
181011 LJS

Synchronization
approaches

DAT093

larssv@chalmers.se

�1

181011 LJS

Overview

• Why use clocks at all?

• What limits clock speed?

• How handle several clock domains?

• Some practical points in the VHDL Style Sheet

!2

181011 LJS

Synchronous systems
• Default paradigm for digital design

• “Combinational” vs “sequential” circuits

• Clocks carry timing information, other signals carry values

• VHDL (etc.) idioms to support clocked systems

• Tools depend on assumption and help with design

• More in DAT110, SP2

!3

181011 LJS

Why use clocking at all?

• Use logic circuits for computation on sequence of inputs

• New set of input values applied after time TC

• Outputs appear after logic delay Td, separated by TC

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

tTC Td

LOGIC …

!4

181011 LJS

Why use clocking at all?

• Use logic circuits for computation on sequence of inputs

• New set of input values applied after time TC

• Outputs appear after logic delay Td, separated by TC

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

tTC Td

What’s

wrong with

this picture?LOGIC …

!4

181011 LJS

1. Unequal delays.

• Different delays for different outputs

• Shorter time window when all outputs are valid

• Gets worse with concatenated stages (until it breaks)

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

tTC Td

!5

181011 LJS

1. Unequal delays.

• Different delays for different outputs

• Shorter time window when all outputs are valid

• Gets worse with concatenated stages (until it breaks)

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

tTC Td

Could

this b
e

fixed?

!5

181011 LJS

2. Data-dependent delays

• Often large difference between fastest and slowest operations across
possible input data

• Adder: exercise carry chain, or not

• Multiplier: more complex

Ripple-Carry Adder

!6

DAT093, Lab 0, Version 2.1 6

+

-

-

-

?

+

-

-

-

?

+

-

-

-

?
cin

a(0) b(0)

s(0)

a(1) b(1)

s(1)

a(2) b(2)

s(2)

- cout

Figure 3: Example ripple-carry adder block diagram, using the full adder de-
scribed in the previous section.

• Create the entity according to Figure 2. Refer to the test bench to get
names and types right: name your entity ripple adder 4 bit, and use the
type STD LOGIC VECTOR for the input and output signals.

• Create the architecture for the ripple-carry adder in accordance with the
entity. Use your previously-designed full-adder as a component—do not
repeat the FA code multiple times in the ripple-carry adder! Use Figure 3
as inspiration and modify as needed.

• Verify the functionality of your ripple-carry adder using the test bench files.
Fix bugs (if any).

6 A simple counter

C
-clk

-reset n
-��

W count

Figure 4: Up-counter block.

The last task of this lab session is to extend your ripple-carry adder from Section 5
to design an up-counter. This block counts the number of pulses at its clock input
and increments its output value once per cycle, restarting from 0 after N cycles;
N is a design-time parameter.

181011 LJS

2. Data-dependent delays

• Often large difference between fastest and slowest operations across
possible input data

• Adder: exercise carry chain, or not

• Multiplier: more complex

Ripple-Carry Adder

!6

DAT093, Lab 0, Version 2.1 6

+

-

-

-

?

+

-

-

-

?

+

-

-

-

?
cin

a(0) b(0)

s(0)

a(1) b(1)

s(1)

a(2) b(2)

s(2)

- cout

Figure 3: Example ripple-carry adder block diagram, using the full adder de-
scribed in the previous section.

• Create the entity according to Figure 2. Refer to the test bench to get
names and types right: name your entity ripple adder 4 bit, and use the
type STD LOGIC VECTOR for the input and output signals.

• Create the architecture for the ripple-carry adder in accordance with the
entity. Use your previously-designed full-adder as a component—do not
repeat the FA code multiple times in the ripple-carry adder! Use Figure 3
as inspiration and modify as needed.

• Verify the functionality of your ripple-carry adder using the test bench files.
Fix bugs (if any).

6 A simple counter

C
-clk

-reset n
-��

W count

Figure 4: Up-counter block.

