2018-09-06

VHDL
part 2

So far we’ve only looked at pure logic

To day we will look at clocked designs,
conditional coding and shift operations

We will also look at testbenches

2018-09-06

Let’s start with the counter from the
introductory lab assignment

We will do the implementation in three
different way

* Usinga STD _LOGIC_VECTOR counting value
* Using an INTEGER counting value

* Using our ripple carry adder as component

Let’s start with the entity. This will be the
same no matter the implementation

We have a counter that should count from
zero to twelve and then start allover again.

The counting is controlled by a clock signal

There is also a reset signal

We will start by making the design work for the
given counting range and then make it generic

2018-09-06

We have the entity

_nindicates that the signal is active low ('0’)

ENTITY counter IS
PORT (clk:IN STD_LOGIC;
reset_n:IN STD_LOGIC;
count:0UT STD_LOGIC_VECTOR(3 DOWNTO 0));
END counter;

The size of the vector is given by
the counting range

ENTITY counter IS
PORT (clk:IN STD_LOGIC;
reset_n:IN STD_LOGIC;

count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END counter;

The architecture

Since the design is triggered by a clock signal we must
have a process with the clock signal in the sensitivity list

The count port in the entity is of type OUT so it can’t be
read but we need to read the value to be able to add one
(1) toit.

We introduce a SIGNAL as the active counting signal

2018-09-06

ENTITY counter IS
PORT (clk:IN STD_LOGIC;
reset_n:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END counter;

The architecture cont.

Let’s see what we have so far

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(clk)

BEGIN

END PROCESS count_process;
END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(clk)

BEGIN

END PROCESS count_process;
END arch_counter_std_logic;

The architecture cont.

The process we have written will be activated as soon as
the clock signal clk changes value, that is on both
positive and negative clock flank. This is not what we
want.

Besides that: the counter value will be stored in flip-flops
between the triggerings and flip-flops can only trigger on
one flank, not both.

We must make sure that we trigger on only one flank.
Let’s take the positive flank

2018-09-06

This is our first
conditional code.

We’ll soon talk more

about it

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(clk)

BEGIN

END PROCESS count_process;
END arch_counter_std_logic;

The architecture cont.

Let’s see what we have so far

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk) Negative flank is called
BEGIN FALLING_EDGE
! (Clk) THEN Note that you can only trigger
on one flank, never on both
END IF;

END PROCESS count_process;
END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN

The architecture cont. END IF;

END PROCESS count_process;
END arch_counter_std_logic;
There is also an active low reset signal that should
control the design.

We can make the reset signal either syncronous or
asyncronous

In the synchronous case the counter will be reset
syncronous with the clock that is on the positive flank of
the clock signal

In the asynchronous case the counter will be reset as
soon as the reset signal is activated

2018-09-06

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clk) THEN

END IF;

The architecture cont. END PROCESS count_process:

END arch_counter_std_logic;

Synchronous implementation of the reset signal

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);

BEGIN) The process is only
count_process: triggered by the clock
PROCESS(clk) &8 y
BEGIN Keep the two IF

IF RISING_EDGE(clk) THEN " clauses separate
IF (reset_n="07) THEN _ «
count_signal<=(0THERS=>"0"); Reset is within the

ELSE RISING_EDGE structure

END IF;
END IF;
END PROCESS count_process;
END arch_counter_std_logic;

A simple way to set all
bits in the vector to
zero (0)

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN

END IF;

The architecture cont. END PROCESS count_process;

END arch_counter_std_logic;

Asynchronous implementation of the reset signal

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN

count_process: The process is triggered

PROCESS(reset_n,clK) |« by both the reset and
BEGIN the clock signal
IF ((reset_n="0") THEN] B Reset outside of the
count._stgnal=-(0THERs > 9 RISING_EDGE structure

ELSIF RISING_EDGE(clk) THEN
END IF;

END PROCESS count_process;
END arch_counter_std_logic;

Let’s keep the asyncronous version

2018-09-06

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(clk)

BEGIN

END PROCESS count_process;

The arChIteCture cont. END arch_counter_std_logic;

Now VHDL doesn’t have any rules for addition to
std_logic_vectors.

To do aritmetic operations the system must know if the
value should be treated as a signed or an unsigned value.

We introduce the std_logic_vector subtypes
SIGNED and UNSIGNED.

