DATO093
Introduction to Electronic System
Design

Fractional numbers
Introduction

When we work with fixed point digital systems (see below) involving calculations on numbers
that have started as analog values and then have been sampled and analog-to-digital con-
verted and that are later supposed to be digital-to-analog converted back to analog values
it is in most cases beneficial to look at our sample values and our constants, for example filter
constants, as fractional numbers. One reason for this is that the values, like filter constants,
we get from DSP design tools in most cases are represented in fractional format. Now what
do we mean by fractional numbers? To answer that we will start with a short sum up of
number representation.

Fixed point number representation

In fixed point numbers we have a representation where the number of integer digits and the
number of fractional digits in the numbers is fixed, that is the position of the decimal point
within the number is fixed. If we focus on binary numbers the representation is described as
I.B where | is the number of integer bits while B is the number of binals.

If we have an integer number this could, with eight bits, be represented in format 8.0. We
have 8 bits to represent the integer part of the number and no bits for the binal part and that
is of course OK for an integer number since there are no binals here.

For unsigned integer numbers we have
b7bebsbabsbobibo = b7-27+be-26+bs - 25+b4 - 24+b3 - 23+b2 - 22+b1 - 21+bg - 20

that is the value span is 0 to +255.
For a signed integer number with a positive value we have the representation

Obsbsbasbsb2bibo = be - 26+bs - 25+b4 - 24+b3 - 23+by - 224D - 21+bg - 20

giving the range 0 to +127. Negative numbers are represented by the 2’s complement of this
and we actually have one extra negative value so the range is -1 to -128. In total then the
range is -128 to +127.

Fractional numbers

The other extreme is a number represented on 0.8 format, that have no integer bits and eight
fractional bits and that is described by

b7bsbsbsbsbsbibg =
= b7-2-1+bg-2-24+bs-2-3+b4-2-4+b3-2-5+b>-2-6+b; - 2-7+by-2-8

DAT093
Introduction to Electronic System Design
Fractional numbers
page 1



The smallest number we can represent here, besides zero, is

2-8 = 0.00390625

and the largest value is
2-142-242-3+2-442-5+2-6+2-7+2-8 = (0.99609375 = 1-2-8

Observe that the largest value is close to, but not quit, one (1). Also observe that since there
is no sign bit we can only represent natural values, that is zero and positive values.

This representation with all values smaller than one (1) is what we call fractional numbers
but we will change the representation a bit below to include negative fractions.

We can of course have representations in between these formats like a 4.4 format with four
binal bits and four integer bits for unsigned numbers or three integer bits and a sign bit if the
numbers are signed.

For unsigned numbers this would give the description

b7bebsbsbsbobibo = b7-23+bg-22+bs- 21+b4 - 20+b3 - 2-1+bs - 2-2+b; - 2-3+bg - 2-4
and the smallest value possible, besides zero, would be

2-4 = 0.625

And the biggest

23+22+42142042-1+2-242-3+2-4 = 15_.9375 = 16-2-4

So we have the value span 0 to 15.9375.

For signed 4.4 numbers the value interval would be -8 to +7.9375. Formats like this might be
beneficial for interimistic results within a calculation but seldom for the final result.

We said that 0.8 format only can represent positive numbers. We can introduce a sign bit by
using 1.7 format instead and this is what we normally mean by fractional numbers.

1.7 fractional format

We will now expand our fractional description and introduce a sign bit giving a 1.7 format for
eight bits.

The fractional 1.7 format means that positive values are described as
Obgbsbsbsbobibo = be-2-1+bs-2-24+bs-2-3+b3-2-4+b2 - 2-5+b; - 2-6+bg - 2-7
and the smallest value that we can represent is

2-7 = 0.0078125

While the largest value is

2-142-2+42-3+42-442-5+2-6+2-7 = 0.9921875 = 1-2-7

DAT093
Introduction to Electronic System Design
Fractional numbers
page 2



Negative numbers are represented by the 2's complement of the magnitude and the largest
number we can represent is one (1), but of course with a negative sign so we have -1.

Now how do we convert our decimal representation to fractional number? Let’s say that the
decimal value is 0.37. We could convert it to a binary word on 1.7 format by trying to sum up
27" factors in the correct way, but there is a simpler way.

Fractionally the largest value is one (1), even if we cannot quit reach this on the positive side.
If we convert our 1.7 format number to an integer we have one sign bit and seven integer
values where our largest value would be 128 (27), even if we as mentioned not can reach this
value on the positive side. Now this means that we can go from fractional numbers to its
integer correspondence by multiplying our decimal number by 128 and then interpret the
integer value as binary bits. What we are doing is relating our value to the largest integer
value that can be represented with the current number of bits.

In our example we have

0.37 - 0.37-27 = 0.37-128 = 47.36 ~ 47

We have to round or truncate to the nearest integer so we lose some accuracy in the conver-
sion but that is unavoidable when we have a limited number of bits.

