2016-08-17

DAT093
Introduction to Electronic System Design

VHDL update

Sven Knutsson
svenk@chalmers.se
Dept. of Computer Science and Engineering
Chalmers University of Technology
Gothenburg
Sweden

Literature

We do not require any advanced book on VHDL in this course

Since many of you already have some book on VHDL you
can probably go on using that if it is not to elimentary

but if you need a book we recommend

Peter J. Ashenden:
The Designer’s Guide to VHDL, 3 ed
ISBN 978-0-12-088785-9

$48:04 on amazon.com
619:00 SEK on bokus.se
509:00 SEK on adlibris.com

older editions will do just as well

Your can find the book as an ebook at Chalmers library

If you google you can also find it as a PDF on the net

How to describe your electronic design

Schematic
Components and nets
Analog or digital

Netlist

Component descriptions and node connections describing a schematic
Analog or digital
EDIF - Electronic Design Interchange Format

"Programming’ language

Program code converted (syntesized) to electronics

Digital with some, not that successful, attempts to go analog

Programming languages

Can describe systems on a high system level

On that level both electronic and mechanical parts can be included

Electronics can be both analog and digital

If we move down to design (synthesis) level we will in most
cases have to restrict the description to digital electronics

2016-08-17

Programming languages cont.

VHDL - VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language
IEEE (Institute of Electrical and Electronics Engineers) standard
Strictly typed language Type conversions needed
Popular in Europe

Verilog
IEEE standard

More loose description than VHDL

Can give different results in different compilers

Popular in USA

SystemVerilog
IEEE standard
Extention to Verilog with a more strict description style

Seems to slowly become the new standard description language

Programming languages cont.

System Verilog has so far only been successful for system
description and verification.

When it comes to synthesis we have to stay with
VHDL or Verilog

2016-08-17

2016-08-17

Programming languages cont.

There are atempts to use C or C++ for electronic design since these languages
are so widely spread

Most atempts have resulted in languages that just use a restricted
subset of C or C++ or the language have been changed, sometimes
almost beyond recognition

Examples

System C
Mostly for simulation

Handel C
One vendor (Celoxica)

Bought by Mentor, will be integrated into Catapult C
Catapult C

One vendor (Mentor) Sold to Calypto on August 26, 2011
Expensive

more are comming but the hype seem to be gone

VHDL basics

Basically a system description falls into two parts

* The outside, the interface. How to connect to other systems or to the
external world?

* The internals,

the functional InputAc— System / I
description of A - n)
the design @ Input B o—— A n B 1 |0 Ready g

5 2

& | Reset o— I .) | i ——= Error

U J
Clock =
In VHDL N
Entity

¢ An entity connects to the external world .
Architecture

¢ An architecture describes the internal functionality

VHDL basics

Example: Simple AND gate
Comment
T AND gate

Libraries with LIBRARY ieee;

builtin functions and USE ieee.std logic_ 1164.ALL; Entity name
type declarations
ENTITY and2 IS
) PORT (a:IN STD LOG
Entity b:IN STD
v:0)i
END and2;
ARCHITECTURE arch_and2 OF and2 IS
Architecture BEGIN
y<=a AND b;
END arch apd2; Entity name again

Architecture name

VHDL basics cont.

Example: Simple AND cont.

~- AND gate Signal type
LIBRARY ieee;
USE ieee.std logic_1164.ALL;

Ports, connections ENTITY and2 IS L. Input ports
to the outer world PORT (a [N, STD_LOGIC; /
b=IN STD LOGIC;

y: :STD_LOGIC) ; <\\\\\\\\‘
Output port

END and2;

ARCHITECTURE arch and2 OF and2 IS

Port or signal
assignment

Logical operator

2016-08-17

VHDL basics cont.

Example: Simple AND cont.
Let’s look at the coding style

. —-— AND gate
Use capital IettersN LIBRARY icee;
for VHDL reserved USE ieee.std logic 1164.ALL;
words

Indent the code

using white space, ———_ y <= a AND b;

not tab, to make it END arch_and2; Give the architecture
portable

One signal per line makes it

ENTITY and2 IS easier to comment the signals
PORT (a:IN STD LOGIC;

b:IN STD_LOGIC;
2y:OUT STD_LOGIC) ; Separate IN and OUT
END and2; ports into groups

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

the same name as
the entity but
headed by arch_

VHDL basics cont.

We can write our code in two different ways

e Structural code

The code is like a netlist (schematic) with
components (sub blocks) that are interconnected

Only suitable in smaller designs

and to interconnect several designs into a larger design

¢ Behavioral code

The code describes the functionallity we like to achieve,
not the structure of the design

In many cases the best choice

In a practical design we often split the construction into blocks
where we use behavioral code to describe the internals of
these blocks and structural code for the interconnection of the
blocks

2016-08-17

VHDL basics

Let’s look at our simple AND gate

—-— AND gate
LIBRARY ieee;
USE ieee.std logic 1164.ALL;

ENTITY and2 IS
PORT (a:IN STD_ LOGIC;
b:IN STD LOGIC;
y:0UT STD_LOGIC) ;
END and2;

ARCHITECTURE arch_and2 OF and2 IS

BEGIN .
al AND! b;

y<=a, ;
END archiéhd2;

This is a structural design since we are using the function,

or component if you like, AND

VHDL basics cont.

If we rewrite the code for the AND device
in a behavioral way we will get

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

SNTITY and2 IS
PORT (a:IN STD_ LOGIC;

y:0UT STD_LOGIC);
END and2;

ARCHITECTURE arch andz behbaviorel OF and? IS5
BEGIN
y <= '1: WHEN (a=11"}) AND
(b='1") BELSE
'0';
END arch and? behavioral,

In this case the behavioral desciption is somewhat more
complicated but this is no general rule

-- BND gate
LIBRARY ieee;

ieee.std logic 1164.ALL;

1

RCHITECTURE arch_and2 OF and? IS
N

y a AND b;
END arch ;

LiIN STD Locio —__ Theentityis the same

____ Thearchitecture has
changed

2016-08-17

VHDL basics cont.

If we look att the code from another perspective we can
also see two types of code

e Concurrent code

Parallel code, things happen at the same time, in parallel
We have different elctronic structures

* Sequential code

The code is interpreted as a sequence, line by line
(compare to programming code), things happen in
sequence

This code has to be written in a process

The whole process is concurrent with the rest of the code

VHDL basics cont.

Example

Entity

LIBRARY ieee;
USE ieee.std logic_1164.ALL;

ENTITY and or IS
PORT (a:STD_LOGIC;
b:STD_LOGIC;
c:IN STD LOGIC;
y_conc:0UT STD LOGIC;
y_seq:0UT STD_LOGIC) ;
END and_or;

2016-08-17

VHDL basics cont. @i o

ENTITY and or IS
PORT (a:STD_LOGIC;
Example b:STD_LOGIC;
c:IN STD_LOGIC;

Architecture y conc:OUT STD LOGIC;
y_seq:OUT STD_LOGIC) ;

END and_or;

ARCHITECTURE arch_and or OF and_or IS
SIGNAL x conc signal:STD LOGIC;

Internal signals /{ SIGNAL X:seq_gignal:STD_EOGIC;
interconnections

BEGIN

{x_conc_signal <= a AND b;
Concurrent code —— y_conc <= x_conc_signal OR c; . .
Sensitivety list

Process name > seq_proc: / The signals that trigger

PROCESS (a, b, c) (activate) the process
BEGIN

Sequential code x_seq _signal <= a AND bj;
\{ y_seq <= x_seq signal OR c;
END PROCESS seq proc;
END arch_and_or;

VHDL basics cont. r= e vesms

ENTITY and_or IS

Example cont PORT (a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:0UT STD_LOGIC;
y_seq:0UT STD_LOGIC) ;
END and_or;

ARCHITECTURE arch_and or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;
SIGNAL x_seq_signal:STD_LOGIC;
The x_conc_signal
value is immediately
updated and passed on
to the OR statement

BEGIN
—> X_conc_signal <= a AND b;
N y_conc <= x_conc_signal OR c;

seq_proc:

Th . 1 PROCESS (a, b, c)
ex_seq_signa BEGIN

value is updated when ——— y seq signal <= a AND b;
we leave the process y seq <= x_seq_signal OR c;

END PROCESS seq proc; S\

END arch and or; The value x_seq signal had

when we entered the process is
used, the assignment on the line
above isn’t effective yet

2016-08-17

VHDL basics cont. @i o

ENTITY and_or IS
PORT (a:STD_LOGIC;
b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:0UT STD_LOGIC;
y_seq:0UT STD_LOGIC)
END and_or;

Example alternative

ARCHITECTURE arch_and or OF and_or IS

Th . 1 SIGNAL x_conc_signal:STD_LOGIC;
ex conc_signa BEGIN

value is immediately —> x conc signal <= a AND b;
updated and passed on 3 -
to the OR statement

y_conc <= x_conc_signal OR c;
Variable, local to the process,

seq proc: not visable outside of the process
PROCESS (a, b, c)
VARIABLE x_seq variable:STD_LOGIC;

BEGIN . <———— Variable asignment
__——> x_seq_ variabl AND b;

y_seq <= x_seq yariable OR c;
END PROCESS Seq_pm The new value of
END arch_and or; X _seq variable
is used

The x_seq variable
value is immediately
updated and passed on
to the OR statement

VHDL basics cont. r= e vesms

ENTITY and_or IS
PORT (a:STD_LOGIC;
b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:0UT STD_LOGIC;
y_seq:0UT STD_LOGIC) ;
END and_or;

What if we change the
order of the statements?

ARCHITECTURE arch and or OF and or IS
. SIGNAL x conc gigngl:STD LOGEC;
Thex conc_signal ppory - - - change of
value is immediately __—7 y conc <= x conc signal OR c;}/ order
updated and passed on — x conc_signal <= a AND b;

to the OR statement x_seqg_variableis

seq proc:
PROCESS (a, b, c)
VARIABLE x seq:STD LOGIC;

The statement uses the BEGIN

updated after the use in
the y seg assignment
because of the order of

_ iable OR c: the statements
x_seq variable value— > Y_S€d <= x _seq variable OR c; }\

x_seq_variable := a AND b;
END PROCESS seq_proc;
END arch_and_or;

we had when we entered
the process

change of
order

2016-08-17

10

VHDL basics cont.

How do we test our code?

Simulation

The standard tool for simulation is ModelSim/QuestaSim from
Microtech (bought by Mentor)

An aid in the simulation is the test bench

A test bench is a VHDL structure where we encapsulate our design
as a component and generate stimuli to the inputs of the design and

watch the results at the outputs (and internal nodes)

* The description above is for the basic test bench (type 1)

* We can improve the test bench by adding code that tests that the output
signals are as expected when we apply the input stimuli and indicates

correct or not by this using an OK signal (type 2)

* We can also improve the test bench by adding code that tests that the
output signals are as expected when we apply the input stimuli and
write information to the simulator’s output window if an error occurs,
describing the type of error and at what simulation time the error
occured and other information that we like to come out (type 3)

VHDL basics cont.

Before we move on with VHDL

Number representation
Number bases

Decimal
Base 10

Values: 0,1,2,3,4,5,6,7,8,9
Integer example

2346 = 2-103 + 3-:10% + 4-10' + 6-10°

Real example

3.27 = 3-10° + 2-:10°t + 71072

MSD (Most significant digit) \\ /

LSD (Least significant digit) Position weights

Position weights

2016-08-17

11

VHDL basics cont.

Number bases cont.

Hexadecimal
Base 16
Values: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Integer example Position weights

Y

92A = 9-162 + 2-16 + A-16°
Real example

.45 = 3-16° + 4-1671 + 5:1672

MSD (Most significant digit) \ ‘\/\ /

LSD (Least significant digit) ~ Position weights

VHDL basics cont.

Number bases cont.

Binary
Base 2
Position weights
Values: 0, 1
Integer example {////\\\
100100101010 = 1 -2 % 0-210 + 0-29 + 1-:28+ 0-:27 4+ 0-2° +

+1:25 4+ 024+ 123+ 0-22 4+ 1-2% + 0-2°
Real example Position weights

10.01 = 12 + 0:20 + 0-27F + 1:272

AN\,

MSB (Most significant bit) Position weights
LSB (Least significant bit)

2016-08-17

12

VHDL basics cont.

Number bases cont.

Since we deal with logical, digital signals, we will
concentrate on binary numbers but internally within
a design it is often convenient to use integers.

Make sure to restrict the values to those needed

Since we are designing hardware, actual wires, we will have to
deside how many wires to use, that is how many binary bits we
will use to represent our binary numbers

The number of bits might change as needed in
different parts of the design

What about negative numbers?

We use 2-complement representation for negative values

VHDL basics cont.
2-complement

To represent a negative number in 2-complement form we take
the positive number with the same magnitude, invert all bits and
add one to LSB

Example: Write the decimal number -10 in binary You need to decide
2-complement form using 8 bits / on the number of bits

1. Convert the positive number (10) to binary base

(10),, = 1-2% + 1-21 = (00001010),
2. Invert all bits

00001010 - 11110101
3. Add1tolLSB

1

11110101

+00000001

11110110
To find the magnitute of a negative number we

‘]
We're donel do the exact same thing —(-x)=x

2016-08-17

13

VHDL basics cont.

What if our number has a value that can’t be
representated with the choosen number of bits?

We get overflow!

Example: Use 8 bit words and add the decimal numbers
70 and 80 in binary form

(The largest signed number we can represent
with 8 bits is 127, but 70 + 80 = 150)

(70) 4 - (01000110),
2-complement

(80),0 —~ (01010000), 10010110 — 01101001

1 + 1
01000110 01101010 = 106
+01010000

10010110 The number is -106

One in MSB indicates a negative number. But what number?

