WHDL v
Default library: xil_defaultlio
Top module name: |ripple_adder_subtracter_saturate_v2 IZ‘
Language Options
Verilog options: verilog_version=Verilog 2001 II‘
Generics/Parameters: IZ‘

-
-

Loop count: 1,000

Figure 25 Project settings - General

Here we can change the target FPGA. If we click on E we get the same dialog as earlier,

Figure 12.

Make sure that the Target language is set to VHDL. That’s all we need here.
We move to the Simulation tab, Figure 26.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 20

Simulation '

Project Settings Specify various settings associated to Simulation
General
Simulation Target simulator: CQuesta Advanced Simulator ~
Elaboration . .
Simulator language: Mixed w
Synthesis
Implementation Simulation set: = Sim_1 w
Bitstream
P Simulation top module name: | ripple_adder_subtracter_saturate_vZ_to3 E‘
>
R Compiled library location: -ojectripple_carry_adder_project.cache/compile_simlib/guesta E
Tool Settings
Project
IF Defaults Compilation Elaboratic Simulatic Netlist | Advanced
Source File
Display Verilog options: E‘
WebTalk
Generics/Parameters options: E‘
Help

> Text Editor
3rd Party Simulators

questa.compile.tcl.pre

questa.compile.vhdl_syntax a3 A
> Colors questa.compile.use_explicit_decl v
Selection Rules X
questa.compile.load_glbl v
Shortcuts
questa.compile.sccom.more_options
» Strategies

. X questa.compile viog.more_options
» Window Behavior
questa.compile.vcom.more_options

Select an option above to see a description of it

(“_?‘] | Cancel | | Apply | |Eest0re...

Figure 26 Project settings - Simulation

Here we should make sure that the Target simulator is Questa Advanced Simulator, if
you don’t prefer to use Vivados built-in simulator. We will not give any support for this
though.

As mentioned before you should set Simulation language to Mixed.

Simulation top module name should be the name of the testbench if you're running a
behavioral simulation. If you simulate the synthesized or implemented design directly
without a testbench, then it should be the top-level module of your design. Remember
that the two simulations require different do files.

Before we can do a simulation with QuestaSim we must compile some simulation libraries
for Xilinx parts that QuestaSim will use. This is already done for the PC’s in the lab so you
only need to make sure that the search path Compiled library location is correct. In the
lab computers, the libraries are compiled to the folder

C:/questasim64_10.7a/compile_simlib

In Figure 26 the search path used in my computer is given.

If you activate the Simulation tab in the lower part of the Settings window there are two
things to update here. First, we can set the name of the do file that we use for simulation
at questa.simulate.custom_udo. Use the relevant do file from the earlier assignment.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 21

Since the simulator will be called from some subdirectory to the project it will not find the
do file if it’s placed somewhere else. The best way to overcome this is to include the
search path to the do file when you declare the questa.simulate.custom_udo file Re-
member to include the .do ending in the file name. Since we included the simulation
runtime in our do files you should remove the time value from questa.simulate.runtime.
We leave the rest of the Settings options as they are for now, Figure 27.

¢ Settings X
Simulation
Project Settings Specify various settings associated to Simulation '
General
Simulation Target simulatar: Questa Advanced Simulator R
Elaboration
Simulator language: Mixed w
Synthesis
Implementation Simulation set: i Sim_1
Bitstream
S 1 Simulation top module name: | ripple_adder_subtracter_saturate_v2_tb IZ‘
Tool Settings Compiled library location: IPrograms/Chalmers/EDAXilinxVivado/2018.2/compile_simlib IZ‘
Project
IP Defaults Compilation Elaboration | Simulation Netlist | Advanced
Source File
Display questa.simulate tcl post -~
WebTalk questa.simulate.runtime
Help questa.simulate.log_all_signals
3 Text Editor questa.simulate.custom_do
3rd Party Simulators questa.simulate.custom_udo* Z\EDADATO31819NdocsWivadoWHDLrip..
> Colors questa.simulate.custom_wave_do
Selection Rules questa.simulate.sdf_delay sdfmax hd
Shortcuts questa.simulate.ieee_warnings +
> Strategies questa.simulate.saif_scope
» Window Behavior questa.simulate.saif

questa.simulate.vsim.more_options v

questa.simulate.runtime
Specify simulation run time

(3) | Cancel | | Apply | | Restore...