To do this we must include another library

USE ieee.numeric_std.ALL;

Don’t use the old libraries std_logic_signed and
std_logic_unsigned. They are not part of VHDL anymore

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal:std_logic_vector(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(clk)

BEGIN

IF RISING_EDGE(clock) THEN

END IF;

The archltecture cont. END PROCESS count_process;

END arch_counter_std_logic;

Let’s update

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:

PROCESS(reset_n,clk) Since we only count

BEGIN L.
IF ((reset_n="0") THEN positive values we use
count_signal<=(0THERS=>"0") the UNSIGNED type
ELSIF RISING_EDGE(clk) THEN
count_signal<=count_signal+1; count_signal isof
END IF; subtype UNSIGNED in
END PROCESS count_process; the whole process

END arch_counter_std_logic;

2018-09-06

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN
. count_signal<=count_signal+1;
The architecture cont. END IF:
END PROCESS count_process;
END arch_counter_std_logic;

The counting value will have to be
passed on to the output port

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(reset_n,clk)

BEGIN

IF ((reset_n="0") THEN
count_signal<=(0THERS=>"0")

ELSIF RISING_EDGE(clk) THEN The value must be
count_signal<=count_signal+1; interpreted as a
END IF; std_logic_vector
END PROCESS count_process; when passed on to the

count<=STD_LOGIC_VECTOR(count_signal);

_ output
END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter IS

SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN

count_process:

PROCESS(clk)

BEGIN

IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;

The architecture cont. END 1o

END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

The transfer to the output is done outside of the process.
Can we just as well do it within the process?

No!

If we put it in the process then the value will have to be
remembered from one clock pulse to the next so we have to
store it in flip-flops and it will also take one extra clock cycle for
this value to update

If we put it outside of the process then it will only be wires from
the count_signal, no extra flip-flops

2018-09-06

The architecture cont.

We must make sure that the counter goes back to zero (0) when
we have counted up to tha maximal value twelve (12).

We need one more condition

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

The architecture cont.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN
IF ((reset_n="0") THEN
count_signal<=(0THERS=>707);
ELSIF RISING_EDGE(clk) THEN
IF (count_signal="1100") THEN
count_signal<=(0THERS=>"07);
ELSE
count_signal<=count_signal+1;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

////////(NQNG_EDGH
T with any of the other conditions.

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

Don’t mix the clocking condition

2018-09-06

The architecture cont.

We could have used a count variable

instead

ARCHITECT!
BEGIN
count_|

of the count signal

URE arch_counter OF counter IS

process:

PROCESS(ck)

VARIABLE count_variable:UNSIGNED(3 DOWNTO 0);

BEGIN
IF

END
cou
END PR

END arch_

RISING_EDGE(clIk)

IF (reset_n="0") THEN
count_variable:=(0THERS=>"07);

ELSIF (count_variable=71100") THEN
count_variable:=(0THERS=>"07);
ELSE

count_variabl ount_var iable+l;

END IF;

END IF;

1F;

nt<=STD_LOGIC_VECTOR(count_variable);

OCESS count_process;

counter_std_logic;

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock)
IF (reset_n=707) THEN
count_signal<=(0THERS=>"07);
ELSIF (count_signal="1100") THEN
count_signal<=(0THERS=>"0");
ELSE
count_signal<=count_signal+1;
END IF;

END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

The variable is local to the process

Notice the variable assignment

Since the variable is local to the process
its value must be transfered to the
output within the process. This will not
give any extra flipflops though

The architecture cont.

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock) THEN
count_signal<=count_signal+1;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

Now let’s see how we can use an integer as the counting

parameter.

If we just declare the parameter as an integer then it will be of
size 32 bits which is a waste of hardware so we limit the range.

Since the counter only count from zero and upwards we can also
limit the range by using NATURAL numbers.

10

2018-09-06

The architecture cont.
We could have used an integer instead of
std_logic as the count parameter.

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :NATURAL RANGE O to 12;

BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clk)
IF (reset_n="07) THEN
count_signal<=0;

ELSIF (count_signal=12) THEN

count_signal<=0;
ELSE

count_signal<=count_signal+1;

END IF;
END IF;
END IF;
END PROCESS count_process;

count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,4));

END arch_counter_std_logic;

ARCHITECTURE arch_counter OF counter 1S

SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:
PROCESS(clk)
BEGIN
IF RISING_EDGE(clock)
IF (reset_n="0") THEN
count_signal<=(0THERS=>"07);
ELSIF (count_signal="1100") THEN
count_signal<=(0THERS=>"07);
ELSE

count_signal<=count_signal+1;

END IF;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

Limited range of the integer
subtype NATURAL

First we go from NATURAL to
UNSIGNED and then to
std_logic_vector

We must give the number
of bits for the vector

The architecture cont.

For the third option we will use our earlier ripple carry adder as

a component to do the addition.

A component is a fixed instantiation and can not be placed in

the sequential code of a process.

We should instantiate the component outside of the process
and then assign values to it from within the process using

signals

11

2018-09-06

The architecture cont.

