
2018‐09‐06

1

VHDL
part 2

So far we´ve only looked at pure logic

To day we will look at clocked designs,
conditional coding and shift operations

We will also look at testbenches

2018‐09‐06

2

Let´s start with the counter from the
introductory lab assignment

We will do the implementation in three
different way

• Using a STD_LOGIC_VECTOR counting value

• Using an INTEGER counting value

• Using our ripple carry adder as component

We have a counter that should count from
zero to twelve and then start allover again.

There is also a reset signal

The counting is controlled by a clock signal

Let´s start with the entity. This will be the
same no matter the implementation

We will start by making the design work for the
given counting range and then make it generic

2018‐09‐06

3

We have the entity

ENTITY counter IS
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

_n indicates that the signal is active low (’0’)

The size of the vector is given by
the counting range

The architecture

Since the design is triggered by a clock signal we must
have a process with the clock signal in the sensitivity list

The count port in the entity is of type OUT so it can´t be
read but we need to read the value to be able to add one
(1) to it.

ENTITY counter IS
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

We introduce a SIGNAL as the active counting signal

2018‐09‐06

4

The architecture cont.

Let´s see what we have so far

ENTITY counter IS
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
END PROCESS count_process;

END arch_counter_std_logic;

The architecture cont.

The process we have written will be activated as soon as
the clock signal clk changes value, that is on both
positive and negative clock flank. This is not what we
want.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
END PROCESS count_process;

END arch_counter_std_logic;

Besides that: the counter value will be stored in flip‐flops
between the triggerings and flip‐flops can only trigger on
one flank, not both.

We must make sure that we trigger on only one flank.
Let´s take the positive flank

2018‐09‐06

5

The architecture cont.

Let´s see what we have so far

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clk) THEN
…

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
END PROCESS count_process;

END arch_counter_std_logic;

Negative flank is called
FALLING_EDGE
Note that you can only trigger
on one flank, never on both

This is our first
conditional code.
We´ll soon talk more
about it

The architecture cont.

There is also an active low reset signal that should
control the design.

We can make the reset signal either syncronous or
asyncronous

In the synchronous case the counter will be reset
syncronous with the clock that is on the positive flank of
the clock signal

In the asynchronous case the counter will be reset as
soon as the reset signal is activated

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
…

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

2018‐09‐06

6

The architecture cont.

Synchronous implementation of the reset signal

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clk) THEN

IF (reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’);

ELSE
…

END IF;
END IF;
END PROCESS count_process;

END arch_counter_std_logic;

The process is only
triggered by the clock

Reset is within the
RISING_EDGE structure

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clk) THEN
…

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

A simple way to set all
bits in the vector to
zero (0)

Keep the two IF
clauses separate

The architecture cont.

Asynchronous implementation of the reset signal

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF ((reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’)

ELSIF RISING_EDGE(clk) THEN
…

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

The process is triggered
by both the reset and
the clock signal

Reset outside of the
RISING_EDGE structure

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
…

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

Let´s keep the asyncronous version

2018‐09‐06

7

The architecture cont.

Now VHDL doesn´t have any rules for addition to
std_logic_vectors.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
END PROCESS count_process;

END arch_counter_std_logic;

To do aritmetic operations the system must know if the
value should be treated as a signed or an unsigned value.

We introduce the std_logic_vector subtypes
SIGNED and UNSIGNED.

To do this we must include another library

USE ieee.numeric_std.ALL;

Don´t use the old libraries std_logic_signed and
std_logic_unsigned. They are not part of VHDL anymore

The architecture cont.

Let´s update

Since we only count
positive values we use
the UNSIGNED type

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN
END IF;
END PROCESS count_process;

END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF ((reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’)

ELSIF RISING_EDGE(clk) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

count_signal is of
subtype UNSIGNED in
the whole process

2018‐09‐06

8

The architecture cont.

The counting value will have to be
passed on to the output port

The value must be
interpreted as a
std_logic_vector
when passed on to the
output

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF ((reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’)

ELSIF RISING_EDGE(clk) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;

count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;

END arch_counter_std_logic;

The architecture cont.