Figure 27 Project settings — Simulation settings

When we run the simulation Vivado will do some internal work and then call on QuestaSim
to do the actual simulation.

Vivado has what | would call a bug and if the simulation doesn’t work out and there are
some errors you will not see these during the simulation run, you will only see Figure 28
running forever.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 22

Executing elaborate step..

Background

Figure 28 Simulation run

To find the errors you will have to cancel the simulation run and look for messages in the
Console window.

Our next Settings option is Lan-

guage Templates where we can Select langusge template

find a number of examples of cod- /
ing structures and configuration Tomplates preview
settings. In Figure 29 the headings QT & n
that are most relevant for us, > = Verilog
A4 VHDL
VHDL and XDC, are opened. > EO———
Check out the templates and decide 7 Devce Mecro Instantiaton
. . > Device Primitive Instantiation
if you like to use some of them. > IPintegrator HDL
> Simulation Constructs Select 2 termnlate fo previen
> Synthesis Constructs Selesiaiemplste o preview
> Xilinx Parameterized Macros (XPM)
> SystemVerilog
A4 XDC
> Timing Constraints
> Physical Constraints
> Configuration (7-Series)
> Debug

Figure 29 Language Templates

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 23

Next up is the IP Catalogue where we can find a large
number of ready-made blocks, components, that we
can use within our designs, Figure 30. Most of the com-
ponents are highly configurable.

As an example, let’s look at a simple IP block, a Binary
Counter placed in the group Basic Ele-
ments/Counters.

If we double-click on the ;
block we get Figure 31.
Here we can set some
configuration. We can set
the number of bits, the in-
crement of the count and
the direction of the count.
If we check Loadable we
can in parallel mode load
avalue into the counter. If
we check Restrict Count,
we can set the highest
count value.

Binary Counter (12.0)
IP Location C Switch to Defaults

@ Documentation

IP Symbol Information

| Show disabled ports

Qutput Width

Loadable

ansn

Count Mode

Basic Contro

Implement using

Increment Value (Hex) |1

Restrict Count

IP Catalog ?

Cores | Interfaces

#

- e
a -

MName
~ Vivado Repository

> Alliance Partners

> Audio Connectivity & Processing

> Automotive & Industrial

b AX Infrastructure

b AXIS Infrastructure

b BaselP

b Basic Elements
Communication & Metworking
Debug & Verification
Digital Signal Processing
Embedded Processing
FPGA Features and Design
Kernels
Math Functions
Memaories & Storage Elements
Partial Reconfiguration
SDAccel DSA Infrastructure
Standard Bus Interfaces
Video & Image Processing
Video Connectivity

R R T Y N

Details

Figure 30 IP Catalog

Compenent Name c_counter_binary_0

Final Count Value (Hex) 1

Sync Threshold Ouiput

Threshold Value (Hex) 1

»

Fabric -
16 1-256
Range: 1..FFFF
up -
o |

Figure 31 IP block for binary counter - Basic

DAT093

Introduction to Electronic System Design

Introduction to Xilinx Vivado
page 24

Note that activating more
options will activate more Binary Counter (12.0 y
port on the component @ Documentation IP Location ' Switch to Defaults

shown in the IP Symbol

IP Symbol Compaonent Name | ¢_counter_binary_0

frame. 7! show disabled poris Contral

There are more settings in Clock Enatle (CE) ’
the Control tab, Figure Y([))

32. Here we can activate a Sinchronous It (SN

enable signal and select if anso e

some Signals should be Synchronous Set and Clear(Reset) Priority Reset Overrides Set
synchronous or asynchro- e
nous.

