Synchronization
approaches

DAT093
larssv@chalmers.se

Overview

e Why use clocks at all?
e What limits clock speed?

¢ How handle several clock domains?

e Some practical points in the VHDL Style Sheet

181011 LJS 2

Synchronous systems

e Default paradigm for digital design
e “Combinational” vs “sequential” circuits
e Clocks carry timing information, other signals carry values
e VHDL (etc.) idioms to support clocked systems
e Jools depend on assumption and help with design

e More in DAT110, SP2

181011 LJS 3

Why use clocking at all?

DO 000 .
<mxozxosx >< 0

>
t

e Use logic circuits for computation on sequence of inputs

* New set of input values applied after time Tc

 Qutputs appear after logic delay Tq, separated by Tc

181011 LJS 4

Why use clocking at all?

DDDon .
L >< 0

>

t

e Use logic circuits for computation on sequence of inputs

* New set of input values applied after time Tc

 Qutputs appear after logic delay Tq, separated by Tc

181011 LJS 4

1. Unequal delays.

O E X X A)
wozxosx >< oA A M M)

d

e Different delays for different outputs
e Shorter time window when all outputs are valid

* Gets worse with concatenated stages (until it breaks)

181011 LJS S

1. Uneql delays.

I ENE X X A X

)

(m%oz%w) >< MR A A X

)

e Different delays for different outputs

181011 LJS

e Shorter time window when all outputs are valid

* Gets worse with concatenated stages (until it breaks)

5

2. Data-dependent delays

a(0) b(0) a(1) b(1) a(2) b(2)

e L
T T

«— N 7T

s(0) s(1) s(2)

Ripple-Carry Adder

e Often large difference between fastest and slowest operations across
possible input data

* Adder: exercise carry chain, or not

* Multiplier: more complex

181011 LJS 6

2. Data-dependent delays

a(0) b(0) a(1) b(1) a(2) b(2)

| L | L
E | $\L - \Lj A%

s(0) s(1) s(2)

Ripple-Carry Adder

e Often large difference between fastest and slowest operations across
possible input data

* Adder: exercise carry chain, or not

* Multiplier: more complex

181011 LJS 6

2. Data-dependent delays

a(0) b(0) a(1) b(1) a(2) b(2)

SRR
\S L &7@

n____ 5
i \/
s(0) s(1) s(2)

)

Ripple-Carry Adder

e Often large difference between fastest and slowest operations across
possible input data

* Adder: exercise carry chain, or not

* Multiplier: more complex

181011 LJS 6

2. Data-dependent delays

Y

a(0) b(0) a(1) b(1) a(2) b(2) 7t
6}
\ - ™\ q;) 13
" O
— D_ 44
cin] cout

) A =A) |

s(0) s(1) s(2)

Ripple-Carry Adder

8-bit Multiplier
e Often large difference between fastest and slowest operations across
possible input data

* Adder: exercise carry chain, or not

* Multiplier: more complex

[H. Eriksson, 2004 TBC]
181011 LJS 6

2. Data-dependent delays

Y

a(0) b(0) a(1) b(1) a(2) b(2) 7t
6
\ N q;) 5
" O
— D_ 44
cin] cout
) A =A) |

s(0) s(1) s(2)

Ripple-Carry Adder

8-bit Multiplier
e Often large difference between fastest and slowest operations across

possible input data
S
e Adder: exercise carry chain, or not e %‘Qeq
.- @ A
* Multiplier: more complex A s‘\\,@d

[H. Eriksson, 2004 TBC]
181011 LJS 6

Delay early signal values

1 i 4
) 4
1 1
[f {
|
i

Do)
o e W B
OO OOo0O0

>
t

e Capture logic values using clock signal

* Realign logic values in time; send on to next logic block

181011 LJS 14

Delay early signal values

1 i 4
) 4
1 1
[f {
|
i

Do)
o Yo W W
OO OOO0O0

>
t

e Capture logic values using clock signal

* Realign logic values in time; send on to next logic block

181011 LJS 14

Delay early signal values

1 i 4
) 4
1 1
[f {
|
i

Do)
o e W T
OO Coo0O0

>
t

e Capture logic values using clock signal

* Realign logic values in time; send on to next logic block

181011 LJS 14

A more detailed view

e Capture elements (FFs) contribute to overall delay

e Clock-to-Q delay Tcq, setup time Ts, hold time Tx

181011 LJS 38

FF time parameters

* Ts, TH: the shortest times needed for FF to capture the correct data

* Tca: the shortest time from clock edge to output change

181011 LJS 9

(»\7‘ Tomss N\)/)

e Setup criterion: Tc > Tcq + Tomax + Ts

 Hold criterion: Tcq + Tobmin > TH

e Add inequalities: Tc+ Tcq + Tomin> Tcq + Tobmax + Ts+ TH
Tc+ Tomin> Tobmax + Ts+ TH

