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Overview

e Why use clocks at all?
e What limits clock speed?

¢ How handle several clock domains?

e Some practical points in the VHDL Style Sheet
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Synchronous systems

e Default paradigm for digital design
e “Combinational” vs “sequential” circuits
e Clocks carry timing information, other signals carry values
e VHDL (etc.) idioms to support clocked systems
e Jools depend on assumption and help with design

e More in DAT110, SP2
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Why use clocking at all?

DO 000 .
<mxozxosx >< 0

>
t

e Use logic circuits for computation on sequence of inputs

* New set of input values applied after time Tc

 Qutputs appear after logic delay Tq, separated by Tc
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1. Unequal delays.
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e Different delays for different outputs
e Shorter time window when all outputs are valid

* Gets worse with concatenated stages (until it breaks)
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2. Data-dependent delays

a(0) b(0) a(1) b(1) a(2) b(2)

e L
T T

«— N 7T

s(0) s(1) s(2)

Ripple-Carry Adder

e Often large difference between fastest and slowest operations across
possible input data

* Adder: exercise carry chain, or not

* Multiplier: more complex
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2. Data-dependent delays
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Ripple-Carry Adder

8-bit Multiplier
e Often large difference between fastest and slowest operations across
possible input data

* Adder: exercise carry chain, or not

* Multiplier: more complex

[H. Eriksson, 2004 TBC]
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Delay early signal values
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e Capture logic values using clock signal

* Realign logic values in time; send on to next logic block
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A more detailed view

e Capture elements (FFs) contribute to overall delay

e Clock-to-Q delay Tcq, setup time Ts, hold time Tx
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FF time parameters

* Ts, TH: the shortest times needed for FF to capture the correct data

* Tca: the shortest time from clock edge to output change
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(»\7‘ Tomss N\ )/ )

e Setup criterion: Tc > Tcq + Tomax + Ts

 Hold criterion: Tcq + Tobmin > TH

e Add inequalities: Tc+ Tcq + Tomin> Tcq + Tobmax + Ts+ TH
Tc+ Tomin> Tobmax + Ts+ TH

Tc > Tomax— Tomin+ Ts+ TH
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Observations

 Shortest Tc given by
Tc > Tomax— Ibmin+ Ts+ TH

* Reduce delay difference to be able to reduce Tc

e Tc limited by Ts + Th, not by Tpmax!

* Tobmin IS NOt the shortest time for operation completion

 Rather, time to earliest output transition (contamination

delay)
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Chmce of fc
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 High fc enables higher performance
e Split logic block in 2, insert FF between parts!
e Hopefully, Tomax — Tomin is reduced (halved?)

but

e Need 2 - (Ts + Tn) for the same logic function ...

* < 2Xx speedup; diminishing returns for more stages
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Choice of fc
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hoie f fc
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e Need 2 - (Ts + Th) for the same logic function ...

* < 2Xx speedup; diminishing returns for more stages
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Setup violation

Tc

Tca \ Ts TH \ /

\

 tom N\ ] )
T SN

e Setup criterion: Tc > Tcq + Tomax + Ts

* Setup violation: Tc < Tca + Tobmax + Ts

 Two ways to work around setup violations on the bench:
* |ncrease Tc, that is, reduce fc

* Reduce circuit delays Tcaq + Tobmax + Ts, €.g. increase Vqd
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Hold violation

?. Tomss N\ )/

e Hold criterion: Tcq + Topmin > TH

e Hold violation: Tcq + Tobmin < TH

* Only circuit delays in these expressions

 No obvious way to “patch” a hold violation!
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Jitter

Tom (////5%44444444%%/ )

o Jitter: Tc varies from one cycle to the next

e Random, or sometimes intentional

* Reduce peak power emission at fc

e Setup criterion must be fulfilled with minimum T¢ value
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e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems
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e Sending and receiving FF clocks out of phase

* Recelve clock early: setup problems; late: hold problems
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Large-scale clock distribution

)

INcreases Wi

e 200-MHz microprocessor (Tc =5 ns

th distance

r, skew I

Ve

e Central clock dr

o At worst ~5% of Tc

e Extrapolate to fc = 2 GHZ!

[Gronowski et al. High-Performance Microprocessor design. |IEEE JSSC 1998 ]
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Complications

e Clock gating
e Several clock domains

e \oltage scaling

181011 LJS 18



Iocgatlng
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FF ; LOGIC

* Recall expression for switching power: P=08-fc - C - V2
* Clock signals switch every cycle, so 3 = 1 (max value)
* Also alarge net, so large C
* Driving clock itself may cause large part of total dissipation!

* Disable clock when FF data is known to not change!
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Iockgatlng
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Recall expression for switching power: P =8 - fc - C - V2

* Clock signals switch every cycle, so 3 = 1 (max value)

* Also alarge net, so large C

Driving clock itself may cause large part of total dissipation!

