
2016‐08‐17

1

VHDL update

Sven Knutsson

svenk@chalmers.se

Dept. of Computer Science and Engineering

Chalmers University of Technology

Gothenburg

Sweden

Introduction to Electronic System Design

DAT093

Literature
We do not require any advanced book on VHDL in this course

Since many of you already have some book on VHDL you
can probably go on using that if it is not to elimentary

but if you need a book we recommend

Peter J. Ashenden:
The Designer´s Guide to VHDL, 3 ed
ISBN 978‐0‐12‐088785‐9

$48:04 on amazon.com

older editions will do just as well

619:00 SEK on bokus.se

509:00 SEK on adlibris.com

Your can find the book as an ebook at Chalmers library

If you google you can also find it as a PDF on the net

2016‐08‐17

2

How to describe your electronic design

Schematic

Netlist

’Programming’ language

Components and nets

Analog or digital

Component descriptions and node connections describing a schematic

Analog or digital

Program code converted (syntesized) to electronics

Digital with some, not that successful, attempts to go analog

EDIF ‐ Electronic Design Interchange Format

Programming languages

Can describe systems on a high system level

On that level both electronic and mechanical parts can be included

Electronics can be both analog and digital

If we move down to design (synthesis) level we will in most
cases have to restrict the description to digital electronics

2016‐08‐17

3

Programming languages cont.

VHDL ‐ VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language

IEEE (Institute of Electrical and Electronics Engineers) standard

Verilog
IEEE standard

SystemVerilog

IEEE standard

Strictly typed language

More loose description than VHDL

Can give different results in different compilers

Extention to Verilog with a more strict description style

Popular in Europe

Popular in USA

Seems to slowly become the new standard description language

Type conversions needed

Programming languages cont.

System Verilog has so far only been successful for system
description and verification.

When it comes to synthesis we have to stay with
VHDL or Verilog

2016‐08‐17

4

Programming languages cont.

System C
Mostly for simulation

Handel C
One vendor (Celoxica)

Catapult C
One vendor (Mentor)

There are atempts to use C or C++ for electronic design since these languages
are so widely spread

Most atempts have resulted in languages that just use a restricted
subset of C or C++ or the language have been changed, sometimes
almost beyond recognition

Examples

Expensive

more are comming but the hype seem to be gone

Bought by Mentor, will be integrated into Catapult C

Sold to Calypto on August 26, 2011

VHDL basics
Basically a system description falls into two parts

• The outside, the interface. How to connect to other systems or to the
external world?

• The internals,
the functional
description of
the design

In VHDL

• An entity connects to the external world

• An architecture describes the internal functionality

Entity

Architecture

Po
rts

Po
rt
s

2016‐08‐17

5

VHDL basics
Example: Simple AND gate

-- AND gate
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y<=a AND b;
END arch_and2;

Entity

Architecture

Entity name

Architecture name

Entity name again

Libraries with
builtin functions and
type declarations

Comment

VHDL basics cont.
Example: Simple AND cont.

-- AND gate
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y <= a AND b;
END arch_and2;

Ports, connections
to the outer world

Input ports

Output port

Signal type

Port or signal
assignment

Logical operator

2016‐08‐17

6

VHDL basics cont.
Example: Simple AND cont.

-- AND gate
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y <= a AND b;
END arch_and2;

Let´s look at the coding style

Use capital letters
for VHDL reserved
words

Give the architecture
the same name as
the entity but
headed by arch_

One signal per line makes it
easier to comment the signals

Separate IN and OUT
ports into groups

Indent the code
using white space,
not tab, to make it
portable

VHDL basics cont.

We can write our code in two different ways

• Structural code

• Behavioral code

The code is like a netlist (schematic) with
components (sub blocks) that are interconnected

The code describes the functionallity we like to achieve,
not the structure of the design

Only suitable in smaller designs

In many cases the best choice

In a practical design we often split the construction into blocks
where we use behavioral code to describe the internals of
these blocks and structural code for the interconnection of the
blocks

and to interconnect several designs into a larger design

2016‐08‐17

7

VHDL basics
Let´s look at our simple AND gate

-- AND gate
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y<=a AND b;
END arch_and2;

This is a structural design since we are using the function,
or component if you like, AND

VHDL basics cont.

If we rewrite the code for the AND device
in a behavioral way we will get

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2_behavioral OF and2 IS
BEGIN

y <= '1' WHEN (a='1') AND
(b='1') ELSE

'0';
END arch_and2_behavioral;

The entity is the same

The architecture has
changed

-- AND gate
LIBRARY ieee;
USE
ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y <= a AND b;
END arch_and2;

In this case the behavioral desciption is somewhat more
complicated but this is no general rule

2016‐08‐17

8

VHDL basics cont.

If we look att the code from another perspective we can
also see two types of code

• Concurrent code

• Sequential code

Parallel code, things happen at the same time, in parallel
We have different elctronic structures

The code is interpreted as a sequence, line by line
(compare to programming code), things happen in
sequence

This code has to be written in a process

The whole process is concurrent with the rest of the code

VHDL basics cont.
Example

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

Entity

2016‐08‐17

9

VHDL basics cont.
Example

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;
SIGNAL x_seq_signal:STD_LOGIC;

BEGIN
x_conc_signal <= a AND b;
y_conc <= x_conc_signal OR c;

seq_proc:
PROCESS(a,b,c)
BEGIN

x_seq_signal <= a AND b;
y_seq <= x_seq_signal OR c;

END PROCESS seq_proc;
END arch_and_or;

Internal signals
interconnections

Concurrent code

Sequential code

Sensitivety list

The signals that trigger
(activate) the process

Process name

Architecture

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

VHDL basics cont.
Example cont.

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;
SIGNAL x_seq_signal:STD_LOGIC;

BEGIN
x_conc_signal <= a AND b;
y_conc <= x_conc_signal OR c;

seq_proc:
PROCESS(a,b,c)
BEGIN

x_seq_signal <= a AND b;
y_seq <= x_seq_signal OR c;

END PROCESS seq_proc;
END arch_and_or;

The x_conc_signal
value is immediately
updated and passed on
to the OR statement

The x_seq_signal
value is updated when
we leave the process

The value x_seq_signal had
when we entered the process is
used, the assignment on the line
above isn´t effective yet

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

2016‐08‐17

10

VHDL basics cont.
Example alternative

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;

BEGIN
x_conc_signal <= a AND b;
y_conc <= x_conc_signal OR c;

seq_proc:
PROCESS(a,b,c)

VARIABLE x_seq_variable:STD_LOGIC;
BEGIN

x_seq_variable := a AND b;
y_seq <= x_seq_variable OR c;

END PROCESS seq_proc;
END arch_and_or;

The x_conc_signal
value is immediately
updated and passed on
to the OR statement

The x_seq_variable
value is immediately
updated and passed on
to the OR statement

The new value of
x_seq_variable
is used

Variable asignment

Variable, local to the process,
not visable outside of the process

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

VHDL basics cont.
What if we change the
order of the statements?

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;

BEGIN
y_conc <= x_conc_signal OR c;
x_conc_signal <= a AND b;

seq_proc:
PROCESS(a,b,c)

VARIABLE x_seq:STD_LOGIC;
BEGIN

y_seq <= x_seq_variable OR c;
x_seq_variable := a AND b;

END PROCESS seq_proc;
END arch_and_or;

The x_conc_signal
value is immediately
updated and passed on
to the OR statement

The statement uses the
x_seq_variable value
we had when we entered
the process

x_seq_variable is
updated after the use in
the y_seg assignment
because of the order of
the statements

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

change of
order

change of
order

2016‐08‐17

11

VHDL basics cont.
How do we test our code?

Simulation

The standard tool for simulation is ModelSim/QuestaSim from
Microtech (bought by Mentor)

An aid in the simulation is the test bench

A test bench is a VHDL structure where we encapsulate our design
as a component and generate stimuli to the inputs of the design and
watch the results at the outputs (and internal nodes)

• The description above is for the basic test bench (type 1)

• We can improve the test bench by adding code that tests that the output
signals are as expected when we apply the input stimuli and indicates
correct or not by this using an OK signal (type 2)

• We can also improve the test bench by adding code that tests that the
output signals are as expected when we apply the input stimuli and
write information to the simulator´s output window if an error occurs,
describing the type of error and at what simulation time the error
occured and other information that we like to come out (type 3)

VHDL basics cont.
Before we move on with VHDL

Number representation
Number bases

Decimal

Integer example

Real example

Position weights

Position weights

MSD (Most significant digit)

LSD (Least significant digit)

Base 10

Values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2346 = 2·103 + 3·102 + 4·101 + 6·100

3.27 = 3·100 + 2·10-1 + 7·10-2

2016‐08‐17

12

VHDL basics cont.

Number bases cont.

Hexadecimal

Integer example

Real example

Position weights

Position weights

Base 16

Values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

92A = 9·162 + 2·161 + A·160

3.45 = 3·160 + 4·16-1 + 5·16-2

MSD (Most significant digit)

LSD (Least significant digit)

VHDL basics cont.
Number bases cont.

Binary

Integer example

Real example

Position weights

Position weights

Base 2

Values: 0, 1

Position weights

MSB (Most significant bit)

LSB (Least significant bit)

100100101010 = 1·211 + 0·210 + 0·29 + 1·28 + 0·27 + 0·26 +

+ 1·25 + 0·24 + 1·23 + 0·22 + 1·21 + 0·20

10.01 = 1·21 + 0·20 + 0·2-1 + 1·2-2

2016‐08‐17

13

VHDL basics cont.

Number bases cont.

Since we deal with logical, digital signals, we will
concentrate on binary numbers but internally within
a design it is often convenient to use integers.
Make sure to restrict the values to those needed

What about negative numbers?

We use 2‐complement representation for negative values

Since we are designing hardware, actual wires, we will have to
deside how many wires to use, that is how many binary bits we
will use to represent our binary numbers

The number of bits might change as needed in
different parts of the design

VHDL basics cont.
2‐complement

To represent a negative number in 2‐complement form we take
the positive number with the same magnitude, invert all bits and
add one to LSB

Example: Write the decimal number ‐10 in binary
2‐complement form using 8 bits

1. Convert the positive number (10) to binary base

2. Invert all bits

3. Add 1 to LSB

We´re done!

(10)10 = 1·23 + 1·21 = (00001010)2

00001010 → 11110101

1
11110101

+00000001
11110110

You need to decide
on the number of bits

To find the magnitute of a negative number we
do the exact same thing –(‐x)=x

2016‐08‐17

14

VHDL basics cont.
What if our number has a value that can´t be
representated with the choosen number of bits?

We get overflow!

Example: Use 8 bit words and add the decimal numbers
70 and 80 in binary form

One in MSB indicates a negative number.

The result has been corrupted. The phenomenon is calledwrap around

(70)10 → (01000110)2

(80)10 → (01010000)2

1
01000110

+01010000
10010110

(The largest signed number we can represent
with 8 bits is 127, but 70 + 80 = 150)

But what number?

2‐complement
10010110 → 01101001

+ 1
01101010 = 106

The number is ‐106

VHDL basics cont.
Wrap around

Wrap around means that if the value of a binary number, positive or negative,
won´t fit into the used number of bits then the result will change sign and
be totally wrong although there is a system in the incorrectness

In many cases this is unacceptable

There are two remedies

1. Increase the number of bits to handle larger values

This is a non‐destructive solution but increases the amount of hardware

2. Saturate the result

If the value is to large, saturate, set the value to the largest value
we can represent with the given number of bits

This is a destructive solution since the result vill be corrupted.
This solution will also increase the amount of hardware since
we need hardware to test for overflow

2016‐08‐17

15

VHDL basics cont.
Wrap around or saturate?