We start with the component and other stuff outside of the

process

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
COMPONENT ripple_adder 1S
GENERIC(WIDTH:NATURAL:=4);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:0UT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END COMPONENT ripple_adder;
SIGNAL adder_a_signal :STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL adder_y_signal :STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
ripple_adder_comp:
ripple_adder
GENERIC MAP(WIDTH=>4)

Here we can use
STD_LOGIC_VECTOR
since we never do any
addition in the code

We always add one

PORT MAP(a=>adder_a_signal, b=>"0001",y=>adder_y signal);

The architecture cont.
And then the process

PROCESS(reset_n,clk)
BEGIN
IF (reset_n="0") THEN
adder_a_signal<="1111";
ELSIF RISING_EDGE(clk) THEN

I (3gder_y_§i9”?'="ﬂgg") THEN Together with 70001” in
adder_a_signal<=" "3 . T
ELSE b this will give zero
adder_a_signal<=adder_y_signal;
END IF;
END IF;
END PROCESS count_process; Transfer from counting
count<=adder_y_signal; signal to output

END arch_counter;

12

2018-09-06

The architecture cont.

Let’s add one last feature to our design.

We introduce an enable signal so we can
start and stop the counter.

This port should also be added to the entity.

ENTITY counter 1S
PORT (clk:IN STD_LOGIC;
reset_n:IN STD_LOGIC;
enable:IN STD_LOGIC;
count:0UT STD_LOGIC_VECTOR(3 DOWNTO 0));
END counter;

Let’s use the UNSIGNED version of the counter
with an asynchronous reset.

The architecture cont.

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN

count_process: I wri hi h b
PROCESS(reset._n,clk) written this way the counter can be

BEGIN reset although it isn’t enabled.

IF (reset_n="0") THEN
count_signal<=(0THERS=>"07); How would you write if you only
ELSIF RISING_EDGE(clk) want to be able to reset it when it’s
1F (enab|e=’l’) THEN enabled?
IF (count_signal="1100"") THEN
count_signal<=(0THERS=>"07);
ELSE
count_signal<=count_signal+1;
END IF;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

13

2018-09-06

The architecture cont.

ARCHITECTURE arch_counter OF counter IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset_n,clk,enable)

BEGIN
IF ((reset_n="0") AND) THEN The asynchronous reset
count_signal<=(0THERS=>"07); makes it a bit complicated

ELSIF RISING_EDGE(clk)
IF (count_signal="1100") THEN
count_signal<=(0THERS=>"07);
ELSE
count_signal<=count_signal+1;
END IF;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

ENTITY counter 1S
PORT (clk:IN STD_LOGIC;
. reset_n:IN STD_LOGIC;
Generic counter enable: IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END counter;

Let’s look at how to make our designs generic

First the entity.

What we have to do is add a GENERIC and
make that control the size of te count port

LIBRARY ieee;

USE ieee.std_logic_1164_ALL;
USE ieee.numeric_std.ALL;
USE ieee.math_real .ALL;

We calculate the size of the port

ENTITY counter IS LOG2 only works on REAL values and
GENERIC (COUNT_MAX:NATURAL:=12); is included in the math_real library
PORT (clk:IN STD_LOGIC;

reset_n:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(INTEGER(CEIL(LOG2(REAL(COUNT_MAX))))-1 DOWNTO 0));
END counter;

Round upwards
From REAL to INTEGER

14

2018-09-06

We have three different implementations so we
must look att what needs to be done to them to

make them generic.

Let’s look at the versions without enable signal to

make it simple.

We start with the version with
std_logic_vector and
UNSIGNED vector.

We must make the size of the
count_signal generic.

We do this in the same way as in the entity
but since we need to do this more than
once we use it to set a constant that we can
reuse

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN
IF ((reset_n="0") THEN
count_signal<=(0THERS=>"07);
ELSIF RISING_EDGE(clk) THEN
IF (count_signal="1100"") THEN
count_signal<=(0THERS=>"07);
ELSE
count_signal<=count_signal+1;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter_std_logic;

CONSTANT NO_BITS:NATURAL :=INTEGER(CE IL(LOG2(REAL(COUNT _MAX)))):

Then we can use this to set the size of the count signal and to set the max

value for the calculation

15

2018-09-06

ARCHITECTURE arch_counter OF counter IS
CONSTANT NO_BITS:NATURAL :=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));:
CONSTANT MAX_VECTOR:UNSIGNED(NO_BITS-1 DOWNTO 0):=
TO_UNSIGNED(COUNT_MAX,NO_BITS);
SIGNAL count_signal :UNSIGNED(NO_BITS-1 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN
IF (reset_n="0") THEN
count_signal<=(0THERS=>"0");
ELSIF RISING_EDGE(clk) THEN
IF (count_signal=MAX_VECTOR) THEN
count_signal<=(0THERS=>"0");

ELSE
count_signal<=count_signal+1;
END IF; Interprat UNSIGNED as
END IF; STD_LOGIC_VECTOR