The result has been corrupted. The phenomenon is called wrap around

VHDL basics cont.

Wrap around

Wrap around means that if the value of a binary number, positive or negative,
won'’t fit into the used number of bits then the result will change sign and
be totally wrong although there is a system in the incorrectness

In many cases this is unacceptable
There are two remedies

1. Increase the number of bits to handle larger values
This is a non-destructive solution but increases the amount of hardware
2. Saturate the result

If the value is to large, saturate, set the value to the largest value
we can represent with the given number of bits

This is a destructive solution since the result vill be corrupted.
This solution will also increase the amount of hardware since
we need hardware to test for overflow

2016-08-17

14

VHDL basics cont.

Wrap around or saturate?

Wrap around means that we just discard the bits that
don't fit within the given number of bits. This doesn’t
take any extra logic, but we might check to indicate
wrap around

Saturation means that we have to introduce extra logic
to investigate if overflow have occured

The application decides what route to take

VHDL basics cont.

Value holders
Ports
Connections to the external world or to other components
Constants
Symbolic names instead of numbers to simplify programming

Generics

Values that are used to specify the instantiation of a subprogram, for example
to give the number of bits in a vector without the need to rewrite the code

Signals

Internal signal connections visible in the whole architecture see them as wires
between blocks, if a signal is assigned a value inside a process this value will not
be be updated until we leave the process

Variables

Internal signals that are local to a process, they are not accessable
outside of the process, the values are immediately updated

2016-08-17

15

VHDL basics cont.
Value assignment

We assign values to our value holders.
The syntax differs somewhat between the types

Generics, constants and variables are assigned values using : =

GENERIC (width:INTEGER:-

CONSTANT size const:INTEGER:=8;

VARIABLE index variable:INTEGER;

The variable and the signal could
be given a value at declaration but
this value will only transfer to
SIGNAL error signal: Sm simulation, not to synthesis so
don’t do that. Assign values after
declaration instead using some
kind of reset phase

index_variablegi=3;

Ports and signals are assigned values using <=

VHDL basics cont.

Data types

Scalar types
Type declarations i .
Placed in the architecture

TYPE ubyte IS RANGE 0 TO 255; before the first BEGIN

TYPE nibble IS RANGE -8 TO 7;

Signal declarations Predefined type with range

_931 _ (931_ =
SIGNAL xint signal:INTEGER; < 2 (2%-1) =
SIGNAL xubytel signal:ubyte; =-2,147,483,648 - 2,147,483,647

SIGNAL xubyte2 signal:ubyte; r
SIGNAL xnibble signal:nibble;, T Our declared types

What about assignments? The integer type could represent all
the values in the ubyte range so
No! They are two different types
and VHDL is strictly typed.
would be OK, wouldn’t it? To go between types we need
conversion functions

xint signal <= xubytel signal;

xubytel signal <= xubyte2 signal;

is OK though. They are of the same type

2016-08-17

16

VHDL basics cont. e e

Scalar types cont.

Why not just use INTEGER as in software?

Our VHDL code will be synthesized to hardware and this hardware must
be able to handle all possible values of a signal.

In the hardware our signals are represented by binary bits.

An integer will have to be represented by 32 bits to cover all possible values
and that would have to be the width of our signal paths then.

If we only use a fraction of the integer range that would be a
waste of hardware.

Even worse if the signal is to be stored along the signal path. In every place where
we want to store the signal we would have to include 32 flip-flops to do this.

We can restrict the integer range though.
The ubyte type would take 8 bits and the nibble type only 4 bits.

A word of warning. The simulator will give an error if we try to use values
outside of the range of the type but the hardware won’t

VHDL basics cont.

Scalar types cont.

Subtypes

We can declare a subtype if we like.
A subtype is a new type that only covers a part of the range of another type

TYPE ubyte IS RANGE 0 TO 255;

SUBTYPE subunibble IS ubyte RANGE 0 TO 15;
SIGNAL xubyte signal:ubyte;

SIGNAL subxunibble signal:subunibble;

It is OK to move values between signals of the type and the subtype
as opposed to between types

xbyte signal <= subxunibble signal;
subxunibble signal <= xbyte _signal;

A word of warning. The subtype subunibble can’t take all the values
of the ubyte type so the last assignment is dangerous

2016-08-17

17

VHDL basics cont.

Scalar types cont.

Enumeration types

Symbolic names for the values of a signal

TYPE weekday IS (sun,mon,tue,wed,thu,fri,sat);
TYPE washing machine IS (pre_wash,wash,rinse,dry);

Typically used to name the states in a state machine,
like the phases for the program of a traffic light (green, yellow, red)

Some useful preedefined enumeration types

Useful in conditional code
TYPE boolean IS (false,true);é““‘44

TYPE bit IS ('0’,"1");<—— Logical values. Not recommended
use std_logic

The ’-signs indicate that these values
are actually characters

VHDL basics cont.

Scalar types cont.

. Th f the line i
Enumeration types cont. e rest of the line is a comment

Standard logic unsigned

TYPE std ulogic IS ('U’, -- uninitialized
’X’", -- forcing unknown
0", -- forcing zero
1", -- forcing one
"2", -- high impedance Only relevant
‘W, -- weak unknown in simulation
'L", -- weak zero
"H", -- weak one Only relevant
’="); -- don’t care

at compilation
Standard logic (std_logic)is a type thatis formed from std ulogic
Signed or unsigned has no meaning for single bits

Standard logic is our recommended type for all binary signals

2016-08-17

18

VHDL basics cont.

Scalar types cont.

Fixed and floating point types

VHDL can use fixed and floating point values
but they are of limited use for synthesis

When we get to filter implementation we will see that
fixed point representation have some relevance

In many cases using floating point values would increase the
accuracy in our calculations but the required amount of
hardware will increase drastically

VHDL basics cont.

Scalar types cont.

Physical types

These are used to represent real-world physical quantities,
such as length, mass, time and current

The only physical unit of use to us is time. It has no meaning
for synthesis but is very useful for giving times in test benches
for simulation

TYPE time IS RANGE implementation defined

UNITS
fs;
ps = 1000 fs;
ns = 1000 ps;

us = 1000 ns;
ms = 1000 us;

sec = 1000 ms;

min = 60 sec;

hr = 60 min
END UNITS;

2016-08-17

19

2016-08-17

VHDL basics cont.

Scalar type attributes

Scalar types have some attributes that could be useful

typename’ LEFT — the first (leftmost) value in typename

typename’ RIGHT — the last (rightmost) value in t ypename
typename’ LOW — the smallest value in typename

typename’ HIGH — the largest value in t ypename

These attributes are very useful when we design subprograms
that use generic signals

VHDL basics cont.

Scalar operators

Scalar signals have a number of operators but
not all of them apply to all types of scalars

Logical operators

Apply to bit and std_logic

NOT

AND Observe that in VHDL all logical operators
OR have the same presidence.

NAND Therefore: be generous with parenthesis
NOR

XOR
XNOR

20

VHDL basics cont.

Scalar operators

Arithmetic operators

The operators apply to all numeric values exept where noted

* multiplication
/ division
mod modulo (apply to integer)
rem reminder (apply to integer)
- negation
+ addition
- subtraction }

The operators are given in order of presidence with
multiplication having the highest presidence

Modulo and reminder has the same presidence
and the same goes for addition and subtraction

VHDL basics cont.

Scalar operators
Operators for comparision

These operators apply to all scalar operators

= equality
/= unequality
< less than
<= less than or equal to
> greater than
>= greater than or equal to

TYPE bit IS ('0',’1");

TYPE std ulogic IS ('U’, -- uninitialized
/,>'><', -- forcing unknown
0", -- forcing zero
r1r, -- forcing one
%', -- high impedance
__—>'W’, -- weak unknown
'L", -- weak zero
'H’, -- weak one

’-"); -- don’t care

Equality and unequality have higher presidence than the others

When it comes to enumerated types a value to the left in
the sequence is smaller than a value to the right

For bits O is smaller then 1

For std_logic X is less than W

2016-08-17

21

VHDL baSiCS Cont, TYPE ubyte IS RANGE 0 TO 255;

Composite data types
Arrays, vectors

Since we have to form our multi-value signals from binary values in
our hardware implementation, binary vectors are our basic form
for signal description besides single binary bits

navhits

TYPE byte IS ARRAY (0 TO 7) OF std logic;

Observe that this is not the same as the earlier type definition of ubyte.
Both can take on 256 different values but the types are not interchangable.

Indexes can have any range, they don’t have to start with zero (0) or one (1)
Increasing indexes use TO, descending indexes use DOWNTO

We can address individual bits and vector ranges in the array using indexes

SIGNAL xbit signal:std logic;

SIGNAL xbyte signal:byte;

SIGNAL xnibble signal:std logic (0 TO 3);
______ - - Single bit

xbit signal <= xbyte signal(3);
xnibble signal <= xbyte signal (2 TO 5);
- - k Subarray

8 bits

VHDL basics cont.

Arrays, vectors cont

In many cases our vector represents a binary value,
In these cases it is more natural to use descending indexes
om————— -

TYPE byte IS ARRAY (7(@OWNTQ)O) OF std logic;

This type definition is in most cases not necessary since we
have predefined vector types for bits and std_logic

2016-08-17

22

VHDL basics cont.

Arrays, vectors cont

Predefined types

SIGNAL bitword signal:bit vector (15 DOWNTO 0) ;
SIGNAL stdbyte signal:std logic_vector (7 DOWNTO 0) ;
SIGNAL std signal:std logic vector(l TO 12);

For these pre-defined types the indexes must be natural numbers,
that is positive or zero (0)

When we write a value to a std_logic_vector we treat the value as a string

stdbyte signal <= ”00110110”; < Double quotations indicate string

It is recommended to avoid using bit_vector and always use std_logic_vectors

Use descending indexes if there is
no good reason to do otherwise

VHDL basics cont.

Arrays, vectors cont

We can also read or write parts of a vector
stdbyte signal (4 DOWNTO 2) <= ”110”;

or use concatination (&) to manipulate our vectors A new line within the code
line is fully acceptable

stdbyte signal <=
stdbyte signal (4 DOWNTO 2) & ”“00110”;

The number of bits on the two sides of the
assingment sign must of course match

2016-08-17

23

VHDL basics cont.

Unconstrained arrays

So far we have seen constrained arrays, that is arrays where the size is
declared in the type declaration

Sometimes it is practical to just declare the type of the values in
the type declaration and leave the size declaration to the instantiation

We have an unconstrained array type Just a placeholder
TYPE uncon IS ARRAY (NATURAL RANGE <>) OF STD LOGIC;
Defines the range for the allowed indexes. These can be

POSITIVE — positive integer values
NATURAL — natural integer values, positive values and zero (0)

INTEGER — integer values, both positive and negative

When we declare a signal of the unconstrained array type we have to set the
size by setting the index range of the declared signal

SIGNAL uncon_signal:uncon (10 TO 53);

VHDL basics cont.

Multidimensional arrays

An array can have more than one dimension

TYPE multiarray IS ARRAY (0 TO 9,0 TO 4) OF STD LOGIC;
We address the individual elements using two indexes
SIGNAL ma signal:multiarray;

ma_ signal(5,3) <= "1’;

2016-08-17

24

VHDL basics cont.

Arrays of arrays

In some cases it is more practical to be able to address the rows of
the multi dimensional array and not the individual elements.

This could be the case when we create a memory for byte sized data.
In these cases it is better to define a array of vectors

TYPE memory IS ARRAY (0 TO 9) OF
STD LOGIC VECTOR (7 DOWNTO O0) ;

Here we address the rows of the array, that is the bytes and not the individual bits
SIGNAL mem signal:memory;
mem_signal (5) <= ”001101107;

In this case we have no simple way of addressing the individual elements.

To do this we have to first read the row vector, address the individual bit in
the row and then write the row vector back to its place

VHDL basics cont.

Array type attributes

Array types have some attributes that could be useful

typename’ LEFT (N) - left bound of index range of
dimension N of typename

typename’ RIGHT (N) - right bound of index range of
dimension N of typename

typename’ LOW (N) —lower bound of index range of
dimension N of typename

typename’ HIGH (N) — upper bound of index range of
dimension N of typename

typename’ RANGE (N) —index range of dimension N
of typename

For one dimensional arrays N can be left out

This is very useful for unbound and generic vectors where we
don’t know the index range

2016-08-17

25

VHDL basics cont.

Array type attributes cont.
LEFT /RlGHT
Example _—/

_— N
v

—
TYPE arraytype IS ARRAY (1 TO 4,15 DOWNTO 0)
F STD-LOGIC;

arraytype’LEFT (1) = 1
arraytype’ LEFT (2) = 15
LOW HIGH

I
=~

arraytype’RIGHT (1)
arraytype’RIGHT (2) = 0

arraytype’LOW (1) = 1
arraytype’LOW (2) = 0

arraytype’HIGH (1) = 4
arraytype’HIGH (2)= 15

The index
variable does
not have to be
declared

VHDL basics cont.

Array type attributes cont.
Another example

TYPE arraytype IS ARRAY (7 DOWNTO 0) We have eight bits,
OF STD LOGIC; HIGH is seven

SIGNAL x array signal:arraytype;

VARIABLE count_variable:INTEGER RANGE_0 __

TO X_array’@IGH}l;

e) RANGE is
. i S
FOR index IN x array’iRANGE |LOOP 7 DOWNTO 0

IF x array signal (index)=’1’ THEN
count variable:=
count variable+l;
END IF;

END LOOP; The example counts the number of onesin x_array

without knowing the size of x_array, it is generic

Observe that we must use a variable not a signal for the counter since
the loop must be placed within a process and we need the updated
values of count_variable imediately for the next loop round

2016-08-17

26

VHDL basics cont.

