2018-09-06

VHDL

part 1

Let’s look at the first assignment from the
introductory lab

2018-09-06

Full adder

cin ———>|

/

We have the user perspective of the
design, the interface

In VHDL we call this an entity

a b cin | cout S
— =g 0 0 0 0 0
0 0 1 0 1
L = cout 0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

We have the functionallity, the

internals

In VHDL we call this an architecture

Full adder cont.

Signals

~ Inputa o—

Input b 06—

Ports

Input cin ©——

——o Output s

——o0 Output cout

Entity

Architecture

S04

2018-09-06

a _ =
Full adder cont. I
b—3 +
Now to VHDL i ~oodt
Let’s look at the entity
LIBRARY ieee: o Basic library functions

USE ieee.std logic 1164.ALL;
~_——Name of the entity

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;
b:IN STD_LOGIC; - Input ports
cin:IN STD_LOGIC;
s:0OUT STD_LOGIC; Output ports
cout:OUT STD_LOGIC);}////
END full_adder; :

‘\

Name of the entity again

The entity

Formal view

Entity

The external, visual part of a VHDL design is the entity that defines
the connections (ports) in and out of the design.

The entity can also contain generics, attributes that are used to
control the design, for example the width of vectors.

The entity has the following structure

ENTITY entity_name IS
[GENERIC (generic_name:data_type[:=value]);]<—— Wwe will get back to this
PORT(port_namel:connection_type datatype;<—
port_name2:connection_type datatype);«
END entity _name;<

Observe where the semicolon (;) separators are placed

2018-09-06

Full adder cont. | .

—= cout

cin —

Let’s look at the entity cont.

LIBRARY ieee;
USE ieee.std _logic_1164_ALL;

ENTITY full_adder IS

PORT (a:
b:(IN]

cin:[IN

s:OUTI-STD

cout:pUT) STD_LOGIC);
END full_adder;

Port type

Ports

Formal view

Ports
The ports are our connections in and out of the design

We can have four different connection types for the ports

IN data path directed into the design
OUT data path directed out of the design
INOUT bidirectional data path «~——
BUFFER a readable output ~ Avoid using this

2018-09-06

a—"‘a
Full adder cont. L o
b—3 +
Now to VHDL i ~oodt

Let’s look at the entity cont.

LIBRARY ieee;
USE ieee.std _logic_1164_ALL;

ENTITY full_adder 1S
PORT (a:IN §TD_LOGIC; ——
b:IN GTD_LOGIC;— _ Signal type

e

STD_LOGIQ);

cin:IN

s:0UT

cout:0uUT
END full_adder;

Signal names

VHDL basics cont.

Data types

Scalar types
Type declarations

Placed in the architecture

TYPE ubyte IS RANGE O TO 255; before the first BEGIN

TYPE nibble IS RANGE -8 TO 7;

Predefined type with range
_931 _ 31_ -
SIGNAL (Xint_signal T INTEGER; < 27 —(2*-1)=

zubyte; =-2,147,483,648 — 2,147,483,647
tubyte;
-nibble; T Our declared types

What about assignments? The integer type could represent all
the values in the ubyte range so
No! They are two different types
and VHDL is strictly typed.
would be OK, wouldn’t it? To go between types we need
conversion functions

xint_signal <= xubytel_signal;

xubytel_signal <= xubyte2_signal;

is OK though. They are of the same type

2018-09-06

TYPE ubyte IS RANGE O TO 255;

VH DL baSiCS CO nt. TYPE nibble IS RANGE -8 TO 7;

Scalar types cont.

Why not just use INTEGER as in software?

Our VHDL code will be synthesized to hardware and this hardware must
be able to handle all possible values of a signal.

In the hardware our signals are represented by binary bits.

An integer will have to be represented by 32 bits to cover all possible values
and that would have to be the width of our signal paths then.

If we only use a fraction of the integer range that would be a
waste of hardware.

Even worse if the signal is to be stored along the signal path. In every place where
we want to store the signal we would have to include 32 flip-flops to do this.

We can restrict the integer range though. SIGNAL xint_signal : INTEGER RANGE 10 TO 20;
The ubyte type would take 8 bits and the nibble type only 4 bits.

A word of warning. The simulator will give an error if we try to use values
outside of the range of the type but the hardware won’t

VHDL basics cont.

Scalar types cont.

