CHALMERS

Department of Computer Science and Engineering
2018-08-15

DAT093
Introduction to Electronic System
Design
Introduction to QuestaSim
Introduction

QuestaSim is a tool for the simulation of code written in VHDL, Verilog and/or SystemC. We
will focus on VHDL. The tool is just for simulation it has no options for the synthesis of hard-
ware.

QuestaSim was created by a company called ModelTech (www.model.com). The company is
nowadays a subsidiary of Mentor Graphics (www.mentor.com) and the tool is an extended
version of the simulator ModelSim from the same company. The extended version can also
handle PSL (Property Specification Language, a verification add-on to VHDL and Verilog) and
SystemVerilog. The two tools have the same interface but with some extra menu options
and features in QuestaSim. This description is written using screen dumps from QuestaSim
version 10.7a. You might have ModelSim installed on your computers but you won’t notice
any significant differences from QuestaSim, the same applies if you have another version of
QuestaSim. There might be some small changes between different versions of the tool, but
they are minor. You will also find that QuestaSim version 10,.7a is installed in the lab com-
puters.

There are QuestaSim versions for both Windows and Linux. This presentation focus on the
Windows version.

A version of ModelSim can be downloaded with the Xilinx design pack Vivado WebPACK, a
freeware version of the Xilinx design environment Vivado.

You can also download a student version of ModelSim from the ModelTech address given
above, where you will be redirected to a Mentor page. At the end of the program installation
you will be urged to request a license for the software. The installation will be tied to the
computer where you install it and it cannot be copied or moved. If you need to do that you
must reregister and download again. These versions are somewhat limited so all the things
described in this introduction cannot be done there.

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1
Division of Computer Engineering

http://www.model.com/

Starting QuestaSim

To start QuestaSim double click on the QuestaSim icon ! on the PC desktop or start it
from the Start menu.

When QuestaSim open it will show a GUI with a couple of sub windows, Figure 1. One of
these windows is the dominant Workspace window which from the beginning is filled by

the Library tab M, where you can see all the standard libraries that can be used.
When you have created a project a work library for the project will be added and there will

also be a Project tab where all the files that you have added to your project will
be seen, Figure 2. When we start a simulation, there will be yet another tab.

[# CQuesta 5im-6410.7a -] X
File Edit View Compile Simulate Add Library Tools Layout Bookmarks Window Help

B-3 W2 DM E
Columnlayout |R11Celurns !I ‘ J Help % - * %
Layout |NoDesign !’ ‘
M Library HE + o x|
"|Name |T\;pe |Paﬂ1 \'| | il
1,—m work Library Z:/EDA/DATO93/1819/docs/Questasim...
1,—“ vital2000 Library SMODEL_TECH/. . fvital 2000
mlil vhdlopt_lib Library SMODEL_TECH/.. fvhdlopt_lib
i,—m vh_ux0iv_lib Library SMODEL_TECH/.. fuh_ux01v_lib
i,—m verilog Library SMODEL_TECH/. . fverilog
1,—['1 mtiUvm Library SMODEL_TECH/.. fuvm-1.1d
1,—m mtlPF Library SMODEL_TECH/.. fupf_lib
D—M SYNopsys Library SMODEL_TECH/.. fsynopsys
+4li} sv_std Library &MODEL_TECH/. . fsv_std
i,—m std_developerskit Library SMODEL_TECH/. . fstd_developerskit
=l std Library $MODEL_TECH/. . fstd
-+l mtiRnm Library &MODEL_TECHY/..frim
m mtPA (empty) Library SMODEL_TECH/..fpa_lib
1,—m mtOvm Library SMODEL_TECH/.. fovm-2.1.2
¥ osvvm Library SMODEL_TECH/.. fosvvm
1,—“ modelsim_lib Library SMODEL_TECH/. . fmodelsim_lib
M mgc_ams (empty) Library SMODEL_TECH/.. fmgc_ams ==
1,—].1 mc2_lib Library SMODEL_TECH/.. fmc2_lib
:,—m infact Library SMODEL_TECH/.. finfact
it ieee env lemntv) |ihrary SMONF_TFCHL. . fieee env j
f= Transaript P H Al x|
$ f/ QuestaSim and its asscciated documentation contain trade J
// secrets and commercial or financial information that are the property of
$# // Mentor Graphics Corporation and are privileged, confidential,
// @and exempt from disclosure under the Freedom of Information Act,
¢ // 5 U.5.C. Section 552. Furthermore, this information
$ // 1is prohibkited from disclosure under the Trade Secrets Act,
// 13 U.5.C. Section 1505.
¢/
Loading project full adder project
reading C:/Programs/Chalmers/EDA/Mentor/questasimed_10.7a/wingd/.. /modelsim.ini
QuestaSim=
<Mo Design Loaded = wark -
Figure 1 QuestaSim Start up GUI
DAT093

Introduction to Electronic System design
Introduction to QuestaSim
page 2

File Edit VYiew Compile Simulate Add Project Tools Layout Bookmarks Window Help
ER 8202 [0 M |
ColumnLayout [211Columns i ‘ J Help LA
J Layout NoDesign] ‘
#4 Project - Z:/EDA/DAT093/1519/docs/QuestaSim/Word/Introduction_to_QuestaSim/VHDL ffour_bit_ripple_adder_project/four_bit_ripple_adder_project —::::= # & x|
¥|Name |5tatudType 2| OrdelModified |
E_.‘:' four_bit_ripple_adder_tb3.do TCL - 06/17/2016 08:47:39 ...
A four_bit_ripple_adder.do L - 06/12/2017 04:43:42 ...
Bl ful_adder.do L - 05/24/2017 01:28:33 ...
A full_adder.vhdl ? WHOL 0 06/15/2017 11:03:04 ...
A" four_bit_ripple_adder _th3.vhd| ? WHOL 2 06/13/2017 09:10:20 ...
[BL" four_bit_ripple_adder. vhdl ? WHOL 1 06/12/2017 04:22:32 ...

M Library |ﬁ| Project 4| ¥

=4 Transcript S H & x|

// secrets and commercial or financial information that are the property of J

// Mentor Graphics Corporation and are privileged, confidential,

// and exempt from disclosure under the Freedom of Information Act,

// 5 U.3.C. Section 552. Furthermore, this information

// 1is prohibited from disclosure under the Trade Secrets Act,

$ // 18 U.5.C. Section 1905.

#//

Loading project full_adder project

reading C:/Programs/Chalmers/EDA/Mentor/questasiméd_10.7a/wingd,/../modelsim.ini

Loading project four bit_ripple_adder project

(Questasim = -
Project : four_bit_ripple_adder_project |<Mo Design Loaded> <No Context= 2

Figure 2 GUI with Project and files

Your GUI might look somewhat different from the one in Figure 1 and 2. The reason is that
the GUI is highly configurable. A number of the tools in the top gray area can be moved

around and added or removed by right clicking on the gray background and activating or de-
activating options.

In Figure 2 you can see the design files for a four-bit ripple adder with a 1-bit full adder as a
component. Test bench and do file for the design are added. We’ll get back to these files
soon.

From the beginning, you will also see a Transcript window = Transcript , a text-based shell
where you give commands to and get messages back from the compiler and simulator.

These and all other windows can be undocked from the GUI into resizable floating windows
using the E icon in the upper right corner of each window. The windows can be docked

back into the GUI using the IE icon that will show when the window is floating.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 3

When you have been running a project, the environment will be saved automatically and the
next time you start QuestaSim the old project will be opened again.

Creating a project

The first thing to do when you begin a design
is to create a new project.

You create a new project from the File menu
by selecting

File -> New -> Project...

