
2018‐08‐13

1

DAT093
Introduction to Electronic System Design

Sven Knutsson

svenk@chalmers.se

Dept. Of Computer Science and Engineering

Chalmers University of Technology

Gothenburg

Sweden

FSMs

Finite State Machines

Introduction

FSMs, Finite State Machines, are important
structures in digital design

In a FSM we move between a number of defined
states for the design. The pace of the move is 
controlled by a clock and external signals.

The path we take is determined by the inputs 
to the design.

In a simple structure there might be no inputs so 
we always move in the same sequence

The states are defined by a number of state variables, 
in its simpliest form these are just binary numbers



2018‐08‐13

2

Outputs

In each state the design will generate some kind of output

We have two kinds of FSM.

In a Moore type FSM the outputs in 
a state are always the same.

In a Mealy type of FSM the outputs in a state can
change depending on the inputs to the FSM

In many cases both types can be used but the 
Moore type will need more states while the 
coding might be simplier than in the Mealy case

In a Moore type FSM we can define
the state variable to be the same as 
the outputs for that state.

Example Moore

We have the state table

And the state diagram
The output in any
given state is constant

We can let the design 
tool assign state
variables or just let the 
outputs represent the 
state



2018‐08‐13

3

Example Moore cont.

Let´s write VHDL code

First the entity The clock sets the pace

We have added an active
low reset signal

Example Moore cont.

Then the start of the architecture

A new enumbered type, the 
design tool will turn this into
binary variables

Two signals of the new type

The architecture contains three processes

The state assignment – to determine what state to go to next

The state flow – the transition from one state to the next

The output assignment – assigns the output signals



2018‐08‐13

4

Example Moore cont.
Process for state assignment

What will happen next?

Not needed when we have
covered all values of
state

Example Moore cont.
Process for state flow

We go to the next
state on the rising
edge of the clock

State A is the reset
state



2018‐08‐13

5

Example Moore cont.
Finally the process for output assignment

The output is updated
when we reach a new 
state

Example Moore using constants

This way the output we want in each state is the same as the state variable

We can use the state variables to directly give the outputs

Instead of creating a new signal type we define
the states as constants

The entity will be the same

The state assignment and the state flow will be the same with one important
difference

Not a enumbered signal 
but a std_logic_vector



2018‐08‐13

6

Example Moore  using constants
cont.

The others clause must
be there since we are not 
covering all the 93 possible
values of the three bit 
std_logic vector

Example Moore  using constants
cont.

In this case we don´t need any process to 
assign output values. We can just assign
state to the output



2018‐08‐13

7

Example Mealy
Let´s look at a simular Mealy machine

We have the state table

And the state diagram

The output depends on the 
input in each state

The entity will be the same

Example Mealy cont.

We use the same enumbered type as in the Moore machine



2018‐08‐13

8

What changes is the process for 
output assignment

Example Mealy cont.

Not needed when we have
covered all values of
state

We have more than one
output option in each state

The process must be 
sensitive to both the state
and the input signal w

The states must be remembered so we can move from 
one state to the next.

State coding

The states have to be coded as binary
patterns and stored in  flop‐flops.

The normal way is to just use binary words .

In our examples with three states we might use
00
01
10

Sometimes it simplifies the logic to use other codes. In 
this case you could use 11 instead of one of the used
codes.

Which code that is used for which state can also
influence the complexity of the logic.

In most cases we leave the coding to the syntesis tool.



2018‐08‐13

9

In some cases we use one‐hot coding.

State coding cont.

Here we have one flip‐flop for each state.

In our examples the coding would be
001
010
100

This often makes the coding simple.

In this case we need more flip‐flops though.
For N states we nead N flip‐flops instead of the 2log(N) 
flip‐flops we need in normal coding.

We can configure the synthesis tool to use this coding.

Some times a variant of one‐hot coding is used where
the reset state is assigned all zeros (000).

What we have described has been formalized by Aeroflex
Gaisler into the two process method.

The two process method

The differences from my description are that they have
the state flow and the output assignment in the same 
process and they are collecting all inputs, all outputs and 
all signals into three clusters.

You really need a substantial number of signals and ports 
to motivate the use of records so it´s more for larger
designs.


