

Department of Computer Science and Engineering
2018-08-15

CH ALMERS UNIV ERSI TY OF TEC HNO LO GY
Department of Co mputer Science and Engineerin g page 1
Division of Co mputer Engineering

DAT093
Introduction to Electronic System

Design
Introduction to QuestaSim

Introduction
QuestaSim is a tool for the simulation of code written in VHDL, Verilog and/or SystemC. We
will focus on VHDL. The tool is just for simulation it has no options for the synthesis of hard-
ware.
QuestaSim was created by a company called ModelTech (www.model.com). The company is
nowadays a subsidiary of Mentor Graphics (www.mentor.com) and the tool is an extended
version of the simulator ModelSim from the same company. The extended version can also
handle PSL (Property Specification Language, a verification add-on to VHDL and Verilog) and
SystemVerilog. The two tools have the same interface but with some extra menu options
and features in QuestaSim. This description is written using screen dumps from QuestaSim
version 10.7a. You might have ModelSim installed on your computers but you won´t notice
any significant differences from QuestaSim, the same applies if you have another version of
QuestaSim. There might be some small changes between different versions of the tool, but
they are minor. You will also find that QuestaSim version 10,.7a is installed in the lab com-
puters.
There are QuestaSim versions for both Windows and Linux. This presentation focus on the
Windows version.
A version of ModelSim can be downloaded with the Xilinx design pack Vivado WebPACK, a
freeware version of the Xilinx design environment Vivado.
You can also download a student version of ModelSim from the ModelTech address given
above, where you will be redirected to a Mentor page. At the end of the program installation
you will be urged to request a license for the software. The installation will be tied to the
computer where you install it and it cannot be copied or moved. If you need to do that you
must reregister and download again. These versions are somewhat limited so all the things
described in this introduction cannot be done there.

http://www.model.com/

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 2

Figure 1 QuestaSim Start up GUI

Starting QuestaSim
To start QuestaSim double click on the QuestaSim icon on the PC desktop or start it
from the Start menu.
When QuestaSim open it will show a GUI with a couple of sub windows, Figure 1. One of
these windows is the dominant Workspace window which from the beginning is filled by

the Library tab , where you can see all the standard libraries that can be used.
When you have created a project a work library for the project will be added and there will

also be a Project tab where all the files that you have added to your project will
be seen, Figure 2. When we start a simulation, there will be yet another tab.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 3

Figure 2 GUI with Project and files

Your GUI might look somewhat different from the one in Figure 1 and 2. The reason is that
the GUI is highly configurable. A number of the tools in the top gray area can be moved
around and added or removed by right clicking on the gray background and activating or de-
activating options.
In Figure 2 you can see the design files for a four-bit ripple adder with a 1-bit full adder as a
component. Test bench and do file for the design are added. We´ll get back to these files
soon.

From the beginning, you will also see a Transcript window , a text-based shell
where you give commands to and get messages back from the compiler and simulator.
These and all other windows can be undocked from the GUI into resizable floating windows

using the icon in the upper right corner of each window. The windows can be docked

back into the GUI using the icon that will show when the window is floating.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 4

When you have been running a project, the environment will be saved automatically and the
next time you start QuestaSim the old project will be opened again.

Creating a project
The first thing to do when you begin a design
is to create a new project.
You create a new project from the File menu
by selecting

File -> New -> Project…

This will give a popup window where you
have a browser to select the location of the
project and a line to give the project a name,
Figure 3. Here we use a 4-bit ripple adder
with test bench as an example and have given
the project the name four_bit_ripp-
le_adder_project and placed it in a
folder with the same name. The location of
the project is set in the Project Location area of the popup window, either by typing in the

search path or simpler by using the button which will give a new popup window,
Figure 4, where you can navigate to the place where you want to place the project.
The project crea-
tion as such will
not create any
new folder for
the project but it
is a good idea to
create a new
folder for each
project, so you
can keep track of
your projects
and of the files
within the pro-
jects.
You can do this
by adding a new
folder at the end
of the Project
Location search
path line in the
Create Project

Figure 3 Project creation window

Figure 4 Folder browser

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 5

window, as we´ve done in Figure 3. You will then be asked if you want to create the folder.

You can also add a new folder by clicking on the button in the Browse to di-
rectory home for New Project window.
As said you must set a name for the new project in the Create Project window on the Pro-
ject Name line and our recommendation is that the name of the project is the same as the
name of the folder where the project is placed, so here we have called the project
four_bit_ripple_adder_project and we have also added a folder with the same
name to hold the project. The easiest way to set the project name is to copy the folder name
from the Folder line in the Browse for Folder window, Figure 4, and paste it into the Pro-
ject Name line in the Create Project window, Figure 3.
The Default Library Name input box will give the name of the subdirectory where your
compiled code will be placed (work). Leave this and the other settings as they are.

Adding files to the project
When you click , after giving the project
name, you will get a new popup window, Add
items to the Project, where you can create new
files or add existing files to the project, Figure 5.