The last task of this lab session is to extend your ripple-carry adder from Section 5
to design an up-counter. This block counts the number of pulses at its clock input
and increments its output value once per cycle, restarting from 0 after N cycles;
N is a design-time parameter.

181011 LJS

2. Data-dependent delays

• Often large difference between fastest and slowest operations across
possible input data

• Adder: exercise carry chain, or not

• Multiplier: more complex

Ripple-Carry Adder

!6

DAT093, Lab 0, Version 2.1 6

+

-

-

-

?

+

-

-

-

?

+

-

-

-

?
cin

a(0) b(0)

s(0)

a(1) b(1)

s(1)

a(2) b(2)

s(2)

- cout

Figure 3: Example ripple-carry adder block diagram, using the full adder de-
scribed in the previous section.

• Create the entity according to Figure 2. Refer to the test bench to get
names and types right: name your entity ripple adder 4 bit, and use the
type STD LOGIC VECTOR for the input and output signals.

• Create the architecture for the ripple-carry adder in accordance with the
entity. Use your previously-designed full-adder as a component—do not
repeat the FA code multiple times in the ripple-carry adder! Use Figure 3
as inspiration and modify as needed.

• Verify the functionality of your ripple-carry adder using the test bench files.
Fix bugs (if any).

6 A simple counter

C
-clk

-reset n
-��

W count

Figure 4: Up-counter block.

The last task of this lab session is to extend your ripple-carry adder from Section 5
to design an up-counter. This block counts the number of pulses at its clock input
and increments its output value once per cycle, restarting from 0 after N cycles;
N is a design-time parameter.

181011 LJS

2. Data-dependent delays

• Often large difference between fastest and slowest operations across
possible input data

• Adder: exercise carry chain, or not

• Multiplier: more complex

8-bit Multiplier

Ripple-Carry Adder

!6

DAT093, Lab 0, Version 2.1 6

+

-

-

-

?

+

-

-

-

?

+

-

-

-

?
cin

a(0) b(0)

s(0)

a(1) b(1)

s(1)

a(2) b(2)

s(2)

- cout

Figure 3: Example ripple-carry adder block diagram, using the full adder de-
scribed in the previous section.

• Create the entity according to Figure 2. Refer to the test bench to get
names and types right: name your entity ripple adder 4 bit, and use the
type STD LOGIC VECTOR for the input and output signals.

• Create the architecture for the ripple-carry adder in accordance with the
entity. Use your previously-designed full-adder as a component—do not
repeat the FA code multiple times in the ripple-carry adder! Use Figure 3
as inspiration and modify as needed.

• Verify the functionality of your ripple-carry adder using the test bench files.
Fix bugs (if any).

6 A simple counter

C
-clk

-reset n
-��

W count

Figure 4: Up-counter block.

The last task of this lab session is to extend your ripple-carry adder from Section 5
to design an up-counter. This block counts the number of pulses at its clock input
and increments its output value once per cycle, restarting from 0 after N cycles;
N is a design-time parameter.

Delay

Po
w

er

[H. Eriksson, 2004 TBC]

181011 LJS

2. Data-dependent delays

• Often large difference between fastest and slowest operations across
possible input data

• Adder: exercise carry chain, or not

• Multiplier: more complex

8-bit Multiplier

Ripple-Carry Adder

!6

Could

this b
e

fixed?

DAT093, Lab 0, Version 2.1 6

+

-

-

-

?

+

-

-

-

?

+

-

-

-

?
cin

a(0) b(0)

s(0)

a(1) b(1)

s(1)

a(2) b(2)

s(2)

- cout

Figure 3: Example ripple-carry adder block diagram, using the full adder de-
scribed in the previous section.

• Create the entity according to Figure 2. Refer to the test bench to get
names and types right: name your entity ripple adder 4 bit, and use the
type STD LOGIC VECTOR for the input and output signals.