This will give a popup window where you
have a browser to select the location of the
project and a line to give the project a name,
Figure 3. Here we use a 4-bit ripple adder
with test bench as an example and have given
the project the name four_bit_ripp-
le _adder_project and placed it in a
folder with the same name. The location of

Project Name
four bit ripple adder project

Project Location
HDOL/four_ bit ripple_adder project Browse...

Default Library Mame
work

Copy Settings From

asiméd_10.7a/modelsim.ini Browse...

¥ Copy Library Mappings ¢ Reference Library Mappings

QK Cancel

Figure 3 Project creation window

the project is set in the Project Location area of the popup window, either by typing in the

search path or simpler by using the w button which will give a new popup window,
Figure 4, where you can navigate to the place where you want to place the project.

The project crea-

tion as such will &
not create any « v 4 <« |ntroduction_to_Clue... » YHDL v O Search VHDL o
new folder for Organize = MNew folder == - o
the project but it . A .
i K =| Documents ~ MName Date moedified Type
is a good idea to
4 Downleads
Create a new . No items match your search.
D Music
folder for each =1 Pictures
project, so you B Videos
can keep track of 25 Windows (C2)
your projects = Work (D)
and of the files =g program (\\syro
within the pro- = svenk (\\sol.ita.c
jects. = groups (\\sol.ita

!

ce (iseoleil.ce.ch

= svenk (\\file00.cl

You can do this
by adding a new
folder at the end ¥ Network
of the Project

v

Location search Folder: | VHDL

path line in the

Create Project
Figure 4 Folder browser

Select Folder Cancel

DAT093
Introduction to Electronic System design
Introduction to QuestaSim

page 4

window, as we’ve done in Figure 3. You will then be asked if you want to create the folder.

You can also add a new folder by clicking on the New folder button in the Browse to di-

rectory home for New Project window.

As said you must set a name for the new project in the Create Project window on the Pro-
ject Name line and our recommendation is that the name of the project is the same as the
name of the folder where the project is placed, so here we have called the project
four_bit _ripple_adder_project and we have also added a folder with the same
name to hold the project. The easiest way to set the project name is to copy the folder name
from the Folder line in the Browse for Folder window, Figure 4, and paste it into the Pro-
ject Name line in the Create Project window, Figure 3.

The Default Library Name input box will give the name of the subdirectory where your
compiled code will be placed (work). Leave this and the other settings as they are.

Adding files to the project

When you click L, after giving the project =

name, you will get a new popup window, Add Click on the icon to add items of that type:

items to the Project, where you can create new

files or add existing files to the project, Figure 5. F D

The popup window you get when you click on Create New File Add Existing File
% ™M i3

Create New File CreateNewFie rinre 6 has the

heading Create Project File but this does not Create Simulation Create New Folder

mean the file that is defining the project, the

heading should really read Create File Within Close

the Project. When you create a new file, you

are supposed to choose the type of Figure 5 Add items window

file, for example VHDL file, from the B Creote Project File %
menu Add file as type. Selecting a file i Name
type will not create any file template S

or anything. It will just create an emp-
ty file with the expected file ending.
The created file will automatically be

added to the project. oK Cancel

Creating a do file, the simulation script Figure 6 Create Project File window
file, is not a possibility here so you will

have to create the file separately and

then add it to the project. You can create the file from

add file as type Folder
VHDL !I Top Level !I

File -> New -> Source -> <file type>

where File Type gives the option to set the file type.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 5

File Edit View Compile Simulate Add Source Tools Layout Bookmarks Window Help
| B0 0
J ColumnLayout [211Columns ﬂ J Help
J Layout NoDesign 1’ J He ¥ @ ﬁ
|ﬁ| ‘to_QuestaSim/VHDL four_bit_ripple_adder_project/four_bit_ripple_adder_project s 4| | x| @M_Ht_rpﬁe_adderyojectﬁhﬁﬁed-l.do - Default 24 4 2| x|

¥|name |statudType | ordelModified Ln#z |
1

“u

E - =

|

-l
Library Iﬁl Project HE

f= Transcript e + & x|

ff QuestaSim and its associated documentation contain trade

// secrets and commercial or financial informaticon that are the property of
// Mentor Graphics Corporation and are privileged, confidential,

and exempt from disclosure under the Freedom of Information Act,

S/ 5 U.5.C. Section 552. Furthermore, this information

ff 1is prohibited from disclosure under the Trade Secrets Act,

S/ 18 U.5.C. Section 1%905.

EE TR TR TR TR TR AT
~
-~

Loading project four bit_ripple_adder project

(QuestaSim = -

Ln: 1 Col: O Praject : four_bit_ripple_adder_project | <Mo Design Loaded > <No Context>

Figure 7 Adding a new do file that shows in the editor

The file will by default have the name Untitled-#_.<file_type>.
When you create the file, it will be opened in an editor within the GUI, Figure 7.

When you save the file, you will be asked for a more proper file name. The .<file_type>
ending will not be automatically added to your selected file name, so you will have to add it
yourself when you give the file name.

Notice that creating the file will not automatically add the new file to the project so you will
have to do that manually afterwards by right clicking in white area of the Project window
and select the command

Add to Project -> Existing File...

and you get the popup menu in Figure 7.
You can also create a new file in the project by right clicking in the white area of the Project
tab and select

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 6

Add to Project -> New File...

And you get the popup window from Figure 6. Doing it this way will not only create a new
file but also add it to the project.

In the Add items to the Project window, Figure 5, you can also create new folders by

] 2

clicking CreateNewFalder 314 you get the

Folder Name
dialogue in Figure 8. This is not of that
much use since you have already created
a folder for the project, so we just leave Folder Location
that. Top Level !I

Ok Cancel

Figure 8 Create Project File window

You can also add existing files to the

D File Name
Browse...

project using the button #ddEdstingFie

A popup window opens where you can
navigate to the file, Figure 9.

Add file as type Folder
default ﬂ Top Level 1’

* Reference from current location " Copy to project directory

OK Cancel

In Figure 9 you have the option of

keeping the file where it is or creating a

copy in the project folder. In the last Figure 9 Add Existing File window
case, the original file will not be

changed by edits within the project.

The files you add to the project do not have to be in placed the project folder.

In many cases, it simplifies things if you keep the files in the project folder but at the same
time if you are using designs from another project it might be best to leave the files where
they are, so you don’t end up with several versions of the same file. If you copy the file to
the project and then have multiple file versions it’s hard to keep track of what’s the current
version. Just beware that if you include a file from an earlier project and don’t do a copy
then if you edit the file then the earlier project will also be affected.

When you have finished creating your project and get back to the GUI a new Project tab

has been added to the Workspace window containing the new or added files,
as we saw in Figure 2. At the same time the project file and the newly created files are added
to the file folder on the hard drive together with the subfolder work that will contain your
compiled design files. You can create files later on when you have already created the pro-
ject by using the menu command

File -> New -> Source -> <File type>

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 7

As was mentioned above.
You can also create a new file in the project by right clicking in the white area of the Project
tab and select

Add to Project -> New File...

and you get the popup window from Figure 6. Doing it this way will not only create a new file
but also add it to the project.

A file that is added to the project doesn’t have to be in the project folder. The tool will keep
track of the search path. This means that if you start moving files around using a Windows
file browser outside of QuestaSim the project will not find the files any more and you should
remove them from the project by selecting the file, right click and select Remove from Pro-
ject and add them back to the project from their new location.