The popup window you get when you click on

Create New File , Figure 6, has the
heading Create Project File but this does not
mean the file that is defining the project, the
heading should really read Create File Within
the Project. When you create a new file, you
are supposed to choose the type of
file, for example VHDL file, from the
menu Add file as type. Selecting a file
type will not create any file template
or anything. It will just create an emp-
ty file with the expected file ending.
The created file will automatically be
added to the project.
Creating a do file, the simulation script
file, is not a possibility here so you will
have to create the file separately and
then add it to the project. You can create the file from

File -> New -> Source -> <file type>

where File Type gives the option to set the file type.

Figure 6 Create Project File window

Figure 5 Add items window

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 6

Figure 7 Adding a new do file that shows in the editor

The file will by default have the name Untitled-#.<file_type>.
When you create the file, it will be opened in an editor within the GUI, Figure 7.
When you save the file, you will be asked for a more proper file name. The .<file_type>
ending will not be automatically added to your selected file name, so you will have to add it
yourself when you give the file name.
Notice that creating the file will not automatically add the new file to the project so you will
have to do that manually afterwards by right clicking in white area of the Project window
and select the command

Add to Project -> Existing File…

and you get the popup menu in Figure 7.
You can also create a new file in the project by right clicking in the white area of the Project
tab and select

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 7

Add to Project -> New File…

And you get the popup window from Figure 6. Doing it this way will not only create a new
file but also add it to the project.
In the Add items to the Project window, Figure 5, you can also create new folders by

clicking and you get the
dialogue in Figure 8. This is not of that
much use since you have already created
a folder for the project, so we just leave
that.

You can also add existing files to the

project using the button .
A popup window opens where you can
navigate to the file, Figure 9.
In Figure 9 you have the option of
keeping the file where it is or creating a
copy in the project folder. In the last
case, the original file will not be
changed by edits within the project.
The files you add to the project do not have to be in placed the project folder.
In many cases, it simplifies things if you keep the files in the project folder but at the same
time if you are using designs from another project it might be best to leave the files where
they are, so you don´t end up with several versions of the same file. If you copy the file to
the project and then have multiple file versions it´s hard to keep track of what´s the current
version. Just beware that if you include a file from an earlier project and don´t do a copy
then if you edit the file then the earlier project will also be affected.
When you have finished creating your project and get back to the GUI a new Project tab

 has been added to the Workspace window containing the new or added files,
as we saw in Figure 2. At the same time the project file and the newly created files are added
to the file folder on the hard drive together with the subfolder work that will contain your
compiled design files. You can create files later on when you have already created the pro-
ject by using the menu command

File -> New -> Source -> <File type>

Figure 9 Add Existing File window

Figure 8 Create Project File window

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 8

As was mentioned above.
You can also create a new file in the project by right clicking in the white area of the Project
tab and select

Add to Project -> New File…

and you get the popup window from Figure 6. Doing it this way will not only create a new file
but also add it to the project.
A file that is added to the project doesn´t have to be in the project folder. The tool will keep
track of the search path. This means that if you start moving files around using a Windows
file browser outside of QuestaSim the project will not find the files any more and you should
remove them from the project by selecting the file, right click and select Remove from Pro-
ject and add them back to the project from their new location.

Opening a project
Once you have
created a pro-
ject and closed
it you can open
it again with the
menu choice

File -> Open…

which will give
you a file
browser where
you can navi-
gate to and
choose the pro-
ject file you
would like to
open, Figure 9.
The project files
are not visible in
the browser by
default, so you
will have to

change the file filter from to to
see them. The project files have the ending .mpf.
By default, the script files, the do files, that we will talk about later on, are not visible in the
browser either so you have to change the file filter for them to be shown. There is no filter

Figure 9 Open File br

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 9

for selecting this kind of file, so you will have to select for this.
The do files should have the ending .do.

Editing files
The next phase is to write or edit your VHDL code. You open the new or added VHDL file by
double clicking on it in the Project tab of the Workspace window.
This will open a simple text editor which supports the common Windows shortcuts for copy,
paste and so on. The editor will show line numbers and will color code the text with different
colors for VHDL commands, signal types, values and others.
There is a bug in the program that has the effect that sometimes the file will not open up in
the built-in editor but in an external editor like Notepad or TextPad. There is a drawback
with this since these editors don´t color code VHDL. If files have started to be shown in the
external editor, they will do that from that on. Support at Mentor have not managed to sort
this out. One solution would be to add an external editor that can handle VHDL color coding,
like Notepad++. There is a way to make the files show up in the internal editor, we´ll get
back to that.
This may also have the result that you have versions of the same file both in the GUI editor
and the external editor so be aware of what file you are editing.
In many cases the best way to start a new file is to include or copy a file from an old project
and then do the required changes. In this way, you get the basic file structure to start with.
Please remember that if you include the file any edits will also affect the functionality in the
project from where the file is included since it´s the same file. It´s best to save the file under
a new name.

Compiling files
Before you can simulate the design the file(s) must be compiled. You do this from the Com-
pile menu or by right clicking in the Project tab which will open up a menu. Here you can
choose to compile all design files or if you right click on a design file you can choose to only
compile that file or you can compile only the files that are out of date, that is files that have
been changed since the last compilation.
A common mistake is to forget to save the current file before compilation. Then the old,
saved file will be compiled. You can easily see if a file is saved by looking at the save file icon

 in the GUI when the file in question is active. If the icon is dimmed then the file is
saved, if the icon is sharp then the file isn´t saved.