There are many useful IP : T
blocks so check them out. o |

Figure 32 IP block for binary counter - Control

Let’s go back to the Flow Navigator, Figure 23. We'll leave out the IP INTEGRATOR
heading since we don’t need it for now.

Simulating the design

Next is the SIMULATION heading. If we right click on it we get the same simulation
settings as the ones we saw under the Settings heading, Figure 26.
The heading has only one option Run Simulation. If we click it we get five options

e Run Behavioral Simulation

e Run Post-Synthesis Functional Simulation

e Run Post-Synthesis Timing Simulation

e Run Post-Implementation Functional Simulation
e Run Post- Implementation Timing Simulation

Since we haven’t done any synthesis yet, all option other than the behavioral simulation
are dimmed out.

If you run the behavioral simulation QuestaSim should show up, run the simulation and
execute the specified do file. When you start QuestaSim from Vivado it will start up from
some subdirectory to the project. What subdirectory that is used is dependent on what
type of simulation you are running. This makes it a little troublesome to execute do files
from the command line in the Tcl Console. The do file is most likely in some other folder
and it won’t be found when running the command. The easiest way to overcome this is to
include the full search path to the do file when you execute the command.

In every step, when you run on of the tools, it’s essential to have the TCl Console tab
open. If another tab is open, then we might miss some of the warnings and error messages
and in some situations, the system gets stuck and it just continues running without infor-

Cancel

mation of what is actually happening until you eventually give up and press

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 25

It’s also a good idea to right click on the Tcl Console and select Clear (Delete) before
you start a tool. In this way, you are sure that all messages in the Tcl Console are from
the current run of the tool and not from earlier runs.

We will not describe the handling of QuestaSim here since there is a separate document
on this.

We will leave out RTL ANALYSIS, so the next step is to synthesis the design.

Synthesizing the design

Click on Run Synthesis under the SYNTHESIS heading and the synthesis will start. It
will take some time to finish. It’s not that obvious that it’s running but you can see that at
two places

e At the top right corner of the GUI you can see the text in
Figure 33 while the green circle is rotating.

* You can see the same thing in the Project Summery un- Figure 33 Synthesis is
der Synthesis, Figure 34. running

Running synth_design Cancel L

Project Summary

Settings Edit

Project name: ripple_carry_adder_project

Project location: ZIEDADATO093M819/docsNivado/NHDLUripple_carry_ac
Product family: Artix-7

Project part: ¥c7a100tcsg324-1

Top module name: ripple_adder_subtracter_saturate_v2

Target language: WHDL

Simulator language: Mixed

Synthesis Implementation
Status: ~) Running synth_design Status:
Messages: Mo errors or warnings Messages:
Part: ¥c7a100tcsg324-1 Part:

Strategy: Vivado Synthesis Defaults Strategy:
Report Strategy: Vivado Synthesis Default Reports Report Strategy:

Incremental compile

Figure 34 Project Summery while synthesis is running

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 26

When the synthesis is finished we get the dia-
logue in Figure 35.

We can move on and do the implementation,
open and look at the synthesized design or look
at the synthesis reports.

After doing the synthesis we have two more
simulation options

e Run Post-Synthesis Functional Simulation
e Run Post-Synthesis Timing Simulation

o Synthesis successfully completed.

Next
#* Run Implementation
Open Synthesized Design

View Reports

Don't show this dialog again

Figure 35 Successful synthesis

The functional simulation will show the behav-
ior without taking any timing issues into consid-
eration. The timing simulation will also show
the timing of the synthesized design and this simulation will obviously take longer time.
Some of the timing issues that might show up are not relevant for the design we’re using
as an example since it’s a concurrent design and there is no clock signal.