Tc > Tomax— Tomin+ Ts+ TH

181011 LJS 10

Observations

 Shortest Tc given by
Tc > Tomax— Ibmin+ Ts+ TH

* Reduce delay difference to be able to reduce Tc

e Tc limited by Ts + Th, not by Tpmax!

* Tobmin IS NOt the shortest time for operation completion

 Rather, time to earliest output transition (contamination

delay)

181011 LJS 11 [L.W. Cotten, Maximum-rate pipeline systems, 1969]

Chmce of fc

T
"
|
i
l

l‘

| FF) —»; LOGIC ,1 FF |

 High fc enables higher performance
e Split logic block in 2, insert FF between parts!
e Hopefully, Tomax — Tomin is reduced (halved?)

but

e Need 2 - (Ts + Tn) for the same logic function ...

* < 2Xx speedup; diminishing returns for more stages

181011 LJS 12

hoice f fc

|
f i : 1
it i

 High fc enables higher performance
e Split logic block in 2, insert FF between parts!
e Hopefully, Tomax — Tomin is reduced (halved?)

but

e Need 2 - (Ts + Tn) for the same logic function ...

* < 2Xx speedup; diminishing returns for more stages

181011 LJS 12

181011 LJS

hoice f fc

|

;'.‘_
it i

High fc enables higher performance
Split logic block in 2, insert FF between parts!

Hopefully, Tomax — Tomin IS reduced (halved?)

but

Need 2 - (Ts + Tw) for the same logic function ...

< 2Xx speedup; diminishing returns for more stages

12

Choice of fc

|
f ' | | ‘
| {
é ‘; ﬁ ' “
| | i
| k |

 High fc enables higher performance
e Split logic block in 2, insert FF between parts!
e Hopefully, Tomax — Tomin is reduced (halved?)

but

e Need 2 - (Ts + Tn) for the same logic function ...

* < 2Xx speedup; diminishing returns for more stages

181011 LJS 12

hoie f fc

; * | ‘ E i
PR\ {—>| FF |
 High fc enables higher performance X,
. o RO
e Split logic block in 2, insert FF between parts! (\;o\‘ 6 &
. 0" ¥ x©
e Hopefully, Tomax — Tomin is reduced (halved?) $Qe\\°\\c,’5‘
o X
but c©

e Need 2 - (Ts + Th) for the same logic function ...

* < 2Xx speedup; diminishing returns for more stages

181011 LJS 12

Setup violation

Tc

Tca \ Ts TH \ /

\

 tom N\])
T SN

e Setup criterion: Tc > Tcq + Tomax + Ts

* Setup violation: Tc < Tca + Tobmax + Ts

 Two ways to work around setup violations on the bench:
* |ncrease Tc, that is, reduce fc

* Reduce circuit delays Tcaq + Tobmax + Ts, €.g. increase Vqd

181011 LJS 13

Hold violation

?. Tomss N\)/

e Hold criterion: Tcq + Topmin > TH

e Hold violation: Tcq + Tobmin < TH

* Only circuit delays in these expressions

 No obvious way to “patch” a hold violation!

181011 LJS 14

Jitter

Tom (////5%44444444%%/)

o Jitter: Tc varies from one cycle to the next

e Random, or sometimes intentional

* Reduce peak power emission at fc

e Setup criterion must be fulfilled with minimum T¢ value

181011 LJS 15

Jitter

Tom (////5%44444444%%/)

o Jitter: Tc varies from one cycle to the next

e Random, or sometimes intentional

* Reduce peak power emission at fc

e Setup criterion must be fulfilled with minimum T¢ value

181011 LJS 15

| | |

! > i — i‘

1 |:|= : LOGIC j——|
;‘ \ i |
i i |

Tea \ Tsdf\ TH \ /

S ND/,)
RT3

e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems

181011 LJS 16

Tca

S o |
X TSN,

e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems

181011 LJS 16

e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems

181011 LJS 16

//

ro e R

e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems

181011 LJS 16

S I S

e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems

181011 LJS 16

LN
atieey
Hing
il

A
il
I1f

7
'ni'r
iy,
s

37

i
i

' L7 LI L]
i
it

R e % %
[RS8
ARG
Rl an G By,
DR (7
AR :.O.#u-#"hﬂo %,
f AL =AY A %
et
N A TR
RN TRD
S N Rk
Y ..-Q§Q.0.--o..:~.~n~.¢ /
D n Rt e N Wy 0%
dy 2 L A
%