As you can see in Figure 2 the VHDL files in the Project tab shows a question mark in their
Status column. This indicates that the files haven´t been compiled since they were last edit-
ed.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 10

Before you compile all files, you can use
the same menu to set the order in which
the files will be compiled by selecting
compile/Compile Order…, and you get
Figure 10 where you select a file and
move it up or down in the order by using
the arrows. This may be of use if you
have a hierarchical design because then
the lower level code, for example the
components, have to be compiled first,
before they are used in the compilation
of the higher-level design. A simple way
to fix this anyway is to run the compila-
tion twice. By doing that the compo-
nents that are needed at the higher lev-
el have been compiled in the first com-
pilation round and will be available for
the second round.
If the compilations succeed we get Figure 11.

Figure 10 Setting the compile order

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 11

Figure 11 Successful compilation

You will see the text

in green in the Transcript window and the question marks in the Status column have
changed to OK signs indicating that the compilation succeeded.
In most cases your code writing will not be correct the first time so there will be some errors
in your first compilation and you will have to do some corrections to successfully get the
code through the compiler, Figure 12.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 12

Figure 12 Compilation with error

Errors will give a red line in the Transcript window

And in the Status column you get a red cross at the file with the error(s). In Figure 12 we
can see that there is an error in the file four_bit_ripple_adder.vhdl.
If you double click on the red error line in the Transcript window a popup window will show
the line(s) in the code where the error(s) occurred accompanied by an explanation that will
hopefully assist you in correcting the error(s), Figure 13. Some messages are a bit cryptic, but
you will by experience learn what they mean.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 13

Figure 14 Code with highlighted error

Figure 13 Error window

If you double click on one
of the line(s) describing the
error(s) the offending line
in the code will be high-
lighted, Figure 14. Start
from the first error mes-
sage. For some mysterious
reason the built-in editor
will show when you do this
although you may have
been forced to use an ex-
ternal editor before. Note
that this could have the
result that the same file is
open in both the internal
and external editor, so you
must make sure to edit the
correct version.
In many cases the highlighted line
is not the one with the actual er-
ror but the error is on the line
above or some lines above the
highlighted line. The reason for
this is that the compiler doesn´t
notice the error until it finds that
the next line is incorrect because
of the earlier error.
In the example in Figure 13 the
actual error is a missing semicolon
on line 20 although the compiler
reported an error on line 21 and
as we saw in Figure 13 this result-
ed in three errors and these will
all go away when we add the
missing semicolon.
Don´t be discouraged if you get a
lot of error lines in Figure 13. In
many cases a small error can lead
to a number of other errors and
after correcting this small error a
lot or all of the error messages
might disappear but correcting an
error can also give several new
errors since after the correction

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 14

the compiler can continue into parts of the code that wasn´t analyzed before.
Work your way through the errors by starting with the first one, recompile and if necessary
move on to the next error.
When you have corrected all the errors and the compilation is successful you are ready for
simulation.

Simulating the design
You start the simulation with
the menu choice

Simulate -> Start Simulation

and this will give a popup win-
dow, Figure 15, where you
choose what design to simulate,
you can simulate the test bench,
the top-level design or a com-
ponent. The simulation sources
are in the work folder but de-
fault this folder isn´t open so
you must open it. What you see
in the work folder are the enti-
ties from your design files.
You can also start the simulator
from the Transcript window
using the command

vsim <name of top entity>

In the Start Simulation window, there is also an important option named Optimization. By
default, Enable optimization is checked and optimization is activated and this means that
only the top-level signals and ports are certain to be visible since the optimization might
have resulted in the compiler doing a redesign that removed or changed the lower level sig-
nals. In this case, you will not be able to see variables within processes either since they
might be optimized away. The optimization will also remove all signals that are not contrib-
uting to any outport signal.
When we debug the design, it is often very practical to see variables and lower level signals.
To do this we would like to disable optimization. There is a bug, so it will not work to just
unchecking the Enable optimization option.
We can avoid optimization and keep visibility of the design components if we click on the

 button in the Start simulation window before we select the source to
simulate. You can only click on this button if Enable optimization is checked.

Figure 15 Start simulation window

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 15

The window in Figure 16 will
show and here we can change
the active choice from No de-
sign object visibility to Apply
full visibility to all modules
(full debug mode). There are
also some other tabs in this
window where you can fine-
tune the level of optimization,
but we skip that.
In Figure 15 we can see that the
work folder contains not just
the design modules but also
something called _opt. This is
the result of an earlier simula-
tion that we ran with optimiza-
tion.
Another way to start the simulation is to right click on the file you want to simulate in the
work folder of the Library tab and then select to simulate without optimization or with one
of the optimization levels available. To run without optimization, you must first activate the
window in Figure 16 and activate Apply full visibility to all modules (full debug mode).
When you have selected the design to simulate the GUI will change its appearance, Figure

18, a Simulation tab has been added and we go into simulation mode.