Opening a project

Once you have

[# open File ¥

created a pro-
jeCt and Closed &« “ P <« VHDL » four_bit_ripple_adder... v O Search four_bit_ripple_adder_... 0
it you Can open Organize « Mew folder == ~ [o
it again with the J 30 Objects (o MName - Date modified Type
menu choice B Desktop work 2018-08-14 1502 File folder

| Documents L four_bit_ripple_adder WVHDL File
File -> Open... I Downloads L four_bit_ripple_adder th3 VHDL File

J’! Music
which will give &= Pictures
you a file B Videos
browser where s Windows (C:)
you can navi- = Work (D:]
gate to and =x program (\syro
choose the pro- = svenk (Visolita.c
ject file you = groups (\\solita
would like to = ce (\soleil.ce.ch
open Figure 9 = svenk (\\fileD0.cl ¥ < >

, .
File name: v| | HDL Files v

The project files
are not visible in Cancel
the browser by
default, so you
will have to

Figure 9 Open File br

HOL Files w Project Files w

change the file filter from to to

see them. The project files have the ending .mpT.

By default, the script files, the do files, that we will talk about later on, are not visible in the
browser either so you have to change the file filter for them to be shown. There is no filter

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 8

All Files

for selecting this kind of file, so you will have to select ~ for this.

The do files should have the ending .do.

Editing files

The next phase is to write or edit your VHDL code. You open the new or added VHDL file by
double clicking on it in the Project tab of the Workspace window.

This will open a simple text editor which supports the common Windows shortcuts for copy,
paste and so on. The editor will show line numbers and will color code the text with different
colors for VHDL commands, signal types, values and others.

There is a bug in the program that has the effect that sometimes the file will not open up in
the built-in editor but in an external editor like Notepad or TextPad. There is a drawback
with this since these editors don’t color code VHDL. If files have started to be shown in the
external editor, they will do that from that on. Support at Mentor have not managed to sort
this out. One solution would be to add an external editor that can handle VHDL color coding,
like Notepad++. There is a way to make the files show up in the internal editor, we’ll get
back to that.

This may also have the result that you have versions of the same file both in the GUI editor
and the external editor so be aware of what file you are editing.

In many cases the best way to start a new file is to include or copy a file from an old project
and then do the required changes. In this way, you get the basic file structure to start with.
Please remember that if you include the file any edits will also affect the functionality in the
project from where the file is included since it’s the same file. It’s best to save the file under
a new name.

Compiling files

Before you can simulate the design the file(s) must be compiled. You do this from the Com-
pile menu or by right clicking in the Project tab which will open up a menu. Here you can
choose to compile all design files or if you right click on a design file you can choose to only
compile that file or you can compile only the files that are out of date, that is files that have
been changed since the last compilation.

A common mistake is to forget to save the current file before compilation. Then the old,
saved file will be compiled. You can easily see if a file is saved by looking at the save file icon

saved, if the icon is sharp = then the file isn’t saved.

. F
As you can see in Figure 2 the VHDL files in the Project tab shows a question mark * in their
Status column. This indicates that the files haven’t been compiled since they were last edit-
ed.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 9

Before you compile all files, you can use
the same menu to set the order in which
the files will be compiled by selecting
compile/Compile Order..., and you get
Figure 10 where you select a file and
move it up or down in the order by using
the arrows. This may be of use if you
have a hierarchical design because then
the lower level code, for example the
components, have to be compiled first,
before they are used in the compilation
of the higher-level design. A simple way
to fix this anyway is to run the compila-
tion twice. By doing that the compo-
nents that are needed at the higher lev-
el have been compiled in the first com-
pilation round and will be available for
the second round.

? four_bit_ripple_adder. vhdl
E four_bit_ripple_adder_tb3.vhdl

Auto Generate | (0.9

r N
[# compile Order &J
Current Order
| full_adder.vhdl =

-

| Cancel |

e

Figure 10 Setting the compile order

If the compilations succeed we get Figure 11.

DATO093

Introduction to Electronic System design
Introduction to QuestaSim

page 10

[Questa sim-64 10.7a - | X

File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help
-)

ColumnLayout |A11Colu.lms

J Layout [aDesign e J ¥4 ¥

4
sy,
o
sl

T|Name _\.|513m4Type |OrdelModiﬁed | |
g_T four_bit_ripple_adder.do TCL - 06/12/2017 04:4%:42 ...
[BL" four_bit_ripple_adder.vhdl « WHDOL 0O 06(12/2017 04 22:32 ...
[BL" four_bit_ripple_adder_th3.do TCL - 06/17/2016 08:47:39 ...
el 1 06/13/201709:10:20 ...
g_T ful_adder.do TCL - 05/24/2017 01:28:33 ...
Bl ful_adder.vhdl + VHDL 2 05/15/2017 11:03:04...
m Library | [£¥ Project ﬂ_9|
f=A Transcript s + A =
// 1s prohibited from disclosure under the Trade Secrets Act, -
// 18 U.5.C. Section 1905.
#
Loading project four_bit_ripple adder project
reading C:/Programs/Chalmers/EDR/Mentor/questasiméd 10.7a/win€d/.. /modelsim.ini
Loading project four_bit_ripple adder project
Compile of four bit ripple_adder.vhdl was successful.
2 i ur_bit_ripple_adder tb3.vhdl was successful.
Compile of full adder.vhdl was successful.
QuestaSim> les, 0 failed with no errors.
QuestaSim = T
| Project : four_bit_ripple_adder_project | <Mo Design Loaded=> <Mo Context>

Figure 11 Successful compilation

You will see the text

Compile
Compile
Compile

ull adder.vhdl was successful.
our_bit ripple adder.vhdl was successful.
our_bit_ripple adder tb3.vhdl was successful.

B

[]

in green in the Transcript window and the question marks in the Status column have
changed to OK signs v indicating that the compilation succeeded.

In most cases your code writing will not be correct the first time so there will be some errors
in your first compilation and you will have to do some corrections to successfully get the
code through the compiler, Figure 12.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 11

B Questa Sim-6410.7a - O *
File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help

|B-sEeE sm@ 2 0-M
J ColumnLayout [211Colurns J Help ‘a H \‘f»’;; i % e k4
J Layout [foDesign wl
[¥¥ Project - Z: [EDA/DAT093/1819/docs /QuestaSim/\Ward/Introduction_to_QuestaSim/VHDL ffour_bit_ripple_adder_project/four_bit_ripple_adder_project == + & x|
‘F|Name _\|513tu4Type |Orde1|‘\"lodiﬁed | |
&_._T four _bit_ripple_adder.do TCL - 06/12/2017 04:43:42 ...
E_T four _bit_ripple_adder.vhd| P5 VHOL 0 08/14/2018 04:17:43 ...
& 06/17/2016 08:47:39 ...
BL" four_bit_ripple_adder_th3. vhdl w WHDL 1 08/13/201709:10:20...
&1:' full_adder.do TCL - 05/24/2017 01:28:33 ...
BL' full_adder.vhdl WHDL 2 06/15/2017 1:03:04...

E
(=
=
o
]
-
B
HE
o
=
a2
m
(s}
S
w

f={ Transcript e + A x|

reading C:/Programs/Chalmers/EDA/Mentor/questasiméd_l10.7a/winéd/.. /modelsim.ini -

Loading project four bit ripple adder project

$# Compile of four_bit_ripple_adder.vhdl was successful.

Compile four_bit ripple_a _th3.vhdl was successful.

Compile of full adder.vhdl was successiul.

3 compiles, 0 failed with no srrors.

$# Compile of four_bit_ripple_adder.vhdl failed with 3 srrors.

Compile four bit_ripple adder_ tb3.vhdl was successful.

Compile of full adder.vhdl was successiul.

3 compiles, 1 failed with 3 errors.

QuestaSim = -
Project : four_bit_ripple_adder_project | <Mo Design Loaded = <MNo Context> P

Figure 12 Compilation with error

Errors will give a red line in the Transcript window

Compile of four bit_ripple gdder.vhdl failed with 3 errors.

And in the Status column you get a red cross bl at the file with the error(s). In Figure 12 we
can see that there is an error in the file four_bit_ripple_adder.vhdl.

