
181004 LJS

Admin stuff

• Course selection for period 2

• Deadline: Oct 9

• Exam signup (mandatory)

• Deadline: Oct 11 

• A first this year: digital exam 

• Exam carried out in exam hall, but at keyboard 

• Will provide a “training exam” 

 1



181004 LJS

Software vs Hardware 
in embedded electronics

DAT093
lars.svensson@chalmers.se

mailto:lars.svensson@chalmers.se
mailto:lars.svensson@chalmers.se


181004 LJS

Outline 

• Software from hardware point-of-view

• Software vs hardware: compare and 
contrast 

• Case study: from hardware-centric to 
software-centric development

 3



181004 LJS

Electronics vs. software

• Every non-trivial electronic system today has 
a software component

• Software often dominates / determines…

• …performance 

• …development time 

• …total development cost

• To some people, electronics is software :-/

 4



181004 LJS

Why use software?

• Hardware reuse within project

• One adder, many addition operations

• Processor is extremely flexible component

• Programmability enables hardware reuse 
across projects

• Highly capable development environments 

• Compilers, debuggers, simulators, …

 5

Low Non-Recurrent Engineering (NRE) cost! 



181004 LJS

What’s a processor?
• A component that operates on data according to a 

stream of instructions

• Arithmetic and logic unit(s)

• Memory / registers

• Control

• Program counter

• Instruction fetch / decode 

• Data buses / muxes

 6



181004 LJS

instruction 
address

MIPS example: PC

 7

4

PC

[Patterson, Hennessy.  Computer organization and design.  4th Ed. 2011]

EDA332



181004 LJS

instruction

IF

 8

4

PC IMA I



181004 LJS

terms

sum

add $1, $2, $2

 9

4

PC IM REG

ALUA

D

A
A
AI

D

D



181004 LJS

immediate term

addi $1, $2, 55

 10

4

PC IM REG

ALUA

D

A
A
AI

D

D



181004 LJS

address

data

lw $t0, 8($s3)

 11

4

PC IM REG

ALU DMA

D

A
A
A

D

I
A

D

D

D



181004 LJS

data

address

sw $t1, 8($s3)

 12

4

PC IM REG

ALU DMA

D

A
A
A

D

I
A

D

D

D



181004 LJS

branch
address

branch

 13

4

PC IM REG

ALU DMA

D

A
A
A

D

I
A

D

D

D



181004 LJS

control logic

control
 14

4

PC IM REG

ALU DMA

D

A
A
A

D

I
A

D

D

D



181004 LJS

ctl

control
 15

4

PC IM REG

ALU DMA

D

A
A
A

D

I
A

D

D

D



181004 LJS

Simple processor

• Single ALU 

• Single register file

• Two one-level memories (instructions/data)

• Single instruction / cycle 

• All these properties can be improved on! 

• Pipeline to keep several instructions in 
flight (improved performance)

 16



181004 LJS

Performance?

• Def: Operations per unit time 

• Improve by: 

• High operational frequency

• Several ALUs

• Operations need operands 

• High performance needs buses, registers, memory ports

• Processor needs instructions and data 

• Caches, main memory 

 17

DAT105
EDA284



181004 LJS

Informal processor classes
• Microprocessor 

• Number of cores?

• Microcontroller (processor + memory + peripherals)

• Common in embedded systems

• Signal processor (focus on vector, matrix ops; scalar 
product, multiply-acc, a = a + b * c)

• Number of cores?

• Graphics processor 

• Focus on parallel, multi-thread throughput, low 
resolution data (short words) 

 18

“Impure” examples, combinations, etc. 



181004 LJS

Characteristics
• Microprocessor: 

• Performs well on wide range of instruction/data mixes 

• Binary compatibility across product ranges 

• Signal processor: 

• Performs well on scalar products

• Weaker compatibility guarantees (if any)

• GPU: 

• Performs well on (certain) highly parallelizable codes

• Compatibility similar to signal processors 

 19



181004 LJS

Design cases

 20



181004 LJS

Embedded HW/SW design cases 

1. Have hardware, need software 

2. Have software, need hardware 

3. Have clean paper

• Affects approach

• Rarely pure case of any of these!  

 21



181004 LJS

1. Software w/ given hardware 

• Similar to other programming tasks

• …but in embedded programming, 
resource constraints require special care 

• Real-time response times 

• Limited memory (often w/o VM or 
memory protection!)

• Power

 22

EDA223



181004 LJS

2. Hardware w/ given software

• Select (COTS) processor that fulfils 
requirements on…

• Performance 

• Compatibility (application code, firmware, 
O/S)

• Cost (NRE, production, licensing, etc)

• … or if absolutely necessary, develop (parts 
of) processor hardware

 23



181004 LJS

Performance requirements

• How assess processor or system 
performance?

• Preferably, by running the relevant 
software on relevant hardware

• But hardware and/or software may not 
exist yet!

• What to do? 