Now why is this simpler? There are lots of tools that can convert between decimal (integer)
number and binary, for example the calculator in Windows if we restrict ourselves to 8, 16,
32 or 64 bits numbers, and we can use these tools to get the binary representation of the
fractional numbers. Using this we get

47,0 = 0010 1111,

If we have 16 bits instead we would use the 1.15 format and the maximal value would be 21>
= 32768 and the conversion would be

0.37 - 0.37-32768 = 12124.16 ~ 12124

and this gives

12124,0 = 0010 1111 0101 11002

Observe that the most significant bits, that are part of both representations, are the same in
the 1.7 and 1.15 representations except for rounding when we have fewer bits. They should
be the same since they represent the same sign bit and the same 2™ factors. The difference
between the formats is that the 1.15 format gives a better accuracy by including eight (8)
more fractional bits.

Real world interpretation

In the beginning of this text we stated that fractional numbers could be a good choice
for signals that are converted from analog values or for values that should be converted to
analog values. In these cases, a good way to look at the fractional numbers is to realize
that the fractional number describes the value as a fraction of the maximal signal value
the ADC or DAC can handle.

DAT093
Introduction to Electronic System Design
Fractional numbers
page 3



Multiplication of fractional numbers

Now let’s try to multiply two numbers and first treat them as integers on 8.0 format and then
treat the same value as a fractional number on 1.7 format.

Let’s pick something simple

0100 00002 = 648_0 = 0-51_7
and
0010 00002 = 3250 = 0.251.7

If we multiply the binary numbers we get

0100 0000-0010 OOOO = 0000 1000 O0OOO 0000

0100 0000
-0010 0000
0000 0000
0 0000 000
00 0000 00
000 0000 O
0000 0000
0 1000 000
00 0000 00
+ 000 0000 O B
0000 1000 0000 0000

Observe that the multiplication results in a doubled number of bits, that is 8 + 8 = 16. Actually
it is the sum of the number of bits in the two numbers.

What is this in integer form?

0000 1000 0000 00002, = 2048s.0 = 64-32

So the result is correct.

Now let’s look at is as fractional numbers. The multiplication of two binary numbers is the
same and correct but what do we get when we interpret it as a fractional number?

0000 1000 0000 00002 = 2048s.0 — 2048/2% =

= 2048732768 = 0.0625

A direct multiplication of our original decimal numbers would give
0.5-0.25 = 0.125

We compare and see that

0.0625 # 0.125

DAT093
Introduction to Electronic System Design
Fractional numbers
page 4



So the result is incorrect. What is going on?

If we test and multiply a number of number pairs we will notice that the result will always be
the expected value divided by two and it is actually here the explanation lies.

When we multiply two numbers the format of the result will be the sum of the formats of the
two multiplied numbers. That is in this case we have the format of the result

1.7 + 1.7 = 2.14

As we can see there are two sign bits in the result but we want to have only one in our final
result so we have to shift the result one bit to the left to get 1.15 format. If we do this the
result will be correct. If you think of it; the result is that the least significant bit will always be
zero (0) because of the left shift so we actually have a true 1.14 format.

This will always apply so if we for example multiply an integer number on 8.0 format and a
number on fractional 1.7 format the result will have the format

8.0 +1.7 =9.7

Addition of fractional numbers

Addition or subtraction of fractional numbers is no problem. What we need to do for these
operations is to align the binal points, that is place them in the same position in the number,
and this is already done when the two numbers are in the same format.

Addition of numbers on different formats

What about addition of fixed point numbers of different formats? We need to make sure to
align the binal points, that is if we are to add a number on 4.4 format to a number on 1.7
format we need to place the numbers according to

S111.BBBBO0O0O
+SSSS.BBBBBBBB

In the equation S is a sign bit, | is an integer bit, B is a binal bit and 0 is just a zero. As we can
see the result will be on 4.7 format if we keep the full number of bit. Observe that we should
add sign bits and not zeros to the left in the second number.

Changing the number of bits in fractional numbers

Sometimes we want to change the number of bits in a fractional number. For example, when
we implement a FIR filter with input data on 1.7 format and filter constants in the same format
the result, after shifting, will be on 1.15 format but in most cases we want to plug the filter in
between two devices that are connected by just a bus with one single representation, in this
case 1.7 format. This means that we have to reduce the number of bits in the result from the
FIR filter from 16 to 8, that is go from 1.15 to 1.7 format. To do this we keep the sign bit and
the most significant bits of the 1.15 number. That is, we take bit 8 to 15 and discard bit 0 to 7,
we truncate the number. We could improve the accuracy by rounding the result instead of
truncating it but that takes some extra hardware so we have to decide in each situation if this
is motivated.

What we just said doesn’t mean that we should truncate to 8 bits after each multiplication in
our FIR filter calculation. The result would be that each truncation (or rounding) will give a

DAT093
Introduction to Electronic System Design
Fractional numbers
page 5



truncation (or rounding) error and these will add up at the output. In most cases, we should
keep more than eight bits within the internal calculations and only truncate (or round) at the
output. To double the number of bits internally might be a good choice but in more advanced
calculations we may have to internally increase the number of bits even more. This is also a
case where it might be good to internally have more than one integer (sign) bit for the internal
results to avoid overflow.

On the other hand if we like to increase the number of bits we should still keep the position
of the binal point and add the required number of zeroes to the right of the LSB.

DAT093
Introduction to Electronic System Design
Fractional numbers
page 6