Wrap around means that we just discard the bits that
don´t fit within the given number of bits. This doesn´t
take any extra logic, but we might check to indicate
wrap around

Saturationmeans that we have to introduce extra logic
to investigate if overflow have occured

The application decides what route to take

VHDL basics cont.
Value holders

Ports

Constants

Generics

Signals

Variables

Connections to the external world or to other components

Symbolic names instead of numbers to simplify programming

Values that are used to specify the instantiation of a subprogram, for example
to give the number of bits in a vector without the need to rewrite the code

Internal signal connections visible in the whole architecture see them as wires
between blocks, if a signal is assigned a value inside a process this value will not
be be updated until we leave the process

Internal signals that are local to a process, they are not accessable
outside of the process, the values are immediately updated

2016‐08‐17

16

VHDL basics cont.
Value assignment

We assign values to our value holders.
The syntax differs somewhat between the types

Generics, constants and variables are assigned values using :=

GENERIC (width:INTEGER:=16);

CONSTANT size_const:INTEGER:=8;

VARIABLE index_variable:INTEGER;
……

index_variable:=3;

Ports and signals are assigned values using <=

SIGNAL error_signal:STD_LOGIC;
……

error_signal <= ’1’;

PORT(……
outport:OUT STD_LOGIC);

……
outport <= error_signal;

The variable and the signal could
be given a value at declaration but
this value will only transfer to
simulation, not to synthesis so
don´t do that. Assign values after
declaration instead using some
kind of reset phase

VHDL basics cont.
Data types

Scalar types
Type declarations

TYPE ubyte IS RANGE 0 TO 255;
TYPE nibble IS RANGE -8 TO 7;

Signal declarations

SIGNAL xint_signal:INTEGER;
SIGNAL xubyte1_signal:ubyte;
SIGNAL xubyte2_signal:ubyte;
SIGNAL xnibble_signal:nibble;

Predefined type with range
‐231 – (231‐1) =
= ‐2,147,483,648 – 2,147,483,647

What about assignments? The integer type could represent all
the values in the ubyte range so

No! They are two different types
and VHDL is strictly typed.
To go between types we need
conversion functions

xubyte1_signal <= xubyte2_signal;

is OK though. They are of the same type

Placed in the architecture
before the first BEGIN

Our declared types

xint_signal <= xubyte1_signal;

would be OK, wouldn´t it?

2016‐08‐17

17

VHDL basics cont.
Scalar types cont.

Our VHDL code will be synthesized to hardware and this hardware must
be able to handle all possible values of a signal.

In the hardware our signals are represented by binary bits.

An integer will have to be represented by 32 bits to cover all possible values
and that would have to be the width of our signal paths then.

If we only use a fraction of the integer range that would be a
waste of hardware.

Even worse if the signal is to be stored along the signal path. In every place where
we want to store the signal we would have to include 32 flip‐flops to do this.

Why not just use INTEGER as in software?

The ubyte type would take 8 bits and the nibble type only 4 bits.

A word of warning. The simulator will give an error if we try to use values
outside of the range of the type but the hardware won´t

We can restrict the integer range though.

TYPE ubyte IS RANGE 0 TO 255;
TYPE nibble IS RANGE -8 TO 7;

VHDL basics cont.
Scalar types cont.

We can declare a subtype if we like.

A subtype is a new type that only covers a part of the range of another type

Subtypes

TYPE ubyte IS RANGE 0 TO 255;
SUBTYPE subunibble IS ubyte RANGE 0 TO 15;
SIGNAL xubyte_signal:ubyte;
SIGNAL subxunibble_signal:subunibble;

xbyte_signal <= subxunibble_signal;
subxunibble_signal <= xbyte _signal;

It is OK to move values between signals of the type and the subtype
as opposed to between types

A word of warning. The subtype subunibble can´t take all the values
of the ubyte type so the last assignment is dangerous

2016‐08‐17

18

VHDL basics cont.
Scalar types cont.

Symbolic names for the values of a signal

Enumeration types

TYPE weekday IS (sun,mon,tue,wed,thu,fri,sat);
TYPE washing_machine IS (pre_wash,wash,rinse,dry);

Typically used to name the states in a state machine,
like the phases for the program of a traffic light (green, yellow, red)

Some useful preedefined enumeration types

TYPE boolean IS (false,true);

TYPE bit IS (’0’,’1’);

Useful in conditional code

Logical values.

The ’‐signs indicate that these values
are actually characters

Not recommended
use std_logic

VHDL basics cont.
Scalar types cont.

Enumeration types cont.

TYPE std_ulogic IS (’U’, -- uninitialized
’X’, -- forcing unknown
’0’, -- forcing zero
’1’, -- forcing one
’Z’, -- high impedance
’W’, -- weak unknown
’L’, -- weak zero
’H’, -- weak one
’-’); -- don´t care

The rest of the line is a comment

Standard logic (std_logic) is a type that is formed from std_ulogic

Standard logic unsigned

Signed or unsigned has no meaning for single bits

Standard logic is our recommended type for all binary signals

Only relevant
in simulation

Only relevant
at compilation

2016‐08‐17

19

VHDL basics cont.
Scalar types cont.

Fixed and floating point types

VHDL can use fixed and floating point values
but they are of limited use for synthesis

When we get to filter implementation we will see that
fixed point representation have some relevance

In many cases using floating point values would increase the
accuracy in our calculations but the required amount of
hardware will increase drastically

VHDL basics cont.
Scalar types cont.

Physical types

These are used to represent real‐world physical quantities,
such as length, mass, time and current

The only physical unit of use to us is time. It has no meaning
for synthesis but is very useful for giving times in test benches
for simulation

TYPE time IS RANGE implementation defined
UNITS
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min

END UNITS;

2016‐08‐17

20

VHDL basics cont.

Scalar type attributes

Scalar types have some attributes that could be useful

typename’LEFT – the first (leftmost) value in typename

typename’RIGHT – the last (rightmost) value in typename

typename’LOW – the smallest value in typename

typename’HIGH – the largest value in typename

These attributes are very useful when we design subprograms
that use generic signals

VHDL basics cont.

Scalar operators

Scalar signals have a number of operators but
not all of them apply to all types of scalars

Logical operators

Apply to bit and std_logic

NOT
AND
OR
NAND
NOR
XOR
XNOR

Observe that in VHDL all logical operators
have the same presidence.
Therefore: be generous with parenthesis

2016‐08‐17

21

VHDL basics cont.
Scalar operators

Arithmetic operators

* multiplication
/ division

mod modulo (apply to integer)
rem reminder (apply to integer)

- negation
+ addition
- subtraction

The operators apply to all numeric values exept where noted

The operators are given in order of presidence with
multiplication having the highest presidence

Modulo and reminder has the same presidence
and the same goes for addition and subtraction

VHDL basics cont.

Scalar operators

Operators for comparision

These operators apply to all scalar operators

When it comes to enumerated types a value to the left in
the sequence is smaller than a value to the right

= equality
/= unequality
< less than

<= less than or equal to
> greater than

>= greater than or equal to

Equality and unequality have higher presidence than the others

For bits 0 is smaller then 1

For std_logic X is less than W

TYPE std_ulogic IS (’U’, -- uninitialized
’X’, -- forcing unknown
’0’, -- forcing zero
’1’, -- forcing one
’Z’, -- high impedance
’W’, -- weak unknown
’L’, -- weak zero
’H’, -- weak one
’-’); -- don´t care

TYPE bit IS (’0’,’1’);

2016‐08‐17

22

VHDL basics cont.
Composite data types

Arrays, vectors

Since we have to form our multi‐value signals from binary values in
our hardware implementation, binary vectors are our basic form
for signal description besides single binary bits

TYPE byte IS ARRAY (0 TO 7) OF std_logic;

Observe that this is not the same as the earlier type definition of ubyte.
Both can take on 256 different values but the types are not interchangable.

We can address individual bits and vector ranges in the array using indexes

SIGNAL xbit_signal:std_logic;
SIGNAL xbyte_signal:byte;
SIGNAL xnibble_signal:std_logic(0 TO 3);
……

xbit_signal <= xbyte_signal(3);
xnibble_signal <= xbyte_signal(2 TO 5);

Indexes can have any range, they don´t have to start with zero (0) or one (1)
Increasing indexes use TO, descending indexes use DOWNTO

TYPE ubyte IS RANGE 0 TO 255;

Single bit

Subarray

8 bits

VHDL basics cont.
Arrays, vectors cont

In many cases our vector represents a binary value,
In these cases it is more natural to use descending indexes

TYPE byte IS ARRAY (7 DOWNTO 0) OF std_logic;

This type definition is in most cases not necessary since we
have predefined vector types for bits and std_logic

2016‐08‐17

23

VHDL basics cont.
Arrays, vectors cont

Predefined types

SIGNAL bitword_signal:bit_vector(15 DOWNTO 0);
SIGNAL stdbyte_signal:std_logic_vector(7 DOWNTO 0);
SIGNAL std_signal:std_logic_vector(1 TO 12);

When we write a value to a std_logic_vector we treat the value as a string

stdbyte_signal <= ”00110110”; Double quotations indicate string

For these pre‐defined types the indexes must be natural numbers,
that is positive or zero (0)

It is recommended to avoid using bit_vector and always use std_logic_vectors

Use descending indexes if there is
no good reason to do otherwise

VHDL basics cont.
Arrays, vectors cont

We can also read or write parts of a vector

stdbyte_signal(4 DOWNTO 2) <= ”110”;

or use concatination (&) to manipulate our vectors

stdbyte_signal <=
stdbyte_signal(4 DOWNTO 2) & ”00110”;

A new line within the code
line is fully acceptable

The number of bits on the two sides of the
assingment sign must of course match

2016‐08‐17

24

VHDL basics cont.
Unconstrained arrays
So far we have seen constrained arrays, that is arrays where the size is
declared in the type declaration

TYPE uncon IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

Sometimes it is practical to just declare the type of the values in
the type declaration and leave the size declaration to the instantiation

We have an unconstrained array type Just a placeholder

Defines the range for the allowed indexes.

POSITIVE – positive integer values

NATURAL – natural integer values, positive values and zero (0)

INTEGER – integer values, both positive and negative

When we declare a signal of the unconstrained array type we have to set the
size by setting the index range of the declared signal

SIGNAL uncon_signal:uncon(10 TO 53);

These can be

VHDL basics cont.
Multidimensional arrays

An array can have more than one dimension

TYPE multiarray IS ARRAY (0 TO 9,0 TO 4) OF STD_LOGIC;

We address the individual elements using two indexes

SIGNAL ma_signal:multiarray;
……

ma_signal(5,3) <= ’1’;

2016‐08‐17

25

VHDL basics cont.
Arrays of arrays
In some cases it is more practical to be able to address the rows of
the multi dimensional array and not the individual elements.
This could be the case when we create a memory for byte sized data.
In these cases it is better to define a array of vectors

TYPE memory IS ARRAY (0 TO 9) OF
STD_LOGIC_VECTOR(7 DOWNTO 0);

Here we address the rows of the array, that is the bytes and not the individual bits

SIGNAL mem_signal:memory;
……

mem_signal(5) <= ”00110110”;

In this case we have no simple way of addressing the individual elements.

To do this we have to first read the row vector, address the individual bit in
the row and then write the row vector back to its place

VHDL basics cont.
Array type attributes

Array types have some attributes that could be useful

typename’LEFT(N) – left bound of index range of
dimension N of typename

typename’RIGHT(N) – right bound of index range of
dimension N of typename

typename’LOW(N) – lower bound of index range of
dimension N of typename

typename’HIGH(N) – upper bound of index range of
dimension N of typename

typename’RANGE(N) – index range of dimension N
of typename

For one dimensional arrays N can be left out

This is very useful for unbound and generic vectors where we
don´t know the index range

2016‐08‐17

26

VHDL basics cont.
Array type attributes cont.

Example

TYPE arraytype IS ARRAY (1 TO 4,15 DOWNTO 0)
OF STD_LOGIC;

arraytype’LEFT(1) = 1
arraytype’LEFT(2) = 15

arraytype’RIGHT(1) = 4
arraytype’RIGHT(2) = 0

arraytype’LOW(1) = 1
arraytype’LOW(2) = 0

arraytype’HIGH(1) = 4
arraytype’HIGH(2)= 15

LEFT RIGHT

HIGHLOW

VHDL basics cont.
Array type attributes cont.