• Create the architecture for the ripple-carry adder in accordance with the
entity. Use your previously-designed full-adder as a component—do not
repeat the FA code multiple times in the ripple-carry adder! Use Figure 3
as inspiration and modify as needed.

• Verify the functionality of your ripple-carry adder using the test bench files.
Fix bugs (if any).

6 A simple counter

C
-clk

-reset n
-��

W count

Figure 4: Up-counter block.

The last task of this lab session is to extend your ripple-carry adder from Section 5
to design an up-counter. This block counts the number of pulses at its clock input
and increments its output value once per cycle, restarting from 0 after N cycles;
N is a design-time parameter.

Delay

Po
w

er

[H. Eriksson, 2004 TBC]

181011 LJS

Delay early signal values

• Capture logic values using clock signal

• Realign logic values in time; send on to next logic block

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

t

FF

!7

181011 LJS

Delay early signal values

• Capture logic values using clock signal

• Realign logic values in time; send on to next logic block

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

t

FF

!7

181011 LJS

Delay early signal values

• Capture logic values using clock signal

• Realign logic values in time; send on to next logic block

LOGIC

… …

i1 i2 i3 …

o1 o2 o3 …

t

FF

!7

181011 LJS

A more detailed view

• Capture elements (FFs) contribute to overall delay

• Clock-to-Q delay TCQ, setup time TS, hold time TH

!8

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

181011 LJS

FF time parameters

• TS, TH: the shortest times needed for FF to capture the correct data

• TCQ: the shortest time from clock edge to output change

TH

TDmax

TDmin

TCQ
TS

LOGIC FFFF

!9

181011 LJS

Safe TC ?

• Setup criterion: TC > TCQ + TDmax + TS

• Hold criterion: TCQ + TDmin > TH

• Add inequalities: TC + TCQ + TDmin > TCQ + TDmax + TS + TH

TC + TDmin > TDmax + TS + TH

TC > TDmax – TDmin + TS + TH

!10

TH

TDmax

TDmin

TCQ
TS

TC

181011 LJS

Observations

• Shortest TC given by

TC > TDmax – TDmin + TS + TH

• Reduce delay difference to be able to reduce TC

• TC limited by TS + TH, not by TDmax!

• TDmin is not the shortest time for operation completion

• Rather, time to earliest output transition (contamination
delay)

!11 [L.W. Cotten, Maximum-rate pipeline systems, 1969]

181011 LJS

Choice of fC

• High fC enables higher performance

• Split logic block in 2, insert FF between parts!

• Hopefully, TDmax – TDmin is reduced (halved?)

but

• Need 2 · (TS + TH) for the same logic function …

• < 2x speedup; diminishing returns for more stages

LOGICFF FFLOGIC

!12

181011 LJS

Choice of fC

• High fC enables higher performance

• Split logic block in 2, insert FF between parts!

• Hopefully, TDmax – TDmin is reduced (halved?)

but

• Need 2 · (TS + TH) for the same logic function …

• < 2x speedup; diminishing returns for more stages

LOGICFF FFLOGIC

!12

181011 LJS

Choice of fC

• High fC enables higher performance

• Split logic block in 2, insert FF between parts!

• Hopefully, TDmax – TDmin is reduced (halved?)

but

• Need 2 · (TS + TH) for the same logic function …

• < 2x speedup; diminishing returns for more stages

LOGICFF FFLOGIC
/ 2 / 2

!12

181011 LJS

Choice of fC

• High fC enables higher performance

• Split logic block in 2, insert FF between parts!

• Hopefully, TDmax – TDmin is reduced (halved?)

but

• Need 2 · (TS + TH) for the same logic function …

• < 2x speedup; diminishing returns for more stages

LOGICFF FFLOGICFF
/ 2 / 2

!12

181011 LJS

Choice of fC

• High fC enables higher performance

• Split logic block in 2, insert FF between parts!