Array operators

Array signals have a number of operators but
not all of them apply to all types of arrays

Logical operators

Apply to boolean, bit and std_logic vectors

NOT
AND

OR

NAND
NOR
XOR

Observe that in VHDL all logical operators
have the same presidence.
Therefore: be generous with parenthesis

XNOR

For std_logic arrays the two arrays involved need to be of the same length
and the operators work bit by bit

For boolean and bit arrays we have a somewhat broader span of
applications for the operators but we won’t get into those

VHDL basics cont.

Shift operators

Apply to boolean and bit vectors, not std_logic vectors

SLL
SRL
ROL
ROR
SLA
SRA

shift left logically
shift right logically
rotate left

rotate right

shift left aritmethic
shift right aritmethic

The operators need to be complemented by the number of bits to shift
orrotate, y <= SLL x 2

Logical and aritmethic shifts to the left give the same result
and fill the empty bits with zeros

Logical shifts to the right fill the empty bits with zeros while
aritmethic shifts to the right fill the empty bits with sign bits

Since the operators only work on boolean and bit arrays we need
to use conversion functions to use them with std_logic vectors,
see the following exemple

2016-08-17

27

VHDL basics cont.

Shift operators cont.

Example: Shift the std_logic vector x_signal three bits to the
right logically

First we need to convert the std_logic vector to a bit vector to do the shift
and then we need to convert the shifted bit vector back to std_logic_vector
to get our original std_logic vector again

SIGNAL x_signal:STD LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL y signal:STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL bitvectorl signal:BIT VECTOR(7 DOWNTO 0);
SIGNAL bitvector2 signal:BIT VECTOR(7 DOWNTO 0);
bitvectorl signal <= TO BITVECTOR(y signal);
bitvector2 signal <= bitvectorl signal SRL 3;

y_signal <= TO_STDLOGICVECTOR (bitvettor2 signal);
Conversion

functions

bitvectorl <= TO_BITVECTOR (b);
. bitvector2 <= bitvectorl SRL 3;

VH D L bas | CS CO nt' y <= TO_STDLOGICVECTOR (bitvector2);

Example cont.
You might think that one bit vector would be enough so that we could write
SIGNAL Xisignal:STDiLOGIC7VECTOR(7 DOWNTO O0) ;
SIGNAL yisignal:STDiLOGIC7VECTOR(7 DOWNTO O0) ;
SIGNAL bitvector signal:BIT VECTOR(7 DOWNTO 0);

bitvector signal <= TO BITVECTOR(x signal);

bitvector signal <= bitvector_signal SRL 3;
y _signal <= TO_STDLOGICVECTOR (bitvector signal);

But since the code isn’t written inside a process our statements
are concurrent, this means that the first two lines of code both
tries to write values to bitvector at the same time which
obviously won "t work.

We could skip the bit vectors all together though
and write the whole function in one single line

Y signal <=TO STDLOGICVECTOR ((TO BITVECTOR (x signal)
SRL 3));

2016-08-17

28

VHDL basics cont.

Shift and rotate operators

There are no explicite functions to shift and rotate std_logic_vectors, we have to
convert to bit vector or implement the functions ourselves or use the standard
logic subtypes SIGNED or UNSIGNED for which there are such functions. We will
get back to these.

The operations can be logic or arithmetic shifts or rotations and they can

be to the left or to the right.

The shift and rotate operations can be done using vector manipulation

Example: logical shift two steps to the left
SIGNAL shift v signal:STD LOGIC VECTOR (7 DOWNTO O0);

shift v _signal<=shift v _signal (5 DOWNTO 0)&”00”;
Example: arithmetic shift one steps to the right Sign extention

shift v signal<=shift v signal(7)&
shift v signal (7 DOWNTO 1);
Example: rotate three steps to the right

shift v signal<=shift v signal (2 DOWNTO 0) &
shift v signal (7 DOWNTO 3);

VHDL basics cont.

Shift and rotate operators cont.

This is a suitable place to use vector attributes so the same code could
be used for vectors of different lengths

Don’t try to write functions where variables in your code
change the number of shifting or rotating steps since this will
generate an awful lot of logic

Let’s take the last example again but define the vector size
using a constant

2016-08-17

29

VHDL basics cont.

Shift and rotate operators cont.

Example: logical shift two steps to the left

CONSTANT WIDTH:INTEGER:=8;
SIGNAL shift v _signal:STD LOGIC_VECTOR (WIDTH-1 DOWNTO 0) ;

shift v _signal<=shift v signal (WIDTH-3 DOWNTO 0)&”00";

Example: arithmetic shift one steps to the right

shift v_signal<=shift v_signal (WIDTH-1) &
shift v signal (WIDTH-1 DOWNTO 1);

Example: rotate three steps to the right

shift v _signal<=shift v_signal (2 DOWNTO O0) &
shift v signal (WIDTH-1 DOWNTO 3);

Observe that for synthesis the number of shift steps must be fixed and
not variable in an instantiation since the hardware is a fixed structure

VHDL basics cont.

Array operators

Arithmetic and comparison operators

These operators require the inclusion of a numberic package called
numeric std to handle std_logic vectors

Most arithmetic operations can give different results depending on if
the operands are interpreted as signed or unsigned vectors.

Is 1100 (12 or -4) larger or smaller than 0011 (3)?

It depends on signed or unsigned interpretation

Because of this we need to specify how to interpret the vectors

We do this by using the subtypes SIGNED and UNSIGNED to std_logic_vector
when we perform the arithmetic operations and then we go back to std_logic
again. The subtypes are declared in numeric_std

As mentioned before there are defined shift and rotate operations for
these subtypes, together with arithmetic operations

2016-08-17

30

VHDL basics cont.

Array operators

Arithmetic and comparison operators cont.

Example

SIGNAL a:STD LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL b:STD LOGIC VECTOR (7 DOWNTO O0) ; .
— — Interpret as signed
SIGNAL y:STD LOGIC_VECTOR (7 DOWNTO O0);
y <= STD LOGIC VECTOR(SIGNED(a) + SIGNED(b));
Go back to
interpretation as
std_logic_vector

Observe that since we only use subtypes and don’t do type conversion
we do not use the conversion function TO STDLOGICVECTOR but
the type declaration function STD_LOGIC_VECTOR

VHDL basics cont.

Array operators

Arithmetic and comparison operators cont

Earlier it was common to use the types std logic_ signed and
std logic_unsigned to handle these situations.

In recent years it has been recommended to use std_logic_vector
and the subtypes signed and unsigned instead since the earlier
types could lead to confusion in some instances

Follow the new recommendation and use SIGNED and UNSIGNED!

Don’t use std_logic_signed and std_logic_unsigned!

Be observant on this if you use example code from somewhere
on the net or others

2016-08-17

31

VHDL basics cont.

Array operators

Arithmetic operators

* multiplication

/ division
mod modulo
rem reminder

- negation

+ addition

- subtraction

These operations can be performed between two vectors or between
a vector and an integer, the operands can be in any order.

If the vector is to be interpreted as UNSIGNED then the integer value is
limited to natural values.

The same operator can be used on different types of objects because
there are several versions of the operators and the operator types
decide which version that will be used.

This is called overloading.

VHDL basics cont.

Array operators

Arithmetic operators cont.

In all operations exept multiplication the result from operations on vectors
will be a vector of the same size as the largest input vector.

When one of the operands is an integer number and the other a vector
the operation will give a vector of the same size as the vector.

In multiplication between two vectors the size of the result will be
the sum of the sizes of the two input vectors.

If one of the operands in the multiplication is a integer and the other a vector
then the size of the result vector will be twice the size of the input vector

These multiplications will not perform the left shift needed for
fractional numbers. You need to do this yourself

2016-08-17

32

2016-08-17

VHDL basics cont.

Array operators

Arithmetic operators cont.
Examples

7

SIGNAL
SIGNAL

:STD LOGIC VECTOR
:STD LOGIC VECTOR
SIGNAL c:STD LOGIC VECTOR
SIGNAL y:STD LOGIC VECTOR

a (7 DOWNTO

b (

c (

y (
SIGNAL z:STD LOGIC_VECTOR (

q (

w (

t (

u (

7

7 DOWNTO
5 DOWNTO
7 DOWNTO
7
7
7

7

7

)
)
)
)i
DOWNTO 0) ;
SIGNAL g:STD_LOGIC_VECTOR DOWNTO 0) ;
SIGNAL w:STD LOGIC_VECTOR DOWNTO 0)
SIGNAL t:STD LOGIC_VECTOR (15 DOWNTO 0
0

SIGNAL u:STD LOGIC_VECTOR (15 DOWNTO

O O O O O o o

) i
).

7

<= STD LOGIC_ VECTOR (SIGNED
<= STD LOGIC_ VECTOR (SIGNED

(+UNSIGNED (b)) ;
(
STD LOGIC VECTOR (SIGNED
(
(
(

+SIGNED (c)) ;
-5);
/SIGNED (b)) ;
*SIGNED (b)) ;
*9);

<= STD LOGIC_ VECTOR (SIGNED
<= STD LOGIC_ VECTOR (SIGNED
<= STD LOGIC VECTOR (SIGNED

o =0 N K
N i
It

(
(
(
(
(
(

(U]

VHDL basics cont.

Array operators
Operators for comparision

= equality
/= unequality
< less than
<= less than or equal to
> greater than
>= greater than or equal to

The operators apply to one dimensional arrays
where the elements can be of any discrete type.
The operators will return a value of type boolean.

The arrays don’t need to be of the same size
as long as the elements are of the same type.

The equality function can only be true if the two arrays are
of the same size and all the element values are the same

33

VHDL basics cont.

Array operators

Operators for comparision cont.

The less and greater functions are performed element by element
extending the shortest array

These comparision operations can also be performed between
a vector and a integer, the operands can be in any order.

If the vector is to be interpreted as UNSIGNED then the integer
value is limited to natural values.

VHDL basics cont.

Array operators

Operators for comparison cont.
Examples

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

a signal:STD LOGIC VECTOR(7 DOWNTO 0);
b signal:STD LOGIC VECTOR (7 DOWNTO O0);
c signal:STD LOGIC VECTOR(5 DOWNTO O0);
x signal:BOOLEAN;
y_signal:BOOLEAN;
z signal :BOOLEAN;

x_signal<=STD_LOGIC_VECTOR (SIGNED (a_signal)>

UNSIGNED (b _signal));

y_signal<=STD_LOGIC_VECTOR (SIGNED(a_signal) /=

SIGNED (c_signal));

z_signal<=STD_LOGIC_VECTOR (SIGNED (a_signal)<=5);

2016-08-17

34

VHDL basics cont.

Array operators
Concatination

We can create longer arrays by concatination (&) of shorter arrays or elements

Some examples

SIGNAL a signal:STD LOGIC;
SIGNAL b signal:STD LOGIC;
SIGNAL c_signal:STD_LOGIC_VECTOR (3 DOWNTO O0)
SIGNAL d_signal:STD_LOGIC_VECTOR (3 DOWNTO O0)
SIGNAL e_signal:STD_LOGIC_VECTOR (7 DOWNTO O0);
SIGNAL f signal:STD_LOGIC_VECTOR (7 DOWNTO O0)
SIGNAL g_signal:STD_LOGIC_VECTOR (7 DOWNTO O0)
SIGNAL h_signal:STD_LOGIC_VECTOR (7 DOWNTO O0)

e signal<=c signal & d signal; <— Two vectors

£ signal<="000” & 71’ & 700007; <« constants

Rotate operation
g_signal<=e signal (1 DOWNTO 0) & é/’////////

e signal (7 DOWNTO 2);

h_signal <= c_signal & ”000” & a_signal;

Vector, constant and scalar

VHDL basics cont.

Basic VHDL structures

Entity

The external, visual part of aVHDL design is the entity that defines
the connections (ports) in and out of the design.

The entity can also contain generics, attributes that are used to
control the design, for example the width of vectors.

The entity has the following structure

ENTITY entity name IS

[GENERIC (generic name:data type[:=value]);]l<—

PORT (port_namel:connection type datatype;<——

port name2:connection type datatype); <«

END entity name;

Observe where the semicolon (;) separators are placed

2016-08-17

35

VHDL basics cont.

Basic VHDL structures

Comments

Comments can be placed in all parts of the code if you follow some rules.

e Comments start with the sign —- and continues to the end of the line
¢ If a line starts with —— then the whole line is a comment

* You can not have comments within lines, with code before and
after the comment

* You can not comment out more then one line of code at once,
multiple line comments have to be commented out line by line.
QuestaSim have tools to comment out several marked lines at once

Instead of commenting out longer code sections it might be easier to
temporarily cut the code section out and store it by paisting it into
another file for the time being and then paiste it back in later on when
you need it again

VHDL basics cont.

Basic VHDL structures

Generics

The generic can be of any datatype and since it only modifies the
design instantiation it doesn’t have to be a synthesizable datatype.

The generic does not have to be given a value in the entity. That might

come later when we instantiate our design as a subdesign (component)
in a larger design.

In that case we create a generic design that can adapt to the application.

We create a generic component or function

2016-08-17

36

VHDL basics cont.

