
2018‐09‐06

1

VHDL
part 1

Let´s look at the first assignment from the
introductory lab

2018‐09‐06

2

Full adder

a b cin cout s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
We have the user perspective of the
design, the interface

We have the functionallity, the
internals

In VHDL we call this an entity

In VHDL we call this an architecture

Full adder cont.

Entity

Architecture

Po
rtsPo

rt
s

Input a

Input b

Input cin

Output s

Output cout

SystemInput a

Input b

Input cin

Output s

Output cout
≥1

a

s

&

=1
=1

&

&

≥1 co
ut

bci
n

System

Signals

2018‐09‐06

3

Full adder cont.

Now to VHDL

Let´s look at the entity

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END full_adder;

Basic library functions

Name of the entity

Input ports

Output ports

Name of the entity again

The entity

The external, visual part of a VHDL design is the entity that defines
the connections (ports) in and out of the design.

The entity can also contain generics, attributes that are used to
control the design, for example the width of vectors.

The entity has the following structure

ENTITY entity_name IS
[GENERIC (generic_name:data_type[:=value]);]
PORT(port_name1:connection_type datatype;

port_name2:connection_type datatype);
END entity_name;

Observe where the semicolon (;) separators are placed

Entity

Formal view

We will get back to this

2018‐09‐06

4

Full adder cont.

Let´s look at the entity cont.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END full_adder;

Port type

Ports
Formal view

The ports are our connections in and out of the design

Ports

We can have four different connection types for the ports

IN data path directed into the design
OUT data path directed out of the design

INOUT bidirectional data path
BUFFER a readable output Avoid using this

2018‐09‐06

5

Full adder cont.

Now to VHDL

Let´s look at the entity cont.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END full_adder;

Signal type

VHDL basics cont.
Data types

Scalar types
Type declarations

TYPE ubyte IS RANGE 0 TO 255;
TYPE nibble IS RANGE -8 TO 7;

Signal declarations

SIGNAL xint_signal:INTEGER;
SIGNAL xubyte1_signal:ubyte;
SIGNAL xubyte2_signal:ubyte;
SIGNAL xnibble_signal:nibble;

Predefined type with range
‐231 – (231‐1) =
= ‐2,147,483,648 – 2,147,483,647

What about assignments? The integer type could represent all
the values in the ubyte range so

No! They are two different types
and VHDL is strictly typed.
To go between types we need
conversion functions

xubyte1_signal <= xubyte2_signal;

is OK though. They are of the same type

Placed in the architecture
before the first BEGIN

Our declared types

xint_signal <= xubyte1_signal;

would be OK, wouldn´t it?

Signal names

2018‐09‐06

6

VHDL basics cont.
Scalar types cont.

Our VHDL code will be synthesized to hardware and this hardware must
be able to handle all possible values of a signal.

In the hardware our signals are represented by binary bits.

An integer will have to be represented by 32 bits to cover all possible values
and that would have to be the width of our signal paths then.

If we only use a fraction of the integer range that would be a
waste of hardware.

Even worse if the signal is to be stored along the signal path. In every place where
we want to store the signal we would have to include 32 flip‐flops to do this.

Why not just use INTEGER as in software?

The ubyte type would take 8 bits and the nibble type only 4 bits.

A word of warning. The simulator will give an error if we try to use values
outside of the range of the type but the hardware won´t

We can restrict the integer range though.

TYPE ubyte IS RANGE 0 TO 255;
TYPE nibble IS RANGE -8 TO 7;

SIGNAL xint_signal:INTEGER RANGE 10 TO 20;

VHDL basics cont.
Scalar types cont.

There are a couple of sub types to integer

More on integers

SUBTYPE NATURAL IS INTEGER RANGE 0 TO INTEGER’HIGH

SUBTYPE POSITIVE IS INTEGER RANGE 1 TO INTEGER’HIGH

Positive values
including zero

Positive values
excluding zero

2018‐09‐06

7

VHDL basics cont.
Scalar types cont.

Symbolic names for the values of a signal

Enumeration types

TYPE weekday IS (sun,mon,tue,wed,thu,fri,sat);
TYPE washing_machine IS (pre_wash,wash,rinse,dry);

Typically used to name the states in a state machine,
like the phases, the states, of a traffic light (green, yellow, red)

Some useful predefined enumeration types

TYPE boolean IS (false,true);

TYPE bit IS (’0’,’1’);

Useful in conditional code

Logical values.