After synthesis, we have the GUI in Figure 36.

v
File Edit Flow Tools Reports Window Layout View Help Quick Access Synthesis Complete
=, B ® b, B H O 8 = ¥ Do v
Flow Navigator t2 B SYNTHESIZED DESIGN - xc7a100tcsg324-1 (active) ? X
~
v SIMULATION Sources Netlist 2 _0O00 Schematic 200 X
Run Simulation bl | & - @ 9 ¥ N O 4+ = C 25cCels >
ripple_adder_subtracter_saturate_v2 iy
v RTL ANALYSIS v Nets (35
» Open Elaborated Design > a(4)
> a_IBUF (4
~ SYNTHESIS >ol b4
> b_IBUF (4
P Run Synthesis S
> Iy
~ Open Synthesized Design > y_OBUF (4 L
Constraints Wizard
Bus Net P i ? _ q X
Edit Timing Constraints us Net Properties : o 1)
4K SetUp Debug 3 - o
9 Report Timing Summary Name: a
Report Clock Networks T .
Report Clock Interaction Genersl |Scatarblet
Report ¥ "
TclConsole | Messages x Log | Reports | Design Runs | Debug ?2 00
Report DRC - - _
Q © = 71, B8 1 | @ Critical waming (12) /| Warning (14) /| @ Info (35) @ Status (25) Show All o
Report Noise
v Vivado Commands (1 waming, 3 infos, =
Repaort Utilization v 1, General Messages (1warning, 3 infos)

@ [IP_Flow 19-234] Refreshing IP repositories
@ [P_Flow 19-1704] No user IP repositories specified
@ [P_Flow 19-2313] Loaded Vivado IP repository ‘C:/Programs/Chalmers/EDAXIlinkVivado/2018 2/datalip”

& Report Power
¥4 Schematic
[Vivado 12-1017] Problems encountered:

1. Failed to delete one or more files in run directory
Z/EDADAT093M819/docsNivadoNVHDUripple_carry_adder_project/ripple_carry_adder_project runs/synth_1

~ IMPLEMENTATION

P RunImplementation

v = Synthesis (6 critical wamnings, 7 warnings, 26 infos]
~ Open Implemented Design ~ o AT 0400 Cntl forfaotuca iatandiars o 400 4
Copy the current selection on the clipboard
Figure 36 Main window after synthesis
DATO093

Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 27

Here we can see the synthesized schematic. Not that this

is not yet placed in the FPGA device, so we only see prim- ~ STNTHESIS

itive design blocks, not the blocks that are actually used P Run Synihests

within the FPGA. By clicking on a net in the Netlist menu ~ Open Synthesized Design
we activate the connection in the schematic. In Figure 35 Constraints Wizard
we see the signal a. Edit Timing Constraints

We can also see a menu under the SYNTHESIS head-
ing in the Flow Navigator, Figure 37.

We will not dive into this, but you should explore it on
your own.

W SetUp Debug

19 Report Timing Summary
Report Clock Metworks
Report Clock Interaction

Report Methodology
Report DRC
Report Noise
Report Utilization

& Report Power

*4 schematic

Figure 37 Flow Navigator after
synthesis

Implementing the design

The next step is to implement the design. The
step is visually similar to the Synthesis step. Af-
ter implementation we get the dialogue in Fig-
ure 38. Next

o Implementation successfully completed.

® Open Implemented Design
Generate Bitstream

View Reports

Don't show this dialog again

Figure 38 Successful implementation

The resulting GUI looks very similar to the synthesized one with the exception that instead
of the synthesized schematic we see the internal of the FPGA device, Figure 39.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 28

’

Eile Edit Flow Tools
=, B
Flow Navigator = 9
~ SIMULATION

Run Simulation

v RTL ANALYSIS

> Open Elaborated Design

~ SYNTHESIS
P Run Synthesis
~ (Open Synthesized Design
Constraints Wizard
Edit Timing Constraints
SetUpDebug
(D Report Timing Summary
Report Clock Networks
Report Clock Interaction
[¥] Report Methodology
Report DRC
Report Noise
Report Utilization
& Report Power

¥4 schematic

~ IMPLEMENTATION
P Run Implementation

~ Open Implemented Design
Redo the lastundone edit

Reports

?