Another example

TYPE arraytype IS ARRAY (7 DOWNTO 0)
OF STD_LOGIC;

SIGNAL x_array_signal:arraytype;
…
VARIABLE count_variable:INTEGER RANGE 0

TO x_array’HIGH+1;
count_variable:=0;
FOR index IN x_array’RANGE LOOP

IF x_array_signal(index)=’1’ THEN
count_variable:=

count_variable+1;
END IF;

END LOOP; The example counts the number of ones in x_array
without knowing the size of x_array, it is generic

The index
variable does
not have to be
declared

We have eight bits,
HIGH is seven

RANGE is
7 DOWNTO 0

Observe that we must use a variable not a signal for the counter since
the loop must be placed within a process and we need the updated
values of count_variable imediately for the next loop round

2016‐08‐17

27

VHDL basics cont.
Array operators
Array signals have a number of operators but
not all of them apply to all types of arrays

Logical operators

Apply to boolean, bit and std_logic vectors

NOT
AND
OR
NAND
NOR
XOR
XNOR

Observe that in VHDL all logical operators
have the same presidence.
Therefore: be generous with parenthesis

For std_logic arrays the two arrays involved need to be of the same length
and the operators work bit by bit

For boolean and bit arrays we have a somewhat broader span of
applications for the operators but we won´t get into those

VHDL basics cont.
Shift operators

Apply to boolean and bit vectors, not std_logic vectors

SLL shift left logically
SRL shift right logically
ROL rotate left
ROR rotate right
SLA shift left aritmethic
SRA shift right aritmethic

The operators need to be complemented by the number of bits to shift
or rotate, y <= SLL x 2

Logical and aritmethic shifts to the left give the same result
and fill the empty bits with zeros

Since the operators only work on boolean and bit arrays we need
to use conversion functions to use them with std_logic vectors,
see the following exemple

Logical shifts to the right fill the empty bits with zeros while
aritmethic shifts to the right fill the empty bits with sign bits

2016‐08‐17

28

VHDL basics cont.
Shift operators cont.

Example: Shift the std_logic vector x_signal three bits to the
right logically

First we need to convert the std_logic vector to a bit vector to do the shift
and then we need to convert the shifted bit vector back to std_logic_vector
to get our original std_logic vector again

SIGNAL x_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL y_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL bitvector1_signal:BIT_VECTOR(7 DOWNTO 0);
SIGNAL bitvector2_signal:BIT_VECTOR(7 DOWNTO 0);
……

bitvector1_signal <= TO_BITVECTOR(y_signal);
bitvector2_signal <= bitvector1_signal SRL 3;
y_signal <= TO_STDLOGICVECTOR(bitvector2_signal);

Conversion
functions

Example cont.

You might think that one bit vector would be enough so that we could write

SIGNAL x_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL y_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL bitvector_signal:BIT_VECTOR(7 DOWNTO 0);
……

bitvector_signal <= TO_BITVECTOR(x_signal);
bitvector_signal <= bitvector_signal SRL 3;
y_signal <= TO_STDLOGICVECTOR(bitvector_signal);

Y_signal <=TO_STDLOGICVECTOR((TO_BITVECTOR(x_signal)
SRL 3));

But since the code isn´t written inside a process our statements
are concurrent, this means that the first two lines of code both
tries to write values to bitvector at the same time which
obviously won´t work.

We could skip the bit vectors all together though
and write the whole function in one single line

VHDL basics cont.
bitvector1 <= TO_BITVECTOR(b);
bitvector2 <= bitvector1 SRL 3;
y <= TO_STDLOGICVECTOR(bitvector2);

2016‐08‐17

29

VHDL basics cont.
Shift and rotate operators

There are no explicite functions to shift and rotate std_logic_vectors, we have to
convert to bit vector or implement the functions ourselves or use the standard
logic subtypes SIGNED or UNSIGNED for which there are such functions. We will
get back to these.

The operations can be logic or arithmetic shifts or rotations and they can
be to the left or to the right.

Example: logical shift two steps to the left

SIGNAL shift_v_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
……
shift_v_signal<=shift_v_signal(5 DOWNTO 0)&”00”;

Example: arithmetic shift one steps to the right

shift_v_signal<=shift_v_signal(7)&
shift_v_signal(7 DOWNTO 1);

Example: rotate three steps to the right

shift_v_signal<=shift_v_signal(2 DOWNTO 0)&
shift_v_signal(7 DOWNTO 3);

Sign extention

The shift and rotate operations can be done using vector manipulation

VHDL basics cont.
Shift and rotate operators cont.

This is a suitable place to use vector attributes so the same code could
be used for vectors of different lengths

Let´s take the last example again but define the vector size
using a constant

Don´t try to write functions where variables in your code
change the number of shifting or rotating steps since this will
generate an awful lot of logic

2016‐08‐17

30

VHDL basics cont.
Shift and rotate operators cont.

Example: logical shift two steps to the left

CONSTANT WIDTH:INTEGER:=8;
SIGNAL shift_v_signal:STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
……
shift_v_signal<=shift_v_signal(WIDTH-3 DOWNTO 0)&”00”;

Example: arithmetic shift one steps to the right

shift_v_signal<=shift_v_signal(WIDTH-1)&
shift_v_signal(WIDTH-1 DOWNTO 1);

Example: rotate three steps to the right

shift_v_signal<=shift_v_signal(2 DOWNTO 0)&
shift_v_signal(WIDTH-1 DOWNTO 3);

Observe that for synthesis the number of shift steps must be fixed and
not variable in an instantiation since the hardware is a fixed structure

VHDL basics cont.
Array operators

Arithmetic and comparison operators

These operators require the inclusion of a numberic package called
numeric_std to handle std_logic vectors

Most arithmetic operations can give different results depending on if
the operands are interpreted as signed or unsigned vectors.

We do this by using the subtypes SIGNED and UNSIGNED to std_logic_vector
when we perform the arithmetic operations and then we go back to std_logic
again. The subtypes are declared in numeric_std

As mentioned before there are defined shift and rotate operations for
these subtypes, together with arithmetic operations

Because of this we need to specify how to interpret the vectors

Is 1100 (12 or ‐4) larger or smaller than 0011 (3)?
It depends on signed or unsigned interpretation

2016‐08‐17

31

VHDL basics cont.
Array operators

Arithmetic and comparison operators cont.

Example

SIGNAL a:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL b:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL y:STD_LOGIC_VECTOR(7 DOWNTO 0);
……
y <= STD_LOGIC_VECTOR(SIGNED(a) + SIGNED(b));

Observe that since we only use subtypes and don´t do type conversion
we do not use the conversion function TO_STDLOGICVECTOR but
the type declaration function STD_LOGIC_VECTOR

Interpret as signed

Go back to
interpretation as
std_logic_vector

VHDL basics cont.
Array operators

Arithmetic and comparison operators cont

Earlier it was common to use the types std_logic_signed and
std_logic_unsigned to handle these situations.

In recent years it has been recommended to use std_logic_vector
and the subtypes signed and unsigned instead since the earlier
types could lead to confusion in some instances

Follow the new recommendation and use SIGNED and UNSIGNED!

Be observant on this if you use example code from somewhere
on the net or others

Don´t use std_logic_signed and std_logic_unsigned!

2016‐08‐17

32

VHDL basics cont.
Array operators

Arithmetic operators

These operations can be performed between two vectors or between
a vector and an integer, the operands can be in any order.
If the vector is to be interpreted as UNSIGNED then the integer value is
limited to natural values.

* multiplication
/ division

mod modulo
rem reminder

- negation
+ addition
- subtraction

The same operator can be used on different types of objects because
there are several versions of the operators and the operator types
decide which version that will be used.

This is called overloading.

VHDL basics cont.
Array operators

Arithmetic operators cont.

In multiplication between two vectors the size of the result will be
the sum of the sizes of the two input vectors.

If one of the operands in the multiplication is a integer and the other a vector
then the size of the result vector will be twice the size of the input vector

In all operations exept multiplication the result from operations on vectors
will be a vector of the same size as the largest input vector.

When one of the operands is an integer number and the other a vector
the operation will give a vector of the same size as the vector.

These multiplications will not perform the left shift needed for
fractional numbers. You need to do this yourself

2016‐08‐17

33

VHDL basics cont.
Array operators

Arithmetic operators cont.

SIGNAL a:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL b:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL c:STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL y:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL z:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL q:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL w:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL t:STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL u:STD_LOGIC_VECTOR(15 DOWNTO 0);
……
y <= STD_LOGIC_VECTOR(SIGNED(a)+UNSIGNED(b));
z <= STD_LOGIC_VECTOR(SIGNED(a)+SIGNED(c));
q <= STD_LOGIC_VECTOR(SIGNED(a)-5);
w <= STD_LOGIC_VECTOR(SIGNED(a)/SIGNED(b));
t <= STD_LOGIC_VECTOR(SIGNED(a)*SIGNED(b));
u <= STD_LOGIC_VECTOR(SIGNED(a)*9);

Examples

VHDL basics cont.
Array operators

Operators for comparision

The operators apply to one dimensional arrays
where the elements can be of any discrete type.
The operators will return a value of type boolean.

= equality
/= unequality
< less than

<= less than or equal to
> greater than

>= greater than or equal to

The arrays don´t need to be of the same size
as long as the elements are of the same type.

The equality function can only be true if the two arrays are
of the same size and all the element values are the same

2016‐08‐17

34

VHDL basics cont.
Array operators

Operators for comparision cont.

These comparision operations can also be performed between
a vector and a integer, the operands can be in any order.
If the vector is to be interpreted as UNSIGNED then the integer
value is limited to natural values.

The less and greater functions are performed element by element
extending the shortest array

VHDL basics cont.
Array operators

Operators for comparison cont.

SIGNAL a_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL b_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL c_signal:STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL x_signal:BOOLEAN;
SIGNAL y_signal:BOOLEAN;
SIGNAL z_signal:BOOLEAN;
……
x_signal<=STD_LOGIC_VECTOR(SIGNED(a_signal)>

UNSIGNED(b_signal));
y_signal<=STD_LOGIC_VECTOR(SIGNED(a_signal)/=

SIGNED(c_signal));
z_signal<=STD_LOGIC_VECTOR(SIGNED(a_signal)<=5);

Examples

2016‐08‐17

35

VHDL basics cont.
Array operators

Concatination

We can create longer arrays by concatination (&) of shorter arrays or elements

Some examples

SIGNAL a_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC;
SIGNAL c_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL d_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL e_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL f_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL g_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL h_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);

Two vectors

Constants

Rotate operation

Vector, constant and scalar

e_signal<=c_signal & d_signal;

f_signal<=”000” & ’1’ & ”0000”;

g_signal<=e_signal (1 DOWNTO 0) &
e_signal (7 DOWNTO 2);

h_signal <= c_signal & ”000” & a_signal;

VHDL basics cont.

Basic VHDL structures

The external, visual part of aVHDL design is the entity that defines
the connections (ports) in and out of the design.

The entity can also contain generics, attributes that are used to
control the design, for example the width of vectors.

The entity has the following structure

ENTITY entity_name IS
[GENERIC (generic_name:data_type[:=value]);]
PORT(port_name1:connection_type datatype;

port_name2:connection_type datatype);
END entity_name;

Observe where the semicolon (;) separators are placed

Entity

2016‐08‐17

36

VHDL basics cont.
Basic VHDL structures

Comments
Comments can be placed in all parts of the code if you follow some rules.

• Comments start with the sign -- and continues to the end of the line

• If a line starts with -- then the whole line is a comment

• You can not have comments within lines, with code before and
after the comment

• You can not comment out more then one line of code at once,
multiple line comments have to be commented out line by line.
QuestaSim have tools to comment out several marked lines at once

Instead of commenting out longer code sections it might be easier to
temporarily cut the code section out and store it by paisting it into
another file for the time being and then paiste it back in later on when
you need it again

VHDL basics cont.
Basic VHDL structures

The generic can be of any datatype and since it only modifies the
design instantiation it doesn´t have to be a synthesizable datatype.