The ’‐signs indicate that these values
are actually characters

Not recommended
use std_logic

VHDL basics cont.
Scalar types cont.

Enumeration types cont.

TYPE std_ulogic IS (’U’, -- uninitialized
’X’, -- forcing unknown
’0’, -- forcing zero
’1’, -- forcing one
’Z’, -- high impedance
’W’, -- weak unknown
’L’, -- weak zero
’H’, -- weak one
’-’); -- don´t care

The rest of the line is a comment

Standard logic (std_logic) is a type that is formed from std_ulogic

Standard logic unsigned

Signed or unsigned has no meaning for single bits

Standard logic is our recommended type for all binary signals

Only relevant
in simulation

Only relevant
at compilation

Always relevant

For multi‐bit signals it´s expanded to std_logic_vector

2018‐09‐06

8

Full adder cont.

Now to VHDL

Let´s look at the architecture

ARCHITECTURE arch_full_adder OF
full_adder IS

BEGIN
s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END arch_full_adder;

Name of
architecture

Name of entity

Name of architecture again

The name could be any‐
thing but I use the entity
name headed by arch_
The name can´t start with
a digit though

a b cin cout s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The new line doesn´t mean
anything but improves readability

Full adder cont.

Now to VHDL

Let´s look at the architecture cont.

ARCHITECTURE arch_full_adder OF
full_adder IS

BEGIN
s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END arch_full_adder;

This is a structural description where we use logical blocks (AND,
XOR and OR) to describe the functionality.

We can also use a behavior description where we describe what
should happen in logical manner.

The behavior description is not suited for this specific design.

2018‐09‐06

9

Structural and behavior design

Let´s illustrate the two description types by a very simple example:
an AND gate.

-- AND gate
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y<=a AND b;
END arch_and2;

First the structural design.

An AND building block

Output

Inputs

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2_behavioral OF and2 IS
BEGIN

y <= '1' WHEN (a='1') AND
(b='1') ELSE

'0';
END arch_and2_behavioral;

Notice that the entity
is the same in the two
cases

-- AND gate
LIBRARY ieee;
USE
ieee.std_logic_1164.ALL;

ENTITY and2 IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
y:OUT STD_LOGIC);

END and2;

ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y <= a AND b;
END arch_and2;

In this case the behavioral desciption is somewhat more
complicated but this is no general rule

Structural and behavior design cont.

Now the bahavior design.

Behavioral description

The behavioral desciption becomes more suited when we get
to a bit more complex designs

2018‐09‐06

10

Full adder cont.

In the simple cases we´ve seen so far we don´t
need any internal signals we can use just the ports.

ARCHITECTURE arch_full_adder OF
full_adder IS

BEGIN
s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END arch_full_adder;

If we like we can add some internal signals
anyway.
Let´s do it to the full adder just for illustration

Full adder cont.

ARCHITECTURE arch_full_adder OF
full_adder IS

SIGNAL a_b1_signal:STD_LOGIC;
SIGNAL a_b2_signal:STD_LOGIC;
SIGNAL a_cin_signal:STD_LOGIC;
SIGNAL b_cin_signal:STD_LOGIC;

BEGIN:
a_b1_signal<=a XOR b;
s<=a_b1_signal XOR cin;
a_b2_signal<=a AND b;
a_cin_signal<=a AND b;
b_cin_signal<=b AND cin;
cout<=a_b2_signal OR

a_cin_signal OR
b_cin_signal cin);

END arch_full_adder;

The signal names could be
anything as long as they don´t start
with a digit but I try to use
descriptic names that include the
type of signal holder (_signal)

If we synthezise the two designs
the result will be exactly the same

ARCHITECTURE arch_full_adder OF
full_adder IS

BEGIN
s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END arch_full_adder;

2018‐09‐06

11

Full adder cont.

