
181025 LJS

DAT093:
Summary and conclusion

lars.svensson@chalmers.se

mailto:lars.svensson@chalmers.se

181025 LJS

What did you learn?

 2

181025 LJS

Course aims

• Introduction / overview of electronic
system design

• VHDL primer / brush-up

• Signal processing sub-system
implementation

• Focus today on first point above

 3

181025 LJS

Modern electronic system design

• Ever-increasing complexity
1.Market requirements
2.Range of end products
3.Subsystems
4.Toolsets
5.Implementation technologies

 4

181025 LJS

1. Market requirements

 5

www.gsmarena.com

(through August)

Year of announcement

0

35

70

105

140

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Nokia GSM phones Samsung GSM phones

http://www.gsmarena.com
http://www.gsmarena.com

181025 LJS

2. Range of end products

 6

Different
challenges!

181025 LJS

3. Subsystems

 7

181025 LJS

4. Toolsets

• ST 0.12 um, full-
custom only

• (Much) increased
complexity for more
advanced processes

• Industrial projects:
dedicated teams for
toolset maintenance

 8

181025 LJS

5. Implementation
technologies

 9 [chipdesignmag.com]

[eetimes.com]

[Erik Ryman]

Full custom

CMOS

FPGACustom processor

system-on-chip

181025 LJS

How will the designer survive?

 10

181025 LJS

Survival skills:
• Vertical competence, broad insight

• Specialize in one or a few areas

• Embedded software

• …

• Logic and circuit design

• Team interactions

• Development process

 11

181025 LJS

Manage your work!

• Development process

• Team process

• Personal process

 12

• Project structure

• Predictability

• Time

• Money

Internal view

External view

180903 LJS

Evolved version

 13

Write specification

Design architecture

Integrate

Deliver

Full detailed specification!

Hardware + software

Distribute requirements

“Design” means recurse

Verify that reqs are met

Requirements

$$:-)
Remaining issues?

Decompose

Select or design

181025 LJS

Decompose + select/design

• Distribute requirements

• What goes where? (HW/SW, etc)

• May be steered by benchmarking

• Select or design; if the latter,

• choose technology platform, and

• do detailed design

 14

181025 LJS

Technology platform
alternatives

• Analog / digital?

• Complex behavior?
➡ Software on processor

• High performance, bad fit to processor? Low volume?
➡ FPGA

• High volume, strict performance / power requirements?
➡ Cell-library-based ASIC

• Toughest performance / power requirements?
➡ Custom-design chip

 15

181025 LJS

Non-functional
requirements

• Power, real-time response, fault tolerance

• Often “cross-cutting concerns”

• Cannot be assigned to single sub-
design!

• Considered at all abstraction levels

• Tool support is less developed today

• …but improving

 16

181025 LJS

Select or design?
• Buy what you can… (afford)

• Previous generation of system may be
available

• Re-use (most) parts

• Old mistakes may be perpetuated… :-(

• Platform-based / platform-centric design

• Plan for re-use across product/technology
range/generations

 17

181025 LJS

Detailed design

• Analog + mixed: other courses

• Digital hardware development

• Language-based

• Heavy use of CAD toolchain

• Similar for FPGAs, cell-based ASICs

• Software development

• (Many) other courses…

 18

181025 LJS

Verify / integrate
• Verify against specification

• Test suites; may revisit benchmark suites

• Test benches

• Same HDL as for design, or special-purpose
language; and/or

• Formal verification techniques

• Debugging

• Deviations from intended behavior cause
Engineering Change Orders (ECOs)

 19

181025 LJS

Abstraction levels

• System-level design should focus on
system-level questions

• Big decisions, not the detailed ones

• VHDL less than ideal at system level

• Detailed decisions too early

• Example: clocking

• MATLAB; C, C++; UML; others

 20

181025 LJS

Hardware + software

• What should come first: chicken or egg?

• Write software assuming certain hardware

• Design hardware assuming certain software

• Design each towards interface

• Co-design hardware and software

• …but rarely a pure case of either

• Benchmarks, simulation

 21

181025 LJS

Advanced / Future tech
• Increasing complexity forces design on higher abstraction

levels

• End of Moore; what next?

• 3D integration

• Power dissipation / heat removal

• “More than Moore”: silicon++

• Graphene? Carbon nanotubes? (What else? Who
knows?)

• Major new design concern (+ all the old ones):

• Variability

 22

181025 LJS

Future: more cross-cutting
issues!

