Administrivia

e Thursday lectures now from 10:00

e Submit both lab2 tasks for review, if
possible
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What the end user wants

e Low cost (o/w no sale)
e Functionality (bells andiwi

e Flexibility (applications )

e Performance (the “flash” factor) =

o Size, battery life (portability s
s o :

io

e Reliablility (user hates i
fails)
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How designer provides it

Low cost: omit needless stuff, work fast

Functionality: handle complex designs

Flexibility: define behavior with software

Performance: handle high clock rate etc

Size, battery life: minimize power demands

Reliability: no mistakes, robust designs,

thorough verification



Challenges

e [radeoffs:
e performance vs low power
® |[ow cost vs functionality
® |low cost vs reliability
e performance vs flexibility ...
e Best design approach is case dependent!

e Technology platform has major influence
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Technology platform?
narrow sense

e The physical implementation
technology (e.g. silicon), plus

e any partial hardware designs to be re-
used (intellectual property blocks),
and

e any available software/firmware
libraries (also IP!), and

e the tools to put it all together

broad sense
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Design re-use

e Intellectual-property (IP) cores / blocks
e Subcomponents

e in-house SAV

e external AND VE

e HDL description: “soft macro” — technology
independent (sort of...)

e Physical implementation: “hard macro”

o Soft/firmware libraries
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Design/verification tool chain

System Design

Partitioning IP

’T/

Software Design

iR

Hardware Design

Software Develop

N

Hardware Impl.

e

Integration

Physical Design
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Functional
Verification

Performance
Verification

Behavioral
Verification

Implementation
Verification

Complete System
Verification

LIML,
~ (~ Matlab

C, C++
3 SystemC

L4
~ SystemVenlog
Iq1

= VHDL, Verilog




Some technology alternatives
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Application Specific Standard Products

e Off-the-shelf, high volume

e Processors, communication devices, etc

Application Specific Integrated Circuit

e Purpose-designed

Field-programmable logic devices (FPGAs,

CPLDs, etc)
“Structured ASICSs”
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What drives platform
development?
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1. Costs

Simple model: fixed vs. variable costs

Fixed costs: per development project
e “Non-Recurrent Engineering” (NRE)
e |ndependent of # of parts built
Variable costs: per unit built

e Associated with production, testing, and other
per-part activities

Which one is more important? Why?



2. Silicon-CMOS trends

e CMQOS power, speed both depend on voltage
and capacitances

e On-chip capacitances are small and getting
smaller with scaling

e \oltage is low and shrinking

e Performance, density, and power per function
improve with each silicon process generation

e Jotal power is another matter...

Every thing” i CMOs| Wil assume N rest of lecture
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Power supplied

e Supply current, power varies with time

clock cycle
< >

current

; /L.

e Switching power is main contributor
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CMOS switching power

* Inverter models general CMOS circuit
» Consider charging of C from O to V

* |Injected charge:Q=C -V

 Injected energy: Einj =Q-V= CV2 -
* Dissipated energy: Q - Vavg =Q-V/2 = CV2/2

* Stored energy (on C): CVZ — CV4/2 = CV2/2
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Switching power, cont.

» Stored energy dissipated during discharge

* Ein= CV2 completely dissipated over full cycle

 |f cycle frequency is 1, then

P=f-CV?2={CV2 -

* (Generalizes to multi-gate system:

 Small C and small V give small Prot
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CMOQOS performance

et~Q/1=CV/I v 5
—OIET\I

1 7€

o |[~Va 1<ax<? —

e Depends on gate
voltage, device size N

V_
-QZ§MM;U _________ 1

e Small C and large V give |
small t, so high speed
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Circuit considerations

e Small C and small V give small P
e Small C and large V give small t, so high speed

.- SO ...

e Reduce C to improve speed and power
e Choose V for speed/power tradeoft
e .. within reasonable range...

e Typically system-level decision (one or few
voltage levels)
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Silicon scaling trends, summary

e Moore/Dennard scaling reduces capacitance C!
e Decreasing power for similar circuits

® ... SO can afford to increase frequency and/or
number of circuits

® |[ncreasing number of devices for same cost
® ... SO can afford to increase complexity

e Supports the other exponential trends (lecture 1)
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Trend is your friend... but:

e New technology platforms
e have higher risk

e Initially have higher cost!