Generics

The generic does not have to be given a value in the entity. That might
come later when we instantiate our design as a subdesign (component)
in a larger design.

In that case we create a generic design that can adapt to the application.

We create a generic component or function

2016‐08‐17

37

VHDL basics cont.

Basic VHDL structures

The ports are our connections in and out of the design

Ports

We can use other datatypes but only if the design is supposed to be used
as part of a larger design where the ports will be internal connections to
other parts of the design that use the same datatype and not connected
to the outside world. In this cases INTEGER, SIGNED and UNSIGNED can
be practical

We can have four different connection types for the ports

IN data path directed into the design
OUT data path directed out of the design

INOUT bidirectional data path
BUFFER a readable output

If they are to be connected to the outer world they have to be of
synthesizable types, preferably std_logic or std_logic_vector

VHDL basics cont.

Basic VHDL structures
Ports cont.

The INOUT port can be both read and written

The BUFFER port is a buffered outport where the value
before the buffer can be read

The IN port can only be read, we can not write to it

The OUT port can only be written, we can not read from it

Do not define a port as INOUT just to be able to read it.
Reserve this for truly bidirectional ports

Not all pins on a FPGA can be used as bidirectional or buffered pins so
I would recommend that you try and use IN or OUT ports exclusively

In most cases we can avoid INOUT and BUFFER ports by using
internal signals that can be both read and written and then
transfer the value to the OUT ports. This will not give extra
hardware. Se example below

2016‐08‐17

38

VHDL basics cont.

Basic VHDL structures
Ports cont.

Example

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY inout_port IS
PORT(reset:IN STD_LOGIC;

clk:IN STD_LOGIC;
a:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END inout_port;

VHDL basics cont.

Basic VHDL structures
Ports cont.

Example cont.

ARCHITECTURE arch_inout_port OF inout_port IS
SIGNAL y_signal:SIGNED(7 DOWNTO 0);

BEGIN
clocked_add_proc:
PROCESS(reset,clk)
BEGIN

IF reset = '1' THEN
y_signal <= (OTHERS=>'0');

ELSIF (rising_edge(clk)) THEN
y_signal <= y_signal + SIGNED(a);

END IF;
END PROCESS clocked_add_proc;
y <= STD_LOGIC_VECTOR(y_signal);

END arch_inout_port;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY inout_port IS
PORT(reset:IN STD_LOGIC;

clk:IN STD_LOGIC;
a:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END inout_port;

Internal signal can
be of type SIGNED

Asynchronous
reset signal

Set all bits to zero

Positive clock edge

Treat a as SIGNED

Transfer internal signal
to output and convert
to STD_LOGIC_VECTOR

Readable
temporary
signal

2016‐08‐17

39

VHDL basics cont.

Basic VHDL structures
Ports cont.

Example cont.

END IF;
y <= STD_LOGIC_VECTOR(y_signal);

END PROCESS clocked_add;
END arch_inout_port;

ARCHITECTURE arch_inout_port OF inout_port IS
SIGNAL y_signal:SIGNED(7 DOWNTO 0);

BEGIN
clocked_add:PROCESS(reset,clk)
BEGIN

IF reset = '1' THEN
y_signal <= (OTHERS=>'0');

ELSIF clk'EVENT AND clk='1' THEN
y_signal <= y_signal + SIGNED(a);

END IF;
END PROCESS clocked_add;
y <= STD_LOGIC_VECTOR(y_signal);

END arch_inout_port;

The output assignment can be placed inside the process

but then it will have to be registered (clocked) to remember the value
from one process triggering to the next, that is we need registers for
both y_signal and y. This will require extra flip‐flops.

When we place the assignment of y outside of the process it will
only be a set of wires between the signal and the port and no extra
registers are required.

We will also delay y by one clock cycle if we put y within the process.

If we use a variable instead of a signal we remove the delay but
can not get out of the process.

VHDL basics cont.

Basic VHDL structures
Architecture

The architecture describes the internals of our design

It has the following structure

ARCHITECTURE architecture_name OF entity_name IS
[Constant declarations]
[Type definitions]
[Signal declarations]
[Component declarations]
BEGIN

parallel (concurrent) code
sequential code (processes)

END architecture_name;

2016‐08‐17

40

VHDL basics cont.

Basic VHDL structures
Architecture cont.

The constant declarations are a way of giving symbolic names to objects
used in the code. It will also make it possible to make the change in
just one single place in the code if we want to change an object.

CONSTANT CONSTANT_NAME:constant_type:=value;

Constants

The declaration has the form

The constant can be of have any type since it will not necessarily have to
be synthesizable

Type definitions
Declaration of our own data types. We´ve talked about this before

Components
Subdesigns that we use to build more complex designs

We will get back to this later on

ARCHITECTURE architecture_name OF entity_name IS
[Constant declarations]
[Type definitions]
[Signal declarations]
[Component declarations]
BEGIN

parallel (concurrent) code
sequential code (processes)

END architecture_name;

VHDL basics cont.

Basic VHDL structures
Architecture Body
The architectural body contains our design code describing the functionality.

All statements in the body are concurrent, they are asserted in parallel,
at the same time. There is no sequence between events.

The exception to this is the process where the internal code
of the process is sequential.

But the whole process is a concurrent statement that is executed in
parallel with the rest of the code.

The process reads input values when the process is entered and new
values are written to outputs of the process when the process is exited.

The architectural code can be written in two different ways

• Behavoiral code that describes the functionality of the design

• Structural code that describes the design as blocks (components)
interconnected by signals

In reality the two approaches are often combined

2016‐08‐17

41

VHDL basics cont.

Basic VHDL structures

Signal assignment

As we have seen earlier signals are assigned values using the symbol <=

The same goes for output ports

Variables, constants and generics are assigned values using the symbol :=

Variables can only exist in sequential code, that is in a process,
and they are local to the process

The other signal types can exist in both concurrant and sequential code
and are visible in the entire architecture

Signal attributes

A signal can have a number of attributes.
We will only use the EVENT attribute.

We´ll get back to this when we talk about clocked processes

Constants can be local to processes

VHDL basics cont.

Basic VHDL structures
Conditional signal assignment

In concurrent code we have two structures for conditional signal assigment.

The first one, the WHEN statement, is simular to what we know as an
IF statement from software programming

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

y_signal <= ’1’ WHEN (a_signal=’0’) ELSE
’0’;

The parantheses are not necessary but
increase the readability

The signal must be assigned a value under all conditions
which means that the else clause is necessary

Example

2016‐08‐17

42

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

The statement could be expanded

SIGNAL y_signal:STD_LOGIC;
SIGNAL a_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
……

y_signal <= ’1’ WHEN (a_signal=”00”) ELSE
’1’ WHEN (a_signal=”01”) ELSE
’0’;

This could also be rewritten as

y_signal <= ’1’ WHEN ((a_signal=”00”) OR
(a_signal=”01”)) ELSE

’0’;

I think this is less readable though

Example

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

Observe that there is nothing to say that the selection condition
must be of the same type in all clauses

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
……

y_signal <= ’1’ WHEN (a_signal=’1’) ELSE
’1’ WHEN (b_signal=”01”) ELSE

’0’;

This kind of coding is very confusing and should not be used

Example

2016‐08‐17

43

VHDL basics cont.

Basic VHDL structures
WITH statement

The other concurrent conditional signal assignment is the WITH statement.
It has simularities with the CASE statement in software programming

We repeat our first WHEN exampl using the WITH statemente

This code won´t compile though it is formally correct and
we have covered both the high and the low signal values.

Why?

Example

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

y_signal<=’1’ WHEN (a_signal=’0’) ELSE
’0’;

SIGNAL x_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

WITH x_signal SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN ’1’;

condition signal

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

SIGNAL x_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

WITH x_signal SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN ’1’;

In the statement all possible values of the selector, here x_signal, has
to be covered and the std_logic variable x_signal has nine (9) possible
values (U, X, 0, 1, Z, W, L, H, -) that must be handled

2016‐08‐17

44

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

We rewrite the code

WITH x_signal SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN OTHERS;

Since the synthesized code only has values 0 and 1 (and Z,
but not as an input value), this covers all cases.

The OTHERS clause covers all cases when x/=’0’

The code gets somewhat clearer if we rewrite it as

WITH x SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN ’1’,
’0’ WHEN OTHERS;

The synthisized result will be the same though

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

Let´s rewrite the other WHEN statement, the one with the vector

WITH a_signal SELECT
y_signal <= '1' WHEN "00",

'1' WHEN "01",
'0' WHEN OTHERS;

In the WITH statement we can only have one selecter so we can not have
the mixed condition of the scalar a and vector b that we had in the WITH case.

The two cases that give the same result could be combined

WITH a_signal SELECT
y_signal <= '1' WHEN "00" | "01",

'0' WHEN OTHERS;

For enumerated types we can also give ranges using TO or DOWNTO

We´ll see this for the CASE statement later on

OR statement

SIGNAL y_signal:STD_LOGIC;
SIGNAL a_signal:STD_LOGIC_VECTOR(1 DOWNTO 0)
……

y_signal <= ’1’ WHEN (a_signal=”00”) ELSE
’1’ WHEN (a_signal=”01”) ELSE
’0’;

2016‐08‐17

45

VHDL basics cont.

Basic VHDL structures
GENERATE statement

There is one more concurrent assignment statement,
the GENERATE statement.

We will get back to this when we talk about components

VHDL basics cont.

Basic VHDL structures
Sequential code, processes

Sequential code is code where the statements are evaluated line
by line in a sequence and not all statement at the same time, in
parallel, as in concurrent code.

Sequential code is written within processes

2016‐08‐17

46

VHDL basics cont.

Basic VHDL structures

The process structure

[process_name:]
PROCESS[(sensitivity list)]
constant declarations
variable declarations
BEGIN

[WAIT statement]
sequential statements

END PROCESS [process_name];

The process must have either a
sensitivity list or a WAIT statement,
but it can not have both

A process won´t execute until it is triggered and this is where
the sensitivity list or WAIT statement comes into play

The process label is optional but it might
encance the readability of the code

VHDL basics cont.

Basic VHDL structures

The sensitivety list

The sensitivity list is a list of the signals that trigger the process,
that is the signals that make the process execute when any of
them change value.

PROCESS(a)

Examples

compare_proc:PROCESS(a,b)

Process triggered by a

Process named compare_proc
triggered by signals a and/or b

The process will not execute if none of the signals in the sensitivity
list change value

Make sure that all signals that should make the process execute
are in the sensitivity list but don´t add any other signals

Synthisized hardware are somewhat more forgiving to this than
simulators that are very strict

2016‐08‐17

47

VHDL basics cont.

Basic VHDL structures

The sensitivety list cont.

Example

AND_proc:PROCESS(a)
BEGIN

y <= a AND b;
END process AND_proc;

The process should only trigger when a changes value but not when b
changes value and this is true in simulation

In synthesis though the result will be an ordinary
AND circuit that will trigger on both a and b

VHDL basics cont.
Basic VHDL structures

The WAIT statement
The WAIT statement has the same function as the sensitivity list
but can give some more options.

The statement has three different forms

• WAIT ON has the same function as the sensitivety list,
it is triggered when the signal changes value

The WAIT statement can be placed anywhere in the process and
there can be more than one WAIT statement in a process.

• WAIT UNTIL is triggered when some condition is fulfilled

• WAIT FOR waits for a specified time

The process will execute up until the WAIT statement and
then wait for the trigging condition.

The last one can not be synthesized but is useful in
simulation. Notably in test benches

2016‐08‐17

48

VHDL basics cont.

Basic VHDL structures

The WAIT statement cont.

Examples

WAIT ON a;

WAIT ON a,b;

WAIT UNTIL (a=’1’);

WAIT FOR 10ns;

Waits until a changes value

Waits until a and/or b change value(s)

Waits until a changes value to one (1)

Waits for 10 ns

I find WAIT statements a bit tricky to handle and
would recommend using sensitivity lists

Only used in simulation!