R
S
r)
R

LY
N
N
e
B
R

R
R
SN,
DR
%
W

%

X
X
W
W

3
.\\hi'
B
R0

W

N
3

(7
720,
A AR

X7

N2
N
3

3
7

9,

Oy
R
Q.:.'é‘
NS
Rsd

Large-scale clock distribution

)

INcreases Wi

e 200-MHz microprocessor (Tc =5 ns

th distance

r, skew I

Ve

e Central clock dr

o At worst ~5% of Tc

e Extrapolate to fc = 2 GHZ!

[Gronowski et al. High-Performance Microprocessor design. |IEEE JSSC 1998]

181011 LJS

Complications

e Clock gating
e Several clock domains

e \oltage scaling

181011 LJS 18

Iocgatlng

I
5
l
¥
l

FF ; LOGIC

* Recall expression for switching power: P=08-fc - C - V2
* Clock signals switch every cycle, so 3 = 1 (max value)
* Also alarge net, so large C
* Driving clock itself may cause large part of total dissipation!

* Disable clock when FF data is known to not change!

181011 LJS 19

Iocgatlng

I
5
l
¥
l

FF ; LOGIC

* Recall expression for switching power: P=08-fc - C - V2
* Clock signals switch every cycle, so 3 = 1 (max value)
* Also alarge net, so large C
* Driving clock itself may cause large part of total dissipation!

* Disable clock when FF data is known to not change!

181011 LJS 19

181011 LJS

Iockgatlng

FF ——>| LOGIC

I
I |
l ‘ > 1
7
l

Recall expression for switching power: P =8 - fc - C - V2

* Clock signals switch every cycle, so 3 = 1 (max value)

* Also alarge net, so large C

Driving clock itself may cause large part of total dissipation!

Disable clock when FF data is known to not change!

19

Clock gatlng, cont.

| | | -Comp decoders

—~ 01k S A .| C__1Memory array
= -Clock tree
S 0.08
©
(oX
‘w 0.06
(2}
2
o 0.04
=
o
O 0.02f

0

> &
] & &
¢ Examp|e @Q @ Threshold @Q 1 dB margin

e Forward Error Correction (FEC) unit
| ow activity when no errors to correct!
 Reduces clock power, but also power in logic and memories

e Very useful technique (more in separate lecture)

181011 LJS 20 [Fougstedt, private communication]

Dynamic voltage scaling

i it
é >
| |
‘1 ‘! ﬁ i
| FF §
\? " 4

f

* |dea: selectively reduce supply voltage for part of system
to save power

e |Logic speed affected, so must adapt also fc ...

 What happens with setup and hold criteria when supply
voltage changes for some components?

181011 LJS 21

Dynamic voltage scaling

Vdds

‘»
i

* |dea: selectively reduce supply voltage for part of system
to save power

e |Logic speed affected, so must adapt also fc ...

 What happens with setup and hold criteria when supply
voltage changes for some components?

181011 LJS 21

DV, cont.

Tea T T\ /

= o N\)
RT3

 Reduce overall supply voltage? All T delays increase.

 Reduce supply for FF1, LOGIC, FF2? Some delays increase...

181011 LJS 22

DV, on.

] : X N,
f — @O@ "\\006
| FF |—>| N

| I { \®)

Tea \ Tsdf\ TH \ /

& e N\ |
oA

 Reduce overall supply voltage? All T delays increase.

 Reduce supply for FF1, LOGIC, FF2? Some delays increase...

181011 LJS 22

Tom (////5%44444444%%/)

e Setup criterion: Tc > Tcq + Tomax + Ts

e What if > is replaced with =7

* The input to the second FF changes very close to Ts
before the clock edge

 What value will be captured?