END PROCESS count_process;
count<=STD_LOGIC_VECTOR(count_signal);
END arch_counter;

ARCHITECTURE arch_counter OF counter 1S
SIGNAL count_signal :NATURAL RANGE 0 to 12;

BEGIN
count_process:
PROCESS(clK)
. . BEGIN
No for the version with the NATURAL IF RISING_EDGE(cIK)
count variable. IF (reset_n="07) THEN
count_signal<=0;
ELSIF (count_signal=12) THEN
Here the size of the count signal is gﬁggt_signak:o;
already given by the GENER I C count_signal<=count_signal+1;
. . END IF;
The only thing we need to do is set the END IF;
H END IF;

number of bits for the count port. END PROCESS count._process:

count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,4));

END arch_counter_std_logic;

16

2018-09-06

ARCHITECTURE arch_counter OF counter IS
CONSTANT NO_BITS:NATURAL:=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));
SIGNAL count_signal :NATURAL RANGE O TO COUNT_MAX;
BEGIN
count_process:
PROCESS(reset_n,clk)
BEGIN
IF (reset_n="0") THEN
count_signal<=0;
ELSIF RISING_EDGE(clk) THEN
IF (count_signal=COUNT_MAX) THEN
count_signal<=0;
ELSE
count_signal<=count_signal+1;
END 1IF;
END IF;
END PROCESS count_process;
count<{STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,NO_BITS))%
END arch_counter;

No for the version with the
adder component.

The changes are simular to the earlier
ones.

We split the solution into two slides.

17

2018-09-06

ARCHITECTURE arch_counter OF counter 1S
CONSTANT NO_BITS:NATURAL:=INTEGER(CEIL(LOG2(REAL(COUNT_MAX))));
CONSTANT MAX_VECTOR:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0):=

STD_LOGIC_VECTOR(TO_UNSIGNED(COUNT_MAX,NO_BITS));

SIGNAL count_signal :UNSIGNED(NO_BITS-1 DOWNTO 0);
COMPONENT ripple_adder 1S
GENERIC(WIDTH:NATURAL:=8);
PORT(a:IN STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
b:IN STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0));
END COMPONENT ripple_adder;
SIGNAL adder_a_signal :STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
SIGNAL adder_b_signal :STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0);
SIGNAL adder_y_signal :STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0O);
CONSTANT B_CONSTANT:STD_LOGIC_VECTOR(NO_BITS-1 DOWNTO 0):=
STD_LOGIC_VECTOR(TO_UNSIGNED(1,NO_BITS));
BEGIN

This gives a vector with the
value 000..1

BEGIN
ripple_adder_comp:
ripple_adder
GENERIC MAP(WIDTH=>NO BITS)
PORT MAP(a=>adder_a_signal,
b=>B_CONSTANT,
y=>adder_y signal); The b input is
always one
count_process:
PROCESS(reset_n,clk)
BEGIN
IF (reset_n="0") THEN
adder_a_signal<=(0THERS=>"1%); .
ELSIF RISING_EDGE(cIK) THEN Together with
IF (adder_y signal=MAX_VECTOR) THEN b we get zero
adder_a_signal<=(0THERS=>"1%);
ELSE
adder_a_signal<=adder_y_ signal;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(adder_y signal);
END arch_counter;

18

2018-09-06

Conditional coding cont.
We’ve touched on conditional coding by using IF

Let’s look at it a bit more taking a MUX as an
example

We can do this with or without a process. "t |

MUX ———o Output s

The coding will not be the same though Input b o——

l Input
But the entity is the same control

ENTITY conditional_MUX 1S
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC;
S:OUT STD_LOGIC);
END conditional_MUX;

Inputa o——
MUX ——o Output s

Conditional coding cont.

Input b o——

ﬁput
In concurrent code we get control

ARCHITECTURE arch_conditional_MUX_conc OF
conditional_when IS
BEGIN
s<=b WHEN (control="1%") ELSE
a,;
END arch_conditional_MUX_conc;

Make sure to cover all
values for control

Remember that there are
nine possible values for
STD_LOGIC

19

2018-09-06

Conditional coding cont.

In a process we get

Input a ©——
MUX ——o Output s

Input
control

Input b 0——

ARCHITECTURE arch_conditional_MUX_proc OF

conditional_when IS
BEGIN
if_proc:
PROCESS(control)
BEGIN
IF (control="1") THEN
s<=b;
ELSE
s<=a;
END IF;
END PROCESS if_proc; END
arch_conditional _MUX_proc;

The problem is that
this won’t work!

Why?

Conditional coding cont.