Basic VHDL structures

Ports

The ports are our connections in and out of the design

If they are to be connected to the outer world they have to be of
synthesizable types, preferably std_logic or std_logic_vector

We can use other datatypes but only if the design is supposed to be used
as part of a larger design where the ports will be internal connections to
other parts of the design that use the same datatype and not connected
to the outside world. In this cases INTEGER, SIGNED and UNSIGNED can
be practical

We can have four different connection types for the ports

IN data path directed into the design
OUT data path directed out of the design
INOUT bidirectional data path
BUFFER a readable output

VHDL basics cont.

Basic VHDL structures
Ports cont.

The IN port can only be read, we can not write to it
The OUT port can only be written, we can not read from it
The INOUT port can be both read and written

The BUFFER port is a buffered outport where the value
before the buffer can be read

Not all pins on a FPGA can be used as bidirectional or buffered pins so
| would recommend that you try and use IN or OUT ports exclusively

Do not define a port as INOUT just to be able to read it.
Reserve this for truly bidirectional ports

In most cases we can avoid INOUT and BUFFER ports by using
internal signals that can be both read and written and then
transfer the value to the OUT ports. This will not give extra
hardware. Se example below

2016-08-17

37

VHDL basics cont.

Basic VHDL structures
Ports cont.

Example

LIBRARY ieee;
USE ieee.std logic 1164.ALL;
USE ieee.numeric std.ALL;

ENTITY inout port IS
PORT (reset:IN STD LOGIC;
clk:IN STD LOGIC;
a:IN STD LOGIC VECTOR(7 DOWNTO O0);
y:0UT STD LOGIC VECTOR(7 DOWNTO 0));
END inout port;

VHDL basics cont. VR el e

USE ieee.numeric_std.ALL;

ENTITY inout_port IS

PORT (reset:IN STD_LOGIC;

Basic VHDL structures CIK:IN STD 10GIC;

a:IN STD_LOGIC_VECTOR (7 DOWNTO 0);

Ports cont.

END inout_port;

Example cont.

ARCHITECTURE arch inout port OF inout port IS

y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

be of type SIGNED

SIGNAL y signal:SIGNED(7 DOWNTO 0);<—— Internalsignal can
Readable ////7;7 -

EGIN
Z(iegmns;:vrary clocked add proc: Asynchronous
PROCESS (reset, clk) reset signal
BEGIN
IF reset = 'l' THEN Set all bits to zero

y signal <= (OTHERS=>'0"');
ELSIF (rising edge(clk)) THEN
y signal <=y signal + SIGNED(a);
END IF;
END PROCESS clocked add proc;

Positive clock edge

Treat a as SIGNED

y <= STD LOGIC VECTOR(y signal); \ Transfer internal signal

END arch_inout port;

to output and convert

to STD_LOGIC_VECTOR

2016-08-17

38

ARCHITECTURE arch_inout_port OF inout_port IS
SIGNAL y_signal:SIGNED(7 DOWNTO 0);

VHDL basics cont.ceomscon o

BEGIN
IF reset = 'l' THEN
y_signal <= (OTHERS=>'0"');

Basic VHDL structures ELSIF clk'EVENT AND clk='1' THEN

y_signal <= y signal + SIGNED(a);
END IF;
Ports cont. END PROCESS clocked add;

y <= STD_LOGIC_VECTOR(y_signal) ;
Example cont END arch_inout_port;

The output assignment can be placed inside the process

END IF;
y <= STD_LOGIC VECTOR(y_signal);
END PROCESS clocked add;
END arch_inout_port;

but then it will have to be registered (clocked) to remember the value
from one process triggering to the next, that is we need registers for
bothy signal and y. This will require extra flip-flops.

We will also delay y by one clock cycle if we put y within the process.
If we use a variable instead of a signal we remove the delay but
can not get out of the process.

When we place the assignment of v outside of the process it will
only be a set of wires between the signal and the port and no extra
registers are required.

VHDL basics cont.

Basic VHDL structures
Architecture

The architecture describes the internals of our design
It has the following structure

ARCHITECTURE architectureiname OF entityiname Is
[Constant declarations]
[Type definitions]
[Signal declarations]
[Component declarations]
BEGIN
parallel (concurrent) code
sequential code (processes)
END architecture name;

2016-08-17

39

ARCHITECTURE architecture name OF entity name IS

[Constant declarations]

M [Type definitions]
DL basics cont. i,
[Component declarations]
BEGIN
parallel (concurrent) code

Basic VHDL structures oo’ seensvectuve s
Architecture cont.
Constants

The constant declarations are a way of giving symbolic names to objects
used in the code. It will also make it possible to make the change in
just one single place in the code if we want to change an object.

The declaration has the form
CONSTANT CONSTANT NAME:constant type:=value;

The constant can be of have any type since it will not necessarily have to
be synthesizable

Type definitions
Declaration of our own data types. We've talked about this before

Components
Subdesigns that we use to build more complex designs

We will get back to this later on

VHDL basics cont.

Basic VHDL structures
Architecture Body

The architectural body contains our design code describing the functionality.

All statements in the body are concurrent, they are asserted in parallel,
at the same time. There is no sequence between events.

The exception to this is the process where the internal code
of the process is sequential.

But the whole process is a concurrent statement that is executed in
parallel with the rest of the code.

The process reads input values when the process is entered and new
values are written to outputs of the process when the process is exited.

The architectural code can be written in two different ways
* Behavoiral code that describes the functionality of the design

« Structural code that describes the design as blocks (components)
interconnected by signals

In reality the two approaches are often combined

2016-08-17

40

VHDL basics cont.

Basic VHDL structures

Signal attributes

A signal can have a number of attributes.
We will only use the EVENT attribute.

We’ll get back to this when we talk about clocked processes

Signal assignment

As we have seen earlier signals are assigned values using the symbol <=

The same goes for output ports

Variables, constants and generics are assigned values using the symbol :=

Variables can only exist in sequential code, that is in a process,
and they are local to the process

The other signal types can exist in both concurrant and sequential code
and are visible in the entire architecture

Constants can be local to processes

VHDL basics cont.

Basic VHDL structures

Conditional signal assignment

In concurrent code we have two structures for conditional signal assigment.

The first one, the WHEN statement, is simular to what we know as an
IF statement from software programming

Example

SIGNAL a_signal:STD_LOGIC;

The parantheses are not necessary but
increase the readability

SIGNAL y signal:STD LOGIC;

y signal <= '1’ WHEN (a_signal='0’) ELSE

o’ ; \

The signal must be assigned a value under all conditions
which means that the else clause is necessary

2016-08-17

41

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

The statement could be expanded

Example

SIGNAL y signal:STD LOGIC;
SIGNAL a signal:STD LOGIC VECTOR (1 DOWNTO 0);

y signal <= ’'1’ WHEN (a_signal=”00"”) ELSE
71’ WHEN (a signal=”01") ELSE
’ OI ; -
This could also be rewritten as
y_signal <= ’1’ WHEN ((a_signal=”00"”) OR
(a signal="”01")) ELSE
4 O 4 ; -

| think this is less readable though

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

Observe that there is nothing to say that the selection condition
must be of the same type in all clauses

Example

GNAL a signal:STD_LOGIC;

ECTOR(1 DOWNTO O0);

y signal <=’
"1’ WHEN
IOI,.

(a_signal='1") ELSE
ignal=”01") ELSE

This kind of coding is very confusing and should not be used

2016-08-17

42

2016-08-17

VH D L b H nt SIGNAL a_signal:STD_LOGIC;
a S I CS CO . SIGNAL y_ signal:STD_LOGIC;

y_signal<= WHEN (a_signal='0’) ELSE

iy
ror;

Basic VHDL structures
WITH statement

The other concurrent conditional signal assignment is the WITH statement.
It has simularities with the CASE statement in software programming

Example

We repeat our first WHEN exampl using the WITH statemente

SIGNAL x signal:STD LOGIC;
SIGNAL y signal:STD LOGIC;
o condition signal
WITH x_signal SELECT
y_signal <= "1’ WHEN ‘0",
"0’ WHEN "1';

This code won’t compile though it is formally correct and
we have covered both the high and the low signal values.

Why?

SIGNAL x_signal:STD_LOGIC;
SIGNAL y signal:STD_LOGIC;

VH DL baSiCS CO nt. >>>>> WITH x_signal SELECT

y_signal <= ’1’ WHEN ’07,
70’ WHEN ’17;

Basic VHDL structures
WITH statement cont.

In the statement all possible values of the selector, here x_signal, has
to be covered and the std_logic variable x_signal has nine (9) possible
values (U, X, 0, 1, Z, W, L, H, —) that must be handled

43

VHDL basics cont.

Basic VHDL structures
WITH statement cont.
We rewrite the code

WITH x_signal SELECT
y _signal <= ’1’ WHEN ’0',
70’ WHEN OTHERS;

The OTHERS clause covers all cases when x/=" 0"

Since the synthesized code only has values 0 and 1 (and Z,
but not as an input value), this covers all cases.

The code gets somewhat clearer if we rewrite it as

WITH x SELECT
y signal <= ’1’ WHEN ’0’,
"0’ WHEN ’1’,
"0’ WHEN OTHERS;

The synthisized result will be the same though

SIGNAL y_signal:STD_LOGIC;

VH D L baSiCS Cont. ?{GNAL a_signal:STD_LOGIC_VECTOR(1 DOWNTO 0)

y_signal <= ’1’ WHEN (a_signal="00") ELSE
’1’ WHEN (a_signal="01") ELSE

o7 ;

Basic VHDL structures
WITH statement cont.

Let’s rewrite the other WHEN statement, the one with the vector

WITH a signal SELECT
y signal <= '1l' WHEN "00",
'1' WHEN "O1",
'0' WHEN OTHERS;

In the WITH statement we can only have one selecter so we can not have
the mixed condition of the scalar a and vector b that we had in the WITH case.

The two cases that give the same result could be combined

WITH a signal SELECT / OR statement
y signal <= 'l' WHEN "O0O" | "O01",
'0' WHEN OTHERS;

For enumerated types we can also give ranges using TO or DOWNTO

We'll see this for the CASE statement later on

2016-08-17

44

VHDL basics cont.

Basic VHDL structures
GENERATE statement

There is one more concurrent assignment statement,
the GENERATE statement.

We will get back to this when we talk about components

VHDL basics cont.

Basic VHDL structures
Sequential code, processes
Sequential code is code where the statements are evaluated line

by line in a sequence and not all statement at the same time, in
parallel, as in concurrent code.

Sequential code is written within processes

2016-08-17

45

VHDL basics cont.

Basic VHDL structures

The process structure
The process label is optional but it might
encance the readability of the code

[process_name:]
PROCESS|[(sensitivity list)]
constant declarations
variable declarations
BEGIN
[WAIT statement]
sequential statements
END PROCESS [process_name];

The process must have either a
sensitivity list or a WAIT statement,
but it can not have both

A process won't execute until it is triggered and this is where
the sensitivity list or WAIT statement comes into play

VHDL basics cont.

Basic VHDL structures
The sensitivety list

The sensitivity list is a list of the signals that trigger the process,
that is the signals that make the process execute when any of
them change value.

Examples

Process triggered by a
PROCESS (a) <

compare proc:PROCESS (a,b) <— Process named compare proc
- triggered by signals a and/or b

The process will not execute if none of the signals in the sensitivity
list change value

Make sure that all signals that should make the process execute
are in the sensitivity list but dont add any other signals

Synthisized hardware are somewhat more forgiving to this than
simulators that are very strict

2016-08-17

46

VHDL basics cont.

Basic VHDL structures

The sensitivety list cont.

Example

AND_proc:PROCESS (a)
BEGIN

y <= a AND b;
END process AND proc;

The process should only trigger when a changes value but not when b
changes value and this is true in simulation

In synthesis though the result will be an ordinary
AND circuit that will trigger on both a and b

VHDL basics cont.

Basic VHDL structures

The WAIT statement

The WAIT statement has the same function as the sensitivity list
but can give some more options.

The WAIT statement can be placed anywhere in the process and
there can be more than one WAIT statement in a process.

The process will execute up until the WAIT statement and
then wait for the trigging condition.

The statement has three different forms

* WAIT ON has the same function as the sensitivety list,
it is triggered when the signal changes value

¢ WAIT UNTIL is triggered when some condition is fulfilled
* WAIT FOR waits for a specified time

The last one can not be synthesized but is useful in
simulation. Notably in test benches

2016-08-17

47

VHDL basics cont.

Basic VHDL structures
The WAIT statement cont.

Examples

/ Waits until a changes value
WAIT ON a;

P Waits until a and/or b change value(s)
WAIT ON a,b;

WAIT UNTIL (a="1"); < Waits until a changes value to one (1)

WAIT FOR 10ns;
\ Waits for 10 ns

Only used in simulation!

| find WAIT statements a bit tricky to handle and
would recommend using sensitivity lists

VHDL basics cont.

Basic VHDL structures
The WAIT statement cont.

WAIT FOR example

We can use a WAIT FOR statement to genarate
a simulation clock within a test bench

clock_proc:PROCESS
BEGIN

WAIT FOR 50 ns;

clk tb signal<=NOT (clk tb signal);
END PROCESS clock proc;

For thistowork c1k tb signal must have a start value so this
is a rare moment when it is recommended to give the signal an
initial value at declaration

SIGNAL clk tb signal:STD LOGIC:='0';

This is OK since it is only used in simulation

2016-08-17

48

VHDL basics cont.

Basic VHDL structures

Conditional signal assignment in sequential code

The WHEN and WITH statements used in concurrent
code can not be used in sequential code.

We have a couple of replacements

VHDL basics cont.