The transfer to the output is done outside of the process.
Can we just as well do it within the process?

No!

If we put it in the process then the value will have to be
remembered from one clock pulse to the next so we have to
store it in flip‐flops and it will also take one extra clock cycle for
this value to update

If we put it outside of the process then it will only be wires from
the count_signal, no extra flip‐flops

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

2018‐09‐06

9

The architecture cont.

We must make sure that the counter goes back to zero (0) when
we have counted up to tha maximal value twelve (12).

We need one more condition

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

The architecture cont.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF ((reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’);

ELSIF RISING_EDGE(clk) THEN
IF (count_signal=”1100”) THEN

count_signal<=(OTHERS=>’0’);
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

Don´t mix the clocking condition
(RISING_EDGE)

with any of the other conditions.

2018‐09‐06

10

The architecture cont.

ARCHITECTURE arch_counter OF counter IS
BEGIN

count_process:
PROCESS(clk)

VARIABLE count_variable:UNSIGNED(3 DOWNTO 0);
BEGIN

IF RISING_EDGE(clk)
IF (reset_n=’0’) THEN

count_variable:=(OTHERS=>’0’);
ELSIF (count_variable=”1100”) THEN

count_variable:=(OTHERS=>’0’);
ELSE

count_variable:=count_variable+1;
END IF;

END IF;
END IF;
count<=STD_LOGIC_VECTOR(count_variable);

END PROCESS count_process;
END arch_counter_std_logic;

We could have used a count variable
instead of the count signal

The variable is local to the process

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock)
IF (reset_n=’0’) THEN

count_signal<=(OTHERS=>’0’);
ELSIF (count_signal=”1100”) THEN

count_signal<=(OTHERS=>’0’);
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END IF;

END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

Notice the variable assignment

Since the variable is local to the process
its value must be transfered to the
output within the process. This will not
give any extra flipflops though

The architecture cont.

Now let´s see how we can use an integer as the counting
parameter.

If we just declare the parameter as an integer then it will be of
size 32 bits which is a waste of hardware so we limit the range.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

Since the counter only count from zero and upwards we can also
limit the range by using NATURAL numbers.

2018‐09‐06

11

The architecture cont.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:NATURAL RANGE 0 to 12;

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clk)
IF (reset_n=’0’) THEN

count_signal<=0;
ELSIF (count_signal=12) THEN

count_signal<=0;
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END IF;

END PROCESS count_process;
count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,4));
END arch_counter_std_logic;

We could have used an integer instead of
std_logic as the count parameter.

Limited range of the integer
subtype NATURAL

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clock)
IF (reset_n=’0’) THEN

count_signal<=(OTHERS=>’0’);
ELSIF (count_signal=”1100”) THEN

count_signal<=(OTHERS=>’0’);
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END IF;

END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

Wemust give the number
of bits for the vector

First we go from NATURAL to
UNSIGNED and then to
std_logic_vector

The architecture cont.

For the third option we will use our earlier ripple carry adder as
a component to do the addition.

A component is a fixed instantiation and can not be placed in
the sequential code of a process.

We should instantiate the component outside of the process
and then assign values to it from within the process using
signals

2018‐09‐06

12

The architecture cont.
We start with the component and other stuff outside of the
process
ARCHITECTURE arch_counter OF counter IS

SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
COMPONENT ripple_adder IS
GENERIC(WIDTH:NATURAL:=4);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));

END COMPONENT ripple_adder;
SIGNAL adder_a_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL adder_y_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN
ripple_adder_comp:
ripple_adder

GENERIC MAP(WIDTH=>4)
PORT MAP(a=>adder_a_signal, b=>"0001",y=>adder_y_signal);

We always add one

Here we can use
STD_LOGIC_VECTOR
since we never do any
addition in the code

The architecture cont.
And then the process

PROCESS(reset_n,clk)
BEGIN

IF (reset_n='0') THEN
adder_a_signal<="1111";

ELSIF RISING_EDGE(clk) THEN
IF (adder_y_signal="1100") THEN

adder_a_signal<="1111";
ELSE

adder_a_signal<=adder_y_signal;
END IF;

END IF;
END PROCESS count_process;
count<=adder_y_signal;

END arch_counter;

Together with ”0001” in
b this will give zero

Transfer from counting
signal to output

2018‐09‐06

13

The architecture cont.