More on integers
There are a couple of sub types to integer Positive values

including zero
SUBTYPE NATURAL IS INTEGER RANGE 0 TO INTEGER’HIGH</

SUBTYPE POSITIVE IS INTEGER RANGE 1 TO INTEGER’HIGH — Positive values
excluding zero

2018-09-06

VHDL basics cont.

Scalar types cont.

Enumeration types

Symbolic names for the values of a signal

TYPE weekday IS (sun,mon,tue,wed,thu,fri,sat);
TYPE washing_machine 1S (pre_wash,wash,rinse,dry);

Typically used to name the states in a state machine,
like the phases, the states, of a traffic light (green, yellow, red)

Some useful predefined enumeration types

TYPE boolean IS (false,true); <«—— Useful in conditional code

TYPE bit IS (°0”,71%);<—_ Logical values. Not recommended
use std_logic

The ’-signs indicate that these values
are actually characters

VHDL basics cont.

Scalar types cont.

; Th f the line i
Enumeration types cont. e rest of the line is a comment

Standard logic unsigned

TYPE std_ulogic IS (U?, -- uninitialized
’X”, -- Forcing unknown
’0”, -- forcing zero
/ *1”, -- forcing one

Always relevan *Z”, -- high impedance Only relevant
“W*, -- weak unknown in simulation
’L”, -- weak zero
"H”, -- weak one Only relevant

don”t care at compilation

Standard logic (std_logic) is a type that is formed from std_ulogic
Signed or unsigned has no meaning for single bits

Standard logic is our recommended type for all binary signals

For multi-bit signals it’s expanded to std_logic_vector

2018-09-06

Q.
=
Q
o
c
=

Full adder cont.

Now to VHDL

be|k|k|olo|o|o]e
[l Ll =2 (=2 L L (=2 k=0 [=n

rlo|r|o|r|o|r]|o|s
N EIREIEIE
Rlo|ofk|o|k|r|o]w

Let’s look at the architecture
The name could be any-
thing but | use the entity

ARCHITECTURE arch_full_adder OF name headed by arch_
full adder 1S The name can’t start with

Name of
architecture

BEGIN a digit though
s<=(a XOR b) XOR cin; \\ Name of entity
cout<=(a AND b) OR

Es ﬁmg 2:23 _OR }\ The new line doesn’t mean
END arch full adder- i anything but improves readability
\

~—

Name of architecture again

ARCHITECTURE arch_full_adder OF

Full adder cont. Tull_adder 15
s<=(a XOR b) XOR cin;
cout<=(a AND b) OR
Now to VHDL (a AND cin) OR
(b AND cin);

Let’s look at the architecture cont. END arch_full_adder;

This is a structural description where we use logical blocks (AND,
XOR and OR) to describe the functionality.

We can also use a behavior description where we describe what
should happen in logical manner.

The behavior description is not suited for this specific design.

2018-09-06

Structural and behavior design

Let’s illustrate the two description types by a very simple example:
an AND gate.
First the structural design.

-- AND gate
LIBRARY ieee;
USE ieee.std_logic_1164_ALL;

ENTITY and2 IS

PORT(a: IN STD_LOGIC; Inputs
b:IN STD LOGIC;}/

y:0UT STD_LOGIC); «—

END and2; ~ Output
ARCHITECTURE arch_and2 OF and2 IS
BEGIN

y<=a AND b;

END arch_and2;
An AND building block

Structural and behavior design cont.

- AND gate
LIBRARY ieee;
USE

Now the bahavior design. icee.std_logic_1164.ALL;
ENTITY and2 IS
LIBRARY ieee; TR oo,
USE ieee.std_logic_1164_ALL; > O LB

ARCHITECTURE arch_and2 OF and2 1S
ENTITY andz IS BEGIN
y <= a AND b;

PORT (a: IN STD_LOGIC; END arch_and2

b:IN STD LOGIC:))
= T Notice that the entity

v:0UT STD LOGIC): . :
is the same in the two

END and2;
cases

ARCHITECTURE arch_and2_behavioral OF and2 1S
BEGIN
y <= "1 WHEN (a="1") AND

(b="1") ELSE [————— Behavioral description

- 0 - ;)
END arch_and2_behavioral;

In this case the behavioral desciption is somewhat more
complicated but this is no general rule

The behavioral desciption becomes more suited when we get
to a bit more complex designs

2018-09-06

ARCHITECTURE arch_full_adder OF
Full adder cont. ., full_adder 15

s<=(a XOR b) XOR cin;
cout<=(a AND b) OR
(a AND cin) OR
(b AND cin);
END arch_full_adder;

In the simple cases we’ve seen so far we don’t
need any internal signals we can use just the ports.