Basic VHDL structures

IF statement

The IF statement has simularities to the WHEN statement

The structure is

[IF_label:]
IF condition THEN The IF label is optional but it might

sequential code; encance the readability of the code
[ELSIF condition THEN

sequential code;]
[ELSE

sequential code;]
END IF [IF_label];

2016-08-17

49

VHDL basics cont.
Basic VHDL structures

IF statement cont.

Examples
Since the behavior at all values of a is not
IF (a='0’) THEN declared a memory element must be used
y <= 11’ B
END IF;

IF (a=’0’) THEN

y <= '1"; IF structure with complete assignment.
ELSE When all possibilities are fully declared
y <= '0"; no memory element is needed
END IF;

Use this instead!

VHDL basics cont.
Basic VHDL structures

Examples cont.

compare ab:

IF ((a='1l') AND (b='0")) THEN
a high <= ’"1’;
b high <= '0’;
equal <= '0’;

ELSIF ((a=’0’) AND (b='1’)) THEN <— The ELSIF clause is only

a high <= '0’; evaluated if the IF clause
bihiqh <= '1’; is false
equal <= ’0’;

ELSIF..

The ELSE clause is only evaluated if

é];SE < thelFandtheELSIF clause(s) are

a high <= ’0’; false
b high <= '0’;
equal <= "1’;
END IF compare ab;
We have a priority-encoded structure with dominance for the first IF statement

Try using ELSIF instead of separate IF statements

/ The IF clause is evaluated first

2016-08-17

50

VHDL basics cont.

Basic VHDL structures

CASE statement

The CASE statement has simularities to the WITH statement.

The structure is

[CASE label:] \
CASE selectorSignal IS The CASE label is optional but it might

WHEN valuel => encance the readability of the code
sequential code;

WHEN valuel =>
sequential code;

[WHEN value2 =>
sequential code;]
[WHEN others =>
sequential code;
END CASE [CASE label];

If the WHEN cases don’t cover all of
the possible values for
selectorSignal we must
include the OTHERS clause. It
could actually be there even when
it is not needed so make it a habit
to include it

All cases have the same priority and they may not overlap

VHDL basics cont.,

CASE selectorSignal IS
WHEN valuel =>
sequential code;

Basic VHDL structures WHEN valuel =>

sequential code;
[WHEN value2 =>

sequential code;]
[WHEN others =>

CASE statement cont. sequential code;]

END CASE [Case label];
selectorSignal is aninput port, a signal or a variable.

The valueX could be one single value of
selectorSignal.

It could also be more than one value if we combine
them using the OR symbol |

or it could be a range of values if we use TO or DOWNTO

2016-08-17

51

VHDL basics cont.

Basic VHDL structures

CASE statement cont.

Examples

SIGNAL tal signal:INTEGER RANGE 0 TO 20;
SIGNAL output signal:STD LOGIC VECTOR (3 DOWNTO O0);

selector
selector:

£2;;;ET%;::—;Ei551777““““ selector values
output signal <= "0010";
WHEN OTHERS =>«¢«——— OTHERS clause
output signal <= "0000";
END CASE selector;

VHDL basics cont.

Basic VHDL structures

Examples cont.

SIGNAL tal signal:INTEGER RANGE 0 TO 20;
SIGNAL output signal:STD LOGIC VECTOR (3 DOWNTO O0);

CASE tal_signal IS
WHEN, 1:=> <— Single selector value

WHEN?Z TO 4.+=> < Range of selector values

out] ignal <= "0011";

>

WHEN OTHERS =>
output signal <= "0000";
END CASE;

Group of selector values

2016-08-17

52

VHDL basics cont.

Basic VHDL structures
LOOP statement

We have one sequential statement that has no
concurrent correspondance, the LOOP statement.
The statement has a number of forms

« Infinite loop

* WHILE loop

* FOR loop

The FOR loop is the only LOOP statement that is synthesizable and
only under some circumstances that we will get back to

VHDL basics cont.

Basic VHDL structures

Infinite LOOP statement NOTICE! This is not synthesizable

As the name suggests this loop goes on forever

The structure is

[LOOP_label:]<~——
LOOP

END LOOP [LOOP_label];
Example

VARIABLE counter variable:NATURAL; Infinite loop

count variable:=0;

Triggered every clock cycle
counterl2:LOOP

/ on positive clock edge
WAIT UNTIL rising edge(clk);
count variable:= The counter counts from 0
(count_variable+l) MOD 12; <——— to 11 on the rising edge of
END LOOP counterl2; clk and then restarts

The LOOP label is optional but it might
sequential code; / encance the readability of the code

2016-08-17

53

VHDL basics cont.

Basic VHDL structures

WHILE LOOP statement NOTICE! This is not synthesizable
The WHILE LOOP goes on while some condition is true

The structure is

[LOOP label:] <——

WHILE condition LOOP The LOOP label is optional but it might

sequential code; / encance the readability of the code

END LOOP [LOOP label];

Example

VARIABLE sum_variable:NATURAL:=0;

add_loop:

WHILE (sum_variable < 100) LOOP
sum_variable:=sum variable + 3;

END LOOP add loop;

VHDL basics cont.

Basic VHDL structures
FOR LOOP statement

This loop goes on for some range of an identifier

i Parentheses not allowed
The structure is S

—

[Loop label: The LOOP label is optional
FOR Identifier IN discrete range LOOP | +it might enhance the
sequential code;

readabillity of the code
END LOOP [Loop label];

Example To be synthesizable these must be constant values
one fill: P
FOR index IN 15 DOWNTO 0 LOOP
vector (index)<='1";
END LOOP one fill;
A way to fill the vector with ones.
Could be replaced by

vector <= (OTHERS=>'1");

2016-08-17

54

VHDL basics cont.

Basic VHDL structures
LOOP control

We have a couple of functions to control the loop
With the EXIT statement we can break out of the loop and leave it.
The basic form is

IF condition THEN
EXIT;
END IF;

The code could be shortened to

EXIT WHEN condition;

VHDL basics cont.

Basic VHDL structures

EXIT statement cont.
Example

VARIABLE count variable:NATURAL;

/ Start value for the count

count_variable:=0; Triggered by clk or reset
LOOP

WAIT UNTIL ((clk='1") OR (reset="1"));
EXIT WHEN (reset='1"); <\
count variable:= Leave the loop and start
B (count variable+l) MOD 12; all over égain.when
END LOOP; - reset is activated

The process continously counts from 0 to 11 on positive edge of the clock
signal and is restarted when reset is one (1)

2016-08-17

55

VHDL basics cont.

Basic VHDL structures

NEXT statement

The NEXT statement breaks the current loop round and
moves on to the next round

The basic form is

IF condition THEN
NEXT;
END IF;

The code could be shortened to

NEXT WHEN condition;

VHDL basics cont.

Basic VHDL structures

NEXT statement cont.
Example

ones_variable:=0;

FOR index IN WIDTH-1 DOWNTO O LOOP Move to the next bit
NEXT WHEN vector (index)='0'; <« inthe vector when
ones variable:=ones variable+l; the current bit is zero

END LOOP;

The code counts the number of ones (1) in vector

2016-08-17

56

VHDL basics cont.
Basic VHDL structures

Asynchronous and synchronous code
Our VHDL code consists of two different types of code

* Asynchronous code

The code is purely logical and not controlled by any clock

¢ Synchronous code

The code is controlled by a trigger signal, a clock and will only
execute when we have a new clock tick

In most cases our code use a combination of the two

VHDL basics cont.
Basic VHDL structures

Asynchronous and synchronous code cont.

In most practical cases it is easier to make
synchronous code work as intended

Synchronous code must be written inside processes while
asynchronous code can be written as concurrant code or written
within an asynchronous process

We can find two basic synchronous structures

* Synchronous code with asynchronous reset

* Synchronous code with synchronous reset

2016-08-17

57

VHDL basics cont.

Basic VHDL structures
Synchronous code with asynchronous reset
Basic structure

async_reset:PROCESS (clk, reset)
BEGIN
IF (reset = '1") THENG\\\\\\\\\\\\\\\
asynchronous reset code;
ELSIF (rising edge(clk)) THEN
synchronous main code;

END IF;
END PROCESS async_ reset;

reset is dominant

Both signals must be

able to trigger the process.

No other signals should
be included in the
sensitivity list

Level triggered
reset

Positively edge trig-
gered c1k signal

VHDL basics cont.

Basic VHDL structures

Synchronous code with asynchronous reset cont.

Basic structure cont.

A positive clock edge is detected by

rising_edge (clk) signal’ EVENT is a signal

This can also be written as attribute tha

t is triggered when

something has happened on

clk’EVENT AND clk = ’1’ the signal.
A negative clock edge is detected by This kind of code might

falling edge (clk) mistrigger so avoid it

This can also be written as

clk’EVENT AND clk = ’0'

Do not trigger on both edges of a clock.
This is not synthesizable, use only one of the edges.

In most cases it is best to use the same edge in the whole design

2016-08-17

58

VHDL basics cont.

Basic VHDL structures

Synchronous code with synchronous reset

Basic structure Since the reset signal is synchronized
to the c1k signal only the c1k signal
PROCESS (clk) — should trigger the process
BEGIN
IF (rising edge(clk)) THEN
IF (reset = 71") THEN<——_ Canonly be activated on
synchronous_reset code; the rising edge of clk

ELSE
EN;yrllgl?ronous_maln_code; S—— Thesame goes
! for this code
END IF;

END PROCESS;

clk is dominant

VHDL basics cont.

Basic VHDL structures

Enable signal
Sometimes we also include a enable signal.

This would for the asynchronous reset case give the structure

PROCESS (clk, reset)
BEGIN
IF (reset = ’1’) THEN
asynchronous reset code;
ELSIF (rising edge(clk)) THEN
IF (enable = ’1') THEN

synchronous main code; Execute only when
— — ’ . .
END IF; \ enable is activated and

END IF; the.c!oclilhaigenerateda
END PROCESS; positive flan

Notice that the enable signal doesn’t trigger the process

2016-08-17

59

VHDL basics cont.

Basic VHDL structures
Time in hardware circuits

When we design hardware we often want to create delays.
A specific time period.
The concept of time really doesn’t exist in hardware besides the

unavoidable delay we get when the signals pass through the
electronic blocks.

In most cases the only time reference we have in our
design is the period of the system clock we use.

Our usual way to create specific time periods is to
count a number of clock cycles from the system clock.

This means that our smallest time tick, the time resolution we
can use, is the period of the system clock.

We could of course also count changes on some external signal,
use an external clock. This would i most cases be a slow clock.

VHDL basics cont.

Basic VHDL structures
Clocks in hardware circuits
When we design hardware we often want to create clock signals with

other (lower) frequencies than the system clock.

To do this we have to divide the system clock down to a lower frequency,
which means that these clocks will have frequencies that are the system
clock frequency divided by some integer number.

We do this by counting clock pulses.

Most FPGA circuits use dedicated nets for the clock signals
and there are not that many of these nets.

Because of this it is unwise to use many different clock signals in a design.

We can often solve this by using clock enable signals instead of derived
clocks.

We’ll get back to this in lab assignment 5

2016-08-17

60

VHDL basics cont.

Basic VHDL structures
Clocks in hardware circuits cont.
sysemoock [[L[LT L
System_clockd

System_clockB

Do not use

Rising edge (system clk4)

System_clock
Clock_enabled

Clock_enable6

Instead use

IF (rising edge(system clk)) THEN
IF (Clock enable4='1’) THEN

Experience says that the code works better if you
don’t combine the two 1 f caluses into one

VHDL basics cont.

Basic VHDL structures
Subprograms

We use subprograms to structure our code and when we want to
instantiate the same code sequence more than once in our design or
when we want to reuse codeblocks we have designed earlier.

Don’t confuse these subprograms with functions, procedures or
subroutines used in software programming. Each instantiation of the
routine will generate its own hardware and in most cases we can not
actually share a subprogram.

If used in concurrent code then every instance of the subprogram
has to be instantiated as it’s own hardware.

In sequential code we might be able to reuse the same block of
hardware since different parts of the sequential code execute at
different times. We use multiplexing

We have two kinds of subprograms

¢ Procedure Doesn’t return any value but we can override this
by sending a signal with the procedure call

* Function Returns a value

2016-08-17

61

VHDL basics cont.

Basic VHDL structures
Procedures

We have the structure

PROCEDURE identifier [(parameter list)] IS
[declarations of local signals,
variables and constants]

BEGIN
sequential statements; — NOTICE!

END [PROCEDURE] [identifier];

The name and the label is optional but
they might encance the readability of
the code

The procedure description should be placed in the architecture of the
program, at the same place as constants and signals are declared,
that is before the BEGIN of the architecture

VHDL basics cont.

Basic VHDL structures

Procedures cont. Procedure name

Example
PROCEDURE max_proc (a:IN STD LOGIC_VECTOR

-
(7 DOWNTO 0);z///
b:IN STD_LOGIC_VECTOR

(7 DOWNTO 0) ;

Calling parameters

SIGNAL max sig :0UT
STD LOGIC VECTOR Return parameter
(2 DOWNTO 0)) IS Observe that it is
BEGIN declared as a signal
IF (a > b) THEN
max_signal <= "100";
ELSIF (a < b) THEN
max_signal <= "001";
ELSE
max_signal <="010";
END IF;

END PROCEDURE max_proc;

2016-08-17

62

PROCEDURE max_proc(a:IN STD_LOGIC_VECTOR
(7 DOWNTO 0) ;

VHDL basics cont. biIw st_tostc_vECToR

SIGNAL max_signal:OUT
STD_LOGIC_VECTOR
(2 DOWNTO 0)) IS

H BEGIN
Basic VHDL structures 1% (a > b) THEN
max_signal <= "100";

ELSIF (a < b) THEN

Example Cont' max_signal <= "001";
ELSE

Procedure call max_signal <="010";
END IF;

END PROCEDURE max_proc;

SIGNAL a signal:STD LOGIC VECTOR

(7 DOWNTO 0) ;
SIGNAL b signal:STD LOGIC VECTOR

(7 DOWNTO 0) ;
SIGNAL max signal:STD LOGIC VECTOR

(2 DOWNTO 0) ;

max proc(a signal,b signal,max signal);

/ New line within a
statement doesn’t
The value returned from procedure goes here affect the code

Observe! max_signal on top level and down in the procedure are not the same

VHDL basics cont.