The process only triggers when control
changes value and doesn’t care what happens in
between. It doesn’t react to changesinaorb

To make it work we must add all signals that
influence the output to the sensitivety list

ARCHITECTURE arch_conditional_MUX_proc OF
conditional_when 1S
BEGIN
if _proc:
PROCESS(control ,a,b)
BEGIN
IF (control="1") THEN
s<=b;
ELSE
s<=a;
END IF;
END PROCESS if_proc; END
arch_conditional_MUX_proc;

ARCHITECTURE arch_conditional_MUX_proc OF
conditional_when IS
BEGIN
if_proc:
PROCESS(control)
BEGIN
IF (control="1") THEN
s<=b;
ELSE
s<=a;
END IF;
END PROCESS if_proc;
END arch_conditional_MUX_proc;

Make sure to cover all
values of control

20

2018-09-06

Conditional coding cont.

Let’s add one input to the MUX.

We need one more input and
a two bit control signal.

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC;
c:IN STD_LOGIC;

Input a o——

Inputb o—— MUX [———o Output s
Input c o——
2 Input
control

control: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

s:0UT STD_LOGIC);
END conditional_MUX;

Conditional coding cont.

We get the architecture

ARCHITECTURE arch_conditional_when_3 OF

ENTITY conditional_MUX 1S
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:0UT STD_LOGIC);
END conditional_MUX;

conditional_when_3 1S

BEGIN
s<= a WHEN (control="00") ELSE
b WHEN (control="01"") ELSE
C;
END arch_conditional_when_3;

We have three inputs but the
control signal has four
possibilities so we need do deside
what to do with the unused value.

In this code we assign C to the
output in that case too but there
are other possibilities

21

2018-09-06

Conditional coding cont.

We can also use another structure

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
S:OUT STD_LOGIC);
END conditional_MUX;

ARCHITECTURE arch_conditional_with_select OF
conditional_with_select IS

BEGIN
WITH control SELECT
s<=a WHEN *'00",
b WHEN 01",
c WHEN OTHERS;
END arch_conditional_with_select;

It’s simular to a switch
structure in software

Conditional coding cont.

Let’s once again use a process

ARCHITECTURE arch_conditional_if_3 OF

ENTITY conditional_MUX 1S
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s:0UT STD_LOGIC);
END conditional_MUX;

conditional_if _3 IS

BEGIN
if_proc:
PROCESS(control ,a,b,c)
BEGIN
IF (control="00") THEN
s<=a;
ELSIF (control="01") THEN
s<=b;
ELSE
s<=C;
END IF;
END PROCESS if_proc;
END arch_conditional_if_3;

Once again all signals from
the assignment must be in
the sensitivity list

22

2018-09-06

Conditional coding cont.

ENTITY conditional_MUX IS
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC;
b:IN STD_LOGIC;
control:IN STD_LOGIC_VECTOR(1 DOWNTO 0);
S:OUT STD_LOGIC);

We have another structure here too enp conditional_mux;

ARCHITECTURE arch_conditional_case OF
conditional_case IS

BEGIN
if_proc:
PROCESS(control ,a,b,c)
BEGIN
CASE control IS
WHEN *00" =>
s<=a;
WHEN "01" =>
s<=b;
WHEN OTHERS =>
s<=C;
END CASE;
END PROCESS if_proc;
END arch_conditional_case;

This is also simular to the
software switch structure.

Once again all signals from
the assignment must be in
the sensitivity list

Shift operations

There are a number of common shift operations

* Logic shift left

* Logic shift right

* Aritmetic shift left
* Aritmetic shift right

* Rotate

For bit patterns and unsigned numbers

For signed numbers

For bit patterns

23

2018-09-06

Shift operations
Logic shifts

In logic shifts we treat the vector that is to be shifted as a number
of bits and don’t have to think about any sign of the value.

This also works for unsigned numbers.
A left shift moves the bits a number of steps to

the left pushing out the bits that will no longer
fit in the vector and fill the new LSB’s with zeros.

Let’s shift the vector 01101101 two steps to the left

01101101 — 10110100

01 are pushed out 00 are added

Shift operations
Logic shifts cont.

A right shift moves the bits a number of steps to
the right pushing out the bits that will no longer
fit in the vector and fill the new MSB’s with
zeros.

Let’s take the same vector 01101101 and shift it
three steps to the right

01101101 — 00001101

101 are pushed out 000 are added

24

Shift operations
Aritmetic shifts

In an aritmetic shift we need to take the sign of
the number into account, but only when we do
a right shift.

We must sign extend the number.

Let’s once again take the number 01101101 and
shift it two steps to the right.

The value is positive so extention means inserting zeros

01101101 — 00011011

01 are pushed out 00 are added

A logical and an aritmetic left shift are the same

Shift operations
Aritmetic shifts

Let’s now take another vector 11010110 and shift
it two steps to the right.

