
2018‐09‐13

1

DAT093
Introduction to Electronic System Design

Sven Knutsson

svenk@chalmers.se

Dept. Of Computer Science and Engineering

Chalmers University of Technology

Gothenburg

Sweden

Accessing a component from 
within a process

Introduction

We will look on how to use a component from a process.

Let´s s say that we want to use or earlier full adder from a 
clocked process.

The full adder is implemented as a block of hardware so it 
can not be placed within the process.

We must assign signals to the in‐ and outputs of the full 
adder and then assign values to these signals in the process.

Let´s look at our code.



2018‐09‐13

2

VHDL code

We have the entity

ENTITY component_from_process IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
clk:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END component_from_process;

VHDL code cont.
And we have the setup part of our architecture

ENTITY component_from_process IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
clk:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END component_from_process;

ARCHITECTURE arch_component_from_process OF
component_from_process IS

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

SIGNAL a_comp_signal:STD_LOGIC;
SIGNAL b_comp_signal:STD_LOGIC;
SIGNAL cin_comp_signal:STD_LOGIC;
SIGNAL s_comp_signal:STD_LOGIC;
SIGNAL cout_comp_signal:STD_LOGIC;

BEGIN
U0:COMPONENT full_adder

PORT MAP(a=>a_comp_signal,
b=>b_comp_signal,
cin=>cin_comp_signal,
s=>s_comp_signal,
cout=>cout_comp_signal);



2018‐09‐13

3

VHDL code cont.
And finally we have the process

ENTITY component_from_process IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
clk:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END component_from_process;

ARCHITECTURE arch_component_from_process OF
component_from_process IS

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

SIGNAL a_comp_signal:STD_LOGIC;
SIGNAL b_comp_signal:STD_LOGIC;
SIGNAL cin_comp_signal:STD_LOGIC;
SIGNAL s_comp_signal:STD_LOGIC;
SIGNAL cout_comp_signal:STD_LOGIC;

BEGIN
U0:COMPONENT full_adder

PORT MAP(a=>a_comp_signal,
b=>b_comp_signal,
cin=>cin_comp_signal,
s=>s_comp_signal,
cout=>cout_comp_signal);

full_adder_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clk) THEN
a_comp_signal <= a;
b_comp_signal <= b;
cin_comp_signal <= cin;
s <= s_comp_signal;
cout <= cout_comp_signal;

END IF;
END PROCESS full_adder_process;

VHDL code cont.
Let´s study the process

full_adder_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clk) THEN
a_comp_signal <= a;
b_comp_signal <= b;
cin_comp_signal <= cin;
s <= s_comp_signal;
cout <= cout_comp_signal;

END IF;
END PROCESS full_adder_process;

On each positive flank of our clock we will assign values to the 
full adder and read its outputs.

But the values we assign will not update the full adder until we
reach the end of the process.

So what we read from the full adders outputs are actually
related to the input values we assigned in the clock period 
before that.



2018‐09‐13

4

VHDL code cont.
Let´s look at the timing diagram

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

N
ew

 in
p
u
t

N
ew

 v
al
u
es

w
ri
tt
en

to
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

O
ld
 v
al
u
es

re
ad

 
fr
o
m
 c
o
m
p
o
n
en

t

VHDL code cont.
Let´s zom in

We input values 2 Values 2 are written
to the component

Results 2 are read from the 
component