If we like we can add some internal signals
anyway.
Let” s do it to the full adder just for illustration

ARCHITECTURE arch_full_adder OF
full_adder IS
IN

BEG
Full adder cont. s<= xor by xor cin;

cout<=(a AND b) OR

(a AND cin) OR
ARCHITECTURE arch_full_adder OF (b AND cin);

full adder 1S END arch_full_adder;
SIGNAL a_bl_signal :STD_LOGIC;
SIGNAL a_b2_signal :STD_LOGIC;
SIGNAL a_cin_signal:STD_LOGIC;
SIGNAL b_cin_signal :STD_LOGIC;

BEGIN:
a_bl_signal<=a XOR b; The signal names could be
s<=a_bl_signal XOR cin; anything as long as they don’t start
a_b2_signal<=a AND b; with a digit but | try to use
a_cin_signal<=a AND b; descriptic names that include the

b_cin_signal<=b AND cin; type of signal holder (_signal)
cout<=a_b2_signal OR
a_cin_signal OR
b_cin_signal cin);
END arch_full_adder;

If we synthezise the two designs
the result will be exactly the same

10

2018-09-06

Assignal is just a
connecting wire it
doesn’t have any
direction like ports
have

Full adder cont.

ARCHITECTURE arch_full_adder OF
full_adder 1S
SIGNAL a_bl_signal:STD_LOGIC;
SIGNAL a_b2_signal:STD_LOGIC;
SIGNAL a cin_signal:STD_LOGIC;
SIGNAL b _cin_signal:STD_LOGIC;

BEGIN
a_bl signal<=a XOR b; In this design all the ports and
s<=a_bl_signal XOR cin; signals are updated all the time in
a_b2_signal<=a AND b; parallel. The description doesn’t
a_cin_signal<=a AND b; indicate any sequential flow, it is

b_cin_signal<=b AND cin; concurrent
cout<=a_b2_ signal OR
a_cin_signal OR
b _cin_signal;
END arch_full_adder;

Full adder cont.

Process

We can do a design with a sequential flow but then we must
introduce the PROCESS.

A process is a part of the architecture where the content is
updated sequentially, statement by statement.

The whole process is updated in parallel withe the rest of the
code though. The process is a concurrent block.

11

2018-09-06

Full adder cont.

Process cont.
Let’s write a process version of our full adder.

ARCHITECTURE arch_full_adder OF
full_adder IS
BEGIN Name of the process

full_adder_process: <« ~ (not mandatory)

PROCESS|(a,b,cin) —_

T Sensitivity list
s<=(a XOR b) XOR cin;

Notice Noﬁce cout<=(a AND b) OR
(a AND cin) OR
(b AND cin);

[END PROCESS) full_adder_process;
END arch_ | L adder'r\\,,, Name of the process again

(not mandatory)

ARCHITECTURE arch_full_adder OF

Full adder cont. BEGIN full_adder IS

full_adder_process:
PROCESS(a,b,cin)
ey . BEGIN
The SenSItIVEty list s<=(a XOR b) XOR cin;
cout<=(a AND b) OR
(a AND cin) OR
(b AND cin);
END PROCESS full_adder_process;
END arch_full_adder;

The sensitivity list is a list of the signals that should trigger
the process, make it react and do it’s thing, when any of the
items in the list change its value.

This can also be done using WAIT statements. Check this on
your own. | find this a bit less intuitive.

This process will generate exactly the same hardware as the
concurrent version.

There is a slight difference in simulation. We’ll get back to this

12

2018-09-06

ARCHITECTURE arch_full_adder OF

Full adder cont. BEGIN full_adder 1S

full_adder_process:
PROCESS(a,b,cin)
ey . BEGIN
Sensitivety list mystery s<=(a XOR b) XOR cin;
cout<=(a AND b) OR
(a AND cin) OR
The sensitivity list is a list of the (b AND cin);

ienals th hould tri rth END PROCESS full_adder_process;
signals that s ould t gger the END arch_full_adder;
process.

If we leave out one of the input signals, for example b then the process
shouldn’t update when b changes it its value.

This is true in simulation but the synthesized design will not care about the
absence of one of the signals from the sensitivity list.