Figure 16 Optimization Options window

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 16

In Figure 18 you can see the simulation of
a test bench for a 4-bit ripple adder with
four full adders as components.
We get a new window, the Objects win-
dow, Figure 19.
In the Objects window we can see all the
generics, ports and signals in the entity
that is activated in the Sim tab. In Figure 18
the top-level design is activated so the sig-
nals in the top-level design are visible. We
can see that we have three 4-bit vector sig-
nals given on hexadecimal format. The sig-
nals all have unknown values X since we
haven’t started the simulation yet.
If we click on one of the plus signs by one
of the 4-bit signals, here the
a_tb_signal, Figure 20, we will see the
individual bits within the current vector

Figure 19 Objects window

Figure 18 GUI in simulation mode

Figure 20 Objects window with opened vector

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 17

signal. The letter U indicates that the bits haven´t been assigned any values yet. You can go
back to just seeing the vector by clicking on the menu´s sign that have replaced the plus
sign.
If we activate one of the components in the sim window the Objects window will change
and the signals within that component will be visible, Figure 21. You cannot see variables
within processes this way, but we shall see that there are other ways to make them visible.
In Figure 21 we can see the signals in the
component four_bit_full_adder that
the test bench is using but is we go down
one level more we will not see any signals
within the full_adder component since
they have been optimized away. If the do the
simulation without optimization they will be
visible though and in Figure 22 we see the
signals of one of the 1-bit full adders.
There is also a Wave window where we will
see the resulting waveforms from the simula-
tion, Figure 23.

Figure 21 Objects window for the four bit ripple
adder component

Figure 22 Objects window for a component

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 18

If the Wave window isn´t open, you can open it by the menu choice

View -> Wave

If you haven´t opened the Wave window it will automatically show when you choose to add
items to it. You add a signal to the Wave window by right clicking on the signal in the Ob-
jects window and select Add Wave.
You can also type

add wave <signal_1_name> [<signal_2_name>]

In the Transcript window. Notice that when you add more than one signal the signal names
should be separated by a space.
You select several of the signals to be shown in the Wave window by using the normal Win-
dows way of selecting more than one object in the Objects window and then right click and
select

Add -> To Wave -> Selected Signals

Figure 23 GUI in simulation mode with Wave window

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 19

You can also drag the selected signals from the Objects window to the Wave window.
You can choose

Add -> To Wave -> Signals in Region

instead which will add all signals at the current level of hierarchy to the Waveform window.
You can also select

Add -> To Wave -> Signals in Design

This will not only add the signals in the region but also signals in sub designs like components
to the Wave window. The names of the signals from sub designs show up like

<name_of_sub_circuit>/<signal_name>

To see variables within processes you need to add them by using commands in the Tran-
script window or using do files (more on this later). In the Transcript window or in the do
file you write

add wave <name_of_process>/<variable_name>

As you can see you need to name the process to make this work. For this to work you must
also have started your simulation without optimization or have changed No design object
visibility to Apply full visibility to all modules (full debug mode) in the Optimization Op-
tions window, Figure 16.
As you can see in Figure 23 the Wave window in the GUI is quite small and of little use as it

is. Unlock the window by clicking on the icon in the right top corner of the window to
turn it into a floating window and drag out the window to a useful size.
In the Waveform window, Figure 24, the top-level signals and ports and the signals and
ports from the full_adder comp_1 are added. The window will have three regions.

• A list of the objects you have added. If these objects contains more than one bit, if they

are vectors, they can be expanded by clicking on the + sign next to the signal name

Figure 24 Waveform window

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 20

• A list of the values of the objects at the time given by the position of the cursor line in the
Wave display

• You can change the radix of the signals. You can for example watch the value of a vector
in binary, hexadecimal, decimal (signed) or unsigned form. The choice of radix can be
done on each signal individually. You change the radix by right clicking on the signal name
or the signal value and selecting Radix and then select the radix you want. By selecting
more than one signal before you change the radix you can change their radixes all at
once. You can also set the radix from the do file. You can also add the same signal several
times and then select different radix in the instances.

• A waveform area showing the waveforms graphically

The width of these regions can be changed by grabbing the separators between the regions
with the mouse and dragging them. This might be necessary to be able to see the full signal
names.
Before you start running simulation time all ports and signals will have undefined values.
They will not take on any default values, so you have to make sure to give them appropriate
values. This is different from the real synthesized devices where the signals always will have
some kind of value. Any objects that are given values in their declaration will take on these
values but these values will only work in simulation and not in hardware. Since this means
that the behavior is different in simulation and synthesis it is not wise to set default values to
signals. Instead use some kind of reset phase to set the start values for your simulation. By
doing that you will also get start up values for the synthesized design. U indicates unassigned
inputs while X indicates undetermined values on outputs. The X might be there because it is
an output signal that hasn´t got any value yet since we haven´t run any simulation time. The
cause of the X can also be that the signal is connected to two different terminals that try to
write different values to the node.
You can give all our simulation commands in the Transcript window although putting them
in a script file, a do file, is a better choice since by doing that it´s simple to repeat exactly the
same simulation when you have done some editing of the source code.
Since the do file is a script file it´s just a text file that contain a list giving exactly the same
commands as those you can input from the Transcript window with one command per line.