The value is negative so extention means inserting ones

11010110 — 11110101

10 are pushed out 11 are added

2018-09-06

25

2018-09-06

Shift operations
Rotation

In rotation a number of bits are pushed out at

one end of the vector and reenters the vector at

the other end.

We take the same number as before 01101101 and

rotate it two steps to the right.
01101101 — 01011011

01 are pushedout (1 reenters

If we rotate the number three steps to the left we get

01101101 — 01101011

011 are pushed out (11 reenters

Shift operations
Implementation
We can write our own shift and rotate functions.

We assign the value to be shifted to a signal

SIGNAL shift_vector: STD_LOGIC_VECTOR(7 DOWNTO 0);
shift_vector<=701101101";

Three steps shift to the left, aritmetic or logic gives
shift_vector<=shift_vector(4 DOWNTO 0) & 000”;
Two steps logic shift to the right gives

shift_vector<="00" & shift_vector(7 DOWNTO 2);

26

2018-09-06

Shift operations
Implementation cont.
Two steps aritmetic shift to the right gives

shift_vector<=700" & shift_vector(7 DOWNTO 2);

Since the value is positive it’s the same as the logical shift

Lets’s take a negative value
shift _vector<=711011010";

Three steps aritmetic shift to the right gives

shift_vector<="111" & shift_vector(7 DOWNTO 3);

Shift operations
Implementation cont.

Now rotation

shift_vector<=711011010";

Three steps rotation to the left gives
shift_vector<=shift_vector(4 DOWNTO 0) &
shift_vector(7 DOWNTO 5);

Four steps rotation to the right gives

shift_vector<=shift_vector(3 DOWNTO 0) &
shift_vector(7 DOWNTO 4);

27

2018-09-06

Shift operations
Shifts using library functions

We have some ready made shift functions in the
numeric_std library.

Note that you should not use the functions in the libraries
std _logic_signedorstd _logic_unsigned

We have two functions
* shift_right
* shift_left

Each function has two declarations, one for signed
values and one for unsigned values

The two versions are overloaded.

We don’t have to declare which version that is used. The compiler
uses the correct version depending on the signal type

Shift operations
Shifts using library functions cont.
If we for example look at shift_left we have
the function declarations

function shift_left (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;

function shift_left (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

The vector to shift The number of steps to shift.
Positive for left shift, negative
for right shift

Note that we must use the STD_LOGIC_VECTOR
sub types SIGNED and UNSIGNED

28

2018-09-06

Shift operations
Shifts using library functions cont.

Now to shift a vector shift_vector three steps
to the right we write

shift_vector<=shift_right(shift_vector,3);

If the result will be sign extended or not depends on if the vector
shift_vector is defined as SIGNED or as UNSIGNED

Testbenches

To verify that our design is correct we need to simulate our results.

We will be using the simulator QuestaSim (or
ModelSim) from Mentor for this.

To assist in the simulation we can create a kind of test
fixture in VHDL, a testbench.

Testbench

This is a top level design where we instantiate PN . E
our own design as a component and generate 25 —o— 232
SE Desi S =

. . . £ = |—o— Design as o3
input stimuli for the component and watch or T =
. . . g3 compo- £3

check the resulting output signals. We might & & o— nent £
also check internal signals T3

29

2018-09-06

Testbenches cont.

We can have three different types of testbenches

* Type 1 only generates input stimuli and we have to
watch the results in the simulator

* Type 2 generates input stimuli, checks the results and
gives an OK signal if the resulting output values are
correct

* Type 3 generates input stimuli and writes a message
to the simulator output window if something goes
wrong with the simulation results

Testbenches cont.

Example
Let’s take our one bit full adder as an example.

We have the entity

ENTITY full_adder 1S
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:0UT STD_LOGIC
cout:OUT STD_LOGIC);
END full_adder;

30

2018-09-06

ENTITY full_adder 1S
PORT(a:IN STD_LOGIC;
b:zIN STD_LOGIC;

Testbenches cont.

y:0UT STD_LOGIC
cout:OUT STD_LOGIC);
END full_adder;

Example cont.

We need to generate eight different input stimuli to fully test the circuit

= | L L0 |

o L[L
cin ‘ L
s L]
1 _
1 2 3 4 5 6 7 8

To simplify things we will accept that more than one signal changes it’s
value at a given time

Testbenches cont.

Example cont.
Let’s start creating the testbench. We begin with test benchtype 1

In this case we only watch the results from the simulation and we do not need
any input or output ports to the testbench.

ENTITY full_adder_tbl IS

END full_adder_tbil;
The entity is empty since we have no inputs and no
outputs

This causes a problem in QuestaSim since by default signals that don’t
connect to outputs are optimized away.

To overcome this we can simulate without optimization. The paper on
QuestaSim describes how to do this

31

2018-09-06

Example cont.