• Hopefully, TDmax – TDmin is reduced (halved?)

but

• Need 2 · (TS + TH) for the same logic function …

• < 2x speedup; diminishing returns for more stages

LOGICFF FFLOGICFF
/ 2 / 2

!12

Non-str
aight

pipelines a
dd

complications

181011 LJS

Setup violation

• Setup criterion: TC > TCQ + TDmax + TS

• Setup violation: TC < TCQ + TDmax + TS

• Two ways to work around setup violations on the bench:

• Increase TC, that is, reduce fC

• Reduce circuit delays TCQ + TDmax + TS , e.g. increase Vdd

!13

TH

TDmax

TDmin

TCQ
TS

TC

181011 LJS

Hold violation

• Hold criterion: TCQ + TDmin > TH

• Hold violation: TCQ + TDmin < TH

• Only circuit delays in these expressions

• No obvious way to “patch” a hold violation!

!14

TH

TDmax

TDmin

TCQ
TS

TC

181011 LJS

Jitter

• Jitter: TC varies from one cycle to the next

• Random, or sometimes intentional

• Reduce peak power emission at fC

• Setup criterion must be fulfilled with minimum TC value

!15

TH

TDmax

TDmin

TCQ
TS

TC

181011 LJS

Jitter

• Jitter: TC varies from one cycle to the next

• Random, or sometimes intentional

• Reduce peak power emission at fC

• Setup criterion must be fulfilled with minimum TC value

!15

TH

TDmax

TDmin

TCQ
TS

TC

181011 LJS

Skew

• Sending and receiving FF clocks out of phase

• Receive clock early: setup problems; late: hold problems

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

!16

181011 LJS

Skew

• Sending and receiving FF clocks out of phase

• Receive clock early: setup problems; late: hold problems

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

!16

181011 LJS

Skew

• Sending and receiving FF clocks out of phase

• Receive clock early: setup problems; late: hold problems

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

!16

181011 LJS

Skew

• Sending and receiving FF clocks out of phase

• Receive clock early: setup problems; late: hold problems

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

!16

181011 LJS

Skew

• Sending and receiving FF clocks out of phase

• Receive clock early: setup problems; late: hold problems

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

!16

Could you

see a use for

intentional
skew?

181011 LJS

Large-scale clock distribution

• 200-MHz microprocessor (TC = 5 ns)

• Central clock driver, skew increases with distance

• At worst ~5% of TC

• Extrapolate to fC = 2 GHz!

GRONOWSKI et al.: HIGH-PERFORMANCE MICROPROCESSOR DESIGN 681

(a) (b) (c)

Fig. 13. Final clock driver location: (a) 21064, (b) 21164, and (c) 21264.

lower reference plane inductively and capacitively decouples
from signal lines. This reduces on-chip crosstalk

and simplifies CAD tool parasitic extraction. Finally, solid
planes provide excellent current return paths which minimize
inductive noise caused by signal-switching events [9].
The additional metal layers significantly improve the power

distribution on the chips, and help to reduce the voltage loss
in the center of the die due to dc IR drop. However, the
high clock frequencies of these microprocessors result in large
fluctuations in current. This current must be supplied
through the package lead and bond wire inductance, and which
results in power supply noise on chip. On-chip decoupling
capacitance is implemented to help reduce this noise.
The power supply is decoupled using the gate oxide of

NMOS transistors to form a capacitor. This type of structure
was chosen as it provides the highest efficiency in capacitance
per unit area without introducing additional process steps. The
capacitor design provides a low-impedance path to the
terminal, improving the bandwidth of the capacitor enough
to efficiently decouple high-frequency noise on the power
grids. A decoupling capacitor standard cell was designed
and automatically placed in the chip. Whenever possible, the
capacitor was placed in vacant areas of the chip where it did
not impact die area, e.g., underneath global metal 1 buses.
However, in areas close to the clock generators, it was required
to dedicate die area to decoupling capacitance to supply the
large clock switching currents. In total, 15–20% of the die
area is used for decoupling.
The 21264’s conditionally clocking scheme and the super-

scalar architecture of the microprocessor exaggerated the data
and program dependencies that result in large variations in
supply current. For the 21264, It was not possible to integrate
enough decoupling capacitor on chip to manage this noise.
Therefore, an additional source of decoupling was added
to the chip and package network. A 1- F 2-cm wirebond
attached chip capacitor (or WACC), implemented as a p-type
accumulation mode MOS capacitor, was bonded on top of the
microprocessor die [3]. This silicon capacitor helped control
power supply noise.