e are less complete

e “Old” platform may be good choice for
low complexity, modest performance
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History, evolution
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1970s: PCBs||

e Main LSI (large-scale integrated c

® processor, timers, 1/O controlle

-
\\\\\\\\\\\\\\\\\

e ~10K transistors

* “Glue logic”

R N N

e global control signals, data for
e few gates, dozens of transistc

-------‘---.-----.-
.........

e System: handful of LSls, dozens ¢
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Early 1980s: glue logic ICs

e Benefits:

e Fewer parts (thus lower ass oSt

e Smaller size | £

e Higher performance (and/or
o Better reliability (fewer cont

e .. but also drawbacks:
e Higher NRE costs (fab, CA o i

e | onger time-to-market
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Mid 1980s:
Programmable logic

e Custom-IC glue logic good for high volumes
¢ NRE cost is amortized over many parts

¢ For small volumes, programmable logic may be
beneficial

{ B o\
e | ower NRE cost than ASICs ??Q G?\,
e Higher unit costs
e Worse power/performance than ASICs

e Higher density than SSI/MSI logic
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Late 1980s: Sea-of-gates

e Prefabricate chips w/ large numbers of
similar transistors, gates

e Just add metal interconnect to define
functionality

e | ower turn-around-time than for ASICs
e No reprogrammability

e Area utilization?

[Okabe et al, IEEE JSSC, Oct 1989]
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2000s: “Structured” or
“Platform” ASICs

e |P cores plus millions of gates/LUTs on one chip

e Pre-fabricate everything but the top interconnect layers
(cf. sea-of-gates)

e Use top metals to determine final functionality

e |f IPR cores “fit” the application, almost ASIC
performance with much lower NRE costs!

e ... butif “fit” is bad, then maybe high overhead

[Ho et al, IEEE TVS 2013]

180920 LJS 25



Comparison (bigger is better)

TTM Software
ol ONn processor

upgrade
P9 EP G‘D

Structured
ASIC

Power

Speed NRE cost

Unit cost GSICD
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FPGA technology
offerings



Original FPGA structure

programmable
basic logic
cell

Q0000000000000 000000

programmable
interconnect 0000000000 0000000000
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Look-Up Table (LUT)

a|lb | X |V |z
O| O | T O | O
O|1 |0 ]| 1|1
1100 |1 ] 1
111101 ]0

o M- 2N bits of memory can implement
any M-valued logic function of N inputs
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Logic Cell = LUT + some fixed logic

180920 LJS

[] COUT

:D 2 W > BMUX

86 [O— I~ D )
B3 [O— _
82 [O— ‘
81 05— — —{ 80
BX > —>' l
[]cm
WP284_01_121907

e Example from Xilinx Virtex-5 documentation

e | ookup table, carry logic, muxes, FF

[Percey: Advantages of the Virtex-5 FPGA 6-input LUT architecture. Xilinx, 2007.]
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Variations on FPGA theme

Programmable cells + interconnect
.. plus memories

.. plus adders, multipliers, etc

.. plus 1/0 modules, PLLs, etc

.. plus entire microprocessors

Combinations target certain market
segments
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FPGA configuration

e SRAM
e | oads configuration at startup time

e Antifuse

® program once, never erase
e EPROM

e Frasable
e EEPROM + Flash

e Electrically erasable

i b
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Variety

- Configurable Logic Blocks (CLBs) Block RAM Blocks Memory Endpoint Maximum Total | Max
Douce | CalE0) | ices | Fip-Fiops | Distiiitod | S1oeS | 18kt | ax cny OV Blocks  gEedistor | CTE 1 o | User
RAM (Kb) (Max)(® press | Transceivers

XC6SLX4 3,840 600 4,800 75 8 12 216 2 0 0 0 4 132
XC6SLX9 9,152 1,430 11,440 90 16 32 576 2 2 0 0 4 200
XC6SLX16 14,579 2,278 18,224 136 32 32 576 2 2 0 0 4 232
XC6SLX25 24,051 3,758 30,064 229 38 52 936 2 2 0 0 4 266
XC6SLX45 43,661 6,822 54,576 401 58 116 2,088 4 2 0 0 4 358
XC6SLX75 74,637 | 11,662 | 93,296 692 132 172 3,096 6 4 0 0 6 408
XC6SLX100 101,261 | 15,822 | 126,576 976 180 268 4,824 6 4 0 0 6 480
XC6SLX150 147,443 | 23,038 | 184,304 1,355 180 268 4,824 6 4 0 0 6 576
XC6SLX25T 24,051 3,758 30,064 229 38 52 936 2 2 1 2 4 250
XC6SLX45T 43,661 6,822 54,576 401 58 116 2,088 4 2 1 4 4 296
XC6SLX75T 74,637 | 11,662 | 93,296 692 132 172 3,096 6 4 1 8 6 348
XC6SLX100T | 101,261 | 15,822 | 126,576 976 180 268 4,824 6 4 1 8 6 498
XC6SLX150T | 147,443 | 23,038 | 184,304 1,355 180 268 4,824 6 4 1 8 6 540