ARCHITECTURE arch_full_adder OF
full_adder IS

SIGNAL a_b1_signal:STD_LOGIC;
SIGNAL a_b2_signal:STD_LOGIC;
SIGNAL a_cin_signal:STD_LOGIC;
SIGNAL b_cin_signal:STD_LOGIC;

BEGIN
a_b1_signal<=a XOR b;
s<=a_b1_signal XOR cin;
a_b2_signal<=a AND b;
a_cin_signal<=a AND b;
b_cin_signal<=b AND cin;
cout<=a_b2_signal OR

a_cin_signal OR
b_cin_signal;

END arch_full_adder;

In this design all the ports and
signals are updated all the time in
parallel. The description doesn´t
indicate any sequential flow, it is
concurrent

A signal is just a
connecting wire it
doesn´t have any
direction like ports
have

Full adder cont.

We can do a design with a sequential flow but then we must
introduce the PROCESS.

A process is a part of the architecture where the content is
updated sequentially, statement by statement.

The whole process is updated in parallel withe the rest of the
code though. The process is a concurrent block.

Process

2018‐09‐06

12

Full adder cont.

ARCHITECTURE arch_full_adder OF
full_adder IS

BEGIN
full_adder_process:
PROCESS(a,b,cin)
BEGIN

s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END PROCESS full_adder_process;
END arch_full_adder;

Process cont.

Let´s write a process version of our full adder.

Name of the process
(not mandatory)

Sensitivity list

Notice

Name of the process again
(not mandatory)

Notice

Full adder cont.
ARCHITECTURE arch_full_adder OF

full_adder IS
BEGIN

full_adder_process:
PROCESS(a,b,cin)
BEGIN

s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END PROCESS full_adder_process;
END arch_full_adder;

The sensitivety list

The sensitivity list is a list of the signals that should trigger
the process, make it react and do it´s thing, when any of the
items in the list change its value.

This can also be done using WAIT statements. Check this on
your own. I find this a bit less intuitive.

This process will generate exactly the same hardware as the
concurrent version.

There is a slight difference in simulation. We´ll get back to this

2018‐09‐06

13

Full adder cont.

Sensitivety list mystery

The sensitivity list is a list of the
signals that should trigger the
process.

If we leave out one of the input signals, for example b then the process
shouldn´t update when b changes it its value.

ARCHITECTURE arch_full_adder OF
full_adder IS

BEGIN
full_adder_process:
PROCESS(a,b,cin)
BEGIN

s<=(a XOR b) XOR cin;
cout<=(a AND b) OR

(a AND cin) OR
(b AND cin);

END PROCESS full_adder_process;
END arch_full_adder;

This is true in simulation but the synthesized design will not care about the
absence of one of the signals from the sensitivity list.

The synthesized result will be the same with or without b in the sensitivity
list and it will also be the same with or without the process.

In the version with signals in a process things may not work the way they
should as we shall see now in another example.

Concurrent and sequential code

Let´s look some more at the differences
between concurrent and sequential code.

We will not use the full adder but a simple
design that is tailor made to illustrate this.

2018‐09‐06

14

VHDL basics cont.
Example

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;
SIGNAL x_seq_signal:STD_LOGIC;

BEGIN
x_conc_signal <= a AND b;
y_conc <= x_conc_signal OR c;

seq_proc:
PROCESS(a,b,c)
BEGIN

x_seq_signal <= a AND b;
y_seq <= x_seq_signal OR c;

END PROCESS seq_proc;
END arch_and_or;

Internal signals
interconnections

Concurrent code

Sequential code

Sensitivety list

The signals that trigger
(activate) the process

Process name

Architecture

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

VHDL basics cont.
Example cont.

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;
SIGNAL x_seq_signal:STD_LOGIC;

BEGIN
x_conc_signal <= a AND b;
y_conc <= x_conc_signal OR c;

seq_proc:
PROCESS(a,b,c)
BEGIN

x_seq_signal <= a AND b;
y_seq <= x_seq_signal OR c;

END PROCESS seq_proc;
END arch_and_or;

The x_conc_signal
value is immediately
updated and passed on
to the OR statement

The x_seq_signal
value is updated when
we leave the process

The value x_seq_signal had
when we entered the process is
used, the assignment on the line
above isn´t effective yet

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

2018‐09‐06

15

VHDL basics cont.
Example alternative

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;

BEGIN
x_conc_signal <= a AND b;
y_conc <= x_conc_signal OR c;

seq_proc:
PROCESS(a,b,c)

VARIABLE x_seq_variable:STD_LOGIC;
BEGIN

x_seq_variable := a AND b;
y_seq <= x_seq_variable OR c;

END PROCESS seq_proc;
END arch_and_or;

The x_conc_signal
value is immediately
updated and passed on
to the OR statement

The x_seq_variable
value is immediately
updated and passed on
to the OR statement

The new value of
x_seq_variable
is used

Variable asignment

Variable, local to the process,
not visable outside of the process

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

The variable is a new consept

VHDL basics cont.
What if we change the
order of the statements?