B. Clock Distribution
The high frequencies of the Alpha microprocessors have

required the generation and distribution of a very high-quality
clock signal and the use of fast (low-latency) latches. The
primary objective of the clock system is to not limit the per-

Fig. 14. 21064 clock skew.

formance of the microprocessor. Uncertainties in clock edges
resulting from power supply noise, process variation, and
interconnect delay lower the maximum clock frequency
of the microprocessor. In addition, slow clock edges introduce
uncertainties in latch timing which further limit performance
and can lead to functional failures due to latch race-through.
The 21064 uses a two-phase single wire clocking scheme.

The driver is located in the center of the die as shown in
Fig. 13(a). The final clock load was 3.5 nF, and it required
a final driver with a gate length of 35 cm. To handle the
large transient currents in the power grid when the
clock driver switched, on-chip decoupling structures (NMOS
transistor with the gate tied to and the source and drain
tied to ground) were placed around the clock driver. Roughly
10% of the chip area was allocated to decoupling capacitance.
Fig. 14 shows the results of the 21064 clock skew analysis.
Fig. 15 shows the approximate power breakdown of the first

two microprocessors. Since the main clock drivers consumed
40% of the chip power, thermal management was a major
concern. Fig. 16 shows that the temperature of the main clock
driver is elevated about 30 C relative to the rest of the die.
The elevated temperature in the clock driver area reduces the
performance of the clock drivers and other local logic, directly
impacting performance.
The primary goals of the 21164 clock design were to reduce

the clock skew by 30% and to reduce the thermal gradients.

[Gronowski et al. High-Performance Microprocessor design. IEEE JSSC 1998.]

181011 LJS

Complications

• Clock gating

• Several clock domains

• Voltage scaling

!18

181011 LJS

Clock gating

• Recall expression for switching power: P = ß · fC · C · V2

• Clock signals switch every cycle, so ß = 1 (max value)

• Also a large net, so large C

• Driving clock itself may cause large part of total dissipation!

• Disable clock when FF data is known to not change!

!19

LOGIC FFFF

181011 LJS

Clock gating

• Recall expression for switching power: P = ß · fC · C · V2

• Clock signals switch every cycle, so ß = 1 (max value)

• Also a large net, so large C

• Driving clock itself may cause large part of total dissipation!

• Disable clock when FF data is known to not change!

!19

LOGIC FFFF

181011 LJS

Clock gating

• Recall expression for switching power: P = ß · fC · C · V2

• Clock signals switch every cycle, so ß = 1 (max value)

• Also a large net, so large C

• Driving clock itself may cause large part of total dissipation!

• Disable clock when FF data is known to not change!

!19

LOGIC FFFF
Possi

ble

problems?

181011 LJS

Clock gating, cont.

• Example:

• Forward Error Correction (FEC) unit

• Low activity when no errors to correct!

• Reduces clock power, but also power in logic and memories

• Very useful technique (more in separate lecture)

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ow

er
 d

is
si

pa
tio

n
(W

)

Full
 ga

tin
g

Com
p.

co
de

 ga
tin

g

Bas
ic

ga
tin

g

Full
 ga

tin
g

Com
p.

co
de

 ga
tin

g

Bas
ic

ga
tin

g

@ Threshold 1 dB margin

Comp. decoders
Memory array
Clock tree

(a) t = 2 component codes.