e | arge product families per generation

e CAD support essential

180920 LJS
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Typical FPGA CAD

e |DEs provided by FPGA vendors

e (Generic functionality described with
HDLs (such as VHDL)

e “Wizards” may be offered for
configuration of IP modules

e Edit / simulate / synth / download / test:
minutes or hours
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ASIC technology
offerings



Cell-based ASIC

. d 0 000 00000000000000 D

o Library of = =
dard-cell

standard cells ~ area g & =

Aoz | o]

e All mask layers L

are unique for fixed C

_ blocks u|

this ASIC : - :

O O

O O

e Custom blocks LJ g & 2 =

. 0.02in |O O

can be included 500 ym 90000000000000000000C

source: M J S Smith
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Standard-cell technology

expanded view
of part of flexible

R e e R E e e R

no connection
block 1 connection metal2
to power to power
pads metall pads
terminal VSS VDD

V35 VDD

e e e e e e e B e S B e e B B e B B e e B e B B e B B e 8 R B B 8 R A b 8 8 e e o e

4 AL ! Pel ] 1 1y Wi fil f il JAallll]
i
metal2
metall rows of standard cells (-
502,

* Predefined cells are placed and connected

180920 LJS
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Standard-cell processor

ia:d 3
53 "

I ‘ 1 : 3 1L
i'j VddiD : - e ; — - ) - 0 -
| — 3 g vddio:

placement + routing
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Full-custom ASIC

e All layers are custom designed
e No block or cell reuse
e Pure form rarely used for digital
e Common for analog/RF parts
e Extreme power/performance digital

e (Critical digital blocks
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ASIC design flow in context

Design for test

:

#

Layout
" verification

HW/SW < function timing —
partitioning Design verification -
: : : I ‘
Y y
Spec Behavior| |Behavior
'] Arch. design [ [synthesis| | Logic Place -
analysis A synthesis — Parasitic
t RTL M e extraction
C < design Custom |+
ustomer Module design I
reuse) ¢

180920 LJS

Floorplanning

Analog

| RF design /

40

> Chip test =

Chip

Specify
Implement
Build



Full-custom student chip (2007)
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Two 130-nm 32-bit adders
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FPGAS vs. or and ASICs?

e First prototype?

e Software on processor

e Reconfigurable hardware (FPGA)
e First version of product?

e FPGA may still make sense (low TTM, low
total cost)

e |f volume justifies it and/or performance requires
it, build ASIC version
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FPGAS strike back?

e FPGA vendors want to keep customer
business when volumes increase!

o Offer “same” device w/o reconfiguration at
lower unit price

e (Guaranteed identical functionality

e No extra NRE for ASIC tapeout
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Micro case studies
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Case Study |

[Erik Ryman, PhD project]

System designed for satellite
deployment

Compute cross-correlations between

every pair of 64 input signals
o
~4 GS /s N
N
1-bit resolution e
(y\\)



Cross-correlator ASIC

Presented at the 2011 Custom Integrated Circuits Conference, Sep 20, 2011
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e 3 mmZ2in 65nm, 3M transistors
e ~1 MY design time, SEK 250K for 25 dice
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Case Study |l

[Bayan Nasri, MSc project, 2010]

Novel bone-anchored hearing aid

e Miniaturize prototype PCB for clinical
trials

Audio signal processing
Power not very critical N

X
Volume: dozens ??6
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Summary

e Bewildering
array of
technology
alternatives

e Fach optimized
for a certain
combination of
requirements

49

1. Low cost

2. Functionality

3. Flexibility

4. Performance

5. Size, battery life
6. Reliability
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New developments

More alternatives will appear

e Address some corner of the design space
Driven by market requirements (first slides)
Enabled by

e Technology evolution (“Moore’s Law”)

e Ever more capable CAD tools

Designers need to keep abreast!

Last-week lecture will address future trends
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