Let´s add one last feature to our design.

We introduce an enable signal so we can
start and stop the counter.

This port should also be added to the entity.

ENTITY counter IS
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
enable:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

Let´s use the UNSIGNED version of the counter
with an asynchronous reset.

The architecture cont.
ARCHITECTURE arch_counter OF counter IS

SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN

count_process:
PROCESS(reset_n,clk)
BEGIN

IF (reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’);

ELSIF RISING_EDGE(clk)
IF (enable=’1’) THEN

IF (count_signal=”1100”) THEN
count_signal<=(OTHERS=>’0’);

ELSE
count_signal<=count_signal+1;

END IF;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

If written this way the counter can be
reset although it isn´t enabled.

How would you write if you only
want to be able to reset it when it´s
enabled?

2018‐09‐06

14

The architecture cont.
ARCHITECTURE arch_counter OF counter IS

SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN

count_process:
PROCESS(reset_n,clk,enable)
BEGIN

IF ((reset_n=’0’) AND (enable=’1’)) THEN
count_signal<=(OTHERS=>’0’);

ELSIF RISING_EDGE(clk)
IF (enable=’1’) THEN

IF (count_signal=”1100”) THEN
count_signal<=(OTHERS=>’0’);

ELSE
count_signal<=count_signal+1;

END IF;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

The asynchronous reset
makes it a bit complicated

Generic counter

Let´s look at how to make our designs generic

First the entity.

What we have to do is add a GENERIC and
make that control the size of te count port

ENTITY counter IS
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
enable:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
USE ieee.math_real.ALL;

ENTITY counter IS
GENERIC (COUNT_MAX:NATURAL:=12);
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(INTEGER(CEIL(LOG2(REAL(COUNT_MAX))))-1 DOWNTO 0));

END counter;

We calculate the size of the port

Round upwards

From REAL to INTEGER

LOG2 only works on REAL values and
is included in the math_real library

2018‐09‐06

15

We have three different implementations so we
must look att what needs to be done to them to
make them generic.

Let´s look at the versions without enable signal to
make it simple.

We start with the version with
std_logic_vector and
UNSIGNED vector.

We must make the size of the
count_signal generic.

We do this in the same way as in the entity
but since we need to do this more than
once we use it to set a constant that we can
reuse
CONSTANT NO_BITS:NATURAL:=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF ((reset_n=’0’) THEN
count_signal<=(OTHERS=>’0’);

ELSIF RISING_EDGE(clk) THEN
IF (count_signal=”1100”) THEN

count_signal<=(OTHERS=>’0’);
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter_std_logic;

Then we can use this to set the size of the count signal and to set the max
value for the calculation

2018‐09‐06

16

ARCHITECTURE arch_counter OF counter IS
CONSTANT NO_BITS:NATURAL:=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));
CONSTANT MAX_VECTOR:UNSIGNED(NO_BITS-1 DOWNTO 0):=

TO_UNSIGNED(COUNT_MAX,NO_BITS);
SIGNAL count_signal:UNSIGNED(NO_BITS-1 DOWNTO 0);

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF (reset_n='0') THEN
count_signal<=(OTHERS=>'0');

ELSIF RISING_EDGE(clk) THEN
IF (count_signal=MAX_VECTOR) THEN

count_signal<=(OTHERS=>'0');
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);

END arch_counter;

Interprat UNSIGNED as
STD_LOGIC_VECTOR

No for the version with the NATURAL
count variable.

Here the size of the count signal is
already given by the GENERIC.