ARCHITECTURE arch_and_or OF and_or IS
SIGNAL x_conc_signal:STD_LOGIC;

BEGIN
y_conc <= x_conc_signal OR c;
x_conc_signal <= a AND b;

seq_proc:
PROCESS(a,b,c)

VARIABLE x_seq:STD_LOGIC;
BEGIN

y_seq <= x_seq_variable OR c;
x_seq_variable := a AND b;

END PROCESS seq_proc;
END arch_and_or;

The x_conc_signal
value is immediately
updated and passed on
to the OR statement

The statement uses the
x_seq_variable value
we had when we entered
the process

x_seq_variable is
updated after the use in
the y_seg assignment
because of the order of
the statements

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;

b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:OUT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

change of
order

change of
order

It doesn´t matter that
x_seq_variable is
updated imediately, it´s
still after the other
statement

2018‐09‐06

16

Full adder cont.

ARCHITECTURE arch_full_adder OF full_adder IS
BEGIN

full_adder_process:
PROCESS(a,b,cin)
BEGIN

a_b1_signal<=a XOR b;
s<=a_b1_signal XOR cin;
a_b2_signal<=a AND b;
a_cin_signal<=a AND b;
b_cin_signal<=b AND cin;
cout<=a_b2_signal OR

a_cin_signal OR
b_cin_signal cin);

END PROCESS full_adder_process;
END arch_full_adder;

Process cont.
If we put our full adder with signals in a process we get

Updated when we leave
the process

Incorrect values
will be used

Full adder cont.

ARCHITECTURE arch_full_adder OF full_adder IS
BEGIN

full_adder_process:
PROCESS(a,b,cin)
VARIABLE a_b1_variable:STD_LOGIC;
VARIABLE a_b2_variable:STD_LOGIC;
VARIABLE a_cin_variable:STD_LOGIC;
VARIABLE b_cin_variable:STD_LOGIC;
BEGIN

a_b1_variable:=a XOR b;
s<=a_b1_variable XOR cin;
a_b2_variable:=a AND b;
a_cin_variable:=a AND cin;
b_cin_variable:=b AND cin;
cout<=a_b2_variable OR

a_cin_variable OR
b_cin_variable;

END PROCESS full_adder_process;
END arch_full_adder;

Process cont.
We can get the correct behavior by using variables

Notice that the process still is
sequential so the order between
the statements is important

2018‐09‐06

17

Multi bit adder

A one bit adder is not that useful.

We must use more bits.

c3 c2 c1 c0 0
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

Let´s look at a four bit adder.

We can see that it´s
actually four one bit
adders.

Why not reuse our one bit adder?

ci is zero

Multi bit adder cont.

We use the one bit adder as a component in our
four bit adder design and instantiate it four times.

Instantiate means to actually create the
component so we need to do this four times.

No cin but it
must have a
value

No cout

We can of course keep cin and cout if we like.

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

2018‐09‐06

18

Vectors

Before we move on we must look at how to
represent signals with more than one bit.

VHDL basics cont.
Composite data types

Arrays, vectors

Since we have to form our multi‐value signals from binary values in
our hardware implementation, binary vectors are our basic form
for signal description besides single binary bits

TYPE byte IS ARRAY (0 TO 7) OF std_logic;

Observe that this is not the same as the earlier type definition of ubyte.
Both can take on 256 different values but the types are not interchangable.