VHDL basics cont.

Basic VHDL structures

The WAIT statement cont.

WAIT FOR example

clock_proc:PROCESS
BEGIN

WAIT FOR 50 ns;
clk_tb_signal<=NOT(clk_tb_signal);

END PROCESS clock_proc;

We can use a WAIT FOR statement to genarate
a simulation clock within a test bench

For this to work clk_tb_signal must have a start value so this
is a rare moment when it is recommended to give the signal an
initial value at declaration

SIGNAL clk_tb_signal:STD_LOGIC:='0';

This is OK since it is only used in simulation

2016‐08‐17

49

VHDL basics cont.

Basic VHDL structures

Conditional signal assignment in sequential code

The WHEN and WITH statements used in concurrent
code can not be used in sequential code.

We have a couple of replacements

VHDL basics cont.

Basic VHDL structures

IF statement

The IF statement has simularities to the WHEN statement

The structure is

[IF_label:]
IF condition THEN

sequential code;
[ELSIF condition THEN

sequential code;]
[ELSE

sequential code;]
END IF [IF_label];

The IF label is optional but it might
encance the readability of the code

2016‐08‐17

50

VHDL basics cont.

Basic VHDL structures

IF statement cont.

Examples

IF (a=’0’) THEN
y <= ’1’;

END IF;

IF (a=’0’) THEN
y <= ’1’;

ELSE
y <= ’0’;

END IF;

IF structure with complete assignment.

When all possibilities are fully declared
no memory element is needed

Use this instead!

Since the behavior at all values of a is not
declared a memory element must be used

VHDL basics cont.
Basic VHDL structures

Examples cont.

compare_ab:
IF ((a=’1’) AND (b=’0’)) THEN

a_high <= ’1’;
b_high <= ’0’;
equal <= ’0’;

ELSIF ((a=’0’) AND (b=’1’)) THEN
a_high <= ’0’;
b_high <= ’1’;
equal <= ’0’;

ELSIF..
..
ELSE

a_high <= ’0’;
b_high <= ’0’;
equal <= ’1’;

END IF compare_ab;

The ELSIF clause is only
evaluated if the IF clause
is false

The ELSE clause is only evaluated if
the IF and the ELSIF clause(s) are
false

The IF clause is evaluated first

We have a priority‐encoded structure with dominance for the first IF statement

Try using ELSIF instead of separate IF statements

2016‐08‐17

51

VHDL basics cont.

Basic VHDL structures

CASE statement

The CASE statement has simularities to the WITH statement.

The structure is

[CASE_label:]
CASE selectorSignal IS

WHEN value1 =>
sequential code;

WHEN value1 =>
sequential code;

[WHEN value2 =>
sequential code;]

[WHEN others =>
sequential code;]

END CASE [CASE_label];

All cases have the same priority and they may not overlap

If the WHEN cases don´t cover all of
the possible values for
selectorSignal we must
include the OTHERS clause. It
could actually be there even when
it is not needed so make it a habit
to include it

The CASE label is optional but it might
encance the readability of the code

VHDL basics cont.

Basic VHDL structures

CASE statement cont.

selectorSignal is an input port, a signal or a variable.

The valueX could be one single value of
selectorSignal.

It could also be more than one value if we combine
them using the OR symbol |

or it could be a range of values if we use TO or DOWNTO

[Case label:]
CASE selectorSignal IS

WHEN value1 =>
sequential code;

WHEN value1 =>
sequential code;

[WHEN value2 =>
sequential code;]

[WHEN others =>
sequential code;]

END CASE [Case label];

2016‐08‐17

52

VHDL basics cont.

Basic VHDL structures

CASE statement cont.

Examples

SIGNAL tal_signal:INTEGER RANGE 0 TO 20;
SIGNAL output_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);

selector:
CASE tal_signal IS

WHEN 1 =>
output_signal <= "0001";

WHEN 2 =>
output_signal <= "0010";

WHEN OTHERS =>
output_signal <= "0000";

END CASE selector;

selector values

OTHERS clause

selector

VHDL basics cont.

Basic VHDL structures

Examples cont.

SIGNAL tal_signal:INTEGER RANGE 0 TO 20;
SIGNAL output_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);

CASE tal_signal IS
WHEN 1 =>

output_signal <= "0001";
WHEN 2 TO 4 =>

output_signal <= "0011";
WHEN 5 | 9 =>

output_signal <= "0101";
WHEN OTHERS =>

output_signal <= "0000";
END CASE;

Single selector value

Range of selector values

Group of selector values

2016‐08‐17

53

VHDL basics cont.

Basic VHDL structures

LOOP statement

We have one sequential statement that has no
concurrent correspondance, the LOOP statement.

The statement has a number of forms

• Infinite loop

• FOR loop

• WHILE loop

The FOR loop is the only LOOP statement that is synthesizable and
only under some circumstances that we will get back to

VHDL basics cont.

Basic VHDL structures

Infinite LOOP statement

The structure is

[LOOP_label:]
LOOP

sequential code;
END LOOP [LOOP_label];

As the name suggests this loop goes on forever

Example

VARIABLE counter_variable:NATURAL;
……
count_variable:=0;
counter12:LOOP

WAIT UNTIL rising_edge(clk);
count_variable:=

(count_variable+1) MOD 12;
END LOOP counter12;

Triggered every clock cycle
on positive clock edge

The counter counts from 0
to 11 on the rising edge of
clk and then restarts

Infinite loop

The LOOP label is optional but it might
encance the readability of the code

NOTICE! This is not synthesizable

2016‐08‐17

54

VHDL basics cont.

Basic VHDL structures

WHILE LOOP statement

The structure is

[LOOP_label:]
WHILE condition LOOP

sequential code;
END LOOP [LOOP_label];

The WHILE LOOP goes on while some condition is true

Example

VARIABLE sum_variable:NATURAL:=0;
……
add_loop:
WHILE (sum_variable < 100) LOOP

sum_variable:=sum_variable + 3;
END LOOP add_loop;

The LOOP label is optional but it might
encance the readability of the code

NOTICE! This is not synthesizable

VHDL basics cont.

Basic VHDL structures
FOR LOOP statement

The structure is

[Loop label:]
FOR identifier IN discrete_range LOOP

sequential code;
END LOOP [Loop label];

This loop goes on for some range of an identifier

Example

one_fill:
FOR index IN 15 DOWNTO 0 LOOP

vector(index)<=’1’;
END LOOP one_fill;

Parentheses not allowed

A way to fill the vector with ones.

Could be replaced by

vector <= (OTHERS=>’1’);

The LOOP label is optional
but it might enhance the
readabillity of the code

To be synthesizable these must be constant values

2016‐08‐17

55

VHDL basics cont.

Basic VHDL structures
LOOP control

We have a couple of functions to control the loop

With the EXIT statement we can break out of the loop and leave it.

The basic form is

IF condition THEN
EXIT;

END IF;

The code could be shortened to

EXIT WHEN condition;

VHDL basics cont.

Basic VHDL structures

EXIT statement cont.

Example

VARIABLE count_variable:NATURAL;

……
count_variable:=0;
LOOP

WAIT UNTIL ((clk=’1’) OR (reset=’1’));
EXIT WHEN (reset=’1’);
count_variable:=

(count_variable+1) MOD 12;
END LOOP;

The process continously counts from 0 to 11 on positive edge of the clock
signal and is restarted when reset is one (1)

Leave the loop and start
all over again when
reset is activated

Start value for the count

Triggered by clk or reset

2016‐08‐17

56

VHDL basics cont.

Basic VHDL structures

NEXT statement

The NEXT statement breaks the current loop round and
moves on to the next round

The basic form is

IF condition THEN
NEXT;

END IF;

The code could be shortened to

NEXT WHEN condition;

VHDL basics cont.

Basic VHDL structures

NEXT statement cont.

Example

ones_variable:=0;
FOR index IN WIDTH-1 DOWNTO 0 LOOP

NEXT WHEN vector(index)='0';
ones_variable:=ones_variable+1;

END LOOP;

Move to the next bit
in the vector when
the current bit is zero

The code counts the number of ones (1) in vector

2016‐08‐17

57

VHDL basics cont.

Basic VHDL structures

Asynchronous and synchronous code

Our VHDL code consists of two different types of code

• Asynchronous code

• Synchronous code

The code is purely logical and not controlled by any clock

The code is controlled by a trigger signal, a clock and will only
execute when we have a new clock tick

In most cases our code use a combination of the two

VHDL basics cont.

Basic VHDL structures

Asynchronous and synchronous code cont.

In most practical cases it is easier to make
synchronous code work as intended

We can find two basic synchronous structures

• Synchronous code with asynchronous reset

• Synchronous code with synchronous reset

Synchronous code must be written inside processes while
asynchronous code can be written as concurrant code or written
within an asynchronous process

2016‐08‐17

58

VHDL basics cont.
Basic VHDL structures

Synchronous code with asynchronous reset

Basic structure

async_reset:PROCESS(clk,reset)
BEGIN

IF (reset = ’1’) THEN
asynchronous_reset_code;

ELSIF (rising_edge(clk)) THEN
synchronous_main_code;

END IF;
END PROCESS async_reset;

Both signals must be
able to trigger the process.

Level triggered
reset

Positively edge trig‐
gered clk signal

No other signals should
be included in the
sensitivity list

reset is dominant

VHDL basics cont.
Basic VHDL structures

Synchronous code with asynchronous reset cont.
Basic structure cont.

Do not trigger on both edges of a clock.
This is not synthesizable, use only one of the edges.
In most cases it is best to use the same edge in the whole design

clk’EVENT AND clk = ’1’

A positive clock edge is detected by

This can also be written as

rising_edge(clk)

clk’EVENT AND clk = ’0’

A negative clock edge is detected by

This can also be written as

falling_edge(clk)

signal’EVENT is a signal
attribute that is triggered when
something has happened on
the signal.

This kind of code might
mistrigger so avoid it

2016‐08‐17

59

VHDL basics cont.

Basic VHDL structures

Synchronous code with synchronous reset

Basic structure

PROCESS(clk)
BEGIN

IF (rising_edge(clk)) THEN
IF (reset = ’1’) THEN

synchronous_reset_code;
ELSE

synchronous_main_code;
END IF;

END IF;
END PROCESS;

Since the reset signal is synchronized
to the clk signal only the clk signal
should trigger the process

Can only be activated on
the rising edge of clk

The same goes
for this code

clk is dominant

VHDL basics cont.

Basic VHDL structures

Enable signal

Sometimes we also include a enable signal.

This would for the asynchronous reset case give the structure

PROCESS(clk,reset)
BEGIN

IF (reset = ’1’) THEN
asynchronous_reset_code;

ELSIF (rising_edge(clk)) THEN
IF (enable = ’1’) THEN

synchronous_main_code;
END IF;

END IF;
END PROCESS;

Execute only when
enable is activated and
the clock has generated a
positive flank

Notice that the enable signal doesn´t trigger the process

2016‐08‐17

60

VHDL basics cont.

Basic VHDL structures
Time in hardware circuits

When we design hardware we often want to create delays.

The concept of time really doesn´t exist in hardware besides the
unavoidable delay we get when the signals pass through the
electronic blocks.

Our usual way to create specific time periods is to
count a number of clock cycles from the system clock.

This means that our smallest time tick, the time resolution we
can use, is the period of the system clock.

We could of course also count changes on some external signal,
use an external clock. This would i most cases be a slow clock.

In most cases the only time reference we have in our
design is the period of the system clock we use.

A specific time period.

VHDL basics cont.

Basic VHDL structures
Clocks in hardware circuits

Most FPGA circuits use dedicated nets for the clock signals
and there are not that many of these nets.

Because of this it is unwise to use many different clock signals in a design.

We can often solve this by using clock enable signals instead of derived
clocks.

When we design hardware we often want to create clock signals with
other (lower) frequencies than the system clock.

To do this we have to divide the system clock down to a lower frequency,
which means that these clocks will have frequencies that are the system
clock frequency divided by some integer number.