Window Layout View Help

® b W H O 8 & Z *

IMPLEMENTED DESIGN - xc73100tcsg324-1 (aciive

Bus Net Properties

<

Netlist

o

@

c

l
F

I y_OBUF (4
add_sub
add_sub_IBUF ~

a_lBUF - o

Name: a_|BUF

Blumber of note: 4

General | Scalar Nels

Q = = 4 Design Timing Summary
13
General Information
Timer Settings Setup
Design Timing Summary Warst Negative Slack (WNS):
> [Check Timing (0 Total Negative Slack (TNS)

Userlgnored Paths MNumber of Failing Endpoints:

Unconstrained Paths Total Number of Endpoints:

» < -
Timing Summary - impl_1 (saved)

Figure 39 Main window after implementation

NA
NA
NA
NA

Implementation Complete </

Default Layout '

Device

@ 2R |¢ H B @ o o

u

Timing
Hold Pulse Width
Waorst Hold Slack (WHS): NA Waorst Pulse Width Slack (WPWS)
Total Hold Slack (THS): NA Total Pulse Width Negative Slack
Number of Failing Endpoints: NA Number of Failing Endpoints:
Total Number of Endpoints: NA Total Number of Endpoints:

If we click on one of the signals in the Netlist we the connection in the device. In Figure 39
a_ I BUF is activated, this is a connection between the a ports and the internal logic.

Downloading to the FPGA

We move on in the Flow Navigator and create a bit-
stream to be downloaded to the FPGA. We select
PROGRAM AND DEBUG/Generate Bitstream,

Figure 40.

As a result, we get Figure 41.

DAT093

*~ PROGRAM AND DEBUG

fi Generate Bitstream
~ Open Hardware Manager

Open Target

Figure 40 Program and debug

Introduction to Electronic System Design
Introduction to Xilinx Vivado

page 29

First, we open the Hardware Manager from the
Flow Navigator.To use the bitstream we will
have to be connected to the Nexys4 board and for
this to work the board must be connected to the
PC and powered using an USB connection. We
click on Open Target and get Figure 42.

0 Bitstream Generation successfully completed.

Next
* Open Implemented Design
View Reports
Open Hardware Manager

Generate Memory Configuration File

Don't show this dialog again

Figure 41 Successful bitstream generation

¢ ripple_carry_adder_project - [Z./EDA/DAT093/1819/docs/Vivado/VHDL/ripple_carry_adder_project/ripple_carry_adder_projectxpr] - Vivado 2018.2.1 - O X

File Edit Flow Tools Reports Window Layout View Help Quick Access
=, BB %

Flow Navigator S e HARDWARE MANAGER - unconnected

v PROJECT MANAGER @ No hardware targetis open. Open target

'ﬂ- Settings

Hardware ? 00 X
Add Sources
o
Language Templates
¥ P Catalog
P INTEGRATOR o content
Create Block Design
Properties ?_00 X
&

¥ SIMULATION

Run Simulation

¥ RTLAMALYSIS Select an object to see properties

» Open Elaborated Design

¥ BYNTHESIS
P Run Synthesis TclConsole x Messages | Serial /O Links | Serial /O Scans
> Open Synthesized Design a x £ Il B ® @

write_bitstream Complete «/
Default Layout v

? X

3 INFO: [IP_Flow 19-2313] Loaded Viwado IPF repository 'C:/Programs/Chalmers/EDA/Xilinx/Vivado/2018.2/dat”™

~ IMPLEMENTATION

P RunImplementation ! [Mon Bug 20 09:02:35 2018] Launched impl_l...

open_project: Iime (s): cpu = 00:00:15 ; elapsed = 00:00:08 . Memory (MB): peak = 807.391 ; gain = 10¢
7 launch _runs impl 1 -to_step write bitstream -jobs 2

Bun output will be captured here: Z:/EDA/DAT093/1819/docs/Vivado/VHDL/ripple_carry_adder_project/ripp.