The only thing we need to do is set the
number of bits for the count port.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:NATURAL RANGE 0 to 12;

BEGIN
count_process:
PROCESS(clk)
BEGIN

IF RISING_EDGE(clk)
IF (reset_n=’0’) THEN

count_signal<=0;
ELSIF (count_signal=12) THEN

count_signal<=0;
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END IF;

END PROCESS count_process;
count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,4));
END arch_counter_std_logic;

2018‐09‐06

17

ARCHITECTURE arch_counter OF counter IS
CONSTANT NO_BITS:NATURAL:=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));
SIGNAL count_signal:NATURAL RANGE 0 TO COUNT_MAX;

BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN

IF (reset_n='0') THEN
count_signal<=0;

ELSIF RISING_EDGE(clk) THEN
IF (count_signal=COUNT_MAX) THEN

count_signal<=0;
ELSE

count_signal<=count_signal+1;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,NO_BITS));

END arch_counter;

No for the version with the
adder component.

The changes are simular to the earlier
ones.

We split the solution into two slides.

2018‐09‐06

18

ARCHITECTURE arch_counter OF counter IS
CONSTANT NO_BITS:NATURAL:=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));
CONSTANT MAX_VECTOR:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0):=

STD_LOGIC_VECTOR(TO_UNSIGNED(COUNT_MAX,NO_BITS));

SIGNAL count_signal:UNSIGNED(NO_BITS-1 DOWNTO 0);
COMPONENT ripple_adder IS

GENERIC(WIDTH:NATURAL:=8);
PORT(a:IN STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0));

END COMPONENT ripple_adder;
SIGNAL adder_a_signal:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
SIGNAL adder_b_signal:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
SIGNAL adder_y_signal:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
CONSTANT B_CONSTANT:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0):=

STD_LOGIC_VECTOR(TO_UNSIGNED(1,NO_BITS));
BEGIN

This gives a vector with the
value 000…1

BEGIN
ripple_adder_comp:
ripple_adder

GENERIC MAP(WIDTH=>NO_BITS)
PORT MAP(a=>adder_a_signal,

b=>B_CONSTANT,
y=>adder_y_signal);

count_process:
PROCESS(reset_n,clk)
BEGIN

IF (reset_n='0') THEN
adder_a_signal<=(OTHERS=>'1');

ELSIF RISING_EDGE(clk) THEN
IF (adder_y_signal=MAX_VECTOR) THEN

adder_a_signal<=(OTHERS=>'1');
ELSE

adder_a_signal<=adder_y_signal;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(adder_y_signal);

END arch_counter;

The b input is
always one

Together with
b we get zero

2018‐09‐06

19

Conditional coding cont.

We´ve touched on conditional coding by using IF

Let´s look at it a bit more taking a MUX as an
example

Input a

Input b

Output s

Input
control

MUX
We can do this with or without a process.

The coding will not be the same though

But the entity is the same

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
control:IN STD_LOGIC;
s:OUT STD_LOGIC);

END conditional_MUX;

Conditional coding cont.

In concurrent code we get

Input a

Input b

Output s

Input
control

MUX

ARCHITECTURE arch_conditional_MUX_conc OF
conditional_when IS
BEGIN
s<=b WHEN (control='1') ELSE

a;
END arch_conditional_MUX_conc;

Make sure to cover all
values for control

Remember that there are
nine possible values for
STD_LOGIC

2018‐09‐06

20

Conditional coding cont.

In a process we get

Input a

Input b

Output s

Input
control

MUX

ARCHITECTURE arch_conditional_MUX_proc OF
conditional_when IS
BEGIN
if_proc:
PROCESS(control)
BEGIN

IF (control='1') THEN
s<=b;

ELSE
s<=a;

END IF;
END PROCESS if_proc; END

arch_conditional_MUX_proc;

The problem is that
this won´t work!

Why?

Conditional coding cont.
The process only triggers when control
changes value and doesn´t care what happens in
between. It doesn´t react to changes in a or b

ARCHITECTURE arch_conditional_MUX_proc OF
conditional_when IS

BEGIN
if_proc:

PROCESS(control)
BEGIN

IF (control='1') THEN
s<=b;

ELSE
s<=a;

END IF;
END PROCESS if_proc;

END arch_conditional_MUX_proc;To make it work we must add all signals that
influence the output to the sensitivety list

ARCHITECTURE arch_conditional_MUX_proc OF
conditional_when IS
BEGIN
if_proc:

PROCESS(control,a,b)
BEGIN

IF (control='1') THEN
s<=b;

ELSE
s<=a;

END IF;
END PROCESS if_proc; END

arch_conditional_MUX_proc;

Make sure to cover all
values of control

2018‐09‐06

21

Conditional coding cont.
Let´s add one input to the MUX.