181011 LJS 23

—

%
1

F
|F

1v

Metastabillity, cont

i

xu ‘

5
| ‘
,; 1
y
\t

7/ N ~can
)Tnmax)/)

v =
Tr <>)

* A closer decision is more affected by electrical noise etc.

* Randomness, so statistical description only
* On average, a closer decision takes longer to “resolve”
e |f “failure” is no decision after Tgr, then
P(fail) ~ const - exp(—TR)

* Reduce P(fail) by reducing const and extending Tr
181011 LJS 24

Several clock domains

* Two (or more) completely independent clock domains

e Use handshaking protocol to transfer data (Ready, Ack)
* No rational relationship of fc1 and fc2 assumed

e Clock and handshake transitions may (will) coincide occasionally s

181011 LJS 25

Several clock domains

|

'1
\ |
W h

fco

1 | 5:
i :: i’
: A

|

e Two (or more) completely independent clock domains /- G/Ob
Oca// a/(y'qs

i
e Use handshaking protocol to transfer data (Ready, Ack) SJ’DC/;rJ;ZC%nO
OUS US,

* No rational relationship of fc1 and fc2 assumed
e Clock and handshake transitions may (will) coincide occasionally s

181011 LJS 25

Synchronizers

[— - S— - I
' , i e 1
| W R i

" ‘ i
| “ |
fci fco |
1‘: |
| z
| ”‘
| |

e Standard solution: Use two FFs to receive handshake signals
 Will survive a Tr of at least one full clock cycle (P(fail) = 0)

 Note: simpler versions possible if only clock phase is
different, etc

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]
181011 LJS 26

Synchronizers

—y
Q

e Standard solution: Use two FFs to receive handshake signals
 Will survive a Tr of at least one full clock cycle (P(fail) = 0)

 Note: simpler versions possible if only clock phase is
different, etc

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]
181011 LJS 26

Q
O

Synchronizers

—y
Q

e Standard solution: Use two FFs to receive handshake signals
 Will survive a Tr of at least one full clock cycle (P(fail) = 0)

 Note: simpler versions possible if only clock phase is
different, etc

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]
181011 LJS 26

—y
Q

e How wide can that signal bundle be?

* Practically: propagation time spread across wires must be
covered by handshaking cycles

e Spread inevitable (ref PCB lecture); limits fc

181011 LJS 27

Asynchronous logic

— By~
R >t
—y SR

A

 Can Ready/Ack pattern be re-used for smaller blocks?

 An adder could wait for both inputs and then produce
output! No need to wait for carry chain when not
exercised. Etc...

e Many attempts at large-scale use, limited success / impact

* Very useful in certain circumstances

181011 LJS 28

Ex: Asynchronous processor

R ity |
S S S, e e E |
g S S G T B TR S T & R e SR
¥ "

e ——_—“S"/s6 Lil)Vh}} i

Steve Furber

e AMULET (Univ. Manchester, ~2000)
 Asynchronous implementation of ARM ISA
e Aimed at low-power, low-emission implementation

e Needed to develop much of tools to complete chip

181011 LJS 29

IS TORL

* Single-phase clocking (as described here) is a relatively recent
practice!

* Yuan, Svensson: High-speed CMOS Circuit Technique (IEEE
JSSC, 1989)

* Before then, mostly two-phase non-overlapping clocks

* Allowed use of latches rather than FFs to keep data

* Fewer transistors, minor performance gains, but obsoleted
by tools

e ... and the two phases must be kept in sync...

181011 LJS 30

EX: single
phase clock

e Classic example: the first DEC Alpha
21064 processor (1992)

e 200 MHz, 64b processor
* Then-novel single-phase clocking
* One single clock net: 3.25 nF

e \VVdd = 3.3V means 7W clock
power (total: 30W)

e Final driver: W = 350mm &

Dan Dobberpuhl

181011 LJS 31

IS TORL

 Clock Gating Considered Harmful!

 Used decades ago as “design trick” to save a few logic
gates here and there

 Bug-prone, very difficult to test, savings not worth it
* Old books may still condemn the practice

* Now, used to save power rather than gates
* Well-supported by tools

* No more unsafe than other design practices

181011 LJS 32

181011 LJS

Summary

Clock signals used in almost all digital designs to
orchestrate logic operations

Issues in ASICs and FPGAs stem from same overall
considerations (setup/hold criteria/violations)

Specialized tools help with clock tree balancing, clock
gating, etc

Take care when crossing clock domain borders

Beware the siren call of asynchronous design &

33