Simulation commands

You give the signals values by using the command

force <signal_name> <value>

For binary scalars, you can force the value to the allowed values for the data type. You have
for example nine (9) choices for a std_logic scalar. The command

force a Z

will set the signal to a high impedance level Z.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 21

For vectors, you give values to all the bits using for example

force b 4’b0110

This command says that we are giving the vector b a 4-bit (4) binary value (b) 0110. To use
decimal, octal or hexadecimal values we use d, o or h as type definers instead, still giving the
number of bits as a value. If the value is too big for the given number of bits, the MSB´s will
be removed from the value.

force b 4’h6

and

force b 4’d6

will give the same result as the first binary command.
To set a negative number you don´t have to get the value using 2’s complement. To set the
value -6 you can just write

force b -4’b0110

force -4’h6

or

force -4’d6

The first digit, here 4, that should give the number of bits doesn´t seem to matter. The value
will adopt to the format of the signal the value should control. If the number of values is big-
ger than this digit, then the last values will be truncated.
In earlier versions of QuestaSim binary representation was default and you could give a bina-
ry value as

force a 1110 Incorrect

but that is no longer valid.
You can also give the time when the signal should get the new value in the force state-
ment.
The time can be given as just a number

force a 0 100

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 22

where the time is given in the default time base of the simulator which is nanoseconds (ns).
The command can also be given with a time base that might not be the default one

force a 0 100ns

The latter form might be somewhat clearer. Both commands mean that the signal a should
be set to zero (0) at time 100 ns counting from the current simulation time.
With the command

force a 0 @100

you will set the signal a to zero (0) at the absolute simulation time 100 ns from the start of
the simulation instead of at 100 ns from the current time. You can only use this command to
set values at times that haven´t passed in the simulation yet.
You can also give a sequence of values at different times in one command. The command

force a 0 0,1 100us,0 150us

means that the signal a should be set to zero (0) at current time, be set to one (1) 100 µs
(microseconds) later and then be set to zero (0) again at 150 µs from current time. The or-
dering of the times must be consecutive.
You can create a repeating signal, for example a clock signal, with the command

force a 0 0,1 50ns –repeat 100ns

which means that the signal a is set to zero (0) at the current time, set to one (1) 50 ns later
and then a time period of 100 ns is repeated infinitely. We have created a symmetrical clock
signal that starts with a zero (0) and has a period of 100 ns.
The force command will not run the simulation, it will only set the values, and nothing will
happen until you run some simulation time. Remember to set all signals before you start the
simulation so that none of them are undefined. An undefined signal in the Waveform win-
dow will be indicated in red.
You can give more than one force command, one after the other, and they will all be effec-
tive at the same time as long as you don´t run any simulation time in between. If you run
some simulation time between two force commands, then the latter command will take
effect after that simulation time. Avoid changing more than one signal at the same time
though since there may be some confusion in the timing of the signals. It´s only in simulation
that signals can change at exactly the same time, in reality they don´t.
After this you will have to set the time that you want the simulation to run. You do this with
the command

run <time_to_simulate>

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 23

A force command that is not followed by a run command will be meaningless since no
simulation time will be run.
You can find an example of the Waveform window for a simulation in Figure 25 where the
test bench for a 4-bit adder is simulated for a number of input stimuli using a test bench. The

 signs by the names of the vectors indicates that the display can be expanded to show the
individual bits of the vector. This has been done for vector a and here you see a sign to
shrink it back to just a vector.

When you left click in the waveform a cursor will show at that position accompanied by the
time of that cursor position and the values at that time are shown in the Msgs column.
In Figure 25 the 4-bit input signals a and b are shown twice, once in hexadecimal form and
once in decimal (unsigned) form. The output vector y is shown three times, in hexadecimal
form, in signed decimal form and in unsigned decimal form. There is a cursor at time 231 ns
and the signal values at that time are given in the Msgs column.
In the Wave window, you can do zooming operations. You have a number of zooming op-
tions in the

View -> Zoom

menu. You can zoom in and out, zoom in around the cursor, zoom the entire simulation time
or zoom a selected region. There are also some quick buttons for zooming

 where you can zoom in and out , zoom the entire simulation

time , zoom in around the cursor and zoom between two cursors .
You can add more cursors to the display by right clicking on the time scale in the waveform
window and select

New Cursor @ <time>

Figure 25 Waveform window with simulation result

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 24

Where <time> is the position of your mouse pointer.
When you have more than one cursor you will not only be able to see the times of the cur-
sors but also the time differences between the cursors.
The simulation can be rolled back to time zero with the command

Restart

Automating the simulation, do files
When you simulate you can give the stimuli and run the simulation interactively, but this will
be tiresome and error prone and if you want to rerun the same simulation sequence, some-
thing you most likely want to do after error correction and/or redesign of your construction,
you have to remember and type in the sequence to run. Things are a bit simplified by the
fact that you can navigate among the given commands using the up and down keys on the
keyboard, there is a history list for the commands.
To make things even simpler you can run the entire simulation using a script file, a do file in
QuestaSim language.
To do this you create a text file with the commands that you want to run, one command per
line in the order you want them to be executed.
Normally the do file has the ending .do but this is not default which means that you cannot
leave out the ending when you type the name of the do file that you want to run. The file
can actually have any ending but it’s good practice to let it be identified by its .do ending.
You can add the do file to the project. This has no significant meaning to the design, but it is
a way of keeping track of the files belonging to the project and it means that you can easily
open the file by double clicking on it in the Project window and you don´t have to use a file
browser to open the file. If the do file is added to the project, it can also be run by right
clicking on it in the Project tab and selecting Execute. By doing it this way the project will
keep track of in what folder the do file is placed and you don´t have to give any search path
although the file might not be placed in the project folder.
You run the do file from the Transcript window by typing