Basic VHDL structures

Return from procedure

We can return from a procedure before we reach the end
of the procedure code using a RETURN statement

Example
IF (a = ”00000000”) OR
(b = ”700000000”) THEN

max signal <= ”000”;

RETURN;
ELSIF (a > b) THEN

max signal <= "100";
ELSIF (a < b) THEN

max_signal <= "001";
ELSE

max_signal <="010";
END IF;

2016-08-17

63

VHDL basics cont.

Basic VHDL structures
Functions

We have the structure

FUNCTION identifier [(inparameter list)]
RETURN return_type IS
[declarations of local signals,
variables and constants]
BEGIN
NOTICE
sequential statements; —

END [FUNCTION] [identifier];

\/

The name and the label is optional but
might encance the readability of the
code

The function description should be placed in the architecture of the
program, at the same place as constants and signals are declared,
that is before the BEGIN of the architecture

VHDL basics cont.

Basic VHDL structures

Functions cont.
Example

Function name

FUNCTION max_ func(a:STD_LOGIC_VECTOR

b:STD LOGIC_ VECTOR

<«— Calling parameters

(7 DOWNTO 0) ;

(7 DOWNTO 0)

RETURN STD_LOGIC_VECTOR IS

BEGIN
IF (a > b) THEN
RETURN "100";
ELSIF (a < b) THEN
RETURN "001";
ELSE
RETURN "010";
END IF;
END FUNCTION max_func;

T~

Type of return parameter
Notice that there is

no size declaration

of the vector and it

has no name

2016-08-17

64

FUNCTION maxifunc (a: STDiLOGICi\/ECTOR
(7 DOWNTO 0);
. b:STD_LOGIC_VECTOR
(7 DOWNTO 0)
VH DL baSICS CO ntl RETURN STDiLOGlci\/ECTOR I1s
BEGIN
IF (a > b) THEN
. RETURN "100";
Basic VHDL structures ELSIF (a < b) THEN
RETURN "001";
ELSE
RETURN "010";
END IF;
END FUNCTION maxifunc;

Example cont.

Function call

SIGNAL a signal:STD LOGIC VECTOR (7 DOWNTO O0);
SIGNAL b signal:STD LOGIC VECTOR (7 DOWNTO 0);
SIGNAL max signal:STD LOGIC VECTOR (2 DOWNTO 0);

max_ signal <= max func(a_signal,b signal);

\ The value returned from the function goes here

VHDL basics cont.

Basic VHDL structures
Overloading of subprograms

In many cases we want to use the same subprogram more than once,
but with different types of calling or returning parameters.

To do this we can write more than one version of the subprogram
with the same name but different parameter types or even different
number of parameters.

The number of calling parameters and their type(s) will decide which
version of the subprogram that will be used.

This is called overloading

2016-08-17

65

VHDL basics cont.

Basic VHDL structures
Packages

Procedures and functions are ways to create subprograms
that we want to use more than once in a design

With packages we go one step further and collect these structures into
a separate file that can be reused in more than one design

We can also use a package to define types and subtypes, constants
and signals and to create components

The package is divided into two separate parts

* The package declaration where we declare our subprograms,
types, signals and so on

* The package body where we instantiate
the subprograms and components

VHDL basics cont.

Basic VHDL structures

Package declaration

We have the syntax / The name of the paCkage

PACKAGE identifier IS
item_declarations;
END [PACKAGE] [identifier];

\\ The name and the label is optional but they

might encance the readability of the code

Package body

We have the syntax The same name as in

PACKAGE BODY identifier IS the package declaration

item_instantiations;
END [PACKAGE BODY] [identifier];

The name and the label is optional but they
might encance the readability of the code

2016-08-17

66

VHDL basics cont.

Basic VHDL structures
Packages

Example

Let’s move the procedure max_proc and the function max_func into a package

Package declaration

LIBRARY ieee;

USE ieee.std logic 1164.ALL; Procedure
PACKAGE max package IS declaration
PROCEDURE max_proc (a:IN STD_LOGIC_VECTOR
(7 DOWNTO Q) ;
b:IN STD LOGIC_VECTOR
(7 DOWNTO O0) ;
SIGNAL max_signal:0UT
STD_LOGIC_VECTOR
(2 DOWNTO 0)); Function
FUNCTION max_ func(a:STD_LOGIC_VECTOR declaration
(7 DOWNTO O0) ;
b:STD_LOGIC_ VECTOR
(7 DOWNTO 0))
RETURN STD_LOGIC_VECTOR;
END PACKAGE max package;
VHDL basics cont.
Basic VHDL structures
Example cont.
Package body
PACKAGE BODY max package IS Procedure

instantiation

PROCEDURE max proc(a:IN STD LOGIC VECTOR
(7 DOWNTO O0) ;
b:IN STD LOGIC VECTOR
(7 DOWNTO O0) ;
SIGNAL max signal:0UT
STD LOGIC VECTOR
(2 DOWNTO 0)) IS
BEGIN
{same code as before}
END PROCEDURE max proc;
(cont)

2016-08-17

67

VHDL basics cont.

Basic VHDL structures
Function

Example cont. / instantiation

FUNCTION max func(a:STD _LOGIC VECTOR
(7 DOWNTO O0) ;
b:STD LOGIC_VECTOR
(7 DOWNTO 0))
RETURN STD LOGIC VECTOR IS
BEGIN
{same code as before}
END FUNCTION max func;
END PACKAGE BODY max package;

VHDL basics cont.

Basic VHDL structures

To use a package

We have already seen how to use the standard packages like
std logic_ 1164.

We use our own packages in the same way
The name of the library
Syntax

USE library catalogue.library identifier.ALL;

If we have the library in our project then
the library will be compiled to the Indicates that we want to use
subfolder work in the project catalogue all declarations in the package

To use libraries in other catalogues the
search paths to these have to be defined
in the compiler system

2016-08-17

68

VHDL basics cont.

Basic VHDL structures

To use a package cont.

Example
Let’s use our package max_package in a main program
We write a main program

LIBRARY ieee;
USE ieee.std logic_ 1164.ALL;

USE work.max package.ALL; < Our package is placed

within our project

ENTITY package main IS
PORT (a:IN STD LOGIC VECTOR(7 DOWNTO 0);
b:IN STD LOGIC VECTOR(7 DOWNTO 0);
max1:0UT STD LOGIC VECTOR (2 DOWNTO O0);
max2:0UT STD LOGIC VECTOR (2 DOWNTO 0)) ;
END package main;

VHDL basics cont. sy vennn

USE work.max_package.ALL;

ENTITY package_main IS

Basic VHDL structures PORT (a:IN STD LOGIC VECTOR (7 DOWNTO 0) ;

b:IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
max1:0UT STD_LOGIC_VECTOR(2 DOWNTO 0);

To use a package cont max2:0UT STD_LOGIC_VECTOR (2 DOWNTO 0));

END package_main;

Example cont.

ARCHITECTURE arch package main OF

package main IS

BEGIN
max_proc(a,b,maxl);
max2 <= max_ func(a,b);

END afﬁh_package_main;

Return value

- Defined in package max package

Return value

2016-08-17

69

VHDL basics cont.

Basic VHDL structures

Making the package generic

To make our package more useful we can make it work for any vector size
by leaving out the size declarations of the parameters

LIBRARY ieee;
USE ieee.std logic 1164.ALL;
PACKAGE max package IS
PROCEDURE maxiproc(a:IN STD LOGIC VECTOR;
b:IN STD LOGIC VECTOR;
SIGNAL max:0UT
STD LOGIC VECTOR); «—— No sizes
FUNCTION maxifunc(a:STDiLOGIC7VECTOR;7
b:STD_LOGIC VECTOR)
RETURN STD LOGIC VECTOR;
END PACKAGE max package;

The signal sizes will be decided by the sizes of the calling parameters

VHDL basics cont.

Basic VHDL structures

Standard packages

VHDL includes a number of standard packages that are part of
the IEEE standard package collection.

We will discuss a few of these and some of their contents

e standard defines the character set, integer, real, time, string,
boolean_vector, bit_vector, integer_vector, real_vector

* math_real works on real numbers and has declarations for mathematical
constants like pi, square root, exponential and logarithmic
functions and trigonomethric functions

* math_complex has mathematical constants and functions for complex numbers

* std_logic_1164 declares the std_logic data type, declares logical functions,
shift operators and conversions between std logicandbit

2016-08-17

70

VHDL basics cont.

Basic VHDL structures
Standard packages cont.

e numeric_bit has numerical and logical operations for bits

* numeric_std has more or less the same declarations as numeric bit
butfor std logic

« fixed_generic_pkg has numerical and logical operations for
fixed point numbers

« float_generic_pkg has numerical and logical operations for
floating point numbers

A search of the internet will give the declarations within these packages
We will in most cases create our designs using only the std_logic 1164

library or complement it with use of the numeric_std library and in some
rare casesmath_real

Let’s have a look at these two packages

Demonstration!

VHDL basics cont.

Basic VHDL structures

Components

Components are subdesigns that we use as building blocks to
build larger designs

We will get a hierarchical design that might be easier to grasp

Splitting the design into components makes it easier to
simulate and test the separate blocks on their own

It is also a way to reuse building blocks from earlier designs
and to interconnect two designs into one larger design

When we use a component in a design we have to declare
the component and connect its ports to the signals in
the higher level design

Let’s illustrate with an example

2016-08-17

71

VHDL basics cont.

Basic VHDL structures
Components cont.
Example
We want to build a two-bit adder.
We start by building a one-bit full adder and then use two blocks of this kind as
components in the two bit version.

a(1) o—

Ful [s(1)
b(1) = adder

o cout
a L
Full 0 8
b o adder
> cout
cin © a(0) o—

Ful [s(0)
b(0) o—— adder

Not used (0) o—

One-bit adder Two-bit adder

VHDL basics cont. .

b adder

Basic VHDL structures

Components cont.
Example cont.

Our one-bit adder has the code

ENTITY full adder IS
PORT (a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
s:0UT STD LOGIC;
cout:0UT STD LOGIC);
END full adder;

ARCHITECTURE arch_ full adder OF full adder IS
BEGIN
s<=a XOR b XOR cin;
cout<=(a AND b) OR
(a AND cin) OR> Separate lines increases readability
(b AND cin);
END arch_ full adder;

o cout

2016-08-17

72

VHDL basics cont.

Ful sl
(1) | adder
cout
Basic VHDL structures
Example cont. alo) -
Full | s(0)
. bi) o adder
We move on to the two-bit adder.
Not used (0) =
We have the entity
ENTITY adder 2 bit IS
PORT (a:IN STD_LOGIC_VECTOR(l DOWNTO 0) ;
b:IN STD_LOGIC_VECTOR(l DOWNTO 0) ;
5:00T STD_LOGIC_VECTOR(l DOWNTO 0) ;
cout:0UT STD LOGIC) ;
END adder 2 bit;
The entity is the same as for the one bit adder exept that
a, b and s have changed from calars to vectors
. o Ful [sll)
VHDL basics cont e
* cout
ENTITY adder 2 bit IS
. PORT (a:IN STDiLOGIci\/ECTOR(l DOWNTO 0) ;
b:IN STD LOGIC VECTOR(1 DOWNTO 0);
BaSIC VHDL structures y:0UT STD LOGIC VECTOR (1 DOWNTO 0); al0) o
cout:OUT STD_LOGIC); Full | #0)
Example cont. END adder 2 bit; b0y o— adder
and the architecture Notused @)e— |
ARCHITECTURE arch adder 2 OF adder 2 IS
COMPONENT full adder IS
PORT (a:IN STD LOGIC;
b:IN STD_LOGIC; Component declaration
cin:IN STD LOGIC;
s:00T STD LOGIC
cout:0UT STD LOGIC) ;
END COMPONENT full adder;
SIGNAL cint_signal:STD_LOGIC;
BEGIN
full adder_ compO:COMPONENT full adder
PORT MAP (a=>a (0),b=>b (0),
cin=>'0"',s=>s(0),cout=>cint signal); Component

full adder_ compl:COMPONENT full adder
PORT MAP(a=>a(l),b=>b (1),
cin=>cint signal,s=>s (1), cout=>cout);
END arch_adder_2;

instantiations

2016-08-17

73

VHDL basics cont.

Basic VHDL structures

Example cont.

Lets’s look at the different
parts of our architecture.

:full adder IS

"(a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;

First the component $:0UT STD LOGIC

declaration

If we compare this to
the entity of our one

PORT(a.IN STD_LOGIC;

bit full adder b:IN STD_LOGIC;
cin:IN STD LOGIC;
s:00T STD_LOGIC
cout:0UT STD_LOGIC) ;

END full adder;

We see that they are the same exept that the word ENTITY has been replaced
by the word COMPONENT and we have added the word COMPONENT at the

end as well

o Ful [sll)

b(1) { adder
. | r cout
VHDL basics cont. |
H 20— ; 5(0)

Basic VHDL structures boyo] o
Example cont. Not used (0) |)

In the architecture body we instantiate
two full adders as components.