0

0.1

0.2

0.3

0.4

0.5

P
ow

er
 d

is
si

pa
tio

n
(W

)

Full
 ga

tin
g

Com
p.

co
de

 ga
tin

g

Bas
ic

ga
tin

g

Full
 ga

tin
g

Com
p.

co
de

 ga
tin

g

Bas
ic

ga
tin

g

@ Threshold 1 dB margin

Comp. decoders
Memory array
Clock tree

(b) t = 3 component codes.

0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 d

is
si

pa
tio

n
(W

)

Full
 ga

tin
g

Com
p.

co
de

 ga
tin

g

Bas
ic

ga
tin

g

Full
 ga

tin
g

Com
p.

co
de

 ga
tin

g

Bas
ic

ga
tin

g

@ Threshold 1 dB margin

Comp. decoders
Memory array
Clock tree

(c) t = 4 component codes.

Fig. 3. Power dissipation distribution for the implemented product decoders at the threshold and at a 1-dB margin. Note the varying y-axis ranges.

TABLE I
EVALUATION RESULTS

t = 2 t = 3 t = 4

Cell area (mm2) 0.70 2.23 5.38
Throughput (Gb/s) 203 456 811
Power dissipation @ threshold (mW) 51.2 297.0 969.1
Power dissipation @ 1-dB margin (mW) 44.3 196.0 581.9
Energy/information bit @ threshold (pJ/bit) 0.25 0.65 1.19
Energy/information bit @ 1-dB margin (pJ/bit) 0.22 0.43 0.72
Estimated net coding gain (dB) 8.0 10.3 10.6
Block decoding latency (ns) 53.3 53.3 53.3

V. CONCLUSION

We have implemented energy-efficient high-throughput
product decoders suitable for future 400+ Gb/s energy-
constrained high-throughput optical communication systems.
At a 33% code overhead, depending on configuration, the
decoders achieve an estimated information throughput of up to
811 Gb/s and a net coding gain of up to 10.6 dB. All decoders
show a low block-decoding latency of 53.3 ns.

Effective use of clock gating is shown to significantly reduce
energy dissipation of iterative product decoders, both in the
product-code memory array and in the component-code de-
coders. At a margin of 1 dB to the estimated 10�15 output BER
threshold, all decoders dissipate less than 1 pJ/information
bit. All considered decoders dissipate less than 1 W, both at
the 10�15-threshold and at a 1 dB margin, demonstrating the
viability of high-throughput HD product decoders.

ACKNOWLEDGMENT

This work was financially supported by the Knut and
Alice Wallenberg Foundation. The authors would like to
thank Dr. Kevin Cushion and Dr. Lars Svensson for fruitful
discussions.

REFERENCES

[1] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris,
and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical
networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 209–221,
Firstquarter 2016.

[2] E. Agrell, M. Karlsson, A. Chraplyvy, D. Richardson, P. Krummrich,
P. Winzer, K. Roberts, J. Fischer, S. Savory, B. Eggleton, M. Secondini,
F. Kschischang, A. Lord, J. Prat, I. Tomkos, J. Bowers, S. Srinivasan,
M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,”
J. Optics, vol. 18, no. 6, 2016.

[3] P. Elias, “Error-free coding,” IRE Trans. Inf. Theory, vol. 4, no. 4, pp.
29–37, Sept. 1954.

[4] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug.
1998.

[5] M. Li, Z. Xiao, F. Yu, N. Stojanovic, I. B. Djorjdevic, X. Shi, and L. Li,
“Low-overhead low-power-consumption LDPC-based FEC solution for
next-generation high-speed optical systems,” in Opt. Fiber Commun.
Conf. (OFC), Mar. 2015.

[6] K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-
Gbps soft-decision LDPC FEC for optical transport networks,” IEEE J.
Lightw. Technol., vol. 34, no. 18, pp. 4304–4311, Sept. 2016.