do <file_name.do>

don´t forget the file ending. This will only work if the do file is placed in the project folder, if
it´s not, you will have to include the search path. If you type the first letter(s) in the name of
the do file and then hit tab the system will try to match what you have typed to the file
name and fill in the rest of the name. This will only work as long as the string of letters is
unique and doesn´t match more than one file. If the string matches more than one file these
files will be shown below the Transcript window and you can use the mouse to select the
file you want to use.
You can include the setting up of the Wave window and the addition of the signals you want
to see in the do file. You can even write a do file that does the whole flow; compiles the

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 25

design files, starts the simulator and runs the simulation but in most cases, you don´t gain
much from that since you need to check for errors in the design before you move from com-
pilation to simulation.
You start the do file by restarting the simulation and removing all the signals from the Wave
window with the command

restart –f –nowave

This options in the command will have no effect the first time you run the simulation, but it
will restart and clean things up the next time you run it.
After this you should give the same commands as the ones you earlier typed in the Tran-
script window to make them run directly but now you place the commands in the do file in
the order you want them to run instead of manually giving them as a sequence of com-
mands in the Transcript window.
You start by declaring the windows you want to see. The command

view signals wave

means that you want to see the Objects (signals) and Wave windows.
Then you add the signals that you would like to see in the Wave window with the command

add wave <space_separated_list_of_signals>

Notice that the list is space separated, there are no commas or semicolons. For example

add wave clock a b

will add the signals clock, a and b to the Wave window.
You can set the radix of the displayed signals by including it in the command

add wave clk count –radix unsigned count

Here we add the signal count twice, once with the default radix hexadecimal and once with
the radix unsigned decimal. You have the same selection of radixes as we described in the
Wave window earlier.
The radix command will stick for the rest of the line, so you have to change it if you want
another radix for coming signals. Another way of going back to the default radix is to use a
new add wave command for the rest of the signals.
You can also watch variables although they are local to a process but then you have to tell
the simulator in which process they are located and this means that this process will have to
have a name. If you have a variable test_OK in the process named test_process you
would write

add wave test_process/test_OK

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 26

to see the variable test_OK in the Wave window.
The same kind of command can be used to see signals inside components that are instanti-
ated in the design, you write

add wave name_of_instantiated_component/name_of signal

As we described earlier this will not always work though since the signals might be optimized
away. You will then have to start the simulation with full visibility as described earlier.
Comments can be added to the do file. The comments should be placed on separate lines,
not on lines with code and the comment should start with a # sign.

Example
Let´s take an example. To get just a small code section we will use a 1-bit full adder.
We start by creating a new project in some folder. We call the project full_adder. At
the same time we create a new design file called full_adder.vhdl.
We write our VHDL code in the design file

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_adder IS
 PORT (a:IN STD_LOGIC;
 b:IN STD_LOGIC;
 cin:IN STD_LOGIC;
 s:OUT STD_LOGIC;
 cout:OUT STD_LOGIC);
END full_adder;

ARCHITECTURE arch_full_adder OF full_adder IS
BEGIN
 s<=(a XOR b) XOR cin;
 cout<=(a AND b) OR
 (a AND cin) OR
 (b AND cin);
END arch_full_adder;

and compile the code. If we have written the code correctly the compilation should be
successful.
Let us move to simulation. We start by creating the simulation script, the do file, and call
this file full_adder.do.
To test all possible signal values, we have to use eight different input stimuli, Figure 24.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 27

We want to see all signals in the simulation and to make the simulation thorough we go
through all signal combinations. Let´s say that we let 100 ns pass between each signal
change. In the interest of not complicating things at the moment we will diverge from the
recommendation to only let one signal change value at any given time. We write the do
file

restart –f –nowave
view signals wave
add wave a b cin s cout
time 0 ns 000
force a 0
force b 0
force cin 0
run 100ns
time 100 ns 100
force a 1
run 100ns
time 200 ns 010
force a 0
force b 1
run 100ns
time 300 ns 110
force a 1
run 100ns
time 400 ns 001
force a 0
force b 0
force cin 1
run 100ns

a

cin

b

s

cout

1 2 3 4 5 6 7 8
Figure 24 Input and output waveforms for the full adder

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 28

time 500 ns 101
force a 1
run 100ns
time 600 ns 011
force a 0
force b 1
run 100ns
time 700 ns 111
force a 1
run 100ns

We could rewrite the file by assigning values signal by signal

restart –f –nowave
view signals wave
add wave a b cin s cout
force a 0 0ns, 1 100ns,0 200ns,1 300ns,0 400ns,
 1 500ns,0 600ns,1 700ns
force b 0 0ns,1 200ns,0 400ns,1 600ns
force cin 0 0ns,1 400ns
run 800ns

The line split in the force a command is editorial, it cannot be there in the do file. It can
be split into two force commands though. You will either have to keep it on one line or
split it into two force commands.
This way of giving stimuli gets quite tiresome and a bit hard to keep track of. If you study
the three input signals you can see that they behave as three repeating clock signals with
periods of 200 ns, 400 ns and 800 ns and they all start with the value zero (0). This means
that you could write the do file as

restart –f –nowave
view signals wave
add wave a b cin s cout
force a 0 0ns, 1 100ns –repeat 200ns
force b 0 0ns,1 200ns –repeat 400ns
force cin 0 0ns,1 400ns –repeat 800ns
run 800ns

In the Wave window, you can see the simulated signals zoomed out to a full window,
Figure 25. The cursor is placed at time 351,489 ns and in the values region, you can see
what values that the signals have at that time.