We can address individual bits and vector ranges in the array using indexes

SIGNAL xbit_signal:std_logic;
SIGNAL xbyte_signal:byte;
SIGNAL xnibble_signal:std_logic(0 TO 3);
……

xbit_signal <= xbyte_signal(3);
xnibble_signal <= xbyte_signal(2 TO 5);

Indexes can have any range, they don´t have to start with zero (0) or one (1)
Increasing indexes use TO, descending indexes use DOWNTO

TYPE ubyte IS RANGE 0 TO 255;

Single bit

Subarray

8 bits

2018‐09‐06

19

VHDL basics cont.
Arrays, vectors cont

In many cases our vector represents a binary value,
In these cases it is more natural to use descending indexes

TYPE byte IS ARRAY (7 DOWNTO 0) OF std_logic;

This type definition is in most cases not necessary since we
have predefined vector types for bits and std_logic

VHDL basics cont.
Arrays, vectors cont

Predefined types

SIGNAL bit_word_signal:bit_vector(15 DOWNTO 0);
SIGNAL std_byte_signal:std_logic_vector(7 DOWNTO 0);
SIGNAL std_signal:std_logic_vector(1 TO 12);

When we write a value to a std_logic_vector we treat the value as a string

std_logic_signal <= ”00110110”; Double quotations indicate string

For these pre‐defined types the indexes must be natural numbers,
that is positive or zero (0)

It is recommended to avoid using bit_vector and always use std_logic_vectors

Use descending indexes if there is
no good reason to do otherwise

2018‐09‐06

20

VHDL basics cont.
Arrays, vectors cont

We can also read or write parts of a vector

std_logic_signal(4 DOWNTO 2) <= ”110”;

or use concatination (&) to manipulate our vectors

std_logice_signal <=
std_logic_signal(4 DOWNTO 2) & ”00110”;

A new line within the code
line is fully acceptable

The number of bits on the two sides of the
assingment sign must of course match

SIGNAL stdbyte_signal:std_logic_vector(7 DOWNTO 0);

four_bit_signal <= std_logic_signal(4 DOWNTO 1);

VHDL basics cont.
Multidimensional arrays

An array can have more than one dimension

TYPE multiarray IS ARRAY (0 TO 9,0 TO 4) OF STD_LOGIC;

We address the individual elements using two indexes

SIGNAL ma_signal:multiarray;
……

ma_signal(5,3) <= ’1’;

2018‐09‐06

21

VHDL basics cont.
Arrays of arrays
In some cases it is more practical to be able to address the rows of
the multi dimensional array and not the individual elements.
This could be the case when we create a memory for byte sized data.
In these cases it is better to define a array of vectors

TYPE memory IS ARRAY (0 TO 9) OF
STD_LOGIC_VECTOR(7 DOWNTO 0);

Here we address the rows of the array, that is the bytes and not the individual bits

SIGNAL mem_signal:memory;
……

mem_signal(5) <= ”00110110”;

In this case we have no simple way of addressing the individual elements.

To do this we have to first read the row vector, address the individual bit in
the row and then write the row vector back to its place

Multi bit adder cont.
Back to the four bit adder

First the entity

ENTITY four_bit_ripple_adder IS
PORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END four_bit_ripple_adder;

The entity is quite simular to the entity for our one
bit adder but the ports have changed to vectors

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END full_adder;

2018‐09‐06

22

Multi bit adder cont.

Then the architecture.

ENTITY four_bit_ripple_adder IS
PORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
cout:OUT STD_LOGIC);

END four_bit_ripple_adder;

We start by declaring the component we will use,
the full adder

ARCHITECTURE arch_four_bit_ripple_adder OF
four_bit_ripple_adder IS

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

Multi bit adder cont.

The component declaration looks exactly as the
entity of the component with two differences.

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END full_adder;

2018‐09‐06

23

Multi bit adder cont.

Then we need signals för our rippling carry signals

ARCHITECTURE arch_four_bit_ripple_adder OF
four_bit_ripple_adder IS

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END COMPONENT full_adder;
SIGNAL cint_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);

ARCHITECTURE arch_four_bit_ripple_adder OF
four_bit_ripple_adder IS

COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);

END COMPONENT full_adder;

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

We don´t need a vector here,
we can use single bit signals
but the vector will simplify
things later on

Multi bit adder cont.

Next we instantiate the actual components.
First bit 0.