If you double click on the red error line in the Transcript window a popup window will show
the line(s) in the code where the error(s) occurred accompanied by an explanation that will
hopefully assist you in correcting the error(s), Figure 13. Some messages are a bit cryptic, but
you will by experience learn what they mean.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 12

If you double click on one [.. _ripple_addervhdl -- Unsuccessful Compile s
H H voom -work work -2002 -explicit —-wopt -stats=none {Z:\EDA\DATO0S%3\131%\docs‘\Quest |
Of the Ilne(s) descrlblng the aSim\Word\Introduction to_QuestaSim\VHDL\four bit ripple_adder projecthfour_bit

1 1 ripple_adder.vhdl}
error(S) the Offendlng Ilne QuestaSim-64 vecom 10.7a Compiler 201%.03 Mar 27 2018

in the code will be high- |~ it s aimi
lighted, Figure 14. Start |- Losding packags std logic llé4
) -- Compiling entity four bit ripple adder
from the f|rst error mes- -- Compiling architecture arch four bit_ripple_adder of four_bit_ripple_adder
¥ Error: Z:\ 083413 WQuestaSim\Word\Introduction to_QuestaSim\VHDLY
Sage. For some myster‘ious four_bit_rip der.vhdl (21): Expecting & type n
. . . ame, Lound sig
reason the built-in editor & Error: E \ im\Hord\ Introduction to_QuestaSim\VHDL\
. . four_bit_rip b dder.vhdl (21): Bad resclution fun
will show when you do this |ccion
** Error: Z: Introduction to_QuestaSim\VHDLY
although VOU may have four_bit rip our_bit_ripple_adder.vhdl(21l): nsar ":": (vcom-15

been forced to use an ex-
ternal editor before. Note
that this could have the
result that the same file is L 5
open in both the internal Ciose |
and external editor, so you
must make sure to edit the

correct version.

Figure 13 Error window

In many cases the highlighted line

is not the one with the actual er- BL' 7\EDA\DAT09311819\docs\QuestaSim\Word\Intro.. — O X
ror but the error is on the line File Edit View Tools Bookmarks Window Help

above or some lines above the 5 VHBL\fourbit siopie adder projectifour bif ripple adder.vhdl -Default i 4] #] x|
highlighted line. The reason for J =

i 32 PO - |
this is that the compiler doesn’t J
notice the error until it finds that J : 2 W] J 0% B % “ e e O - |
the next line is incorrect because

of the earlier error. '\
In the example in Figure 13 the
actual error is a missing semicolon

. . g LIBRARY i H
on line 20 although the compiler Sl U icce.ond logic 1164.A1L;
reported an error on line 21 and 1
as we saw in Figure 13 this result- 10 B PORT(a:IN STD - ;

. . 11 b:IN :
ed in three errors and these will 12 v:OUT STD)

13 o cout:0UT STD_LOGIC);:

a“ g0 away When we add the 14 END four kit _ripple_adder;
missing semicolon. 15 =

, . . 16 B RRCHITECTIURE arch four bit ripple adder OF
Don’t be discouraged if you get a 17 four bit_ripple_adder
lot of error lines in Figure 13. In - E COMPONENT
many cases a small error can lead R al
to a number of other errors and 22 cin:IN STC

. . 23 5:00UT 5TC

after correcting this small error a 21 L cout:OUT 5TD_LOGIC);
lot or all of the error messages “ EIID COMPONENT full addes; N
might disappear but correcting an Ln: 30 Col: 0 y

error can also give several new
errors since after the correction

Figure 14 Code with highlighted error

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 13

the compiler can continue into parts of the code that wasn’t analyzed before.

Work your way through the errors by starting with the first one, recompile and if necessary
move on to the next error.

When you have corrected all the errors and the compilation is successful you are ready for
simulation.

Simulating the design

You start the simulation with =
the menu choice

Design] VHDL] Verilog] Libraries] SDF] Others] ﬁﬂ
Simulate -> Start Simulation *Name e [path =
= work Library Z:/EDA/DATOS3 1811
. . . . +HE] full_adder Entity 7:/EDA/DATO93/151¢
and this will give a popup win- #HE] four_bit_ripple_adder_th3 Entity Z:/EDA/DATOS3/151¢
dow Figure 15 Where you I,—E four_bit_ripple_adder Entity Z:/EDA/DATO93/181¢
7 7 —
K . M _optl Optimized. ..
choose what design to simulate, M _ont Optimized, ..

. =} vitalzo00 Library SMODEL_TECH/. fvit
you can simulate the test bench, i, vhdopt b ltray $MODEL TECH] fvh
the top-level design or a com- -l vh_uxo1v_iib Library ~ $MODEL_TECH/..fvh

. . +1-4HL verilog Lbrary ~ SMODEL_TECH/..jve «|
ponent. The simulation sources | o
are in the work folder but de- S fesaiuton
fault this folder isn’t open so . =
you must open it. What you see
. . Optimization
in the work folder are the enti- o o .
. .] [V Enable optimization Optimization Options. ..
ties from your design files.
You can also start the simulator ok | cancel

from the Transcript window

using the command Figure 15 Start simulation window

vsim <name of top entity>

In the Start Simulation window, there is also an important option named Optimization. By
default, Enable optimization is checked and optimization is activated and this means that
only the top-level signals and ports are certain to be visible since the optimization might
have resulted in the compiler doing a redesign that removed or changed the lower level sig-
nals. In this case, you will not be able to see variables within processes either since they
might be optimized away. The optimization will also remove all signals that are not contrib-
uting to any outport signal.

When we debug the design, it is often very practical to see variables and lower level signals.
To do this we would like to disable optimization. There is a bug, so it will not work to just
unchecking the Enable optimization option.

We can avoid optimization and keep visibility of the design components if we click on the

Optimization Gpmns"'| button in the Start simulation window before we select the source to

simulate. You can only click on this button if Enable optimization is checked.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 14

The window in Figure 16 will
show and here we can change
the active choice from No de-
sign object visibility to Apply
full visibility to all modules
(full debug mode). There are
also some other tabs in this
window where you can fine-
tune the level of optimization,
but we skip that.

In Figure 15 we can see that the
work folder contains not just
the design modules but also
something called _opt. This is
the result of an earlier simula-
tion that we ran with optimiza-
tion.

Another way to start the simulation is to right click on the file you want to simulate in the
work folder of the Library tab and then select to simulate without optimization or with one
of the optimization levels available. To run without optimization, you must first activate the

Visibility] Libraries] QOptions] Coverage]

Design Object Visibility (+acc)
™ No design object visibility
* Apply full visibility to all modules(full debug mode)
" Customized visibility

¥|Module |Access Flags

|Children

Add...

Figure 16 Optimization Options window

Madify. ..
Delete

|

oK Cancel

window in Figure 16 and activate Apply full visibility to all modules (full debug mode).

When you have selected the design to simulate the GUI will change its appearance, Figure

18, a Simulation tab lﬂj has been added and we go into simulation mode.