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 29

Testbenches
We have looked at running a simulation in QuestaSim but so far we have only generated
input stimuli and we evaluate the results by looking at the resulting waveforms. What if we
could also write code to test the results from
the simulation? This is what Testbenches
are all about.
Instead of directly simulating your design
you use it as a component in a system level
design, a testbench. This top-level design
generates input stimuli to the component,
your design, and can also read the resulting
outputs and check if they are valid, Figure
26.
There are three types of testbenches. They
don´t really have any names but I call them
type 1, 2 and 3.

• Type 1: The testbench only generates input stimuli and it´s up to the user to check the

resulting output signals. This means that it behaves just like a do file
• Type 2: The testbench generates input stimuli and checks the results. It uses a test out-

put, a flag often called test_OK_signal, to signal if the result is correct. The value is
held high (1) as long as the results are correct. As soon as the result is incorrect the flag
will go low (0) indicating the error and it will stay low from that on although the results
later in the simulation might be correct

• Type 3: The testbench generates input stimuli and checks the results. Instead of using a
flag it will issue a message when an incorrect result occurs. It will also indicate at what
time in the simulation run the incorrect result occurred. It´s up to the designer to formu-
late the messages so it can be quite extensive. We can decide either to stop the simula-
tion when an incorrect result occurs or continue with the simulation. In the latter case,
more messages will be presented if new incorrect results occur

Figure 25: Simulated waveforms for a full adder

Design as
compo-

nentG
en

er
at

io
n

of
in

pu
t s

tim
ul

i

H
an

de
lin

g
of

 re
-

su
lti

ng
 o

ut
pu

t s
ig

na
ls

Testbench

Figure 26 Testbench structure

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 30

Example
Let´s write all three kinds of testbenches for the earlier ripple carry adder design.
In all three designs, we will us our full adder as a component. The full adder had the entity

ENTITY full_adder IS
 PORT (a:IN STD_LOGIC;
 b:IN STD_LOGIC;
 cin:IN STD_LOGIC;
 s:OUT STD_LOGIC;
 cout:OUT STD_LOGIC);
END full_adder;

The basic testbench design is the same in all three cases. The difference is if and how we
check the simulation results.
The entity for all testbenches will be the same and the architecture for the testbench of
type 1 will be part of the architectures for the testbench of type 2 and 3 so we start with
the type 1 testbench.

Testbench type 1
First the entity of the testbench

ENTITY full_adder_tb1 IS

END full_adder_tb1;

Notice that the entity is empty, we don´t have any in- or outputs, we only have internal
signals.
We create an architecture where we instantiate our full adder as a component and de-
clare signals that we connect to the inputs and outputs of the full adder.

ARCHITECTURE arch_full_adder_tb1 OF
 full_adder_tb1 IS

 COMPONENT full_adder IS
 PORT(a:IN STD_LOGIC;
 b:IN STD_LOGIC;
 cin:IN STD_LOGIC;
 s:OUT STD_LOGIC;
 cout:OUT STD_LOGIC);
 END COMPONENT full_adder;

 SIGNAL a_tb_signal:STD_LOGIC;
 SIGNAL b_tb_signal:STD_LOGIC;
 SIGNAL cin_tb_signal:STD_LOGIC;
 SIGNAL s_tb_signal:STD_LOGIC;
 SIGNAL cout_tb_signal:STD_LOGIC;

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 31

BEGIN
 full_adder_comp:
 COMPONENT full_adder
 PORT MAP(a=>a_tb_signal,
 b=>b_tb_signal,
 cin=>cin_tb_signal,
 s=>s_tb_signal,
 cout=>cout_tb_signal);

To complete the basic architecture, we assign values to the signals connected to the
inputs of the component. Notice that we can´t assign values directly to the inputs of
the component but we must use signals for this. We generate the same signal pattern
as we had in Figure 24.

 a_tb_signal<='0',
 '1' AFTER 100 ns,
 '0' AFTER 200 ns,
 '1' AFTER 300 ns,
 '0' AFTER 400 ns,
 '1' AFTER 500 ns,
 '0' AFTER 600 ns,
 '1' AFTER 700 ns;
 b_tb_signal<='0',
 '1' AFTER 200 ns,
 '0' AFTER 400 ns,
 '1' AFTER 600 ns;

 cin_tb_signal<='0',
 '1' AFTER 400 ns;

