DAT093
Introduction to Electronic System Design

Accessing a component from
within a process

Sven Knutsson
svenk@chalmers.se
Dept. Of Computer Science and Engineering
Chalmers University of Technology
Gothenburg
Sweden

Introduction

We will look on how to use a component from a process.

Let’s s say that we want to use or earlier full adder from a
clocked process.

The full adder is implemented as a block of hardware so it
can not be placed within the process.

We must assign signals to the in- and outputs of the full
adder and then assign values to these signals in the process.

Let’s look at our code.

2018-09-13

VHDL code

We have the entity

ENTITY component_from_process IS
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
clk:IN STD_LOGIC;
s:0UT STD_LOGIC;
cout:0OUT STD_LOGIC);
END component_from_process;

ENTITY component_from_process
PORT(a: IN STD_LOGIC;
b:IN STD_LOGIC;

cin:zIN STD_LOGIC;
VHDL code cont. S el

s:0UT STD_LOGIC;

cout:OUT STD_LOGIC);

And we have the setup part of our architecture END component_from_process;

ARCHITECTURE arch_component_from_process OF
component_from_process 1S

COMPONENT full_adder 1S
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:0UT STD_LOGIC);
END COMPONENT full_adder;

SIGNAL a_comp_signal :STD_LOGIC;

SIGNAL b_comp_signal :STD_LOGIC;

SIGNAL cin_comp_signal:STD_LOGIC;

SIGNAL s_comp_signal :STD_LOGIC;

SIGNAL cout_comp_signal :STD_LOGIC;

BEGIN
UO:COMPONENT full_adder
PORT MAP(a=>a_comp_signal,

b=>b_comp_signal,
cin=>cin_comp_signal,
s=>s_comp_signal,
cout=>cout_comp_signal);

S

2018-09-13

ENTITY component_from_process IS
PORT(a: IN STD_LOGIC;
b:IN STD_LOGIC;
VH D L Code cO nt cin:IN STD_LOGIC;
. clk:IN STD_LOGIC;
s:0UT STD_LOGIC;
. cout:OUT STD_LOGIC);
And flnally we have the process END component_from_process;

ARCHITECTURE arch_component_from_process OF
component_from_process 1S
COMPONENT full_adder 1S
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s$:0UT STD_LOGIC;
cout:OUT STD_LOGIC);
END COMPONENT full_adder;
full_adder_process: -

PROCESS(clIk) SIGNAL a_comp_signal :STD_LOGIC;
BEGIN SIGNAL b_comp_signal :STD_LOGIC;
SIGNAL cin_comp_signal :STD_LOGIC;
IF RISING_EDGE(clk) THEN SIGNAL s_comp_signal :STD_LOGIC;
5 —_ - SIGNAL cout_comp_signal :STD_LOGIC;
<=
a_comp_s!gnal a; BEGIN
b_comp_signal <= b; UO:COMPONENT full_adder
cin_comp_signal <= cin; PORT MAP(E=>E_comp_559na:.
- - . =>b_comp_signal,
s <= S_COI'ﬂp_SIgﬂﬁ' i cin=>cin_comp_signal,
cout <= cout_comp_signal; s=>s_comp_signal,

cout=>cout_comp_signal);

END IF;
END PROCESS full_adder_process;

VHDL code cont.

Let’s study the process

full_adder_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(cIk) THEN
a_comp_signal <= a;
b_comp_signal <= b;
cin_comp_signal <= cin;
s <= s_comp_signal;
cout <= cout_comp_signal;
END IF;
END PROCESS full_adder_process;

On each positive flank of our clock we will assign values to the
full adder and read its outputs.

But the values we assign will not update the full adder until we
reach the end of the process.

So what we read from the full adders outputs are actually
related to the input values we assigned in the clock period
before that.

2018-09-13

2018-09-13

juauodwod 01
U31IM SaNjeA MaN
indui maN

juauodwod 01
U31IM SaNjeA MaN
induj man

juduodwod 0}
U31IM S3N|eA MBN
ndul maN

jJuauodwod 03
U31IM S3N|eA MBN
ndul maN

jJuauodwod 0}
U3)3IM SaN|eA MaN
ndul maN
jJuauodwod 0}
U31IM S3N|eA MaN
indur maN

VHDL code cont.
Let’s look at the timing diagram

juauodwod 0]
U1IIM SaNnjeA MaN
ndul man

jJusauodwod 03
U3331UM SanjeA MaN

ndur man

1uauodwod wody
peaJ sanjeA p|o

jJusuodwod wody
peaJ sanjeA p|o

jJuauodwod wody
peaJt sanjeA p|o

jJusuodwod wody
peaJ sanjeA p|0

jJusuodwod wody
peaJ sanjeA p|o

juauodwod woJ}
peaJ san|eA p|O

jJuauodwod wody
peaJ sanjea p|o

jJusuodwod wody
peaJ sanjeA p|0

VHDL code cont.

Let’s zom in

We input values 2 Values 2 are written

to the component

e

\

Results 2 are read from the

component