Input a

Input b Output s

Input
control

MUX

Input c

2

We need one more input and
a two bit control signal.

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
c:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:OUT STD_LOGIC);

END conditional_MUX;

Conditional coding cont.

We get the architecture

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:OUT STD_LOGIC);

END conditional_MUX;

ARCHITECTURE arch_conditional_when_3 OF
conditional_when_3 IS

BEGIN
s<= a WHEN (control="00") ELSE

b WHEN (control="01") ELSE
c;

END arch_conditional_when_3;

We have three inputs but the
control signal has four
possibilities so we need do deside
what to do with the unused value.

In this code we assign c to the
output in that case too but there
are other possibilities

2018‐09‐06

22

Conditional coding cont.

We can also use another structure

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:OUT STD_LOGIC);

END conditional_MUX;

ARCHITECTURE arch_conditional_with_select OF
conditional_with_select IS

BEGIN
WITH control SELECT

s<=a WHEN "00",
b WHEN "01",
c WHEN OTHERS;

END arch_conditional_with_select;

It´s simular to a switch
structure in software

Conditional coding cont.

Let´s once again use a process

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:OUT STD_LOGIC);

END conditional_MUX;

ARCHITECTURE arch_conditional_if_3 OF
conditional_if_3 IS

BEGIN
if_proc:
PROCESS(control,a,b,c)
BEGIN

IF (control="00") THEN
s<=a;

ELSIF (control="01") THEN
s<=b;

ELSE
s<=c;

END IF;
END PROCESS if_proc;

END arch_conditional_if_3;

Once again all signals from
the assignment must be in
the sensitivity list

2018‐09‐06

23

Conditional coding cont.

We have another structure here too

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:OUT STD_LOGIC);

END conditional_MUX;

ARCHITECTURE arch_conditional_case OF
conditional_case IS

BEGIN
if_proc:
PROCESS(control,a,b,c)
BEGIN

CASE control IS
WHEN "00" =>

s<=a;
WHEN "01" =>

s<=b;
WHEN OTHERS =>

s<=c;
END CASE;

END PROCESS if_proc;
END arch_conditional_case;

This is also simular to the
software switch structure.

Once again all signals from
the assignment must be in
the sensitivity list

Shift operations

There are a number of common shift operations

• Logic shift left

• Logic shift right

• Aritmetic shift left

• Aritmetic shift right

• Rotate

For bit patterns and unsigned numbers

For signed numbers

For bit patterns

2018‐09‐06

24

Shift operations

In logic shifts we treat the vector that is to be shifted as a number
of bits and don´t have to think about any sign of the value.

This also works for unsigned numbers.

A left shift moves the bits a number of steps to
the left pushing out the bits that will no longer
fit in the vector and fill the new LSB´s with zeros.

Let´s shift the vector 01101101 two steps to the left

01101101 → 10110100

01 are pushed out 00 are added

Logic shifts

Shift operations

A right shift moves the bits a number of steps to
the right pushing out the bits that will no longer
fit in the vector and fill the new MSB´s with
zeros.

Let´s take the same vector 01101101 and shift it
three steps to the right

01101101 → 00001101

101 are pushed out 000 are added

Logic shifts cont.

2018‐09‐06

25

Shift operations

In an aritmetic shift we need to take the sign of
the number into account, but only when we do
a right shift.

A logical and an aritmetic left shift are the same

Aritmetic shifts

We must sign extend the number.

Let´s once again take the number 01101101 and
shift it two steps to the right.

01101101 → 00011011

The value is positive so extention means inserting zeros

01 are pushed out 00 are added

Shift operations
Aritmetic shifts

Let´s now take another vector 11010110 and shift
it two steps to the right.

11010110 → 11110101

The value is negative so extention means inserting ones

10 are pushed out 11 are added

2018‐09‐06

26

Shift operations

In rotation a number of bits are pushed out at
one end of the vector and reenters the vector at
the other end.