• Examples:

• Supply noise

• Digital radio transceivers

• Power and heating

• Routing example

 23

B. Skew Model with Temperature Variation

As suggested by [5], when a clock wire experiences a
temperature gradient, the unit-length resistance runit is as
follows,

runit(x,y,t) = ρ0 · [1 + β ·T (t,x,y)], (5)

where ρ0 is the unit-length resistance at 0oC, and β is
the temperature coefficient of resistance (1/oC). When the
embedding path d(M′i,sk) is fixed, we calculate the new
resistance by

R(M′i,sk) = ∑
∀e∈d(M′i ,sk)

E[runit(e)] · len(e) (6)

where E[runit(x,y)] is the mean value of resistance in edge e
(M′i,sk)

Following the conventional definition for the propagation
delay, the delay from the source node s0 to sink si, D(s0!si),
is the time required for the node voltage (waveform) to pass
100% of the peak voltage under the impulse excitation in the
source node. After obtaining the source to sink delay of j-th
routing configuration Con f i

j in level i, we can calculate the
worst case skew corresponding to Con f i

j as follows

Skewi = max
∀ sink sk

D(s0!sk)− min
∀ sink sk

D(s0!sk). (7)

The worst-case skew is then determined by those preserved
routing path from all levels.

C. Problem Formulation

The simultaneous hotspot avoid embedding and thermal
aware routing (TMST) problem is formulated as follows,

Formulation 1: (Simultaneously hotspot avoid embedding
and thermal aware routing (TMST)) Given source s0, sinks
s1 · · · sn, an initial clock tree embedding, and a set of tem-
perature variation maps, find proper re-embedding (including
merging point and re-routing) for the new tree to minimize
the worst case skew under the given temperature maps.

IV. ALGORITHMS

A. Overall Algorithm

Given a GDME-initialized clock tree construction, the re-
embedding by thermal aware Maze routing is performed.
The worst-case skew and re-embedding are determined in a
bottom-up fashion. At each level, the merging points and rout-
ing paths are picked according to their correlation strength.
Then the resulting routing path are routed through with strong
correlation area, and only those sink paths that could cause
large skew changes (high correlated) are selected for re-
embedding.

In summary, the overall algorithm is shown in Figure 2,
and the algorithm’s pseudo code is as presented in algorithm
1:

Put merging point in the largest correlation weight area of
merging line.

Maze routing considers weight of distance
and correlation cofactor

Fig. 2. Top view of overall algorithm

Fig. 3. Different routings cause different delays.

B. Correlation Cofactor

Smoother routing path guarantees more stable skew varia-
tion since the dynamic temperature variation over time gen-
erate different skews. The Thermal Aware Routing Topology
Optimization (TMST) is an effective algorithm that considers
the time variant temperature variations with spatial and tem-
poral correlation. TMST generates a temperature correlation
map by analyzing time variant temperature maps, and avoid
the hot spots that are indicated in the temperature correlation
map of the clock tree structure. Without using merging point
perturbation, we use thermal aware routing to balance the
skew, which can still keep the same or similar Manhattan dis-
tance. First, we build a macro model for temperature variations
to get temperature maps for various timestamps. To model
such on-chip time variant temperature, we impose a grid
onto the chip and each grid is assigned a temperature range.
This temperature range can be obtained by measurement or
thermal simulation. A complete instruction set is tested and
the corresponding K temperature profiles are obtained. The
overall temperature variation can then be obtained based on

109

Liu et al. ICCD 2008, pp. 107–113.

van Zeijl et al. JSSC Dec 2002, pp. 1679 – 1687.

181025 LJS

Wrap-up

 24

181025 LJS

Labs

 25

• Extra session Fri Oct 26 (8–12) + Mon Oct 29
(8–12)

• TAs available to pass you on remaining labs

• Hardware labs reviewed until Oct 29 session

• Earlier labs until Nov 1 @ 16:00

• O/w wait until after period 2

• May arrange unattended lab time if required

• Lab 6 report deadline: Nov 5

• Submit in PingPong

181025 LJS

Lab 6 report?

• Show that you have understood what
you have done during lab 6 (and 5)

• Focus on the “Why” and the “How”, not
on the “What”

• Individual submission

• Suggested length: 3–4 pages

• “Informal” document

 26

181025 LJS

Sit-down exam

• Written exam, no literature allowed; digital…

• Covers lecture content, incl. guest lecture, and
reading material

• No problem solving or VHDL coding

• 48 grading points max; 24/48 to pass

• Up to 12 bonus grading points earned during
course

• >= 40 for grade 4; >= 50 for grade 5

• Passing rate over 80% last few years

 27

181025 LJS

Exam prep

 28

• Exam on Saturday, Oct 27, 8:30 – 12:30

• Exam halls in SB building

• Be there in time to set up computers etc!

• Old exams are up on PingPong, w/ solutions

• Note: older exams had other grade limits (30/60)

• Note: Some problems may refer to guest lectures with
no correspondence this year!

• Lars: office hours tomorrow 13:15 – 14:00

• Also email (recall tag!)

181025 LJS

Questions?

 29