 24



181004 LJS

Fake the software
• If target software not ready, use other software 

as placeholder 

• Select something “similar” to target software 

• Earlier version of target s/w 

• Well-known benchmark suites

• Purpose-written “benchmark” software 

• Evaluate performance, power, etc. using the 
placeholder software

 25



181004 LJS

Fake the hardware

• If no hardware, use a simulator to provide…

• (bit-true?) emulation of processor instruction set

• … + memories and caches 

• … + peripherals …

• Example: www.gem5.org

• Trade off level of detail w/ execution time

• 2–3 OoM slower than real hardware 

• Real-time behavior not provable by simulation 

 26

http://www.gem5.org


181004 LJS

Processor development 

• Benchmark-driven 

• Select/create appropriate benchmark (suite)

• Application-driven (single application!)

• Highly specific architecture possible

• Incremental approach (for either of the above)

• Add few specific instructions to existing core, 
evaluate, repeat

• Commercial tools available 

 27



181004 LJS

Commercial example: 
Tensilica Xtensa

• Start from “bare-bones” processor

• Use performance evaluations to steer 
architecture modifications 

• Software tool chain support 

• White paper uploaded (note: this is 
marketing material!) 

[Tensilica is now part of Cadence.]

 28



181004 LJS

Microsoft HoloLens (2016)

• VR headset chipset 

• 24 Tensilica cores (Intel Atom host) 

• 28nm, 12 x 12 mm, 65M gates

• < 4W 
 29



181004 LJS

Background reading  
• See Lavagno et al: “EDA for IC system design, 

verification, and testing”, Ch. 10

• Available in E-book form at Chalmers Library 
(chans.lib.chalmers.se) 

 30



181004 LJS

3. Clean-paper start (rare)

• Need system-level specification

• Executable specification preferable  

• Separate into hw, sw parts

• Select processor(s), O/S, firmware

• Handle hw/sw interfaces

• Lowest level: addressable registers 

• Higher level: O/S drivers 

 31

the hard 
part

Experience is invaluable!



181004 LJS

Multiple processors

• Today, many (most?) embedded 
systems contain multiple processor 
cores 

• Full complexity of distributed systems 
and of parallel computer systems 

 32

TDA596

EDA284

DAT280



181004 LJS

Hardware vs software:
compare and contrast

 33



181004 LJS

Is software soft?
• Term coined multiple times in 1950s (John Tukey, et al)

• Contrast to computer hardware 

• Later, often understood to signify ease-of-modification

• Edit/compile/test vs. soldering

• Today, software may be more difficult to alter than 
hardware  

• Large and growing 

• Portability may require tests on many hardware 
combinations  

• Regression tests after each change 

 34



181004 LJS

Hard? Soft?

• Reconfigurable hardware straddles 
boundary

• Cf. lab sessions!

• Rapid development w/o the “processor” 
architecture 

• Can avoid some bottlenecks 

• Adaptable wordlength, extreme 
parallelism, no instruction fetching 

 35



181004 LJS

Example (non-embedded)
• Simulation of novel error-correcting codes

• BER of 1e–15 and below 

• Software implementation does 550 data frames (~1e4 
bits) per processor core per second 

• 3600 datapaths on large FPGA does 10M frames per 
second 

• 18000x speedup

• On FPGA, ~1 frame error per hour at BER = 1e–15 

• 2 core-years in software 

 36

[Kevin Cushon]



181004 LJS

Processor-with-FPGA

• FPGA with (one or more) processor cores 
included on die 

• Example: Xilinx “Extensible Processing 
Platform” (EPP)

• ARM processor cores + FPGA fabric

• Ex: Zync-7000 series 

• Reading material uploaded (marketing!)

 37



181004 LJS

Processor-in-FPGA

• Define processor in HDL, implement on FPGA 

• May make sense for same reason as processor in ASIC: 
hardware re-use, development flexibility

• Adaptable to oddball requirements (e.g. wordlength)

• Likely not competitive with “hard” processor – unless 
FPGA (w/ spare logic) already included in system!

• Xilinx “Picoblaze” Product Brief uploaded 

• Similar designs available from other FPGA 
manufacturers and as open source 

 38



181004 LJS

C-to-FPGA 

• Describe algorithms in “software” 
language, map directly to FPGA 

• Examples: Catapult-C (offered by Mentor 
Graphics)

• SystemC (C++ with class libraries and 
restrictions)

• Data sheet uploaded (marketing!)

• Processor? Hardware? Software? 

 39



181004 LJS

Alternatives 
• Pure VHDL description

• Fixed-ISA processor 

• Separate package

• Hard macro

• Soft macro

• C-to-hardware (ex. 
Catapult)

• “Tweakable-ISA” 
processor

• ASIC (ex. Tensilica)

• FPGA (ex. Xilinx 
Picoblaze)

• FPGA w/ hard 
processor macro (ex. 
Xilinx Zync)

• …

 40



181004 LJS

HW vs SW 

• Behavior is behavior.  

• HW or SW is an implementation detail

• Hardware/software border often fuzzy

• New technologies try to combine benefits of both 
paradigms 

• A challenge to find practices that cover the divide 

• “Cultural” differences persist! 

• Ask a hardware guy about software developers, etc. 

 41



181004 LJS

Summary 

• In practice, software components in almost all 
electronic-system design projects

• Hardware/software border often fuzzy

• Design-alternative menagerie large and growing

• Designers need to keep up!

• Cf. “Technology platforms” lecture…

• “Agility” requirements push towards larger role for 
software 

 42