> OpenImplemented Design open

~ PROGRAM AND DEBUG

¥ Cenerate Bitstream i

Figure 42 Hardware manager, Open target

i3

>

To connect to the board, we select Open target in the green field close to the top of the
window and then Auto Connect in then popup menu that appears and then the program
will detect the FPGA connected, Figure 43.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 30

’

File Edit Flow Tools Reports Window Layout View Help Quick Access write_bitstream Complete </
=, + >, B o X Dashboard ~ Default Layout v
Flow Navigator S HARDWARE MANAGER - localhostidling_tcfDigilent’210292448DEDA ? X
~ PROJECT MANAGER - © There are no debug cores. Program device Refresh device
'ﬂ- Settings
Hardware ? 00X
Add Sources
-
Q s &
Language Templates
Name Status
1P Catalog ~ B localhost (1 Connected
~ [Ble xiliny_tcliDigilent210292A4BD Open
v IPINTEGRATOR ~ {8 xc7a100t_0 (1) Programmed
Create Block Design IE XADC (System Monitor
Open Black Design < 4
Generate Block Design Properties 72 _ 00X
-]
v SIMULATION
Run Simulation
~ RTLAMALYSIS Select an objectto see properties
> Open Elaborated Design
v SYNTHESIS
b Run Synthesis TciConsole x Messages | Serial IO Links | Serial /O Scans 700
> Open Synthesized Design Q E e

~ IMPLEMENTATION
P Run Implementation

> Openlmplemented Design

¥ PROGRAM AND DEBUG

I Generate Bitstream -

N B B @

Figure 43 Hardware manager, Program evice

We will get a Hardware frame showing the detected device.
Now it’s time for programming the device so we click on Program Device in the Flow

Manager.

We get a window
where the bitstream
file for the project is au-
tomatically selected,
Figure 44. It will have
the same name as the
top-level file of the de-
sign but with the ending
.bit

. Program
Click on

and the download
starts. There is also an

Select a bitstream programming file and download it to your hardware device. You can optionally
select a debug probes file that corresponds to the debug cores contained in the bitstream '
programming file.

Bitstream file: rry_adder_projectrunsfimpl_1/ripple_adder_subtracter_saturate_v2 bit IZ‘

(-]

Debug probes file:

+" Enable end of startup check

)
\z/ Program cancel

Figure 44 Programming device

external memory device on the Nexys4 board that can be programmed. We will not use

this memory for now.

After download the configuration is immediately implemented, and the FPGA is functional.
Now we can test the physical result and not just do simulations.

DAT093

Introduction to Electronic System Design

Introduction to Xilinx Vivado
page 31

The Nexys4 board

As stated earlier the Nexys4 board houses a Xilinx Artix-7 FPGA with the name the
xc7a100tcs314-1. The board also contains a number of peripheral devices, Figure 45. You
can find the reference manual for the board on the PingPong homepage.

There are two versions of the board; the Nexys4 and the Nexys4DDR. The difference being
that the later has DDR memory onboard.

The setup is different in the two cases, so they will need different constraints files (XDC).
The board have the following peripheral devices

Figure I. Mexys$ DOR goord fegtures.

cetou | comporertDevrpion) T —

1 Power select jumper and battery header FPGEA configuration reset button
2 Shared UART/ ITAG USHE port 14 CPU reset button (for soft cores)
3 External configuration jumper (507 USE] 15 Anzbog signal Pmod port (KADC)
4 Pmaod port]s) 16 Programming mode jumper

3 Microphone 17 Audio connector

] Power supply test point{s) 13 VEA connectar

7 LED= [15) 19 FPGA programming done LED

8 Slide switches 20 Ethernet connectar

g Eight digit 7-seg display 21 USE host connector

10 JTAG port for (optional] external cable rrd FIC24 programming port {factory use)
11 Fiwe pushbuttons 23 Poswer switch

12 Temperature sensor 24 Porweer jack

Figure 45 The Nexys4 board

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 32

e 16 slide switches giving high and low-level signals
e 16 LEDs

e 2 tri-color LEDs

e 8 7-segment displays

e 5 non-latching bush buttons

e 4 8-bit I/0 ports with ground and 3.3 Volt supply
e 1 8-bit port with connections to the ADC in the FPGA
e VGA connector

e Micro SD connector

e Accelerometer

e Temperature sensor

e Microphone

e PWM audio amplifier

e USB-RS232 interface

e USBHID

e Ethernet PHY

e External memory

For more details on the peripheral devices consult the reference manual.