DATO093

Introduction to Electronic System design
Introduction to QuestaSim
page 15

W Questa Sim-64 10.7a - [m] X
File Edit View Compile Simulate Add Structure Tools Layout Bookmarks Window Help

556 PR@BI0- Ak

Columnlayout [211Columns - ‘ P SRE. “ b 20 S A2 T3

Lot [similace Wl | .-G -G

de-sf s omm e || alaualip]| St ew B o HdEERKs 0e|

T TR

EESS

& sm -Default —— ﬂﬂﬁl “ Objects ﬂﬂﬁ‘ B Wave - Default + A x|
*|Instance |Design unit |Design unit type [Top Category |vi

B) four bit_ripple_ad... four_bit_ri... Architecture DU Instance
+-[l four_bit_ripple... four_bit_ri... Architecture DU Instance +
@ line_35 four_bit_ri... Process - +
P line_38 four_bit_ri... Process +
@ test_proc four_bit_ri... Process - +
[l standard standard Package Package +
H textio textio Package Package +
W std_logic_1164 std_logic_1... Package Package +
B numeric_std numeric_std Package Package +

<
m Library l\ﬁl Project

|
@ |

0

| Internal
| Internal
| Internal

A Transcript

Start time: 13:18:38 on Aug 15,2018

** Note: (vsim-800%) Loading existing optimized design _optl

Loading std.standard

Loading std.textio (body)

¢ Loading ieee.std logic_ll64(body)

Loading ieee.numeric_std{body)

Loading work.four_bit_ripple_adder_tb3({arch four kit ripple_adder th3)#l
Loading work.four_bit_ripple_adder(arch_four_bit_ripple adder)#l

Loading work.full adder{arch full adder)#l

e gL i R e [E

VSIM 8

EEEY
=l

|iject: four_bit_ripple_adder_project |M

ow: Ons Delta: 0 |sim:Ifour_bit_ripple_adder_ﬁ)?:

R

Figure 18 GU! in simulation mode

In Figure 18 you can see the simulation of
a test bench for a 4-bit ripple adder with
four full adders as components.

We get a new window, the Objects win-
dow, Figure 19.

In the Objects window we can see all the
generics, ports and signals in the entity
that is activated in the Sim tab. In Figure 18
the top-level design is activated so the sig-
nals in the top-level design are visible. We
can see that we have three 4-bit vector sig-
nals given on hexadecimal format. The sig-
nals all have unknown values X since we
haven'’t started the simulation yet.

If we click on one of the plus signs & by one
of the 4-bit signals, here the
a_tb_signal, Figure 20, we will see the
individual bits within the current vector

4 Objects 4 A %]

Signal Internal

a_tb_signal
b_th_signal
y_th_signal

Signal Internal
Signal Internal

Figure 19 Objects window

Signal Internal

Signal Internal

Signal Internal

Signal Internal

(o) Signal Internal

Signal Internal

b_th_signal
y_th_signal

Signal Internal

Figure 20 Objects window with opened vector

DATO093

Introduction to Electronic System design
Introduction to QuestaSim
page 16

signal. The letter U indicates that the bits haven’t been assigned any values yet. You can go
back to just seeing the vector by clicking on the menu’s sign [=! that have replaced the plus
sign.

If we activate one of the components in the sim window the Objects window will change
and the signals within that component will be visible, Figure 21. You cannot see variables
within processes this way, but we shall see that there are other ways to make them visible.

In Figure 21 we can see the signals in the $u objects s | x|
component Four_bit_full_adder that

the test bench is using but is we go down B a Signal In

one level more we will not see any signals f o Efgnf" in
within the ful l_adder component since ,: ot :,E::: :::j:
they have been optimized away. If the do the 4 |;i-r|t_5igr|a| Signal Internal

simulation without optimization they will be
visible though and in Figure 22 we see the
signals of one of the 1-bit full adders.

Figure 21 Objects window for the four bit ripple
adder component

There is also a Wave window where we will $ Objects ———— + &) x|
see the resulting waveforms from the simula-
tion, Figure 23. Signal

i b Signal

4 dn 0 Signal
4
4

w5 Signal Out
. cout Signal Out

Figure 22 Objects window for a component

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 17

W Cuesta Sim-6410.7a — [m} X

File Edit View Compile Simulate Add Structure Tools
B-2H o $BE I O-ME
ColumnLayout [311Colurns wl | Help | i
Layout m:’ ‘

Do aCo e | Sech: | | @i # H oEENERY

ELLEEIRER I

@m_pefajt
*|instance |Design unit _|Design unit type _|Top Category _|vi¢
- four_bit_ripple_ad... . Architecture
+- [l four_bit_ripple... four_bit_ri... Architecture DU Instance +
& line__35 four_bit_ri... Process - + al Internal
o line__33 four_bit_ri... Process +
o test_proc four_bit_ri... Process - +
W standard standard Package Package +
W textio textio Package Package +
W std_logic_1164 std_logic_1... Package Package +
W rumeric_std numeric_std Package Package +
1 | v
Mubrary JF_;[Project {Eﬂm | 4 }l
] Transcript
T R e R R S EEN S
Start time: 13:18:38 on Zug 15,2018
‘% Note: (vsim-80039) Loading existing optimized design _optl
Loading std.standard
Loading std.textio{body)
Loading ieee.std_logic_l1€4 (body)
Loading ieee.numeric_std (body)
Loading work.four bit ripple adder tb3({arch four bit ripple adder th3)#l
Loading work.four bit ripple adder(arch four bit ripple adder)#l
Loading work.full adder(arch full adder)#l
vm & ﬂ

‘ |ProJect : four_bit_ripple_adder_project |Now: Ons Delta: 0 |54m:,fFourfbltjlpplejdderJ:S

N

Figure 23 GUI in simulation mode with Wave window

If the Wave window isn’t open, you can open it by the menu choice
View -> Wave

If you haven’t opened the Wave window it will automatically show when you choose to add
items to it. You add a signal to the Wave window by right clicking on the signal in the Ob-
jects window and select Add Wave.

You can also type

add wave <signal_1 name> [<signal_2 name>]

In the Transcript window. Notice that when you add more than one signal the signal names
should be separated by a space.

You select several of the signals to be shown in the Wave window by using the normal Win-
dows way of selecting more than one object in the Objects window and then right click and
select

Add -> To Wave -> Selected Signals

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 18

You can also drag the selected signals from the Objects window to the Wave window.
You can choose

Add -> To Wave -> Signals in Region

instead which will add all signals at the current level of hierarchy to the Waveform window.
You can also select

Add -> To Wave -> Signals in Design

This will not only add the signals in the region but also signals in sub designs like components
to the Wave window. The names of the signals from sub designs show up like

<name_of _sub_circuit>/<signal_name>

To see variables within processes you need to add them by using commands in the Tran-
script window or using do files (more on this later). In the Transcript window or in the do
file you write

add wave <name_of_process>/<variable_name>

As you can see you need to name the process to make this work. For this to work you must
also have started your simulation without optimization or have changed No design object
visibility to Apply full visibility to all modules (full debug mode) in the Optimization Op-
tions window, Figure 16.

As you can see in Figure 23 the Wave window in the GUI is quite small and of little use as it

is. Unlock the window by clicking on the icon E in the right top corner of the window to
turn it into a floating window and drag out the window to a useful size.

In the Waveform window, Figure 24, the top-level signals and ports and the signals and
ports from the full_adder comp_1 are added. The window will have three regions.

£ Wave — [m] X
File Edit View Add Format Tools Bookmarks Window Help

| Wave - Default]] x|
B EE S B0 O NE | SRELE || R e I T IR IR

HEE ETIEELYrEY

| |
ffour _bit_ripple_adder_th3/a_tb_signal -l
[four_bit_ripple_adder_th3/b_th_signal
i _adder_tb3fy_tb_signal
i _adder_th3/four_bit_ripple_adder_comp/full_adder_comp_0/a
[]
2

. adder_tb3/four_bit_ripple_adder_comp/full_adder_comp_0/b
_adder_tb3/four_bit_ripple_adder_comp/full_adder_comp_0/cin

bit_r
. ffour_bit_ripple_adder_th3/four_bit_ripple_adder_comp/fuil_adder_comp_0fs
. ffour_bit_ripple_adder_th3/four_bit_ripple_adder_comp/fuil_adder_comp_Dfcout

 ors |
L] [y] [>]

0ns to 15795 ns [four_bit_ripple_adder_tb3/a_tb_signal

Figure 24 Waveform window

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 19

e A list of the values of the objects at the time given by the position of the cursor line in the
Wave display

e You can change the radix of the signals. You can for example watch the value of a vector
in binary, hexadecimal, decimal (signed) or unsigned form. The choice of radix can be
done on each signal individually. You change the radix by right clicking on the signal name
or the signal value and selecting Radix and then select the radix you want. By selecting
more than one signal before you change the radix you can change their radixes all at
once. You can also set the radix from the do file. You can also add the same signal several
times and then select different radix in the instances.

e A waveform area showing the waveforms graphically

The width of these regions can be changed by grabbing the separators between the regions
with the mouse and dragging them. This might be necessary to be able to see the full signal
names.