In the testbench architecture we instantiate our full adder as a component

ENTITY full_adder_tbl IS
PORT (y_tb:OUT STD_LOGIC
cout_tb:0UT STD_LOGIC);
END full_adder_tb1;

ARCHITECTURE arch_full_adder_tbl OF full_adder_tbl 1S

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;

Component
_— declaration

cin:IN STD_LOGIC; —

s:OUT STD_LOGIC

cout:OUT STD_LOGIC);
END COMPONENT full_adder;
SIGNAL a_signal :STD_LOGIC;
SIGNAL b_signal :STD_LOGIC;
SIGNAL cin_signal:STD_LOGIC;
SIGNAL s_signal :STD_LOGIC;
SIGNAL cout_signal :STD_LOGIC;

BEGIN

full_adder_comp:COMPONENT full_adder

Signals to connect
to the component

Component
Instantiation

PORT MAP(a=>a_tb,b=>b_tb,cin=>cin_tb,

s=>s_signal ,cout=>cout_signal);

Testbenches cont.

Example cont.
We complete the architecture with the input stimuli

a_signal <= 07,
"1" AFTER 100 ns,
"0" AFTER 200 ns,
"1" AFTER 300 ns,
"0" AFTER 400 ns,
"1" AFTER 500 ns,
"0" AFTER 600 ns,
"1" AFTER 700 ns;
b_signal <= "0,
"1" AFTER 200 ns,
"0" AFTER 400 ns,
"1" AFTER 600 ns;
cin_signal <= "0",
"1" AFTER 400 ns;
END arch_full_adder_tbl;

This is one of the few
times when we can and
should use time in our
designs

The exact times are not
important since we deal
with simulation of a
design without circuit
delays

But we should create
all the input signal
combinations we want
to test for

32

2018-09-06

Testbenches cont.

Example cont.
We need a do file.

Since the instimuli is given in the testbench all the do file need to is
to set up signals we like to watch and run the simulation time.

-- full_adder_tbl.do

restart -f -nowave

view signals wave

add wave a_signal b_signal cin_signal | signalsto watch
add wave s_signal cout_signal

run 730ns

Run the simulation for this time

Testbenches cont.

Example cont.
We move on to test benchtype 2

Here we will need a output signal that signals if something goes wrong
with the output signals from the component during simulation.
We add an output to our testbench entity

ENTITY full_adder_tb2 IS

PORT (test_OK:OUT STD_LOGIC);
END full_adder_tb2;

33

2018-09-06

ENTITY full_adder_tb2 1S

PORT(test_OK:OUT STD_LOGIC);

TeStbenCheS Cont END full_adder_tb2;

Example cont.
In the architecture we keep the component declaration and do a
component instantiation using signals and not outports

ARCHITECTURE arch_full_adder_tb2 OF full_adder_tb2 IS
COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC
cout:OUT STD_LOGIC);
END COMPONENT full_adder;
SIGNAL a_signal :STD_LOGIC;
SIGNAL b_signal :STD_LOGIC;
SIGNAL cin_signal:STD_LOGIC;
SIGNAL s_signal :STD_LOGIC;
SIGNAL cout_signal:STD_LOGIC;
BEGIN
full_adder_comp:COMPONENT full_adder
PORT MAP(a=>a_tb,b=>b_tb,cin=>cin_tb,
s=>s_signal,cout=>cout_signal);

Testbenches cont.

Example cont.

We keep the imput stimuli from testbench type 1

a_signal <= 07,
"1" AFTER 100 ns,
"0" AFTER 200 ns,
"1" AFTER 300 ns,
"0" AFTER 400 ns,
"1" AFTER 500 ns,
"0" AFTER 600 ns,
"1" AFTER 700 ns;
b_signal <= "0°",
"1" AFTER 200 ns,
"0" AFTER 400 ns,
"1" AFTER 600 ns;
cin_signal <= "0",
"1" AFTER 400 ns;

34

2018-09-06

Testbenches cont.

Example cont.

We have to complete the code with a test of the output signals

We write the code so that the test_OK signal will go low if
an error occures and then stay low even if the next stimuli
gives a correct result

a_signal <= "0",
"1" AFTER 100 ns,
"0" AFTER 200 ns,
b_signal <= 0"

Testbenches cont. = wwm=e=e

cin_signal <= "0,

"1" AFTER 400 ns;

Example cont.

test_proc:PROCESS Default value for test_OK

BEGIN .
tost ok < 15
WAIT FOR 50 ns; -- 000
IF ((s_signal/="0") OR (cout_signal /= "0")) THEN

Wiait until the input signals have stabilized

test_OK <= "0%; <—

END IF;

WAIT FOR 100 ns; --

IF ((s_signal/="1%)
test_OK <= "0~;

END IF;

WAIT FOR 100 ns; --

IF ((s_signal/="1%)
test_OK <= "0~;

END IF;

——— Ifthe result isn’t 00 then set test_OK low

100 < Test for next stimuli
OR (cout_signal /= "0")) THEN

010
OR (cout_signal /= "0")) THEN

~ Continue for all eight combinations
of input signals

END PROCESS test_proc;
END arch_test_bench_type2;

35

2018-09-06

Testbenches cont.