The constraints file (XDC)

The constraints file is where you set up the rules for the synthesis and implementation.
You can set up a lot of constraints concerning timing and placement within the FPGA. We
will leave those out for now and focus on the physical external configuration, that is how
the ports of our design with their peripherals are connected to the pins of the FPGA device.
It’s quite complicated to write a constraints file from scratch. Luckily there are ready-made
templates for constraints files for many of the evaluation boards that vendors supply, this
includes the Nexys4 boards that we are using.

The Nexys4 board is no longer in production but is replaced by the Nexys4DDR board. We
still have some Nexys4 boards, so we will take a look at the constraints file for both ver-
sions of the boards since they have different pinning. The two XDC files are also somewhat
differently structured but they will function the same way. You can find both files on the
PingPong homepage. The template constraints files are called

Nexys4 Master.XDC

and

Nexys4DDR_Master . XDC

Both the XDC files have the pins split into groups according to the peripheral list we just
saw. All pins are declared in the file with default names for the connections. All lines are
commented out and you should uncomment the lines for the pins you are using and give
the pins the names you are using for the ports in your design. Don’t uncomment any lines
for pins that you are not using.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 33

The Nexys4 constraints file

In the constraints file for the Nexys4 board each pin is defined by two lines. The first
line gives the name of the FPGA pin and the name of the port in the source code that is
connected to that pin. The second line sets the signal standard for the pin and the name
of the port in the source code that is connected to that pin will have to be given here
to.

Let’s look at the first pin in the file, the clock pin that is connected to the system clock.
This pin will have to be activated in all your designs.

#set_property PACKAGE_PIN E3 [get_ports clk]
#set_property I10STANDARD LVCMOS33 [get_ports clk]

The hash signs (#) indicates that the lines are commented out. clk, highlighted in
green, is the name of the port in the source code that should be used, or the name
should be changed to the one that is being used. The rest of the lines can stay as they
are, but you should remove the hash signs on both lines of course. So, what you need
to do to use this pin is take away the hash signs and if needed edit the green name
twice.

When | do this, | keep the commented lines as they are and make copies of them just
below. | edit these copies and take away the hash sign from them. The reason for doing
this is that this way | still have the template for the lines if | do some mistake when |
edit the lines.

Let’s look at one more line that use a port that is part of a vector

#set_property PACKAGE_PIN U9 [get_ports {sw|[O]}]
#set_property I10STANDARD LVCMOS33 [get_ports {sw|[O]}]

This defines the connection to switch 0 out of the 16 switches on the board. Notice that
square brackets should be used for the index, not ordinary parentheses. The curly
brackets around the pin name can be left out.

If you name a single pin connection, not a vector, then you name it the same way as
the clK pin.

The Nexys4DDR constraints file

In the constraints file for the Nexys4DDR board is very similar to the constraints file
for the Nexys4 board but the syntax is different. Let’s look at the same pins above. We
start with the clock pin

#set_property -dict { PACKAGE_PIN E3 I0STANDARD LVCMOS33 }
[get _ports { CLK100MHZ }];
#10_L12P_T1_MRCC_35 Sch=clk100mhz

In the file this is just one line but here it’s split into three to fit on the page. In this case
the only thing that might be necessary to change is the name of the port from the
source code, by default it’s called CLK100MHZ, highlighted in green. You will also have
to remove the first hash sign of course; the second hash sign should not be removed.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 34

You can change the name clk100mhz at the end but since it’s just a comment it is
not necessary.
Now to the line for switch 0

#set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 }

[get ports { SW[O] }1;
#10_L24N_T3 RSO _15 Sch=sw[0]

The same kind of editing as for the clock is needed. The name to be changed is high-
lighted in green. Once again notice the square brackets and the curly brackets.

DAT093
Introduction to Electronic System Design
Introduction to Xilinx Vivado
page 35