The first signal assignment without a time stamp sets the signal value at time zero (0)
while the following assignments sets the value at the given times.
In general, we don´t use time in VHDL code since hardware can´t handle that but we
can use it here since the testbench is just for simulation and will never be placed in
hardware.
We can simplify the assignment a bit in a similar way to how we used clock signals in
the earlier do file.

 a_tb_signal_process:
 PROCESS
 BEGIN
 WAIT FOR 100 ns;
 a_tb_signal<=NOT(a_tb_signal);
 END PROCESS a_tb_signal_process;

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 32

 b_tb_signal_process:
 PROCESS
 BEGIN
 WAIT FOR 200 ns;
 b_tb_signal<=NOT(b_tb_signal);
 END PROCESS b_tb_signal_process;

 cin_tb_signal_process:
 PROCESS
 BEGIN
 WAIT FOR 400 ns;
 cin_tb_signal<=NOT(cin_tb_signal);
 END PROCESS cin_tb_signal_process;

For this to work we must assign default values, start values, to our input signals other-
wise the simulator don´t know what values to invert. We change the signal declara-
tions to include these.

 SIGNAL a_tb_signal:STD_LOGIC:='0';
 SIGNAL b_tb_signal:STD_LOGIC:='0';
 SIGNAL cin_tb_signal:STD_LOGIC:='0';

Once again this is something we shouldn´t do when we write code for hardware. De-
fault values will not transfer to hardware. For this to work in hardware we need some
kind of reset phase.
We still need a do file where we can declare what signals we want to see in the Wave
window and to run some simulation time.

restart -f -nowave
view signals wave
add wave a_tb_signal b_tb_signal cin_tb_signal
add wave s_tb_signal cout_tb_signal
run 780ns

Here we have two add wave commands just to shorten the command lines.
When you run the simulation, you might need to simulate without optimization. The
reason for this is that since we only have signals and no output ports the simulator as-
sumes that these signals can be optimized away as they don´t connect to any ports.

Testbench type 2
Here we keep the testbench type 1 but expand it to include checking the resulting out-
put signals.
First we add a signal to indicate the test result

SIGNAL test_OK_signal:STD_LOGIC;

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 33

Instead of a signal we can define test_OK as an out port if we like. The result will be
the same.
Then we add a process for the test. Here the process is shortened so it doesn´t take up
that much space.

 test_proc:
 PROCESS
 BEGIN
 test_OK_signal<='1';
 WAIT FOR 50 ns; -- 50 ns 0+0+0
 IF s_tb_signal/='0' OR cout_tb_signal/='0' THEN
 test_OK_signal<='0';
 END IF;
 WAIT FOR 100 ns; -- 150 ns 1+0+0
 IF s_tb_signal/='1' OR cout_tb_signal/='0' THEN
 test_OK_signal<='0';
 END IF;

 -- Five wait statements have been removed to shorten
 -- the text

 WAIT FOR 100 ns; -- 750 ns 1+1+1
 IF s_tb_signal/='1' OR cout_tb_signal/='1' THEN
 test_OK_signal<='0';
 END IF;
 END PROCESS test_proc;

Notice that the signal test_OK_signal is assigned the default value one (1) when
we start the process and then will be set low (0) as soon as an incorrect signal occurs,
and the signal will never be set to one (1) again unless we run for so long time that the
process starts all over again.
We use the same do file as for testbench type 1 with the difference that we add
test_OK_signal to the signals we want to see in the Wave window.

Testbench type 3
The only thing that really change for the testbench type 3 is the test process, but we
can take away the test_OK_signal since this will not be used any more. Once
again the process is shortened.

 test_proc:
 PROCESS
 BEGIN
 WAIT FOR 50 ns; -- 50 ns 0+0+0
 ASSERT (s_tb_signal='0' AND cout_tb_signal='0')
 REPORT "Error for 0+0+0"
 SEVERITY ERROR;

DAT093

Introduction to Electronic System design
Introduction to QuestaSim

page 34

 WAIT FOR 100 ns; -- 150 ns 1+0+0
 ASSERT (s_tb_signal='1' AND cout_tb_signal='0')
 REPORT "Error for 1+0+0"
 SEVERITY ERROR;

 -- Five wait statements have been removed to shorten
 -- the text

 WAIT FOR 100 ns; -- 750 ns 1+1+1
 ASSERT (s_tb_signal='1' AND cout_tb_signal='1')
 REPORT "Error for 1+1+1"
 SEVERITY ERROR;
 END PROCESS test_proc;

We can realize that this file can be quite long if we have many things to test.
In the process the ASSERT statement indicates what values that should be true in the
test and if they are then no message will be issued.
REPORT gives the message that is issued if the assertment is false. In the example, it´s
a simple text message but it can be more complicated including signal values and other
things in the message. Beside the REPORT message the time when the message is as-
serted will also be written to the Transcript window.
SEVERITY indicates what should happen at an incorrect output signal. SEVERITY
can have four different values that will be given different headers

• NOTE, this is only a comment it´s no real error
• WARNING¸ indicates something to look out for but it´s not an error
• ERROR, used when an error is detected but the simulation will not be stopped
• FAILUE, used when an error is detected and is so severe that the simulation is

stopped

It´s up to the designer to decide what should be looked upon as NOTE, WARNING or
ERROR since the behavior is the same in all three cases.