We´ll get back to this in lab assignment 5

We do this by counting clock pulses.

2016‐08‐17

61

VHDL basics cont.
Basic VHDL structures

Clocks in hardware circuits cont.

Do not use

Instead use

Rising_edge(system_clk4)

IF (rising_edge(system_clk)) THEN
IF (Clock_enable4=’1’) THEN

Experience says that the code works better if you
don´t combine the two if caluses into one

VHDL basics cont.

Basic VHDL structures
Subprograms

We have two kinds of subprograms

• Function

• Procedure Doesn´t return any value but we can override this
by sending a signal with the procedure call

We use subprograms to structure our code and when we want to
instantiate the same code sequence more than once in our design or
when we want to reuse codeblocks we have designed earlier.

If used in concurrent code then every instance of the subprogram
has to be instantiated as it´s own hardware.
In sequential code we might be able to reuse the same block of
hardware since different parts of the sequential code execute at
different times. We use multiplexing

Don´t confuse these subprograms with functions, procedures or
subroutines used in software programming. Each instantiation of the
routine will generate its own hardware and in most cases we can not
actually share a subprogram.

Returns a value

2016‐08‐17

62

VHDL basics cont.

Basic VHDL structures
Procedures
We have the structure

PROCEDURE identifier [(parameter_list)] IS
[declarations of local signals,
variables and constants]

BEGIN
sequential statements;

END [PROCEDURE][identifier];

The name and the label is optional but
they might encance the readability of
the code

The procedure description should be placed in the architecture of the
program, at the same place as constants and signals are declared,
that is before the BEGIN of the architecture

NOTICE!

VHDL basics cont.
Basic VHDL structures

Procedures cont.
Example

PROCEDURE max_proc(a:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

SIGNAL max_signal:OUT
STD_LOGIC_VECTOR
(2 DOWNTO 0)) IS

BEGIN
IF (a > b) THEN

max_signal <= "100";
ELSIF (a < b) THEN

max_signal <= "001";
ELSE

max_signal <="010";
END IF;

END PROCEDURE max_proc;

Procedure name

Calling parameters

Return parameter

Observe that it is
declared as a signal

2016‐08‐17

63

VHDL basics cont.

Basic VHDL structures

Example cont.

SIGNAL a_signal:STD_LOGIC_VECTOR
(7 DOWNTO 0);

SIGNAL b_signal:STD_LOGIC_VECTOR
(7 DOWNTO 0);

SIGNAL max_signal:STD_LOGIC_VECTOR
(2 DOWNTO 0);

……
max_proc(a_signal,b_signal,max_signal);

Procedure call

New line within a
statement doesn´t
affect the code

PROCEDURE max_proc(a:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

SIGNAL max_signal:OUT
STD_LOGIC_VECTOR
(2 DOWNTO 0)) IS

BEGIN
IF (a > b) THEN

max_signal <= "100";
ELSIF (a < b) THEN

max_signal <= "001";
ELSE

max_signal <="010";
END IF;

END PROCEDURE max_proc;

The value returned from procedure goes here

Observe! max_signal on top level and down in the procedure are not the same

VHDL basics cont.

Basic VHDL structures

Return from procedure

We can return from a procedure before we reach the end
of the procedure code using a RETURN statement

Example

IF (a = ”00000000”) OR
(b = ”00000000”) THEN
max_signal <= ”000”;
RETURN;

ELSIF (a > b) THEN
max_signal <= "100";

ELSIF (a < b) THEN
max_signal <= "001";

ELSE
max_signal <="010";

END IF;

2016‐08‐17

64

VHDL basics cont.

Basic VHDL structures
Functions
We have the structure

FUNCTION identifier [(inparameter_list)]
RETURN return_type IS
[declarations of local signals,
variables and constants]

BEGIN
sequential statements;

END [FUNCTION][identifier];

The name and the label is optional but
might encance the readability of the
code

The function description should be placed in the architecture of the
program, at the same place as constants and signals are declared,
that is before the BEGIN of the architecture

NOTICE!

VHDL basics cont.

Basic VHDL structures
Functions cont.
Example

FUNCTION max_func(a:STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:STD_LOGIC_VECTOR
(7 DOWNTO 0)

RETURN STD_LOGIC_VECTOR IS
BEGIN

IF (a > b) THEN
RETURN "100";

ELSIF (a < b) THEN
RETURN "001";

ELSE
RETURN "010";

END IF;
END FUNCTION max_func;

Function name

Calling parameters

Type of return parameter

Notice that there is
no size declaration
of the vector and it
has no name

2016‐08‐17

65

VHDL basics cont.

Basic VHDL structures

Example cont.

SIGNAL a_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL b_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL max_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);
……

max_signal <= max_func(a_signal,b_signal);

Function call

The value returned from the function goes here

FUNCTION max_func(a:STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:STD_LOGIC_VECTOR
(7 DOWNTO 0)

RETURN STD_LOGIC_VECTOR IS
BEGIN

IF (a > b) THEN
RETURN "100";

ELSIF (a < b) THEN
RETURN "001";

ELSE
RETURN "010";

END IF;
END FUNCTION max_func;

VHDL basics cont.

Basic VHDL structures
Overloading of subprograms

In many cases we want to use the same subprogram more than once,
but with different types of calling or returning parameters.

To do this we can write more than one version of the subprogram
with the same name but different parameter types or even different
number of parameters.

This is called overloading

The number of calling parameters and their type(s) will decide which
version of the subprogram that will be used.

2016‐08‐17

66

VHDL basics cont.

Basic VHDL structures
Packages

Procedures and functions are ways to create subprograms
that we want to use more than once in a design

With packages we go one step further and collect these structures into
a separate file that can be reused in more than one design

We can also use a package to define types and subtypes, constants
and signals and to create components

The package is divided into two separate parts

• The package declaration where we declare our subprograms,
types, signals and so on

• The package body where we instantiate
the subprograms and components

VHDL basics cont.

Basic VHDL structures
Package declaration

We have the syntax

PACKAGE identifier IS
item_declarations;

END [PACKAGE][identifier];

Package body

PACKAGE BODY identifier IS
item_instantiations;

END [PACKAGE BODY][identifier];

The name of the package

The same name as in
the package declaration

We have the syntax

The name and the label is optional but they
might encance the readability of the code

The name and the label is optional but they
might encance the readability of the code

2016‐08‐17

67

VHDL basics cont.
Basic VHDL structures

Packages
Example

Let´s move the procedure max_proc and the function max_func into a package

Package declaration

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
PACKAGE max_package IS

PROCEDURE max_proc(a:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

SIGNAL max_signal:OUT
STD_LOGIC_VECTOR

(2 DOWNTO 0));
FUNCTION max_func(a:STD_LOGIC_VECTOR

(7 DOWNTO 0);
b:STD_LOGIC_VECTOR

(7 DOWNTO 0))
RETURN STD_LOGIC_VECTOR;

END PACKAGE max_package;

Procedure
declaration

Function
declaration

VHDL basics cont.

Basic VHDL structures

Example cont.

Package body

PACKAGE BODY max_package IS

PROCEDURE max_proc(a:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:IN STD_LOGIC_VECTOR
(7 DOWNTO 0);

SIGNAL max_signal:OUT
STD_LOGIC_VECTOR

(2 DOWNTO 0)) IS
BEGIN

{same code as before}
END PROCEDURE max_proc;

(cont)

Procedure
instantiation

2016‐08‐17

68

VHDL basics cont.

Basic VHDL structures

Example cont.

FUNCTION max_func(a:STD_LOGIC_VECTOR
(7 DOWNTO 0);

b:STD_LOGIC_VECTOR
(7 DOWNTO 0))

RETURN STD_LOGIC_VECTOR IS
BEGIN

{same code as before}
END FUNCTION max_func;

END PACKAGE BODY max_package;

Function
instantiation

VHDL basics cont.

Basic VHDL structures

To use a package

We have already seen how to use the standard packages like
std_logic_1164.

We use our own packages in the same way

Syntax

USE library_catalogue.library_identifier.ALL;

If we have the library in our project then
the library will be compiled to the
subfolder work in the project catalogue

The name of the library

Indicates that we want to use
all declarations in the package

To use libraries in other catalogues the
search paths to these have to be defined
in the compiler system

2016‐08‐17

69

VHDL basics cont.

Basic VHDL structures

To use a package cont.

Let´s use our package max_package in a main program

Example

We write a main program

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE work.max_package.ALL;

ENTITY package_main IS
PORT(a:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
max1:OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
max2:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END package_main;

Our package is placed
within our project

VHDL basics cont.

Basic VHDL structures

Example cont.

ARCHITECTURE arch_package_main OF
package_main IS
BEGIN

max_proc(a,b,max1);
max2 <= max_func(a,b);

END arch_package_main;

Defined in package max_package

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE work.max_package.ALL;

ENTITY package_main IS
PORT(a:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
max1:OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
max2:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END package_main;To use a package cont.

Return value

Return value

2016‐08‐17

70

VHDL basics cont.

Basic VHDL structures

To make our package more useful we can make it work for any vector size
by leaving out the size declarations of the parameters

No sizes

Making the package generic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
PACKAGE max_package IS

PROCEDURE max_proc(a:IN STD_LOGIC_VECTOR;
b:IN STD_LOGIC_VECTOR;
SIGNAL max:OUT

STD_LOGIC_VECTOR);
FUNCTION max_func(a:STD_LOGIC_VECTOR;

b:STD_LOGIC_VECTOR)
RETURN STD_LOGIC_VECTOR;

END PACKAGE max_package;

The signal sizes will be decided by the sizes of the calling parameters

VHDL basics cont.

Basic VHDL structures

Standard packages

VHDL includes a number of standard packages that are part of
the IEEE standard package collection.

• standard defines the character set, integer, real, time, string,
boolean_vector, bit_vector, integer_vector, real_vector

• math_real works on real numbers and has declarations for mathematical
constants like pi, square root, exponential and logarithmic
functions and trigonomethric functions

• math_complex has mathematical constants and functions for complex numbers

• std_logic_1164 declares the std_logic data type, declares logical functions,
shift operators and conversions between std_logic and bit

We will discuss a few of these and some of their contents

2016‐08‐17

71

VHDL basics cont.

Basic VHDL structures
Standard packages cont.
• numeric_bit has numerical and logical operations for bits

• numeric_std has more or less the same declarations as numeric_bit
but for std_logic

• fixed_generic_pkg has numerical and logical operations for
fixed point numbers

• float_generic_pkg has numerical and logical operations for
floating point numbers

We will in most cases create our designs using only the std_logic_1164
library or complement it with use of the numeric_std library and in some
rare cases math_real

A search of the internet will give the declarations within these packages

Let´s have a look at these two packages

Demonstration!

VHDL basics cont.

Basic VHDL structures

Components

Components are subdesigns that we use as building blocks to
build larger designs

We will get a hierarchical design that might be easier to grasp

It is also a way to reuse building blocks from earlier designs
and to interconnect two designs into one larger design

When we use a component in a design we have to declare
the component and connect its ports to the signals in
the higher level design

Let´s illustrate with an example

Splitting the design into components makes it easier to
simulate and test the separate blocks on their own

2016‐08‐17

72

VHDL basics cont.

Basic VHDL structures
Components cont.
Example

We want to build a two‐bit adder.

We start by building a one‐bit full adder and then use two blocks of this kind as
components in the two bit version.

One‐bit adder Two‐bit adder

VHDL basics cont.

Basic VHDL structures
Components cont.
Example cont.

Our one‐bit adder has the code

ENTITY full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END full_adder;

ARCHITECTURE arch_full_adder OF full_adder IS
BEGIN

s<=a XOR b XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END arch_full_adder;

Separate lines increases readability

2016‐08‐17

73

VHDL basics cont.

Basic VHDL structures
Example cont.

We move on to the two‐bit adder.

We have the entity

ENTITY adder_2_bit IS
PORT(a:IN STD_LOGIC_VECTOR(1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_2_bit;

The entity is the same as for the one bit adder exept that
a, b and s have changed from calars to vectors

VHDL basics cont.

