DAT093

Introduction to Electronic System Design

FSMs
Finite State Machines

Sven Knutsson
svenk@chalmers.se
Dept. Of Computer Science and Engineering
Chalmers University of Technology
Gothenburg
Sweden

Introduction

FSMs, Finite State Machines, are important
structures in digital design

In a FSM we move between a number of defined
states for the design. The pace of the move is
controlled by a clock and external signals.

The path we take is determined by the inputs

to the design.

In a simple structure there might be no inputs so
we always move in the same sequence

The states are defined by a number of state variables,
in its simpliest form these are just binary numbers

2018-08-13

Outputs

In each state the design will generate some kind of output

We have two kinds of FSM.

In a Moore type FSM the outputs in
a state are always the same.

In a Moore type FSM we can define
the state variable to be the same as
the outputs for that state.

In a Mealy type of FSM the outputs in a state can
change depending on the inputs to the FSM

In many cases both types can be used but the
Moore type will need more states while the
coding might be simplier than in the Mealy case

Present Next state Ouiput
state w={ w=] z
(A) A B (000)
B C B 011
C B A 101
We can let the design And the state diagram

tool assign state
variables or just let the
outputs represent the

state

Example Moore

We have the state table

The output in any
given state is constant

2018-08-13

Example Moore cont.

Let’s write VHDL code

First the entity The clock sets the pace

ENTITY Moore IS

BORT (clk:IN ST ;. ———— Wehave added an active

Regetn: W low reset signal
:IN STD

=

(3]
(=]
[
i

ayy:
END Moore;

Example Moore cont.

Then the start of the architecture

LRCHITECTUEE arch Moore OF Moore IS Anew enumbered type, the
TYFE State type IS (&,B,C) ;< designtool will turn this into
SIGNAL state:State type; binary variables

<
SIGHEL next_state:ﬂtate_t}&

The architecture contains three processes

Two signals of the new type

The state assignment — to determine what state to go to next

The state flow — the transition from one state to the next

The output assignment — assigns the output signals

2018-08-13

Example Moore cont.

Process for state assignment

state_assignment proc:
PROCESS (w, state)
BEGIN
CASE state IS
WHEN B =>
IF (w = "1") THEN
next_state <= B;
ELSE
next_state <= A;
END IF;
WHEN B =>
IF (w = "l") THEH
next_state <= B;
ELSE
next_atate <= C;

IF (w = "1") THEH
Next_state <= &;
ELSE
next_state <= B:
END IF; -
WHEN OTHERS =>

next_state <= 3TaTe: }\

END CRSE:
END PROCESS state_assignment_proc

What will happen next?

Not needed when we have
covered all values of
state

Example Moore cont.

Process for state flow

stateflow_proc:
PROCESS (resetn,clk)

BEGIN
IF (Resetn = ':W
state <= L;
ELSIF {clk) THEN

state <= DEXL_sState; T
END IF;:
END FROCESS stateflow_proc:

State A is the reset
state

We go to the next
state on the rising
edge of the clock

2018-08-13

Example Moore cont.

Finally the process for output assignment

output_process:
PROCESS (3tate)

BEGIN
CRASE state IS
WHEN A =>

z <= "00o"

0oo™; The output is updated
WHEN B => ~—— when we reach a new
z <= "011"; state
WHEN
z
WHEN OTHERS =3
z <= "000
END CRLSE:
END PROCESS output process:

LU

0
Example Moore using constants "~

1
We can use the state variables to directly give the outputs 2101

The entity will be the same

Instead of creating a new signal type we define
the states as constants

ARCHITECIURE arch constants I5
CONSIANT A:
CONSTANT B
CONSTANT
SIGNZL state:
SIGNAZL next_stat

re_con3tants OF Mo

e

This way the output we want in each state is the same as the state variable

The state assignment and the state flow will be the same with one important
difference

; Not a enumbered signal
g but a std_logic_vector

2018-08-13

Example Moore using constants
cont.

state_assignment_proc
PROCESS (w, state)
BEGIN
CASE state IS
WHEN A =>
IF (v

'1') THEN
next_state <= B;
ELSE
next_state <= A;
) IF;

("1') THEN
next_state <= B;
ELSE

next_atate <= C;

w = "1") THEN
Next_state <= &;
ELSE
next_state <= B:
END IF
WHEN OTHERS =» -
next_state <= 3STATe;
END CRSE:
END PROCESS state_assignment_proc

The others clause must
be there since we are not
covering all the 93 possible
values of the three bit
std_logic vector

Example Moore using constants
cont.

In this case we don’t need any process to
assign output values. We can just assign
state to the output

2018-08-13

Example Mealy

Let’s look at a simular Mealy machine

We have the state table

Present Next state Quiput
state w=0 w=] wi={ wi=1
A A B (000 000)
B C B 110 011
C B A \ 010 101)

And the state diagram

The output depends on the
input in each state

z=110/011

z=101/010 e

z=110/011

Example Mealy cont.

The entity will be the same

ENTITY Mezly IS
BORT (clk:IN 5ID LOGIC:
Resetn:I 5T

z:QUT 5TD_LOGIC_VECTIOR (2 DOWNIO 0)):

We use the same enumbered type as in the Moore machine

BRCHITECTURE arch Mealy OF Mealy IS
IYPE State_type IS (A,B,C);
SIGHAL state:State_type:

SIGHAL next_state:State_type;

2018-08-13

z=110/011

What changes is the process for
. z=101/010
output assignment O)

OULDUL_ProCess:
PROCESS (atate, w)

BEGIN ‘\ The process must be
CASE state IS sensitive to both the state

WEEN & => and the input signal w
WEEN B =>
IF (w = '1') THEN
= <= "0117; We have more than one
ELSE s
2 el riios output option in each state
END IF:
WEEN C =>
IF (w = '1') THEN
ELSE
END IF;
WEEN OTHERS = | Not needed when we have
z <= "ooom; ——— covered all values of
END CASE; state

END PROCESS cutput_process;

State coding

The states must be remembered so we can move from
one state to the next.

The states have to be coded as binary
patterns and stored in flop-flops.

The normal way is to just use binary words .

In our examples with three states we might use
00
01
10

Sometimes it simplifies the logic to use other codes. In
this case you could use 11 instead of one of the used
codes.

Which code that is used for which state can also
influence the complexity of the logic.

In most cases we leave the coding to the syntesis tool.

2018-08-13

State coding cont.

In some cases we use one-hot coding.
Here we have one flip-flop for each state.

In our examples the coding would be
001
010
100

This often makes the coding simple.

In this case we need more flip-flops though.
For N states we nead N flip-flops instead of the 2log(N)
flip-flops we need in normal coding.

We can configure the synthesis tool to use this coding.

Some times a variant of one-hot coding is used where
the reset state is assigned all zeros (000).

The two process method

What we have described has been formalized by Aeroflex

Gaisler into the two process method.

The differences from my description are that they have
the state flow and the output assignment in the same

process and they are collecting all inputs, all outputs and

all signals into three clusters.

You really need a substantial number of signals and ports

to motivate the use of records so it’s more for larger
designs.

2018-08-13