Before you start running simulation time all ports and signals will have undefined values.
They will not take on any default values, so you have to make sure to give them appropriate
values. This is different from the real synthesized devices where the signals always will have
some kind of value. Any objects that are given values in their declaration will take on these
values but these values will only work in simulation and not in hardware. Since this means
that the behavior is different in simulation and synthesis it is not wise to set default values to
signals. Instead use some kind of reset phase to set the start values for your simulation. By
doing that you will also get start up values for the synthesized design. U indicates unassigned
inputs while X indicates undetermined values on outputs. The X might be there because it is
an output signal that hasn’t got any value yet since we haven’t run any simulation time. The
cause of the X can also be that the signal is connected to two different terminals that try to
write different values to the node.

You can give all our simulation commands in the Transcript window although putting them
in a script file, a do file, is a better choice since by doing that it’s simple to repeat exactly the
same simulation when you have done some editing of the source code.

Since the do file is a script file it’s just a text file that contain a list giving exactly the same
commands as those you can input from the Transcript window with one command per line.

Simulation commands

You give the signals values by using the command

force <signal_name> <value>

For binary scalars, you can force the value to the allowed values for the data type. You have
for example nine (9) choices for a std_logic scalar. The command

force a Z

will set the signal to a high impedance level Z.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 20

For vectors, you give values to all the bits using for example

force b 4’b0110

This command says that we are giving the vector b a 4-bit (4) binary value (b) 0110. To use
decimal, octal or hexadecimal values we use d, 0 or h as type definers instead, still giving the
number of bits as a value. If the value is too big for the given number of bits, the MSB’s will
be removed from the value.

force b 4°h6

and

force b 4°d6

will give the same result as the first binary command.

To set a negative number you don’t have to get the value using 2’s complement. To set the
value -6 you can just write

force b -4’b0110

force -47h6
or
force -47d6

The first digit, here 4, that should give the number of bits doesn’t seem to matter. The value
will adopt to the format of the signal the value should control. If the number of values is big-
ger than this digit, then the last values will be truncated.

In earlier versions of QuestaSim binary representation was default and you could give a bina-
ry value as

force a 1110 Incorrect

but that is no longer valid.
You can also give the time when the signal should get the new value in the force state-
ment.

The time can be given as just a number

force a 0 100

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 21

where the time is given in the default time base of the simulator which is nanoseconds (ns).
The command can also be given with a time base that might not be the default one

force a 0 100ns

The latter form might be somewhat clearer. Both commands mean that the signal a should
be set to zero (0) at time 100 ns counting from the current simulation time.
With the command

force a 0 @100

you will set the signal a to zero (0) at the absolute simulation time 100 ns from the start of
the simulation instead of at 100 ns from the current time. You can only use this command to
set values at times that haven’t passed in the simulation yet.

You can also give a sequence of values at different times in one command. The command

force a 0 0,1 100us,0 150us

means that the signal a should be set to zero (0) at current time, be set to one (1) 100 us
(microseconds) later and then be set to zero (0) again at 150 us from current time. The or-
dering of the times must be consecutive.

You can create a repeating signal, for example a clock signal, with the command

force a 0 0,1 50ns —-repeat 100ns

which means that the signal a is set to zero (0) at the current time, set to one (1) 50 ns later
and then a time period of 100 ns is repeated infinitely. We have created a symmetrical clock
signal that starts with a zero (0) and has a period of 100 ns.

The force command will not run the simulation, it will only set the values, and nothing will
happen until you run some simulation time. Remember to set all signals before you start the
simulation so that none of them are undefined. An undefined signal in the Waveform win-
dow will be indicated in red.

You can give more than one Force command, one after the other, and they will all be effec-
tive at the same time as long as you don’t run any simulation time in between. If you run
some simulation time between two force commands, then the latter command will take
effect after that simulation time. Avoid changing more than one signal at the same time
though since there may be some confusion in the timing of the signals. It’s only in simulation
that signals can change at exactly the same time, in reality they don’t.

After this you will have to set the time that you want the simulation to run. You do this with
the command

run <time_to_simulate>

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 22

A force command that is not followed by a run command will be meaningless since no
simulation time will be run.

You can find an example of the Waveform window for a simulation in Figure 25 where the
test bench for a 4-bit adder is simulated for a number of input stimuli using a test bench. The
2 signs by the names of the vectors indicates that the display can be expanded to show the
individual bits of the vector. This has been done for vector a and here you see a = sign to
shrink it back to just a vector.

1| Wave — m] X

File Edit View Add Format Toels Bookmarks Window Help
£ Wave - Default

B-2@ S iR AT

| RH|| p- pemm] el MUDEHS AW TR
NEEEEE EET I EELYEEL

& Jfour_bit_ripple_adder_th3/a_tb_signal
@)
> (2
»]
= 0
ffour_bit_ripple_adder_th3/b_tb_signal
ffour_bit_ripple_adder_th3/y_tb_signal
ffour_bit_ripple_adder_th3/a_tb_signal
Jfour_bit_ripple_adder_th3/b_th_signal
Jfour_bit_ripple_adder_th3/y_th_signal
Jfour_bit_ripple_adder_th3/y_th_signal

Cursar 1 [231ns :
e e

0ns to 504 ns Jffour_bit_ripple_adder_th3/a_tb_signal £

Figure 25 Waveform window with simulation result

When you left click in the waveform a cursor will show at that position accompanied by the
time of that cursor position and the values at that time are shown in the Msgs column.

In Figure 25 the 4-bit input signals a and b are shown twice, once in hexadecimal form and
once in decimal (unsigned) form. The output vector y is shown three times, in hexadecimal
form, in signed decimal form and in unsigned decimal form. There is a cursor at time 231 ns
and the signal values at that time are given in the Msgs column.

In the Wave window, you can do zooming operations. You have a number of zooming op-
tions in the

View -> Zoom

menu. You can zoom in and out, zoom in around the cursor, zoom the entire simulation time
or zoom a selected region. There are also some quick buttons for zooming

YW WNTEN

where you can zoom in ® and out Q, zoom the entire simulation
Q)

& and zoom between two cursors A .

You can add more cursors to the display by right clicking on the time scale in the waveform

window and select

time ? , zoom in around the cursor

New Cursor @ <time>

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 23

Where <time> is the position of your mouse pointer.

When you have more than one cursor you will not only be able to see the times of the cur-
sors but also the time differences between the cursors.

The simulation can be rolled back to time zero with the command

Restart

Automating the simulation, do files

When you simulate you can give the stimuli and run the simulation interactively, but this will
be tiresome and error prone and if you want to rerun the same simulation sequence, some-
thing you most likely want to do after error correction and/or redesign of your construction,
you have to remember and type in the sequence to run. Things are a bit simplified by the
fact that you can navigate among the given commands using the up and down keys on the
keyboard, there is a history list for the commands.

To make things even simpler you can run the entire simulation using a script file, a do file in
QuestaSim language.

To do this you create a text file with the commands that you want to run, one command per
line in the order you want them to be executed.