ENTITY adder_2_bit IS
PORT (a:IN STD_LOGIC_VECTOR(L DOWNTO 0);
b:IN STD_LOGIC_VECTOR (1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
cout:0UT STD_LOGIC) ;
END adder 2 bit;

Let’s look at the first one

The same signal name can be Name of component port

used on different design levels Top level signal connected

without interference to the component port
full adder 1 COMP NENT 1 adder Transfer carry out

PORT MAP (a=>a (0),b=>b(0), tothe next bit
cin=>'0"',s=>s(0), cout= >c1nt), using an internal

\\ signal

Connect cin to a constant value
zero (0) since we have no carry in

The instantiation must have a label

The port map connects the ports of the component
to the signals in the top design

2016-08-17

74

VHDL basics cont.

Basic VHDL structures

Example cont.

PORT MAP (a=>a (0),b=>b(0),
cin=>'0"',s=>s(0),cout=>cint) ;

This way of connecting the signals to the component is called nominal mapping.

Here the order of the assignments doesn’t matter and we can even
leave out the assignment of some outputs if we don’t want to use
them. We could for example skip carry out if we don’t use it

PORT MAP (a=>a(0),b=>b(0),cin=>'0"',s=>s(0));

All inputs must be there though since there values are needed to
generate the output signal

VHDL basics cont.

Basic VHDL structures

Example cont.

| prefere to have one assignment per line when | do the port mapping.
The code gets more readable and you can have comments on each
assignment if you like

PORT MAP (a=>a (0),
b=>b (0),
cin=>'0",
s=>s(0),
cout=>cint);

I don’t do that in this presentation to same space on the slides

2016-08-17

75

VHDL basics cont.

Basic VHDL structures

Example cont.

We can also use positional mapping where the possition of the signal
within the PORT MAP desides where it is connected

PORT MAP(a(0),b(0),'0"',s(0),cint);

Since the position is essential then all signals must be there. If we
want to leave someone out we must keep the position.

If we once again leave out the carry out signal from the component.

PORT MAP (a(0),b(0),'0"',s(0) ,x
The positional mapping is shorter but often confusing since you
must all the time check that you have got the positioning right.

Using nominal mapping and keeping the port order from the
component entity makes the code less error prone

al1)

VHDL basics cont. | |

cout

Basic VHDL structures

ail) o
Full s(0)
Example cont. b(0) o adder
Let’s repeat the total architecture Mot used (0) =

ARCHITECTURE arch adder 2 OF adder 2 IS
COMPONENT full adder IS
PORT (a:IN STD LOGIC; ENTITY adder 2 bit IS
biIN STD LOGIC; FoRe 4151 Lootc_ymcran L nomo o
cin:IN STD LOGIC; y:OUT STD LOGIC VECTOR(1 DOWNTO 0);
5:0UT STD_LOGIC oD aacen 2 pits o
cout:0UT STD LOGIC) ;
END COMPONENT full adder;
SIGNAL cint_signal:STD_LOGIC;
BEGIN
full adder_ compO:COMPONENT full adder
PORT MAP (a=>a (0),b=>b(0),
cin=>'0"',s=>s(0),co
full adder compl:COMPONENT full der
PORT MAP (a=>a(1l),b=>b (1),

cin=>cint signal,s=>s (1), cout=>cout);
END arch_adder_ 2;

Transfer carry out
to the next bit

/ using a signal

=>cint signal);

2016-08-17

76

VHDL basics cont.

Basic VHDL structures

This works fine for just a few instantiations of a component.
But it will be a lot of code, if we have many bits, for example 32 bits.

In this case there is a simplier way

Example

We continue with the adder but will use it for the addition of
two 32 bit vectors

The entity will be the same as before but the vectors will have
increased the number of bits to 32

ENTITY adder 32 bit IS
PORT (a:IN STD_LOGIC_VECTOR (31 DOWNTO O0)
b:IN STD LOGIC_ VECTOR (31 DOWNTO O0);
s:0UT STD LOGIC_VECTOR (31 DOWNTO 0) ;
cout:0UT STD LOGIC) ;
END adder 32 bit;

’

VHDL basics cont.

Basic VHDL structures
Example cont.

The component declaration will be exactly the same as in the 2-bit case
since it is the same one-bit-adder component.

COMPONENT full adder IS
PORT (a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
5:0UT STD LOGIC
cout:0UT STD LOGIC);
END COMPONENT full adder;

We have to change the architecture body with
the component instantiations

(1
(1e
(1)s
izha

(0)a
5 (ge
ok

< (Z)e
(2)s
(oE)a
(ogke

< loEks
(1g)a
{1ghe
(1els

Full | Full Full Full | Full
| adder adder . adder adder . adder

Not used {0} =

2016-08-17

77

2016-08-17

ligs

VHDL basics cont.

Basic VHDL structures e = e
Example cont. '

ARCHITECTURE arch adder 32 bit OF adder 32 bit IS Signals that transfer
{declaration of component full adder} the carrier bits
SIGNAL cint:STD LOGIC VECTOR (30 DOWNTO O0) ;/ between the com-
BEGIN ponents
full adder compO:COMPONENT full adder
PORT MAP (a=>a(0),b=>b(0),cin=>'0",
s=>s(0),cout=>cint (0)) ;

~— Nocin

G:FOR i IN 1 TO 30 GENERATE
full adder compi:COMPONENT full adder
PORT MAP (a=>a (i) ,b=>b (i), cin=>cint (i-1),
s=>s (i), cout=>gint (i));

| Component
instantiations

END GENERATE;
full adder comp31:COMPONENT full adder
PORT MAP (a=>a(31),b=>b(31),cin=>cint (30),
s=>s(31)); \
END arch adder 32 bit; \

Carry ripples from one

MSB and LSB are instantiated seperately since they have somewhat adder to the next

different in- and output signals
cout not connected, therefore missing

ligs

VHDL basics cont. ~~

Basic VHDL structures o

Example cont.

Let’s take a closer look at the generation of bit 1 to 30

The generate statement must have a label

The index variable does not have to be declared

G:FOR i IN 1 TO 30 GENERATE

full adder_ compi:COMPONENT full adder
PORT MAP (a=>a(i),b=>b(i),cin=>cint (i-1),
s=>s (i), cout=>cint(i));

END GENERATE;

We need a component label but we do not need separate
labels for the different instantiated components

We have what might look like a loop but the synthesize
tool will unwrap this loop and instantiate 30 separate one
bit adders

78

2016-08-17

VHDL basics cont.

Basic VHDL structures

Now we might wonder:

Is there a way to generalize the adder so that we can use the same
design no matter the number of bits we want to use?

Yes there is!

First of all we could define a constant to give the number of bits,
which means that we only have to make a change in one place in
the code when we change the number of bits

VHDL basics cont.

Basic VHDL structures

ARCHITECTURE arch adder x bit OF adder x bit IS

{declaration of component full adder}
CONSTANT WIDTH:NATURAL:=32; <———_ Constant declaration

BEGIN
full adder comp0:COMPONENT full adder
PORT MAP (a=>a (0),b=>b(0),cin=>'0",
y=>y (0), cout=>cint (0)) ;
-2 GENERATE

PORT MAP (a=>a(i),b=>b (i), cin=>cint (i-1),
y=>y (i), cout=>cint (1)) ;

END GENERATE;

We will have to edit the constant in the architecture to change the number of bits

79

VHDL basics cont.

Basic VHDL structures

As the next step we move the bit number constant out of the arcitecture
and into the entity and define it as a GENERIC

ENTITY adder x bit IS
GENERIC (WIDTH:NATURAL:=32) ;
PORT (a:IN STD LOGIC VECTOR(WIDTH-1 DOWNTO 0);
b:IN STD LOGIC VECTOR(WIDTH-1 DOWNTO 0);
y:0UT STD LOGIC VECTOR(WIDTH-1 DOWNTO 0);
cout:0UT STD LOGIC);
END adder x bit;

The syntax for the generic is

GENERIC (generic name:generic_ type[:=value]);

\

We will get back to the case when we don’t need a value

VHDL basics cont.

Basic VHDL structures

All we have to do in the architecture is to remove the constant.
This is now replaced by the GENERIC in the entity

ARCHITECTURE arch adder x bit OF adder x bit IS
{declaration of component full adder}
SIGNAL cint:STD LOGIC VECTOR(WIDTH-2 DOWNTO O0);
BEGIN
full adder comp0:COMPONENT full adder
PORT MAP (a=>a (0),b=>b(0),cin=>'0",
y=>y (0), cout=>cint (0)) ;
G:FOR 1 IN 1 TO WIDTH-2 GENERATE
full adder compi:COMPONENT full adder
PORT MAP (a=>a(i),b=>b (i), cin=>cint (i-1),
y=>y (i), cout=>cint (1)) ;
END GENERATE;
full adder compN_1:COMPONENT full adder
PORT MAP (a=>a (WIDTH-1),b=>b (WIDTH-1),
cin=>cint (WIDTH-2) ,y=>y (WIDTH-1) ;
END arch adder x bit generate;

2016-08-17

80

VHDL basics cont.

Basic VHDL structures
This has improved the flexibility of our adder.

But we have to go in to the entity of the adder and edit it
to change the number of bits.

What if we could describe the adder as a component and set
the number of bits at instantiation?

To do this we keep the generic in the entity but we remove it’s value

ENTITY adder x bit IS / Generic without value
GENERIC (WIDTH:NATURAL) ;
PORT (a:IN STD LOGIC VECTOR(WIDTH-1 DOWNTO 0)
b:IN STD LOGIC VECTOR(WIDTH-1 DOWNTO 0)
y:0UT STD LOGIC VECTOR(WIDTH-1 DOWNTO 0O
cout:0UT STD LOGIC) ;
END adder x bit;

’

)i

and set it when we instantiate the adder.

We can actually keep the value of the generic as a
default. It will be overwritten by the instantiation

VHDL basics cont.

Basic VHDL structures
Example

Let’s try to implement two adders with different word lengths using our component.
We add two 16 bit numbers and two 8 bit numbers.

We have the entity We have used two new
generics to set the two bit
ENTITY multiple_adders IS widths in the components

GENERIC (WIDTH16:NATURAL:=16;
WIDTH8 :NATURAL:=8) ;
PORT (a:IN STD LOGIC VECTOR(WIDTH16-1 DOWNTO 0) ;
b:IN STD LOGIC VECTOR(WIDTH16-1 DOWNTO 0) ;
c:IN STD LOGIC VECTOR(WIDTH8-1 DOWNTO 0) ;
d:IN STD LOGIC VECTOR(WIDTH8-1 DOWNTO 0) ;
y:0UT STD LOGIC VECTOR (WIDTH16-1 DOWNTO O);
z:0UT STD LOGIC VECTOR (WIDTH8-1 DOWNTO 0);
coutl6:0UT STD LOGIC;
cout8:0UT STD LOGIC);
END multiple adders ;

2016-08-17

81

2016-08-17

ENTITY multiple_ adders IS
GENERIC (WIDTH16:NATURAL:=16;
WIDTHS :NATURAL:=8) ;

. PORT (a:IN STDiLOGICJ/'ECTOR(WIDTHlG*l DOWNTO 0) ;
b:IN STDiLOGIC OR(WIDTH16-1 DOWNTO 0) ;
VH D L ba S I CS CO nt . c:IN STD_LOGIC OR (WIDTH8-1 DOWNTO 0);
d:IN STDiLOGIC 'OR (WIDTH8-1 DOWNTO 0) ;
y:0UT STD_LOGI VECTOR (WIDTH16-1 DOWNTO 0) ;
. z:0UT STD LOGIC VECTOR (WIDTH8-1 DOWNTO 0);
Basic VHDL structures cout16:0UT STD_T0G1C;

cout8:0UT STD_LOGIC) ;

Example cont END multiple_adders ;
In the architecture we instantiate two adders using the same component

ARCHITECTURE arch multiple adders OF multiple adders
IS Generic component
COMPONENT adder x bit IS

GENERIC (WIDTH:NATURAL) ;

PORT (a:IN STD LOGIC VECTOR(WIDTH-1 DOWNTO 0)
b:IN STD LOGIC VECTOR(WIDTH-1 DOWNTO 0);
y:0UT STD LOGIC VECTOR(WIDTH-1 DOWNTO O0) ;
cout:0UT STD LOGIC) ;

END COMPONENT adder x bit;

’

BEGIN Instantiation of
adder x bit compO:COMPONENT adder x bit 16 bit adder
GENERIC MAP (WIDTH=>WIDTH16)
PORT MAP (a=>a,b=>b, y=>y, cout=>coutl6) ; Instantiation
adder x bitl:COMPONENT adder x bit of 8 bit adder

GENERIC MAP (WIDTH=>WIDTHS8)
PORT MAP (a=>c,b=>d, y=>z,cout=>cout8);
END arch multiple adders;

VHDL basics cont.

Basic VHDL structures
Memories

Basically we use two types of memories

* ROM, read only memory where the data can be read
but can not be changed (written)

¢ RAM, random access memory, read/write memory
where the data can be both read and written

In most cases we don’t use memories with bit sized data but we read and
write words of some size to a number of addresses

A suitable data type for the memory would then be an array of vectors

TYPE mem array IS ARRAY (0 TO SIZE-1) OF
STD_LOGIC_VECTOR(WIDTH—l DOWNTO 0) ;

where we address each vector instead of the individual bits

82

VHDL basics cont.

TYPE mem array IS ARRAY (0 TO SIZE-1) OF
STD_LOGIC_VECTOR (WIDTH-1 DOWNTO 0);

Basic VHDL structures
Memories cont.