Rotation

If we rotate the number three steps to the left we get

We take the same number as before 01101101 and
rotate it two steps to the right.

01101101 → 01011011

01 are pushed out 01 reenters

01101101 → 01101011

011 are pushed out 011 reenters

Shift operations

We can write our own shift and rotate functions.

Implementation

We assign the value to be shifted to a signal

SIGNAL shift_vector: STD_LOGIC_VECTOR(7 DOWNTO 0);

shift_vector<=”01101101”;

Three steps shift to the left, aritmetic or logic gives

shift_vector<=shift_vector(4 DOWNTO 0) & ”000”;

Two steps logic shift to the right gives

shift_vector<=”00” & shift_vector(7 DOWNTO 2);

2018‐09‐06

27

Shift operations
Implementation cont.

Two steps aritmetic shift to the right gives

shift_vector<=”00” & shift_vector(7 DOWNTO 2);

Since the value is positive it´s the same as the logical shift

Lets´s take a negative value

shift_vector<=”11011010”;

Three steps aritmetic shift to the right gives

shift_vector<=”111” & shift_vector(7 DOWNTO 3);

Shift operations
Implementation cont.

Now rotation

shift_vector<=”11011010”;

Three steps rotation to the left gives

shift_vector<=shift_vector(4 DOWNTO 0) &
shift_vector(7 DOWNTO 5);

Four steps rotation to the right gives

shift_vector<=shift_vector(3 DOWNTO 0) &
shift_vector(7 DOWNTO 4);

2018‐09‐06

28

Shift operations
Shifts using library functions

We have some ready made shift functions in the
numeric_std library.

Note that you should not use the functions in the libraries
std_logic_signed or std_logic_unsigned

We have two functions

• shift_right

• shift_left

Each function has two declarations, one for signed
values and one for unsigned values

The two versions are overloaded.

We don´t have to declare which version that is used. The compiler
uses the correct version depending on the signal type

Shift operations
Shifts using library functions cont.

If we for example look at shift_left we have
the function declarations

function shift_left (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;

function shift_left (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

The vector to shift The number of steps to shift.
Positive for left shift, negative
for right shift

Note that we must use the STD_LOGIC_VECTOR

sub types SIGNED and UNSIGNED

2018‐09‐06

29

Shift operations
Shifts using library functions cont.

Now to shift a vector shift_vector three steps
to the right we write

shift_vector<=shift_right(shift_vector,3);

If the result will be sign extended or not depends on if the vector
shift_vector is defined as SIGNED or as UNSIGNED

To verify that our design is correct we need to simulate our results.

We will be using the simulator QuestaSim (or
ModelSim) from Mentor for this.

To assist in the simulation we can create a kind of test
fixture in VHDL, a testbench.

This is a top level design where we instantiate
our own design as a component and generate
input stimuli for the component and watch or
check the resulting output signals. We might
also check internal signals

Testbenches

2018‐09‐06

30

We can have three different types of testbenches

• Type 1 only generates input stimuli and we have to
watch the results in the simulator

• Type 2 generates input stimuli, checks the results and
gives an OK signal if the resulting output values are
correct

• Type 3 generates input stimuli and writes a message
to the simulator output window if something goes
wrong with the simulation results

Testbenches cont.

Example

Let´s take our one bit full adder as an example.

ENTITY full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END full_adder;

We have the entity

Testbenches cont.

2018‐09‐06

31

Example cont.

We need to generate eight different input stimuli to fully test the circuit

ENTITY full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;

y:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END full_adder;

To simplify things we will accept that more than one signal changes it´s
value at a given time

Testbenches cont.

Example cont.

Let´s start creating the testbench. We begin with test benchtype 1

In this case we only watch the results from the simulation and we do not need
any input or output ports to the testbench.

ENTITY full_adder_tb1 IS

END full_adder_tb1;

The entity is empty since we have no inputs and no
outputs

This causes a problem in QuestaSim since by default signals that don´t
connect to outputs are optimized away.

To overcome this we can simulate without optimization. The paper on
QuestaSim describes how to do this

Testbenches cont.

2018‐09‐06

32

Example cont.