[7] B. Li, K. J. Larsen, D. Zibar, and I. T. Monroy, “Over 10 dB net coding
gain based on 20% overhead hard decision forward error correction
in 100G optical communication systems,” in Eur. Conf. Opt. Commun.
(ECOC), Sept. 2011.

[8] C. Condo, P. Giard, F. Leduc-Primeau, G. Sarkis, and W. J. Gross, “A
9.52 dB NCG FEC scheme and 162 b/cycle low-complexity product
decoder architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. PP,
no. 99, 2017.

[9] Y. Wu, “Low power decoding of BCH codes,” in IEEE Int. Conf. Circuits
Syst. (ISCAS), May 2004, pp. II–369–72, vol. 2.

[10] H. Yoo, Y. Lee, and I. C. Park, “Low-power parallel Chien search
architecture using a two-step approach,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 63, no. 3, pp. 269–273, Mar. 2016.

[11] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Inf. Control, vol. 3, no. 1, pp. 68–79, 1960.

[12] J. Justesen, K. J. Larsen, and L. A. Pedersen, “Error correcting coding
for OTN,” IEEE Comm. Magazine, vol. 48, no. 9, pp. 70–75, Sept. 2010.

[13] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error
correction VLSI design for multi-level cell NAND flash memories,” in
IEEE Workshop Signal Processing Systems Design and Implementation,
Oct. 2006, pp. 303–308.

[14] C. Fougstedt, K. Szczerba, and P. Larsson-Edefors, “Low-power low-
latency BCH decoders for energy-efficient optical interconnects,” IEEE
J. Lightw. Technol., vol. PP, no. 99, 2017.

[15] H. Okano, “Decoding of triple and quadruple error-correcting BCH
codes by direct solving of error-locator polynomials,” Electron. Com-
mun. in Japan (Part I: Communications), vol. 64, no. 2, pp. 22–29,
1981.

[16] S. An, H. Tang, and J. Park, “A inversion-less Peterson algorithm based
shared KES architecture for concatenated BCH decoder,” in Int. SoC
Design Conf. (ISOCC), Nov. 2015, pp. 281–282.

[17] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[Fougstedt, private communication]!20

181011 LJS

Dynamic voltage scaling

• Idea: selectively reduce supply voltage for part of system
to save power

• Logic speed affected, so must adapt also fC …

• What happens with setup and hold criteria when supply
voltage changes for some components?

LOGIC FFFF

!21

181011 LJS

Dynamic voltage scaling

• Idea: selectively reduce supply voltage for part of system
to save power

• Logic speed affected, so must adapt also fC …

• What happens with setup and hold criteria when supply
voltage changes for some components?

LOGIC FFFF

Vdd1 Vdd2

!21

181011 LJS

DVS, cont.

• Reduce overall supply voltage? All T delays increase.

• Reduce supply for FF1, LOGIC, FF2? Some delays increase…

!22

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

181011 LJS

DVS, cont.

• Reduce overall supply voltage? All T delays increase.

• Reduce supply for FF1, LOGIC, FF2? Some delays increase…

!22

LOGIC FFFF

TH

TDmax

TDmin

TCQ
TS

Worst

combinations?

181011 LJS

Metastability

• Setup criterion: TC > TCQ + TDmax + TS

• What if > is replaced with =?

• The input to the second FF changes very close to TS
before the clock edge

• What value will be captured?

!23

TH

TDmax

TDmin

TCQ
TS

TC

LO
GIC

F
F

F
F

181011 LJS

Metastability, cont.

• A closer decision is more affected by electrical noise etc.