To create a memory we instantiate the type, in this case mem array.

For a ROM memory the values should me initialized into the memory at design time
and then never change. We use a constant declaration for the instantiation

/ Our ROM is named ROM
CONSTANT ROM:mem_array:=(value(l),value(2),

.7

value (Size-1));

For a RAM memory we instantiate the memory

by creating a signal without values
Our RAM is named RAM

SIGNAL RAM:mem array;

We could fill the RAM with values at the instantiation but that
will only work in simulation and will not be synthesized.

For syntesis we need to fill the RAM with values using VHDL code

VHDL basics cont.

Basic VHDL structures
Memories cont.
A small ROM can be created using a case statement

BCD_7seg:PROCESS (bcd) IS
BEGIN
CASE bcd IS
WHEN X”0” => seg <= ”0111111";
WHEN X”1” => seg <= ”0000110”";
WHEN X”2” => seg <= ”1011011";
WHEN X”3” => seg <= ”1001111”";
WHEN X”4” => seg <= ”1100110”; This memory converts BCD
WHEN X”5” => seg <= ”1101101"; code to 7 segment code
WHEN X”6” => seg <= ”1111101";
WHEN X”7” => seg <= ”0000111”";
WHEN X”8” => seg <= ”1111111";
WHEN X”9” => seg <= ”1101111"; Observe the process
WHEN OTHERS => seg <= ”1000000”";
END CASE BCD_T7seg;
END PROCESS;

Hexadecimal base

2016-08-17

83

VHDL basics cont.

Basic VHDL structures

Memories cont.

We could do the same using a WITH statement

WITH bcd SELECT
seg <= ”0111111"
70000110”
71011011”
71001111"
#1100110”
#1101101"
71111101”
70000111”
71111111"
71101111"
71000000”

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

X"0",
X1,
x"2",
X"3",
x"4”,
X"5",
X"6",
X"7",
X"8",
X"9",
OTHERS;

BCD_7seg:PROCESS (bcd) IS
BEGIN
CASE bcd IS

WHEN X”0” => seg <=
WHEN X”1” => seg <=
WHEN X”2” => seg <=
WHEN X”3” => seg <=
WHEN X”4” => seg <=
WHEN X”5” => seg <=
WHEN X”6” => seg <=
WHEN X”7” => seg <=
WHEN X”8” => seg <=
WHEN X”9” => seg <=

END CASE BCD_7seg;
END PROCESS;

Observe that there
is no process

70111111";
”0000110”;
”1011011";
”1001111";
711001107 ;
711011017 ;
711111017 ;
”0000111";
711111117;
”1101111";
WHEN OTHERS => seg <= ”1000000”;

VHDL basics cont.

Basic VHDL structures

Test benches

To verify that our design is correct we need to simulate our results.

We will be using the simulator QuestaSim (or ModelSim) from Mentor for this.

To assist in the simulation we can create a kind of test fixture in VHDL,

a test bench.

This is a top level design where we instantiate our own design as a component
and generate input stimuli for the component and watch or check the resulting

output signals. We micht also check internal signals

We can have three different types of test benches

* Type 1 only generates input stimuli and we have to watch the results

in the simulator

* Type 2 generates input stimuli, checks the results and gives an OK

signal if the resulting output values are correct

* Type 3 generates input stimuli and writes a message to the simulator
output window if something goes wrong with the simulation results

2016-08-17

84

VHDL basics cont.

Basic VHDL structures
Test benches

Example

Let’s take our one bit full adder as an example.
We have the entity

ENTITY full adder IS
PORT (a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
s:0UT STD LOGIC
cout:0UT STD LOGIC);
END full adder;

VHDL basics cont. R Sem w0, toczcy
biIN ETDiLOGIC;
Basic VHDL structures e oD et

y:OUT STD_LOGIC

cout:0UT STD_LOGIC) ;

END full_ adder;

Test benches

Example cont.

We need to generate eight different input stimuli to fully test the circuit

-« | 7 L L L

Q
o}
c
=3

1 2 3 4 5 6 7

To simplify things we will accept that more than
one signal changes it’s value at a given time

2016-08-17

85

VHDL basics cont.

Basic VHDL structures
Example cont.

Let’s start creating the test bench. We begin with test bench type 1

In this case we only watch the results from the simulation and we
do not need any input or output ports to the test bench.

ENTITY full adder tbl IS
END full adder_ tbl;

The entity is empty since we have no inputs and no outputs

This causes a problem in QuestaSim since by default signals
that don’t connect to outputs are optimized away.

To overtcome this we can simulate without optimization.
The paper on QuestaSim describes how to do this

VHDL basics cont.

Basic VHDL structures R
Example cont.

ENTITY full adder tbl IS
PORT (y tb:OUT STD_LOGIC

cout_tb:OUT STD_LOGIC) ;

In the test bench architecture we instantiate our full adder as a component

ARCHITECTURE arch full adder tbl OF full adder tbl IS
COMPONENT full adder IS
PORT (a:IN STD LOGIC; Component
b:IN STD LOGIC; ””/”,,,ff””"dedamﬂon
cin:IN STD_LOGIC;
s:0UT STD_LOGIC
cout:0UT STD LOGIC) ;
END COMPONENT full adder;
SIGNAL a signal:STD LOGIC; Signals to connect
SIGNAL b signal:STD LOGIC; //////// to the component
SIGNAL cin signal:STD LOGIC;
SIGNAL s_signal:STD LOGIC;
SIGNAL cout signal:STD LOGIC;
BEGIN Component
full adder comp:COMPONENT full adder Instantiation
PORT MAP (a=>a_ tb,b=>b tb,cin=>cin_tb,
s=>s signal,cout=>cout signal);

2016-08-17

86

VHDL basics cont

Basic VHDL structures
Example cont.

We complete the architecture with the input stimuli

a signal <= '0"',
'l'" AFTER 100 ns,
'0" AFTER 200 ns,
'l'" AFTER 300 ns,
'0" AFTER 400 ns,
'l'" AFTER 500 ns,
'0" AFTER 600 ns,
'1'" AFTER 700 ns;
b signal <= '0',
'l'" AFTER 200 ns,
'0" AFTER 400 ns,
'l'" AFTER 600 ns;
cin_signal <= '0',
'l'" AFTER 400 ns;
END arch full adder_ tbl;

This is one of the few
times when we can and
should use time in our
designs

The exact times are not
important since we deal
with simulation of a
design without circuit
delays

But we should create
all the input signal
combinations we want
to test for

VHDL basics cont

Basic VHDL structures
Example cont.

We need a do file.

Since the instimuli is given in the test bench all the do file need to is
to set up signals we like to watch and run the simulation time.

-— full adder tbl.do

restart -f -nowave
view signals wave

add wave a signal b _signal cin signal

add wave s _signal cout signal
run 730ns

Run the simulation for this time

}/ Signals to watch

2016-08-17

87

VHDL basics cont.

Basic VHDL structures
Example cont.

We move on to test bench type 2

Here we will need a output signal that signals if something goes wrong
with the output signals from the component during simulation.

We add an output to our test bench entity

ENTITY full adder tb2 IS
PORT (test_OK:0UT STD_LOGIC) ;
END full adder tb2;

VHDL basics cont.

ENTITY full adder_ tb2 IS

Basic VHDL structures PORT (test OK:0UT STD_LOGIC) ;

END full adder_ tb2;
Example cont.
In the architecture we keep the component declaration and do a component
instantiation using signals and not outports

ARCHITECTURE arch full adder tb2 OF full adder tb2 IS
COMPONENT full adder IS
PORT (a:IN STD LOGIC;
b:IN STD LOGIC;
cin:IN STD LOGIC;
s:0UT STD LOGIC
cout:0UT STD LOGIC);
END COMPONENT full adder;
SIGNAL a signal:STD LOGIC;
SIGNAL b signal:STD LOGIC;
SIGNAL cin signal:STD LOGIC;
SIGNAL s signal:STD LOGIC;
SIGNAL cout signal:STD LOGIC;
BEGIN
full adder comp:COMPONENT full adder
PORT MAP (a=>a_ tb,b=>b tb,cin=>cin tb,
s=>s signal,cout=>cout signal);

2016-08-17

88

VHDL basics cont.

Basic VHDL structures
Example cont.

We keep the imput stimuli from test bench type 1

a_signal <= '0',
'l'" AFTER 100 ns,
'0'" AFTER 200 ns,
'l'" AFTER 300 ns,
'0' AFTER 400 ns,
'l' AFTER 500 ns,
'0'" AFTER 600 ns,
'1'" AFTER 700 ns;
b signal <= '0',
'l'" AFTER 200 ns,
'0'" AFTER 400 ns,
'1'" AFTER 600 ns;
cin signal <= '0',
'1'" AFTER 400 ns;

VHDL basics cont.

Basic VHDL structures
Example cont.

We have to complete the code with a test of the output signals

We write the code so that the test_OK signal will go low if an error
occures and then stay low even if the next stimuli gives a correct result

2016-08-17

89

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,

VHDL basics cont.

'l' AFTER 200 ns,

Basic VHDL structures i cigna1 < o

1 400 ;
Example cont. AFTER ns

test proc:PROCESS Default value for test OK
BEGIN

test OK <= '1' Wait until the input signals have stabilized

WAIT FOR 50 ns; -- 000
IF ((s_signal/='0') OR (cout signal /= '0')) THEN
test OK <= '0%; <\\\§\“\~IftheresuhiyftOOthensetteﬂ_OKIow
END IF;
WAIT FOR 100 ns; -- 100 < Testfor next stimuli
IF ((s_signal/='1l"') OR (cout signal /= '0')) THEN
test OK <= '0';
END IF;
WAIT FOR 100 ns; -- 010
IF ((s_signal/='1l"') OR (cout signal /= '0')) THEN
test OK <= '0';
END IF;
END PROCESS test proc;
END arch test bench type2;

Continue for all eight combinations
of input signals

VHDL basics cont.

Basic VHDL structures
Example cont.

We need a do file here too.

The only difference from the do file for test bench type 1 is that we
have added the signal test OK to the signals we watch

-- full adder tb2.do

restart -f -nowave

view signals wave Signals to watch
add wave a signal b _signal cin signal

add wave s signal cout signal test OK

run 730ns\ \

Run simulation Added signal

The only signal to watch in the test bench is really test OK
but it is practical to keep the rest of the signals for debugging

2016-08-17

90

.
VHDL basics cont. @@

. END IF;
Basic VHDL structures WATT FOR 100 ns; - 100
IF ((s_signal/='l') OR (cout_signal /= '0'")
Example cont. test OK <= '0';
END IF;
WAIT FOR 100 ns; -- 010

test:PROCESS
BEGIN
test OK <= '1';

test OK <= '0';

IF ((s_signal/='l") OR (cout_signal /= '0')

test OK <= '0';
END IF;
END PROCESS test;
END arch_test_bench_ type2;

Observe that as soon as a test sets test OK to zero then
it will stay at zero although following tests can be OK

We shouldn’t run this simulation longer than the added
WAIT times since the process will restart when it reaches
it’s end and then the results will most likely be incorrect

) THEN

) THEN

) THEN

Example cont.

VHDL basics cont.

Basic VHDL structures

Now over to test bench type 3

In this case we don’t need any output signal either since the internal
signals are used for our test and since these tests will give the written
reports if something is wrong then we have an empty entity

ENTITY full adder tb3 IS

END full adder_ tb3;

We will rewrite the test process, that is replace the test_OK process,
but keep the rest of the architecture code

2016-08-17

91

2016-08-17

VHDL basics cont.

Basic VHDL structures
Example cont.

If this condition is true then nothing
is wrong with the signals so do nothing

test proc:PROCESS

BEGIN
WAIT FOR 50 ns; -- 000
ASSERT ((s_signal='0"') AND (cout_signal =

REPORT “000 50ns"
SEVERITY warning;
WAIT FOR 100 ns;

$\\\\\\\\\\\

100

window if the

ASSERT ((s_signal='l"') AND
REPORT "100 150ns"
SEVERITY warning;

WAIT 00 ns; -- 010

(cout signal

END PROCESS test proc;
END arch test bench type3;

The current simulation time and this text
will be written to the simulators Transcript

Continue for all eight combinations
of input signals

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,

b_signal <= '0',
'l' AFTER 200 ns,

cin_signal <= '0'

'1' AFTER 400 ns;

"))

output signals are incorrect

"))

VHDL basics cont.

Basic VHDL structures

Example cont.

If the ASSERT expression is true then the output signals
have the correct values

If the expression is false then the test time and the REPORT
message will be written to the simulators output window

We can have four different levels of SEVERITY

¢ note, the message will have the header Note
* warning, the message will have the header Warning
« error, the message will have the header Error

« failure, the message will have the header Failure <——

The severity levels are given in increasing order

The severity level should be choosen based on
the kind of action the error calls for

The simulation
continues

The simulation will
stop at current time

92

VHDL basics cont.

Basic VHDL structures
Example cont.

The assert messages that you write can be simple or very detailed.

You decide!

For a more advanced design the test will be quit extensive
and you need to write a lot of code just for the test

VHDL basics cont.

Basic VHDL structures
Example cont.

Once again we need a do file.

We're back to the same do file as the one we used for test bench 1
since we have no output.

-- full adder tb3.do

restart -f -nowave
view signals wave Signals to watch
add wave a signal b _signal cin signal V

Add wave s_signal cout signal

run 730ns \

Run simulation

Strictly we don’t need to watch any signals since we have the
assertions but like in test bench type 2 it is practical to keep the
signals for debugging

2016-08-17

93