Example cont.
We need a do file here too.

The only difference from the do file for testbench type 1 is that we have
added the signal test_OK to the signals we watch

-- full_adder_tb2_do

restart -f -nowave

view signals wave

add wave a_signal b_signal cin_signal
add wave s_signal cout_signal test OK '
run 730ns-

Signals to watch

Run simulation Added signal

The only signal to watch in the test bench is really test_OK but it is
practical to keep the rest of the signals for debugging

test:PROCESS

BEGIN
test_OK <= "17;
WAIT FOR 50 ns; -- 000
IF ((s_signal/="0") OR (cout_signal /= "0%)) THEN
T b h test_OK <= "0";
estbenches cont. END IF;
WAIT FOR 100 ns; -- 100

IF ((s_signal/="1") OR (cout_signal /= "0%)) THEN
test_OK <= "0";
END IF;
WAIT FOR 100 ns; -- 010
IF ((s_signal/="1") OR (cout_signal /= "0%)) THEN
test_OK <= "0";
Example cont. END IF;

END PROCESS test;
END arch_test_bench_type2;

Observe that as soon as a test sets test_OK to zero then it will stay at
zero although following tests can be OK

We shouldn’t run this simulation longer than the added WAIT
times since the process will restart when it reaches it’s end and
then the results will most likely be incorrect

36

2018-09-06

Testbenches cont.

Example cont.
Now over to testbenchtype 3

In this case we don’t need any output signal either since the internal
signals are used for our test and since these tests will give the written
reports if something is wrong then we have an empty entity

ENTITY full_adder_tb3 1S

END full_adder_tb3;

We will rewrite the test process, that is replace the test_OK process,
but keep the rest of the architecture code

a_signal <= "0",
"1" AFTER 100 ns,
"0" AFTER 200 ns,

Testbenches cont. b Cgnat < 0r)

"1" AFTER 200 ns,
cin_signal <= "0,

Example cont.

If this condition is true then nothing

test_proc:PROCESS is wrong with the signals so do nothing

BEGIN
WAIT FOR 50 ns; -- 000
ASSERT ((s_signal="0") AND (cout signal = "0%))
REPORT “000 50ns™ <—
SEVERITY warning;
WAIT FOR 100 ns; -- 100

The current simulation time and this text
— will be written to the simulators Transcript
window if the output signals are incorrect

ASSERT ((s_signal="1") AND (cout_signal = "0%))
REPORT "'100 150ns"

SEVERITY warning;

WAIT<FOR 100 ns; -- 010

Continue for all eight combinations

END PROCESS test_proc; of input signals

END arch_test_bench_type3;

"1" AFTER 400 ns;

37

2018-09-06

Testbenches cont.

Example cont.

If the ASSERT expression is true then the output signals
have the correct values

If the expression is false then the test time and the REPORT
message will be written to the simulators output window
We can have four different levels of SEVERITY

* note, the message will have the header Note
The simulation

* warning, the message will have the header Warning X
continues

* error, the message will have the header Error
* failure, the message will have the header Failure < The simulation will stop

. . L . at current time
The severity levels are given in increasing order

The severity level should be choosen based on
the kind of action the error calls for

Example cont.

The assert messages that you write can be simple or very detailed.
You decide!

For a more advanced design the test will be quit extensive
and you need to write a lot of code just for the test

38

2018-09-06

Testbenches cont.

Example cont.
Once again we need a do file.

We're back to the same do file as the one we used for
testbench 1 since we have no output.

-— full_adder_tb3.do

restart -f -nowave

view signals wave

add wave a_signal b_signal cin_signal
Add wave s_signal cout_signal

run 730ns

Signals to watch

Run simulation

Strictly we don’t need to watch any signals since we have the
assertions but like in test bench type 2 it is practical to keep the
signals for debugging

Test benches

Clocks in test benches

We can create our clocks in the do file like before
force clk_tb 0 0,1 50ns -repeat 100ns
or create it in the test bench

clk_proc:PROCESS
BEGIN
WAIT FOR 50 ns;
clk_tb<=NOT(clk_tb);
END PROCESS clk_process;

Don‘t forget to set a start value for the clock signal

SIGNAL clk_tb:STD_LOGIO:="0%;

In this case this is OK to do this since the signal value
will only be used in simulation, not in synthesis

39