Normally the do file has the ending . do but this is not default which means that you cannot
leave out the ending when you type the name of the do file that you want to run. The file
can actually have any ending but it’s good practice to let it be identified by its . do ending.

You can add the do file to the project. This has no significant meaning to the design, but it is
a way of keeping track of the files belonging to the project and it means that you can easily
open the file by double clicking on it in the Project window and you don’t have to use a file
browser to open the file. If the do file is added to the project, it can also be run by right
clicking on it in the Project tab and selecting Execute. By doing it this way the project will
keep track of in what folder the do file is placed and you don’t have to give any search path
although the file might not be placed in the project folder.

You run the do file from the Transcript window by typing

do <file_name.do>

don’t forget the file ending. This will only work if the do file is placed in the project folder, if
it’s not, you will have to include the search path. If you type the first letter(s) in the name of
the do file and then hit tab the system will try to match what you have typed to the file
name and fill in the rest of the name. This will only work as long as the string of letters is
unique and doesn’t match more than one file. If the string matches more than one file these
files will be shown below the Transcript window and you can use the mouse to select the
file you want to use.

You can include the setting up of the Wave window and the addition of the signals you want
to see in the do file. You can even write a do file that does the whole flow; compiles the

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 24

design files, starts the simulator and runs the simulation but in most cases, you don’t gain
much from that since you need to check for errors in the design before you move from com-
pilation to simulation.

You start the do file by restarting the simulation and removing all the signals from the Wave
window with the command

restart —f —nowave

This options in the command will have no effect the first time you run the simulation, but it
will restart and clean things up the next time you run it.

After this you should give the same commands as the ones you earlier typed in the Tran-
script window to make them run directly but now you place the commands in the do file in
the order you want them to run instead of manually giving them as a sequence of com-
mands in the Transcript window.

You start by declaring the windows you want to see. The command

view signals wave

means that you want to see the Objects (signals) and Wave windows.
Then you add the signals that you would like to see in the Wave window with the command

add wave <space_separated list _of _signals>

Notice that the list is space separated, there are no commas or semicolons. For example

add wave clock a b

will add the signals clock, a and b to the Wave window.
You can set the radix of the displayed signals by including it in the command

add wave clk count —radix unsigned count

Here we add the signal count twice, once with the default radix hexadecimal and once with
the radix unsigned decimal. You have the same selection of radixes as we described in the
Wave window earlier.

The radi1x command will stick for the rest of the line, so you have to change it if you want
another radix for coming signals. Another way of going back to the default radix is to use a
new add wave command for the rest of the signals.

You can also watch variables although they are local to a process but then you have to tell
the simulator in which process they are located and this means that this process will have to
have a name. If you have a variable test_OK in the process named test_process you
would write

add wave test process/test OK

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 25

to see the variable test_OK in the Wave window.
The same kind of command can be used to see signals inside components that are instanti-
ated in the design, you write

add wave name_of_instantiated_component/name_of signal

As we described earlier this will not always work though since the signals might be optimized
away. You will then have to start the simulation with full visibility as described earlier.

Comments can be added to the do file. The comments should be placed on separate lines,
not on lines with code and the comment should start with a # sign.

Example

Let’s take an example. To get just a small code section we will use a 1-bit full adder.

We start by creating a new project in some folder. We call the project ful I _adder. At
the same time we create a new design file called ful l _adder.vhdl.

We write our VHDL code in the design file

LIBRARY 1eee;
USE i1eee.std _logic_1164_ALL;

ENTITY full _adder IS
PORT (a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
s:0UT STD LOGIC;
cout:OUT STD LOGIC);
END full_adder;

ARCHITECTURE arch_full _adder OF full _adder IS
BEGIN
s<=(a XOR b) XOR cin;
cout<=(a AND b) OR
(a AND cin) OR
(b AND cin);
END arch_full_adder;

and compile the code. If we have written the code correctly the compilation should be
successful.

Let us move to simulation. We start by creating the simulation script, the do file, and call
this file ful l_adder .do.

To test all possible signal values, we have to use eight different input stimuli, Figure 24.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 26

cin

cout

1 2 3 4 5 6 7 8

Figure 24 Input and output waveforms for the full adder

We want to see all signals in the simulation and to make the simulation thorough we go
through all signal combinations. Let’s say that we let 100 ns pass between each signal
change. In the interest of not complicating things at the moment we will diverge from the
recommendation to only let one signal change value at any given time. We write the do
file

restart —fF —nowave
view signals wave
add wave a b cin s cout
time 0 ns 000
force a 0

force b 0O

force cin O

run 100ns

time 100 ns 100
force a 1

run 100ns

time 200 ns 010
force a 0

force b 1

run 100ns

time 300 ns 110
force a 1

run 100ns

time 400 ns 001
force a 0O

force b 0O

force cin 1

run 100ns

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 27

time 500 ns 101
force a 1
run 100ns
time 600 ns 011
force a 0
force b 1
run 100ns
time 700 ns 111
force a 1
run 100ns

We could rewrite the file by assigning values signal by signal

restart —f —nowave
view signals wave
add wave a b cin s cout
force a 0 Ons, 1 100ns,0 200ns,1 300ns,0 400ns,
1 500ns,0 600ns,1 700ns
force b 0 Ons,1 200ns,0 400ns,1 600ns
force cin 0 Ons,1 400ns
run 800ns

The line split in the Force a command is editorial, it cannot be there in the do file. It can
be split into two Force commands though. You will either have to keep it on one line or
split it into two force commands.

This way of giving stimuli gets quite tiresome and a bit hard to keep track of. If you study
the three input signals you can see that they behave as three repeating clock signals with
periods of 200 ns, 400 ns and 800 ns and they all start with the value zero (0). This means
that you could write the do file as

restart —f —nowave

view signals wave

add wave a b cin s cout

force a 0 Ons, 1 100ns —-repeat 200ns
force b 0 Ons,1 200ns —repeat 400ns
force cin 0 Ons,1 400ns —repeat 800ns
run 800ns

In the Wave window, you can see the simulated signals zoomed out to a full window,
Figure 25. The cursor is placed at time 351,489 ns and in the values region, you can see
what values that the signals have at that time.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 28

=
File Edit View Add Format Tools Boockmarks Window Help
£| Wave - Default

-
S = a:z;;a.g,;a%.,;mﬁu é@@i@ﬁ“ﬂ-f«wi ons S ELEELEE & ﬂﬂMJ?ﬁt vﬁ,\|
A-B-GE- G| [x B B[LD S]] s BT
LA EP

0ns to 840 ns

Figure 25: Simulated waveforms for a full adder

Testbenches

We have looked at running a simulation in QuestaSim but so far we have only generated
input stimuli and we evaluate the results by looking at the resulting waveforms. What if we
could also write code to test the results from
the simulation? This is what Testbenches

Testbench
are all about.
Instead of directly simulating your design . 8
you. use it as a componer.1t in a system Ieyel "S = L o g é
design, a testbench. This top-level design SE|l o | Design as ° =
. . . %]
generates input stimuli to the component, %S compo- % =
=

your design, and can also read the resulting 3 glo—{ nent c'éu >

=
outputs and check if they are valid, Figure — O T=
26. —O— e

There are three types of testbenches. They
don’t really have any names but | call them
type 1, 2 and 3.