Basic VHDL structures

Example cont.

and the architecture

ARCHITECTURE arch_adder_2 OF adder_2 IS
COMPONENT full_adder IS

PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL cint_signal:STD_LOGIC;

BEGIN
full_adder_comp0:COMPONENT full_adder

PORT MAP(a=>a(0),b=>b(0),
cin=>'0',s=>s(0),cout=>cint_signal);

full_adder_comp1:COMPONENT full_adder
PORT MAP(a=>a(1),b=>b(1),

cin=>cint_signal,s=>s(1),cout=>cout);
END arch_adder_2;

Component declaration

Component
instantiations

ENTITY adder_2_bit IS
PORT(a:IN STD_LOGIC_VECTOR(1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_2_bit;

2016‐08‐17

74

VHDL basics cont.

Basic VHDL structures
Example cont.

Lets´s look at the different
parts of our architecture.

First the component
declaration

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

If we compare this to
the entity of our one
bit full adder

ENTITY full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END full_adder;

We see that they are the same exept that the word ENTITY has been replaced
by the word COMPONENT and we have added the word COMPONENT at the
end as well

VHDL basics cont.

Basic VHDL structures
Example cont.

In the architecture body we instantiate
two full adders as components.

Let´s look at the first one

full_adder_comp0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),

cin=>'0',s=>s(0),cout=>cint);

The instantiation must have a label

The port map connects the ports of the component
to the signals in the top design

Name of component port

Top level signal connected
to the component port

Connect cin to a constant value
zero (0) since we have no carry in

The same signal name can be
used on different design levels
without interference

ENTITY adder_2_bit IS
PORT (a:IN STD_LOGIC_VECTOR(1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_2_bit;

Transfer carry out
to the next bit
using an internal
signal

2016‐08‐17

75

VHDL basics cont.

Basic VHDL structures
Example cont.

PORT MAP(a=>a(0),b=>b(0),
cin=>'0',s=>s(0),cout=>cint);

This way of connecting the signals to the component is called nominal mapping.

Here the order of the assignments doesn´t matter and we can even
leave out the assignment of some outputs if we don´t want to use
them. We could for example skip carry out if we don´t use it

All inputs must be there though since there values are needed to
generate the output signal

PORT MAP(a=>a(0),b=>b(0),cin=>'0',s=>s(0));

VHDL basics cont.

Basic VHDL structures
Example cont.

PORT MAP(a=>a(0),
b=>b(0),
cin=>'0',
s=>s(0),
cout=>cint);

I prefere to have one assignment per line when I do the port mapping.
The code gets more readable and you can have comments on each
assignment if you like

I don´t do that in this presentation to same space on the slides

2016‐08‐17

76

VHDL basics cont.

Basic VHDL structures
Example cont.

PORT MAP(a(0),b(0),'0',s(0),cint);

We can also use positional mapping where the possition of the signal
within the PORT MAP desides where it is connected

Since the position is essential then all signals must be there. If we
want to leave someone out we must keep the position.

If we once again leave out the carry out signal from the component.

PORT MAP(a(0),b(0),'0',s(0),);

The positional mapping is shorter but often confusing since you
must all the time check that you have got the positioning right.

Using nominal mapping and keeping the port order from the
component entity makes the code less error prone

VHDL basics cont.

Basic VHDL structures
Example cont.

Let´s repeat the total architecture

ARCHITECTURE arch_adder_2 OF adder_2 IS
COMPONENT full_adder IS

PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL cint_signal:STD_LOGIC;

BEGIN
full_adder_comp0:COMPONENT full_adder

PORT MAP(a=>a(0),b=>b(0),
cin=>'0',s=>s(0),cout=>cint_signal);

full_adder_comp1:COMPONENT full_adder
PORT MAP(a=>a(1),b=>b(1),

cin=>cint_signal,s=>s(1),cout=>cout);
END arch_adder_2;

ENTITY adder_2_bit IS
PORT(a:IN STD_LOGIC_VECTOR(1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_2_bit;

Transfer carry out
to the next bit
using a signal

2016‐08‐17

77

VHDL basics cont.

Basic VHDL structures

This works fine for just a few instantiations of a component.

In this case there is a simplier way

Example

We continue with the adder but will use it for the addition of
two 32 bit vectors

The entity will be the same as before but the vectors will have
increased the number of bits to 32

ENTITY adder_32_bit IS
PORT (a:IN STD_LOGIC_VECTOR(31 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s:OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_32_bit;

But it will be a lot of code, if we have many bits, for example 32 bits.

VHDL basics cont.
Basic VHDL structures

Example cont.

The component declaration will be exactly the same as in the 2‐bit case
since it is the same one‐bit‐adder component.

We have to change the architecture body with
the component instantiations

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

2016‐08‐17

78

VHDL basics cont.
Basic VHDL structures
Example cont.

ARCHITECTURE arch_adder_32_bit OF adder_32_bit IS
{declaration of component full_adder}
SIGNAL cint:STD_LOGIC_VECTOR(30 DOWNTO 0);
BEGIN

full_adder_comp0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>'0',

s=>s(0),cout=>cint(0));
G:FOR i IN 1 TO 30 GENERATE

full_adder_compi:COMPONENT full_adder
PORT MAP(a=>a(i),b=>b(i),cin=>cint(i-1),

s=>s(i),cout=>cint(i));
END GENERATE;
full_adder_comp31:COMPONENT full_adder

PORT MAP(a=>a(31),b=>b(31),cin=>cint(30),
s=>s(31));

END arch_adder_32_bit;

MSB and LSB are instantiated seperately since they have somewhat
different in‐ and output signals

Signals that transfer
the carrier bits
between the com‐
ponents

Component
instantiations

cout not connected, therefore missing

No cin

Carry ripples from one
adder to the next

VHDL basics cont.

Basic VHDL structures

Example cont.

Let´s take a closer look at the generation of bit 1 to 30

G:FOR i IN 1 TO 30 GENERATE
full_adder_compi:COMPONENT full_adder

PORT MAP(a=>a(i),b=>b(i),cin=>cint(i-1),
s=>s(i),cout=>cint(i));

END GENERATE;

We have what might look like a loop but the synthesize
tool will unwrap this loop and instantiate 30 separate one
bit adders

The generate statement must have a label

The index variable does not have to be declared

We need a component label but we do not need separate
labels for the different instantiated components

2016‐08‐17

79

VHDL basics cont.

Basic VHDL structures

Now we might wonder:

Is there a way to generalize the adder so that we can use the same
design no matter the number of bits we want to use?

Yes there is!

First of all we could define a constant to give the number of bits,
which means that we only have to make a change in one place in
the code when we change the number of bits

VHDL basics cont.

Basic VHDL structures

ARCHITECTURE arch_adder_x_bit OF adder_x_bit IS
{declaration of component full_adder}
CONSTANT WIDTH:NATURAL:=32;
SIGNAL cint:STD_LOGIC_VECTOR(WIDTH-2 DOWNTO 0);
BEGIN

full_adder_comp0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>'0',

y=>y(0),cout=>cint(0));
G:FOR i IN 1 TO WIDTH-2 GENERATE

full_adder_compi:COMPONENT full_adder
PORT MAP(a=>a(i),b=>b(i),cin=>cint(i-1),

y=>y(i),cout=>cint(i));
END GENERATE;
full_adder_compN_1:COMPONENT full_adder

PORT MAP(a=>a(WIDTH-1),b=>b(WIDTH-1),
cin=>cint(WIDTH-2),y=>y(WIDTH-1);

END arch_adder_x_bit_generate;

We will have to edit the constant in the architecture to change the number of bits

Constant declaration

2016‐08‐17

80

VHDL basics cont.

Basic VHDL structures

As the next step we move the bit number constant out of the arcitecture
and into the entity and define it as a GENERIC

ENTITY adder_x_bit IS
GENERIC(WIDTH:NATURAL:=32);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_x_bit;

The syntax for the generic is

GENERIC (generic_name:generic_type[:=value]);

We will get back to the case when we don´t need a value

VHDL basics cont.

Basic VHDL structures
All we have to do in the architecture is to remove the constant.
This is now replaced by the GENERIC in the entity

ARCHITECTURE arch_adder_x_bit OF adder_x_bit IS
{declaration of component full_adder}
SIGNAL cint:STD_LOGIC_VECTOR(WIDTH-2 DOWNTO 0);
BEGIN

full_adder_comp0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>'0',

y=>y(0),cout=>cint(0));
G:FOR i IN 1 TO WIDTH-2 GENERATE

full_adder_compi:COMPONENT full_adder
PORT MAP(a=>a(i),b=>b(i),cin=>cint(i-1),

y=>y(i),cout=>cint(i));
END GENERATE;
full_adder_compN_1:COMPONENT full_adder

PORT MAP(a=>a(WIDTH-1),b=>b(WIDTH-1),
cin=>cint(WIDTH-2),y=>y(WIDTH-1);

END arch_adder_x_bit_generate;

2016‐08‐17

81

VHDL basics cont.

Basic VHDL structures
This has improved the flexibility of our adder.

But we have to go in to the entity of the adder and edit it
to change the number of bits.

What if we could describe the adder as a component and set
the number of bits at instantiation?

To do this we keep the generic in the entity but we remove it´s value

ENTITY adder_x_bit IS
GENERIC(WIDTH:NATURAL);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END adder_x_bit;

and set it when we instantiate the adder.

Generic without value

We can actually keep the value of the generic as a
default. It will be overwritten by the instantiation

VHDL basics cont.

Basic VHDL structures
Example

Let´s try to implement two adders with different word lengths using our component.
We add two 16 bit numbers and two 8 bit numbers.

We have the entity

ENTITY multiple_adders IS
GENERIC(WIDTH16:NATURAL:=16;

WIDTH8:NATURAL:=8);
PORT (a:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
c:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
d:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
z:OUT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
cout16:OUT STD_LOGIC;
cout8:OUT STD_LOGIC);

END multiple_adders ;

We have used two new
generics to set the two bit
widths in the components

2016‐08‐17

82

VHDL basics cont.
Basic VHDL structures

Example cont.

In the architecture we instantiate two adders using the same component

ARCHITECTURE arch_multiple_adders OF multiple_adders
IS
COMPONENT adder_x_bit IS

GENERIC(WIDTH:NATURAL);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END COMPONENT adder_x_bit;
BEGIN

adder_x_bit_comp0:COMPONENT adder_x_bit
GENERIC MAP(WIDTH=>WIDTH16)
PORT MAP(a=>a,b=>b,y=>y,cout=>cout16);

adder_x_bit1:COMPONENT adder_x_bit
GENERIC MAP(WIDTH=>WIDTH8)
PORT MAP(a=>c,b=>d,y=>z,cout=>cout8);

END arch_multiple_adders;

Instantiation of
16 bit adder

Instantiation
of 8 bit adder

Generic component

ENTITY multiple_adders IS
GENERIC(WIDTH16:NATURAL:=16;

WIDTH8:NATURAL:=8);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
c:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
d:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
z:OUT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
cout16:OUT STD_LOGIC;
cout8:OUT STD_LOGIC);

END multiple_adders ;

VHDL basics cont.

Basic VHDL structures
Memories

Basically we use two types of memories

• ROM, read only memory where the data can be read
but can not be changed (written)

• RAM, random access memory, read/write memory
where the data can be both read and written

In most cases we don´t use memories with bit sized data but we read and
write words of some size to a number of addresses

A suitable data type for the memory would then be an array of vectors

TYPE mem_array IS ARRAY (0 TO SIZE-1) OF
STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

where we address each vector instead of the individual bits

2016‐08‐17

83

VHDL basics cont.

Basic VHDL structures
Memories cont.

To create a memory we instantiate the type, in this case mem_array.

For a ROM memory the values should me initialized into the memory at design time
and then never change. We use a constant declaration for the instantiation

CONSTANT ROM:mem_array:=(value(1),value(2),
..,
value(Size-1));

For a RAM memory we instantiate the memory
by creating a signal without values

SIGNAL RAM:mem_array;

We could fill the RAM with values at the instantiation but that
will only work in simulation and will not be synthesized.