Disable clock when FF data is known to not change!
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Clock gatlng, cont.

| | | -Comp decoders

—~ 01k S A .| C__1Memory array
= -Clock tree
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] & &
¢ Examp|e @Q @ Threshold @Q 1 dB margin

e Forward Error Correction (FEC) unit
| ow activity when no errors to correct!
 Reduces clock power, but also power in logic and memories

e Very useful technique (more in separate lecture)

181011 LJS 20 [Fougstedt, private communication]



Dynamic voltage scaling
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* |dea: selectively reduce supply voltage for part of system
to save power

e |Logic speed affected, so must adapt also fc ...

 What happens with setup and hold criteria when supply
voltage changes for some components?

181011 LJS 21



Dynamic voltage scaling
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* |dea: selectively reduce supply voltage for part of system
to save power

e |Logic speed affected, so must adapt also fc ...

 What happens with setup and hold criteria when supply
voltage changes for some components?

181011 LJS 21



DV, cont.

Tea T T\ /
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RT3

 Reduce overall supply voltage? All T delays increase.

 Reduce supply for FF1, LOGIC, FF2? Some delays increase...
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DV, on.
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 Reduce overall supply voltage? All T delays increase.

 Reduce supply for FF1, LOGIC, FF2? Some delays increase...
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Tom (////5%44444444%%/ )

e Setup criterion: Tc > Tcq + Tomax + Ts

e What if > is replaced with =7

* The input to the second FF changes very close to Ts
before the clock edge

 What value will be captured?
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Metastabillity, cont
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* A closer decision is more affected by electrical noise etc.

* Randomness, so statistical description only
* On average, a closer decision takes longer to “resolve”
e |f “failure” is no decision after Tgr, then
P(fail) ~ const - exp(—TR)

* Reduce P(fail) by reducing const and extending Tr
181011 LJS 24



Several clock domains

* Two (or more) completely independent clock domains

e Use handshaking protocol to transfer data (Ready, Ack)
* No rational relationship of fc1 and fc2 assumed

e Clock and handshake transitions may (will) coincide occasionally s
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Several clock domains
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e Two (or more) completely independent clock domains /- G/Ob
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i
e Use handshaking protocol to transfer data (Ready, Ack) SJ’DC/;rJ;ZC%nO
OUS US,

* No rational relationship of fc1 and fc2 assumed
e Clock and handshake transitions may (will) coincide occasionally s
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Synchronizers
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e Standard solution: Use two FFs to receive handshake signals
 Will survive a Tr of at least one full clock cycle (P(fail) = 0)

 Note: simpler versions possible if only clock phase is
different, etc

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]
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e How wide can that signal bundle be?

* Practically: propagation time spread across wires must be
covered by handshaking cycles

e Spread inevitable (ref PCB lecture); limits fc
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Asynchronous logic

— By~
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 Can Ready/Ack pattern be re-used for smaller blocks?

 An adder could wait for both inputs and then produce
output! No need to wait for carry chain when not
exercised. Etc...

e Many attempts at large-scale use, limited success / impact

* Very useful in certain circumstances
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Ex: Asynchronous processor

R ity |
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Steve Furber

e AMULET (Univ. Manchester, ~2000)
 Asynchronous implementation of ARM ISA
e Aimed at low-power, low-emission implementation

e Needed to develop much of tools to complete chip
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IS TORL

* Single-phase clocking (as described here) is a relatively recent
practice!

* Yuan, Svensson: High-speed CMOS Circuit Technique (IEEE
JSSC, 1989)

* Before then, mostly two-phase non-overlapping clocks

* Allowed use of latches rather than FFs to keep data

* Fewer transistors, minor performance gains, but obsoleted
by tools

e ... and the two phases must be kept in sync...
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EX: single
phase clock

e Classic example: the first DEC Alpha
21064 processor (1992)

e 200 MHz, 64b processor
* Then-novel single-phase clocking
* One single clock net: 3.25 nF

e \VVdd = 3.3V means 7W clock
power (total: 30W)

e Final driver: W = 350mm &

Dan Dobberpuhl
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IS TORL

 Clock Gating Considered Harmful!

 Used decades ago as “design trick” to save a few logic
gates here and there

 Bug-prone, very difficult to test, savings not worth it
* Old books may still condemn the practice

* Now, used to save power rather than gates
* Well-supported by tools

* No more unsafe than other design practices
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Summary

Clock signals used in almost all digital designs to
orchestrate logic operations

Issues in ASICs and FPGAs stem from same overall
considerations (setup/hold criteria/violations)

Specialized tools help with clock tree balancing, clock
gating, etc

Take care when crossing clock domain borders

Beware the siren call of asynchronous design &
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