DAT093
Introduction to Electronic System
Design
Hints on clocking

In many cases, there is a need to synchronize the code using a clock frequency that is lower
than the frequency of the system clock, the lower frequency could for example be a sampling
clock.

The only real timing element we have in our designs is the system clock, unless we introduce
another external clock. To avoid this external clock the normal way to generate the lower
frequency clock is to use the system clock and count a number of clock cycles from the system
clock, toggle the lower frequency clock signal, count again, toggle again and so on. We can
only use one flank of the system clock, positive or negative, to trigger the counter and the
result is that the lower frequency clock can only have a frequency that is the system clock
frequency divided by an integer number and if we use the same count for the high and the
low half period this integer must be an even number. If the number is odd then we will have
to generate a slightly asymmetrical clock.

Itis good practice to if possible only use one clock signal in a design. This means that we should
not trigger our clocked design on the generated low speed signal but instead trigger on the
system clock and then use clock enable signals for the lower frequencies. The reason for this
is that the clock signals will be distributed through separate clock nets within the FPGA and
the FPGA contains only a limited number of these nets and these nets cannot be freely routed.
By using clock enables there are still just a few clock signals, often only one, while the enable
signals are distributed like all other signals and can be connected to flip-flops using their ena-
ble inputs.

This means that for the internal synchronization we should not use signals like the ones in
Figure 1

system_clock
lower_clock | | | | [

Figure 1 System clock and divided clock

and write code like

IF rising_edge(system_clock) THEN

END IF;

DATO093
Introduction to Electronic System design
Hints on clocking
page 1

IF rising_edge(lower_clock) THEN

END IF;
Instead we should use an enable signal for the lower frequency as shown in Figure 2

system_clock
lower_clock_enable |_

Figure 2 System clock and clock enable for the divided clock

and write code like

IF rising_edge(system_clock) THEN
IF (lower_clock_enable="1") THEN
END IF;

END IF;

Experience says that the design will have a better chance of functioning as expected if the two
IF clauses are kept separate and not merged into on IF clause so don’t write

IF (rising_edge(system_clock) AND
(lower_clock_enable=~1")) THEN

END IF:
END IF:

Doing it this way we will only route the system clock signal through the clock nets while the
enable signal will be treated like a normal signal and it will be routed through the common,
more frequent, nets and connect to the flip-flops through enable inputs.

The clock enable signal is generated in a similar way to the generation of the lower frequency
clock described earlier. We count system clock cycles by using a modulus counter where the
count value is the number of system clock pulses between each enable signal and we activate
the lower clock enable signal during one and only one system clock period of each counting
cycle. This will not take more hardware than creating a clock signal with a lower frequency
since we need a counter in both cases.

Observe that to generate the same lower clock frequency we will need different counter rang-
es in the two cases. In the first case (Figure 1) we need to do two counts for one period, one
count for the low part of the period and one count for the high part of the period. In the

DATO093
Introduction to Electronic System design
Hints on clocking
page 2

second case (Figure 2) we need one count cycle per period of the lower frequency but we
need to count up to a higher, double value.

Clock enable applied to lab assignment 5

Let’s see how this applies to Laboratory assignment 5.

In this assignment you will design interfaces to an ADC and a DAC both connected through SPI
busses. The transfer on the busses is controlled by the serial clock, the SPI clock. To follow the
rules above you should introduce a SPI clock enable signal to synchronize the transfers. In this
case you can’t leave out a symmetrical SPI clock though.

The external SPI devices need the SPI clock signal to have a more symmetric period to function
as intended, that is you need to connect a symmetrical SPI clock to the external SCLK pins
connected to the ADC and the DAC but it is still best to use clock enable signals within your
design.

When you set up the SPI clock signal and the SPI clock enable signal it is natural to start each
period with a clock enable signal but then you have two options for the SPI clock

e You could start with a high SPI clock signal, Figure 3
e You could start with a low SPI clock signal, Figure 4

sstem_cock [L[L L L L L L UL LWL L L
lower_clock_enable ,_l |_
SPI_clock J | | |_

Figure 3 Start with a high SPI clock

lower_clock_enable |_|
SPI_clock | | | |

Figure 4 Start with a low SPI clock

Does the choice matter? Let’s look at the timing for the two interfaces, Figure 5 and Figure 6.

| Tizem I |
CS | |
| -'EA.IL'S
R N — — e —— —
L =T<] iy RS L — = — R SL
o.. [IN-EEEET (T ey e eEEE
-z —— —— —— —— —— —— —— —— —— —— —— —— HI-Z
[n [rdsn e s ee W er Vs e W2l ezl ezl a0 ol
| L | T S S S S S S S S S W
FammrLe Lo i

Cpesra=-

Figure 5 Timing for the ADC interface to the MCP3202

Lo Vi vivenang

page 3

('5|

[l

7 8 9 10 11 12 13 14 15 (Mode 1,1)

(Mode 0,0)

s fih i

|e—— config bits 12 data bits —————————— -

sDi A8 — JGA) SHON [D11}D10) D8 J D8 § D7 { D6 { D5 | D4) D3 D2} D1} DD
L i) ik} ':I'- I Tk i .lx|) it 1 i

LDAC v/

.-'.::;.u—
Figure 6 Timing for the DAC interface to the MCP4822

From the timing diagrams, we can see that we must first place data or configuration bits on
the relevant line and then the data will be read into the external device on the rising edge of
the SPI clock.

One way to do this is to use a SPI clock that starts high, Figure 3, and place the data on the line
at one rising edge and then trigger it on the next rising edge. This is possible since the placing
of the data is also triggered by the rising edge of the SPI clock which means that when we
place the data on the line the current rising edge has already passed and it will not be triggered
until the next rising edge.

It might seem simpler to use a SPI clock that starts low though, Figure 4. In this case we get a
natural flow where we place data on the line at the SPI clock enable signal and then the data
will be read by the external device when the rising edge of the SPI clock comes half a period
of the SPI clock signal later.

DATO093
Introduction to Electronic System design
Hints on clocking
page 4