For syntesis we need to fill the RAM with values using VHDL code

Our ROM is named ROM

Our RAM is named RAM

TYPE mem_array IS ARRAY (0 TO SIZE-1) OF
STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

VHDL basics cont.
Basic VHDL structures

Memories cont.

A small ROM can be created using a case statement

BCD_7seg:PROCESS(bcd) IS
BEGIN

CASE bcd IS
WHEN X”0” => seg <= ”0111111”;
WHEN X”1” => seg <= ”0000110”;
WHEN X”2” => seg <= ”1011011”;
WHEN X”3” => seg <= ”1001111”;
WHEN X”4” => seg <= ”1100110”;
WHEN X”5” => seg <= ”1101101”;
WHEN X”6” => seg <= ”1111101”;
WHEN X”7” => seg <= ”0000111”;
WHEN X”8” => seg <= ”1111111”;
WHEN X”9” => seg <= ”1101111”;
WHEN OTHERS => seg <= ”1000000”;

END CASE BCD_7seg;
END PROCESS;

This memory converts BCD
code to 7 segment code

Hexadecimal base

Observe the process

2016‐08‐17

84

VHDL basics cont.

Basic VHDL structures

Memories cont.

We could do the same using a WITH statement

WITH bcd SELECT
seg <= ”0111111” WHEN X”0”,

”0000110” WHEN X”1”,
”1011011” WHEN X”2”,
”1001111” WHEN X”3”,
”1100110” WHEN X”4”,
”1101101” WHEN X”5”,
”1111101” WHEN X”6”,
”0000111” WHEN X”7”,
”1111111” WHEN X”8”,
”1101111” WHEN X”9”,
”1000000” WHEN OTHERS;

BCD_7seg:PROCESS(bcd) IS
BEGIN

CASE bcd IS
WHEN X”0” => seg <= ”0111111”;
WHEN X”1” => seg <= ”0000110”;
WHEN X”2” => seg <= ”1011011”;
WHEN X”3” => seg <= ”1001111”;
WHEN X”4” => seg <= ”1100110”;
WHEN X”5” => seg <= ”1101101”;
WHEN X”6” => seg <= ”1111101”;
WHEN X”7” => seg <= ”0000111”;
WHEN X”8” => seg <= ”1111111”;
WHEN X”9” => seg <= ”1101111”;
WHEN OTHERS => seg <= ”1000000”;

END CASE BCD_7seg;
END PROCESS;

Observe that there
is no process

VHDL basics cont.

Basic VHDL structures
Test benches

To verify that our design is correct we need to simulate our results.

We will be using the simulator QuestaSim (or ModelSim) from Mentor for this.

To assist in the simulation we can create a kind of test fixture in VHDL,
a test bench.

This is a top level design where we instantiate our own design as a component
and generate input stimuli for the component and watch or check the resulting
output signals. We micht also check internal signals

We can have three different types of test benches

• Type 1 only generates input stimuli and we have to watch the results
in the simulator

• Type 2 generates input stimuli, checks the results and gives an OK
signal if the resulting output values are correct

• Type 3 generates input stimuli and writes a message to the simulator
output window if something goes wrong with the simulation results

2016‐08‐17

85

VHDL basics cont.

Basic VHDL structures
Test benches
Example

Let´s take our one bit full adder as an example.

ENTITY full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END full_adder;

We have the entity

VHDL basics cont.
Basic VHDL structures

Test benches
Example cont.

We need to generate eight different input stimuli to fully test the circuit

ENTITY full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;

y:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END full_adder;

To simplify things we will accept that more than
one signal changes it´s value at a given time

2016‐08‐17

86

VHDL basics cont.
Basic VHDL structures

Example cont.

Let´s start creating the test bench. We begin with test bench type 1

In this case we only watch the results from the simulation and we
do not need any input or output ports to the test bench.

ENTITY full_adder_tb1 IS

END full_adder_tb1;

The entity is empty since we have no inputs and no outputs

This causes a problem in QuestaSim since by default signals
that don´t connect to outputs are optimized away.

To overtcome this we can simulate without optimization.
The paper on QuestaSim describes how to do this

VHDL basics cont.

Basic VHDL structures
Example cont.

In the test bench architecture we instantiate our full adder as a component

ARCHITECTURE arch_full_adder_tb1 OF full_adder_tb1 IS
COMPONENT full_adder IS

PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL a_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC;
SIGNAL cin_signal:STD_LOGIC;
SIGNAL s_signal:STD_LOGIC;
SIGNAL cout_signal:STD_LOGIC;

BEGIN
full_adder_comp:COMPONENT full_adder

PORT MAP(a=>a_tb,b=>b_tb,cin=>cin_tb,
s=>s_signal,cout=>cout_signal);

Component
declaration

Component
Instantiation

Signals to connect
to the component

ENTITY full_adder_tb1 IS
PORT (y_tb:OUT STD_LOGIC

cout_tb:OUT STD_LOGIC);
END full_adder_tb1;

2016‐08‐17

87

VHDL basics cont.

Basic VHDL structures
Example cont.

We complete the architecture with the input stimuli

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,
'1' AFTER 300 ns,
'0' AFTER 400 ns,
'1' AFTER 500 ns,
'0' AFTER 600 ns,
'1' AFTER 700 ns;

b_signal <= '0',
'1' AFTER 200 ns,
'0' AFTER 400 ns,
'1' AFTER 600 ns;

cin_signal <= '0',
'1' AFTER 400 ns;

END arch_full_adder_tb1;

This is one of the few
times when we can and
should use time in our
designs

The exact times are not
important since we deal
with simulation of a
design without circuit
delays

But we should create
all the input signal
combinations we want
to test for

VHDL basics cont.

Basic VHDL structures
Example cont.

We need a do file.

Since the instimuli is given in the test bench all the do file need to is
to set up signals we like to watch and run the simulation time.

-- full_adder_tb1.do

restart -f -nowave
view signals wave
add wave a_signal b_signal cin_signal
add wave s_signal cout_signal
run 730ns

Signals to watch

Run the simulation for this time

2016‐08‐17

88

VHDL basics cont.

Basic VHDL structures
Example cont.

We move on to test bench type 2

Here we will need a output signal that signals if something goes wrong
with the output signals from the component during simulation.

We add an output to our test bench entity

ENTITY full_adder_tb2 IS
PORT(test_OK:OUT STD_LOGIC);

END full_adder_tb2;

VHDL basics cont.
Basic VHDL structures

Example cont.

In the architecture we keep the component declaration and do a component
instantiation using signals and not outports

ARCHITECTURE arch_full_adder_tb2 OF full_adder_tb2 IS
COMPONENT full_adder IS

PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL a_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC;
SIGNAL cin_signal:STD_LOGIC;
SIGNAL s_signal:STD_LOGIC;
SIGNAL cout_signal:STD_LOGIC;

BEGIN
full_adder_comp:COMPONENT full_adder

PORT MAP(a=>a_tb,b=>b_tb,cin=>cin_tb,
s=>s_signal,cout=>cout_signal);

ENTITY full_adder_tb2 IS
PORT(test_OK:OUT STD_LOGIC);

END full_adder_tb2;

2016‐08‐17

89

VHDL basics cont.

Basic VHDL structures
Example cont.

We keep the imput stimuli from test bench type 1

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,
'1' AFTER 300 ns,
'0' AFTER 400 ns,
'1' AFTER 500 ns,
'0' AFTER 600 ns,
'1' AFTER 700 ns;

b_signal <= '0',
'1' AFTER 200 ns,
'0' AFTER 400 ns,
'1' AFTER 600 ns;

cin_signal <= '0',
'1' AFTER 400 ns;

VHDL basics cont.

Basic VHDL structures
Example cont.

We have to complete the code with a test of the output signals

We write the code so that the test_OK signal will go low if an error
occures and then stay low even if the next stimuli gives a correct result

2016‐08‐17

90

VHDL basics cont.
Basic VHDL structures

Example cont.

test_proc:PROCESS
BEGIN

test_OK <= '1';
WAIT FOR 50 ns; -- 000
IF ((s_signal/='0') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 100
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 010
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
……

END PROCESS test_proc;
END arch_test_bench_type2;

Default value for test_OK

If the result isn´t 00 then set test_OK low

Continue for all eight combinations
of input signals

Wait until the input signals have stabilized

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,

...
b_signal <= '0',

'1' AFTER 200 ns,
...
cin_signal <= '0',

'1' AFTER 400 ns;

Test for next stimuli

VHDL basics cont.

Basic VHDL structures
Example cont.

We need a do file here too.

The only difference from the do file for test bench type 1 is that we

have added the signal test_OK to the signals we watch

-- full_adder_tb2.do

restart -f -nowave
view signals wave
add wave a_signal b_signal cin_signal
add wave s_signal cout_signal test_OK
run 730ns

Signals to watch

Run simulation Added signal

The only signal to watch in the test bench is really test_OK
but it is practical to keep the rest of the signals for debugging

2016‐08‐17

91

VHDL basics cont.
Basic VHDL structures

Example cont.

Observe that as soon as a test sets test_OK to zero then
it will stay at zero although following tests can be OK

test:PROCESS
BEGIN

test_OK <= '1';
WAIT FOR 50 ns; -- 000
IF ((s_signal/='0') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 100
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 010
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
……

END PROCESS test;
END arch_test_bench_type2;

We shouldn´t run this simulation longer than the added
WAIT times since the process will restart when it reaches
it´s end and then the results will most likely be incorrect

VHDL basics cont.
Basic VHDL structures

Example cont.

Now over to test bench type 3

In this case we don´t need any output signal either since the internal
signals are used for our test and since these tests will give the written
reports if something is wrong then we have an empty entity

ENTITY full_adder_tb3 IS

END full_adder_tb3;

We will rewrite the test process, that is replace the test_OK process,
but keep the rest of the architecture code

2016‐08‐17

92

VHDL basics cont.
Basic VHDL structures

Example cont.

test_proc:PROCESS
BEGIN

WAIT FOR 50 ns; -- 000
ASSERT ((s_signal='0') AND (cout_signal = '0'))
REPORT “000 50ns"
SEVERITY warning;
WAIT FOR 100 ns; -- 100

ASSERT ((s_signal='1') AND (cout_signal = '0'))
REPORT "100 150ns"
SEVERITY warning;
WAIT FOR 100 ns; -- 010
...

END PROCESS test_proc;
END arch_test_bench_type3;

If this condition is true then nothing
is wrong with the signals so do nothing

Continue for all eight combinations
of input signals

The current simulation time and this text
will be written to the simulators Transcript
window if the output signals are incorrect

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,

...
b_signal <= '0',

'1' AFTER 200 ns,
...
cin_signal <= '0',

'1' AFTER 400 ns;

VHDL basics cont.
Basic VHDL structures

Example cont.

If the ASSERT expression is true then the output signals
have the correct values

If the expression is false then the test time and the REPORT
message will be written to the simulators output window

We can have four different levels of SEVERITY

• note, the message will have the header Note

• warning, the message will have the header Warning

• error, the message will have the header Error

• failure, the message will have the header Failure

The severity level should be choosen based on
the kind of action the error calls for

The severity levels are given in increasing order

The simulation
continues

The simulation will
stop at current time

2016‐08‐17

93

VHDL basics cont.
Basic VHDL structures

Example cont.

The assert messages that you write can be simple or very detailed.

You decide!

For a more advanced design the test will be quit extensive
and you need to write a lot of code just for the test

VHDL basics cont.

Basic VHDL structures
Example cont.

Once again we need a do file.

We´re back to the same do file as the one we used for test bench 1
since we have no output.

-- full_adder_tb3.do

restart -f -nowave
view signals wave
add wave a_signal b_signal cin_signal
Add wave s_signal cout_signal
run 730ns

Run simulation

Strictly we don´t need to watch any signals since we have the
assertions but like in test bench type 2 it is practical to keep the
signals for debugging

Signals to watch