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

full_adder_comp_0:
COMPONENT full_adder

PORT MAP(a=>a(0),
b=>b(0),
cin=>'0',
s=>y(0),
cout=>cint_signal(0));

The instantiated
component must
have a unique
name Port name within

the component

Signal name on
top level

Zero, no carry in

Notice
Name of the declared
component

ENTITY four_bit_ripple_adder IS
PORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END four_bit_ripple_adder;

2018‐09‐06

24

Multi bit adder cont.

full_adder_comp_0:
COMPONENT full_adder

PORT MAP(a(0),
b(0),
'0',
y(0),

cint_signal(0));

There are two ways to assign signals to the ports
of the component

full_adder_comp_0:
COMPONENT full_adder

PORT MAP(a=>a(0),
b=>b(0),
cin=>'0',
s=>y(0),
cout=>cint_signal(0));

Use the left one, it´s much more readable

Multi bit adder cont.

Bit one is very simular.

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

full_adder_comp_1:
COMPONENT full_adder

PORT MAP(a=>a(1),
b=>b(1),
cin=>cint_signal(0),
s=>y(1),
cout=>cint_signal(1));

Carry from bit zero

2018‐09‐06

25

Multi bit adder cont.

And bit two

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

full_adder_comp_2:
COMPONENT full_adder

PORT MAP(a=>a(2),
b=>b(2),
cin=>cint_signal(1),
s=>y(2),
cout=>cint_signal(2));

Carry from bit one

Multi bit adder cont.

Finally bit three

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

full_adder_comp_3:
COMPONENT full_adder

PORT MAP(a=>a(3),
b=>b(3),
cin=>cint_signal(2),
s=>y(2));

Since we don´t use cout from bit three we can just leave it out

Carry from bit two

2018‐09‐06

26

Multi bit adder cont.

The use of components means that we can reuse code but the shown
method will get quit tiresome if we have many bits.

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

Let´s look at a 32 bit adder

Multi bit adder cont.

32 bit adder

The entity is the same as for the four bit adder exept for the
number of bits

a
(1)

b
(1)

s(1
)

Full
adder

Not used (0)

s(0
)

a
(0)

b
(0)

Full
adder

Full
adder

Full
adder

Full
adder

a
(2)

b
(2)

s(2
)

a(30
)

b(30
)

s(30
)

a
(31

)

b(31
)

s(31
)

ENTITY bit_32_ripple_adder IS
PORT(a:IN STD_LOGIC_VECTOR(31 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(31 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END bit_32_ripple_adder ;

The name can´t
start with a digit

2018‐09‐06

27

Multi bit adder cont.

32 bit adder cont.

a
(1)

b
(1)

s(1
)

Full
adder

Not used (0)

s(0
)

a
(0)

b
(0)

Full
adder

Full
adder

Full
adder

Full
adder

a
(2)

b
(2)

s(2
)

a(30
)

b(30
)

s(30
)

a
(31

)

b(31
)

s(31
)

If we look at the 32 bit adder we can see that the 30 adders in the middle have
identical behavior while the first and the last adder have other sets of signals.

The declaration of the one bit adder component is the same as before.

We instantiate the LSB and MSB adders one their own since they are different.

The signal for the ripple values are the same but with another number of
values.

SIGNAL cint_signal:STD_LOGIC_VECTOR(30 DOWNTO 0);

Multi bit adder cont.

a
(1)

b
(1)

s(1
)

Full
adder

Not used (0)

s(0
)

a
(0)

b
(0)

Full
adder

Full
adder

Full
adder

Full
adder

a
(2)

b
(2)

s(2
)

a(30
)

b(30
)

s(30
)

a
(31

)

b(31
)

s(31
)

full_adder_comp0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>'0',

s=>s(0),cout=>cint_signal(0));

full_adder_comp31:COMPONENT full_adder
PORT MAP(a=>a(31),b=>b(31),

cin=>cint_signal(30),s=>s(31));

32 bit adder cont.

2018‐09‐06

28

Multi bit adder cont.

a
(1)

b
(1)

s(1
)

Full
adder

Not used (0)

s(0
)

a
(0)

b
(0)

Full
adder

Full
adder

Full
adder

Full
adder

a
(2)

b
(2)

s(2
)

a(30
)

b(30
)

s(30
)

a
(31

)

b(31
)

s(31
)

We use a LOOP GENERATE statment for the 30 one bit adders in between.

32 bit adder cont.

G:FOR i IN 1 TO 30 GENERATE
full_adder_comp_i:COMPONENT full_adder

PORT MAP(a=>a(i),b=>b(i), cin=>cint_signal(i-1),
s=>s(i),cout=>cint_signal(i));

END GENERATE;

Name of the
GENERATE
statement

Component name,
the same name for
all 30 components

Note that this is not the same as a loop in software.
The declaration will not loop but actually instantiate
30 one bit adders in hardware

Multi bit adder cont.