In the testbench architecture we instantiate our full adder as a component

ARCHITECTURE arch_full_adder_tb1 OF full_adder_tb1 IS
COMPONENT full_adder IS

PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL a_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC;
SIGNAL cin_signal:STD_LOGIC;
SIGNAL s_signal:STD_LOGIC;
SIGNAL cout_signal:STD_LOGIC;

BEGIN
full_adder_comp:COMPONENT full_adder

PORT MAP(a=>a_tb,b=>b_tb,cin=>cin_tb,
s=>s_signal,cout=>cout_signal);

Component
declaration

Component
Instantiation

Signals to connect
to the component

ENTITY full_adder_tb1 IS
PORT (y_tb:OUT STD_LOGIC

cout_tb:OUT STD_LOGIC);
END full_adder_tb1;

Example cont.

We complete the architecture with the input stimuli

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,
'1' AFTER 300 ns,
'0' AFTER 400 ns,
'1' AFTER 500 ns,
'0' AFTER 600 ns,
'1' AFTER 700 ns;

b_signal <= '0',
'1' AFTER 200 ns,
'0' AFTER 400 ns,
'1' AFTER 600 ns;

cin_signal <= '0',
'1' AFTER 400 ns;

END arch_full_adder_tb1;

This is one of the few
times when we can and
should use time in our
designs

The exact times are not
important since we deal
with simulation of a
design without circuit
delays

But we should create
all the input signal
combinations we want
to test for

Testbenches cont.

2018‐09‐06

33

Example cont.

We need a do file.

Since the instimuli is given in the testbench all the do file need to is
to set up signals we like to watch and run the simulation time.

-- full_adder_tb1.do

restart -f -nowave
view signals wave
add wave a_signal b_signal cin_signal
add wave s_signal cout_signal
run 730ns

Signals to watch

Run the simulation for this time

Testbenches cont.

Example cont.

We move on to test benchtype 2

Here we will need a output signal that signals if something goes wrong
with the output signals from the component during simulation.

We add an output to our testbench entity

ENTITY full_adder_tb2 IS
PORT(test_OK:OUT STD_LOGIC);

END full_adder_tb2;

Testbenches cont.

2018‐09‐06

34

Example cont.
In the architecture we keep the component declaration and do a
component instantiation using signals and not outports

ARCHITECTURE arch_full_adder_tb2 OF full_adder_tb2 IS
COMPONENT full_adder IS

PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL a_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC;
SIGNAL cin_signal:STD_LOGIC;
SIGNAL s_signal:STD_LOGIC;
SIGNAL cout_signal:STD_LOGIC;

BEGIN
full_adder_comp:COMPONENT full_adder

PORT MAP(a=>a_tb,b=>b_tb,cin=>cin_tb,
s=>s_signal,cout=>cout_signal);

ENTITY full_adder_tb2 IS
PORT(test_OK:OUT STD_LOGIC);

END full_adder_tb2;Testbenches cont.

Example cont.

We keep the imput stimuli from testbench type 1

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,
'1' AFTER 300 ns,
'0' AFTER 400 ns,
'1' AFTER 500 ns,
'0' AFTER 600 ns,
'1' AFTER 700 ns;

b_signal <= '0',
'1' AFTER 200 ns,
'0' AFTER 400 ns,
'1' AFTER 600 ns;

cin_signal <= '0',
'1' AFTER 400 ns;

Testbenches cont.

2018‐09‐06

35

Example cont.

We have to complete the code with a test of the output signals

We write the code so that the test_OK signal will go low if
an error occures and then stay low even if the next stimuli
gives a correct result

Testbenches cont.

Example cont.

test_proc:PROCESS
BEGIN

test_OK <= '1';
WAIT FOR 50 ns; -- 000
IF ((s_signal/='0') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 100
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 010
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
……

END PROCESS test_proc;
END arch_test_bench_type2;

Default value for test_OK

If the result isn´t 00 then set test_OK low

Continue for all eight combinations
of input signals

Wait until the input signals have stabilized

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,

...
b_signal <= '0',

'1' AFTER 200 ns,
...
cin_signal <= '0',

'1' AFTER 400 ns;

Test for next stimuli

Testbenches cont.