Figure 26 Testbench structure

e Type 1: The testbench only generates input stimuli and it’s up to the user to check the
resulting output signals. This means that it behaves just like a do file

e Type 2: The testbench generates input stimuli and checks the results. It uses a test out-
put, a flag often called test_OK_signal, to signal if the result is correct. The value is
held high (1) as long as the results are correct. As soon as the result is incorrect the flag
will go low (0) indicating the error and it will stay low from that on although the results
later in the simulation might be correct

e Type 3: The testbench generates input stimuli and checks the results. Instead of using a
flag it will issue a message when an incorrect result occurs. It will also indicate at what
time in the simulation run the incorrect result occurred. It’s up to the designer to formu-
late the messages so it can be quite extensive. We can decide either to stop the simula-
tion when an incorrect result occurs or continue with the simulation. In the latter case,
more messages will be presented if new incorrect results occur

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 29

Example

Let’s write all three kinds of testbenches for the earlier ripple carry adder design.
In all three designs, we will us our full adder as a component. The full adder had the entity

ENTITY full _adder 1S
PORT (a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
s:0UT STD LOGIC;
cout:0UT STD_LOGIC);
END full_adder;

The basic testbench design is the same in all three cases. The difference is if and how we
check the simulation results.

The entity for all testbenches will be the same and the architecture for the testbench of
type 1 will be part of the architectures for the testbench of type 2 and 3 so we start with
the type 1 testbench.

Testbench type 1
First the entity of the testbench

ENTITY full_adder tbl IS

END full _adder tbil;

Notice that the entity is empty, we don’t have any in- or outputs, we only have internal
signals.

We create an architecture where we instantiate our full adder as a component and de-
clare signals that we connect to the inputs and outputs of the full adder.

ARCHITECTURE arch_full_adder_tbl OF
full_adder_tbl IS

COMPONENT full_adder IS
PORT(a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
s:0OUT STD LOGIC;
cout:0UT STD_LOGIC);
END COMPONENT full_adder;

SIGNAL a_tb _signal:STD LOGIC;
SIGNAL b _tb signal:STD LOGIC;
SIGNAL cin_tb_signal:STD LOGIC;
SIGNAL s _tb _signal:STD LOGIC;
SIGNAL cout_tb signal:STD LOGIC;

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 30

BEGIN
full_adder_comp:
COMPONENT full_adder
PORT MAP(a=>a_tb_signal,

b=>b_tb_signal,
cin=>cin_tb_signal,
s=>s_tb_signal,
cout=>cout_tb_signal);

To complete the basic architecture, we assign values to the signals connected to the
inputs of the component. Notice that we can’t assign values directly to the inputs of
the component but we must use signals for this. We generate the same signal pattern
as we had in Figure 24.

a_tb _signal<="0",
"1" AFTER 100 ns,
"0" AFTER 200 ns,
"1" AFTER 300 ns,
"0®" AFTER 400 ns,
*1" AFTER 500 ns,
0" AFTER 600 ns,
"1" AFTER 700 ns;
b _tb _signal<="0",
"1" AFTER 200 ns,
"0" AFTER 400 ns,
*1" AFTER 600 ns;

cin_tb_signal<="0",
1" AFTER 400 ns;

The first signal assignment without a time stamp sets the signal value at time zero (0)
while the following assignments sets the value at the given times.

In general, we don’t use time in VHDL code since hardware can’t handle that but we
can use it here since the testbench is just for simulation and will never be placed in
hardware.

We can simplify the assignment a bit in a similar way to how we used clock signals in
the earlier do file.

a_tb_signal _process:
PROCESS
BEGIN
WAIT FOR 100 ns;
a_tb_signal<= (a_tb_signal);
END PROCESS a tb signal process;

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 31

b _tb signal process:
PROCESS
BEGIN
WAIT FOR 200 ns;
b_tb _signal<= (b_tb_signal);
END PROCESS b_tb signal_process;

cin_tb _signal_process:
PROCESS
BEGIN
WAIT FOR 400 ns;
cin_tb_signal<= (cin_tb_signal);
END PROCESS cin_tb_signal _process;

For this to work we must assign default values, start values, to our input signals other-
wise the simulator don’t know what values to invert. We change the signal declara-
tions to include these.

SIGNAL a_tb _signal:STD LOGIC:="0";
SIGNAL b_tb_signal:STD LOGIC:="0";
SIGNAL cin_tb_signal:STD LOGIC:="0"%;

Once again this is something we shouldn’t do when we write code for hardware. De-
fault values will not transfer to hardware. For this to work in hardware we need some
kind of reset phase.

We still need a do file where we can declare what signals we want to see in the Wave
window and to run some simulation time.

restart -f -nowave

view signals wave

add wave a_tb_signal b_tb_signal cin_tb_signal
add wave s _tb_signal cout_tb_signal

run 780ns

Here we have two add wave commands just to shorten the command lines.

When you run the simulation, you might need to simulate without optimization. The
reason for this is that since we only have signals and no output ports the simulator as-
sumes that these signals can be optimized away as they don’t connect to any ports.

Testbench type 2

Here we keep the testbench type 1 but expand it to include checking the resulting out-
put signals.
First we add a signal to indicate the test result

SIGNAL test OK signal:STD_LOGIC;

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 32

Instead of a signal we can define test_OK as an out port if we like. The result will be
the same.

Then we add a process for the test. Here the process is shortened so it doesn’t take up
that much space.

test_proc:
PROCESS
BEGIN
test OK _signal<="1";
WAIT FOR 50 ns; -- 50 ns 0+0+0
IF s tb _signal/="0" cout_tb_signal/="0" THEN
test OK_signal<="0";
END IF;
WAIT FOR 100 ns; -- 150 ns 1+0+0
IF s tb _signal/="1" cout_tb_signal/="0" THEN
test OK_signal<="0";
END IF;

- Five wait statements have been removed to shorten
- the text

WAIT FOR 100 ns; -- 750 ns 1+1+1
IF s tb signal/="1" cout_tb_signal/="1" THEN
test OK_signal<="0";
END IF;
END PROCESS test proc;

Notice that the signal test_OK_signal is assigned the default value one (1) when
we start the process and then will be set low (0) as soon as an incorrect signal occurs,
and the signal will never be set to one (1) again unless we run for so long time that the
process starts all over again.

We use the same do file as for testbench type 1 with the difference that we add
test_OK_signal to the signals we want to see in the Wave window.

Testbench type 3

The only thing that really change for the testbench type 3 is the test process, but we
can take away the test_OK_signal since this will not be used any more. Once
again the process is shortened.

test_proc:
PROCESS
BEGIN
WAIT FOR 50 ns; -- 50 ns 0+0+0
ASSERT (s_tb_signal="0" cout_tb_signal="0")

REPORT "Error for 0+0+0"
SEVERITY ERROR;

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 33

WAIT FOR 100 ns; -- 150 ns 1+0+0

ASSERT (s_tb_signal="1" cout_tb_signal="0")
REPORT "Error for 1+0+0™

SEVERITY ERROR;

- Five wait statements have been removed to shorten
- the text

WAIT FOR 100 ns; -- 750 ns 1+1+1
ASSERT (s_tb_signal="1" cout_tb _signal="1")
REPORT "Error for 1+1+1"
SEVERITY ERROR;
END PROCESS test proc;

We can realize that this file can be quite long if we have many things to test.

In the process the ASSERT statement indicates what values that should be true in the
test and if they are then no message will be issued.

REPORT gives the message that is issued if the assertment is false. In the example, it’s
a simple text message but it can be more complicated including signal values and other
things in the message. Beside the REPORT message the time when the message is as-
serted will also be written to the Transcript window.

SEVERITY indicates what should happen at an incorrect output signal. SEVERITY
can have four different values that will be given different headers

o NOTE, this is only a comment it’s no real error

e WARNING, indicates something to look out for but it’s not an error

e ERROR, used when an error is detected but the simulation will not be stopped

e FAILUE, used when an error is detected and is so severe that the simulation is
stopped

It’s up to the designer to decide what should be looked upon as NOTE, WARNING or
ERROR since the behavior is the same in all three cases.

DAT093
Introduction to Electronic System design
Introduction to QuestaSim
page 34