Now what if we want to use our multi‐bit adder as a component
in another top level design.

N bit adder

Is there a simple way to implement an adder with the required
number of bits for that specific design?

Yes there is! We can use a GENERIC.

2018‐09‐06

29

Multi bit adder cont.

A GENERIC is simular to a constant, but not quit.

GENERIC

We declare the GENERIC in the ENTITY.

ENTITY adder_x_bit IS
GENERIC(WIDTH:NATURAL:=32);
PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));

END adder_x_bit;

Name of generic
Signal type

Default value (can in
some cases be left out)

Notice
The value is given by the
GENERIC

Multi bit adder cont.

full_adder_comp_0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>'0',

s=>s(0),cout=>cint_signal(0));

full_adder_comp_N_1:COMPONENT full_adder
PORT MAP(a=>a(WIDTH-1),b=>b(WIDTH-1),

cin=>cint_signal(WIDTH-2),s=>s(WIDTH-1));

N bit adder cont.

We do some simular changes to the ARCHITECTURE.

First the ripple signal vector.

SIGNAL cint:STD_LOGIC_VECTOR(WIDTH-2 DOWNTO 0);

Instantiation of LSB is the same while the MSB changes.

2018‐09‐06

30

Multi bit adder cont.

a
(1)

b
(1)

s(1
)

Full
adder

Not used (0)

s(0
)

a
(0)

b
(0)

Full
adder

Full
adder

Full
adder

Full
adder

a
(2)

b
(2)

s(2
)

a(30
)

b(30
)

s(30
)

a
(31

)

b(31
)

s(31
)

Finally the LOOP GENERATE statement.

N bit adder cont.

G:FOR i IN 1 TO WIDTH-2 GENERATE
full_adder_comp_i:COMPONENT full_adder

PORT MAP(a=>a(i),b=>b(i), cin=>cint_signal(i-1),
s=>s(i),cout=>cint(i));

END GENERATE;

Multi bit adder cont.

Let´s say that we want a design with two adders, one with 8 bits and one with
16 bits.

To use our generic multi bit adder

ENTITY dual_adder IS
GENERIC(WIDTH8:NATURAL:=8,

WIDTH16:NATURAL:16)
PORT(cin:IN STD_LGIC;

a8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
b8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
a16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
b16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
s8:OUT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
s16:OUT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END dual_adder ;

First the entity.

Ports for
the 8 bit
adder

Ports for
the 16 bit
adder

2018‐09‐06

31

Multi bit adder cont.

Then the architecture.

To use our generic multi bit adder

ARCHITECTURE arch_dual_adder OF dual_adder IS

COMPONENT adder_x_bit IS
GENERIC(WIDTH:NATURAL:=32);
PORT(cin:IN STD_LOGIC;

a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END COMPONENT adder_x_bit;

We only need to declare the component once although
it´s used, instantiated, twice with different number of
bits.

ENTITY dual_adder IS
GENERIC(WIDTH8:NATURAL:=8,

WIDTH16:NATURAL:16)
PORT(a8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);

b8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
a16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
b16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
s8:OUT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
s16:OUT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END dual_adder ;

Note that this
version have
both cin and
cout

Then we instantiate the adders.

adder_8_bit_comp:
COMPONENT adder_x_bit IS

GENERIC MAP(WIDTH=>WIDTH8);
PORT MAP(cin=>cin,a=>a8,b=>b8,s=>s8);

adder_16_bit_comp:
COMPONENT adder_x_bit IS

GENERIC MAP(WIDTH=>WIDTH16);
PORT MAP(cin=>’0’a=>a16,b=>b16,s=>s16,cout=>cout);

Notice

Notice

Multi bit adder cont.
To use our generic multi bit adder

ENTITY dual_adder IS
GENERIC(WIDTH8:NATURAL:=8,

WIDTH16:NATURAL:16)
PORT(a8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);

b8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
a16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
b16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
s8:OUT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
s16:OUT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
cout:OUT STD_LOGIC);

END dual_adder ;

Note that the 8‐
bit adder has a
cin but no cout

Note that the 16‐
bit adder has no
cin but a cout