• Randomness, so statistical description only

• On average, a closer decision takes longer to “resolve”

• If “failure” is no decision after TR, then

P(fail) ~ const · exp(—TR)

• Reduce P(fail) by reducing const and extending TR

TH

TDmax

TDmin

TCQ
TS

TC

LO
GIC

F
F

F
F

TR

!24

181011 LJS

Several clock domains

• Two (or more) completely independent clock domains

• Use handshaking protocol to transfer data (Ready, Ack)

• No rational relationship of fC1 and fC2 assumed

• Clock and handshake transitions may (will) coincide occasionally 😖

!25

fC1

R

A

fC2
N

181011 LJS

Several clock domains

• Two (or more) completely independent clock domains

• Use handshaking protocol to transfer data (Ready, Ack)

• No rational relationship of fC1 and fC2 assumed

• Clock and handshake transitions may (will) coincide occasionally 😖

!25

fC1

R

A

fC2
N

GALS: Globally Asynchronous,

Locally Synchronous

181011 LJS

Synchronizers

• Standard solution: Use two FFs to receive handshake signals

• Will survive a TR of at least one full clock cycle (P(fail) ≈ 0)

• Note: simpler versions possible if only clock phase is
different, etc

!26

fC1

FF FF

FF FF

R

A

fC2

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]

181011 LJS

Synchronizers

• Standard solution: Use two FFs to receive handshake signals

• Will survive a TR of at least one full clock cycle (P(fail) ≈ 0)

• Note: simpler versions possible if only clock phase is
different, etc

!26

fC1

FF FF

FF FF

R

A

fC2

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]

181011 LJS

Synchronizers

• Standard solution: Use two FFs to receive handshake signals

• Will survive a TR of at least one full clock cycle (P(fail) ≈ 0)

• Note: simpler versions possible if only clock phase is
different, etc

!26

fC1

FF FF

FF FF

R

A

fC2

[Ran Ginosar. Fourteen ways to fool your synchronizer. ASYNC’03]

Throughput cost!

181011 LJS

Width

• How wide can that signal bundle be?

• Practically: propagation time spread across wires must be
covered by handshaking cycles

• Spread inevitable (ref PCB lecture); limits fC

!27

fC1

FF FF

FF FF

R

A

fC2

181011 LJS

Asynchronous logic

• Can Ready/Ack pattern be re-used for smaller blocks?

• An adder could wait for both inputs and then produce
output! No need to wait for carry chain when not
exercised. Etc…

• Many attempts at large-scale use, limited success / impact

• Very useful in certain circumstances

!28

+
R

R

RA

A

A

181011 LJS

Ex: Asynchronous processor

• AMULET (Univ. Manchester, ~2000)

• Asynchronous implementation of ARM ISA

• Aimed at low-power, low-emission implementation

• Needed to develop much of tools to complete chip

Steve Furber

!29

181011 LJS

History
• Single-phase clocking (as described here) is a relatively recent

practice!

• Yuan, Svensson: High-speed CMOS Circuit Technique (IEEE
JSSC, 1989)

• Before then, mostly two-phase non-overlapping clocks

• Allowed use of latches rather than FFs to keep data

• Fewer transistors, minor performance gains, but obsoleted
by tools

• … and the two phases must be kept in sync…

!30

181011 LJS

Ex: single
phase clock

• Classic example: the first DEC Alpha
21064 processor (1992)

• 200 MHz, 64b processor

• Then-novel single-phase clocking

• One single clock net: 3.25 nF

• Vdd = 3.3V means 7W clock
power (total: 30W)

• Final driver: W = 350mm 😱
Dan Dobberpuhl

!31

181011 LJS

History

• Clock Gating Considered Harmful!

• Used decades ago as “design trick” to save a few logic
gates here and there

• Bug-prone, very difficult to test, savings not worth it

• Old books may still condemn the practice

• Now, used to save power rather than gates

• Well-supported by tools

• No more unsafe than other design practices

!32

181011 LJS

Summary
• Clock signals used in almost all digital designs to

orchestrate logic operations

• Issues in ASICs and FPGAs stem from same overall
considerations (setup/hold criteria/violations)

• Specialized tools help with clock tree balancing, clock
gating, etc

• Take care when crossing clock domain borders

• Beware the siren call of asynchronous design 😀

!33