2018‐09‐06

36

Example cont.

We need a do file here too.

The only difference from the do file for testbench type 1 is that we have
added the signal test_OK to the signals we watch

-- full_adder_tb2.do

restart -f -nowave
view signals wave
add wave a_signal b_signal cin_signal
add wave s_signal cout_signal test_OK
run 730ns

Signals to watch

Run simulation Added signal

The only signal to watch in the test bench is really test_OK but it is
practical to keep the rest of the signals for debugging

Testbenches cont.

Example cont.

Observe that as soon as a test sets test_OK to zero then it will stay at
zero although following tests can be OK

test:PROCESS
BEGIN

test_OK <= '1';
WAIT FOR 50 ns; -- 000
IF ((s_signal/='0') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 100
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
WAIT FOR 100 ns; -- 010
IF ((s_signal/='1') OR (cout_signal /= '0')) THEN

test_OK <= '0';
END IF;
……

END PROCESS test;
END arch_test_bench_type2;

We shouldn´t run this simulation longer than the added WAIT
times since the process will restart when it reaches it´s end and
then the results will most likely be incorrect

Testbenches cont.

2018‐09‐06

37

Example cont.

Now over to testbenchtype 3

In this case we don´t need any output signal either since the internal
signals are used for our test and since these tests will give the written
reports if something is wrong then we have an empty entity

ENTITY full_adder_tb3 IS

END full_adder_tb3;

We will rewrite the test process, that is replace the test_OK process,
but keep the rest of the architecture code

Testbenches cont.

Example cont.

test_proc:PROCESS
BEGIN

WAIT FOR 50 ns; -- 000
ASSERT ((s_signal='0') AND (cout_signal = '0'))
REPORT “000 50ns"
SEVERITY warning;
WAIT FOR 100 ns; -- 100

ASSERT ((s_signal='1') AND (cout_signal = '0'))
REPORT "100 150ns"
SEVERITY warning;
WAIT FOR 100 ns; -- 010
...

END PROCESS test_proc;
END arch_test_bench_type3;

If this condition is true then nothing
is wrong with the signals so do nothing

Continue for all eight combinations
of input signals

The current simulation time and this text
will be written to the simulators Transcript
window if the output signals are incorrect

a_signal <= '0',
'1' AFTER 100 ns,
'0' AFTER 200 ns,

...
b_signal <= '0',

'1' AFTER 200 ns,
...
cin_signal <= '0',

'1' AFTER 400 ns;

Testbenches cont.

2018‐09‐06

38

Example cont.

If the ASSERT expression is true then the output signals
have the correct values

If the expression is false then the test time and the REPORT
message will be written to the simulators output window

We can have four different levels of SEVERITY

• note, the message will have the header Note

• warning, the message will have the header Warning

• error, the message will have the header Error

• failure, the message will have the header Failure

The severity level should be choosen based on
the kind of action the error calls for

The severity levels are given in increasing order

The simulation
continues

The simulation will stop
at current time

Testbenches cont.

Example cont.

The assert messages that you write can be simple or very detailed.

You decide!

For a more advanced design the test will be quit extensive
and you need to write a lot of code just for the test

2018‐09‐06

39

Example cont.

Once again we need a do file.

We´re back to the same do file as the one we used for
testbench 1 since we have no output.

-- full_adder_tb3.do

restart -f -nowave
view signals wave
add wave a_signal b_signal cin_signal
Add wave s_signal cout_signal
run 730ns

Run simulation

Strictly we don´t need to watch any signals since we have the
assertions but like in test bench type 2 it is practical to keep the
signals for debugging

Signals to watch

Testbenches cont.

Test benches
Clocks in test benches

We can create our clocks in the do file like before

or create it in the test bench

force clk_tb 0 0,1 50ns -repeat 100ns

clk_proc:PROCESS
BEGIN

WAIT FOR 50 ns;
clk_tb<=NOT(clk_tb);

END PROCESS clk_process;

SIGNAL clk_tb:STD_LOGIC:='0';

Don´t forget to set a start value for the clock signal

In this case this is OK to do this since the signal value
will only be used in simulation, not in synthesis