The synthesized result will be the same with or without b in the sensitivity
list and it will also be the same with or without the process.

In the version with signals in a process things may not work the way they
should as we shall see now in another example.

Concurrent and sequential code

Let’s look some more at the differences
between concurrent and sequential code.

We will not use the full adder but a simple
design that is tailor made to illustrate this.

13

2018-09-06

VHDL basics cont.

Example

Architecture

ARCHITECTURE arch_and_or OF and_or
SIGNAL x_conc_signal :STD_LOGIC;

Internal signals /{ SIGNAL x_seq_signal:STD_LOGIC;
interconnections

BEGIN
{x_conc_signal <= a AND b;
Concurrent code — L y_conc <= x_conc_signal OR c;

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;
b:STD_LOGIC;
c:IN STD_LOGIC;

y_conc:0UT STD_LOGIC;
y_seq:OUT STD_LOGIC);

END and_or;

1S

Sensitivety list

Process name
BEGIN
Sequential code x_seq_signal <= a AND b;
\{ y_seq <= x_seq_signal OR c;
END PROCESS seq_proc;
END arch_and_or;

seq_proc: / The signals that trigger
PROCESS(a,b,c) (activate) the process

VHDL basics cont.

Example cont.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY and_or IS
PORT(a:STD_LOGIC;
b:STD_LOGIC;
c:IN STD_LOGIC;
y_conc:0UT STD_LOGIC;
y_seq:0UT STD_LOGIC);
END and_or;

ARCHITECTURE arch_and_or OF and_or 1S

SIGNAL x_conc_signal :STD_LOGIC;
SIGNAL x_seq_signal :STD_LOGIC;
The x_conc_signal
value is immediately BEG>I<Nconc signal <= a AND b-
updated and passed on Q y:conc_<=gx_conc_signal 6R c;
to the OR statement

seq_proc:

_ PROCESS(a,b,c)
The x_seq_signal BEGIN

value is updated when ——— x seq_signal <= a AND b;

we leave the process y_seq <= x_seq_signal OR c;
END PROCESS seq_proc; S~
END arch_and_or;

The value X_seq_signal had

when we entered the process is
used, the assignment on the line
above isn’t effective yet

14

2018-09-06

VHDL basics cont. b s oo soaa:

ENTITY and_or IS
H PORT(a:STD_LOGIC;
Example alternative bieToLoclc
c:IN STD_LOGIC;
y_conc:0UT STD_LOGIC;
y_seq:OUT STD_LOGIC);
END and_or;

ARCHITECTURE arch_and_or OF and_or 1S

h - 1 SIGNAL x_conc_signal :STD_LOGIC;
The X_conc_signa BEGIN

value is immediately —> x_conc_signal <= a AND b; The variable is a new consept
updated and passed on \ y_conc <= x_conc_signal OR c;
to the OR statement Variable, local to the process,
seq_proc: not visable outside of the process
PROCESS(a,b,c)
VARIABLE| x_seq_variable:STD_LOGIC;
The x_seq_variable BEGIN riabl a<AND po Variable asignment
value is immediately ~—— X-Sedq.variable::=a *
dated and d y_seq <= x_seq riable OR c;
updated and passed on END PROCESS seq_pm The new value of
to the OR statement END arch_and_or; x_seq_variable
is used

VHDL basics cont. e s ogicissa:

ENTITY and_or IS

. PORT(a:STD_LOGIC;
What if we change the b-STD_LOGIC:
order of the statements? GiIN STOOeIC:

y_conc:0UT STD_LOGIC;
y_seq:0UT STD_LOGIC);
END and_or;

ARCHITECTURE arch_and_or OF and_or 1S
- SIGNAL x_conc_signal :STD_LOGIC;
The x_conc_signal BEGIN change of

valueisimmediately > y conc <= x_conc_signal OR c;}/ order
updated and passed on — x_conc_signal <= a AND b;

to the OR statement x_seq_variableis
seq_proc: updated after the use in
PROCESS(a,b,c) the y_seg assignment
VARIABLE x_seq:STD_LOGIC; because of the order of
The statement uses the BEGIN } the statements
x_seq_variable value——> Y_S€q <= x_seq_variable OR c; J\
- ™ x_seq_variable := a AND b; h f
we had when we entered e . Change 0
the process END PROCESS ?eq_proc, order
END arch_and_or;

It doesn’t matter that
X_seq_variableis
updated imediately, it’s
still after the other
statement

15

2018-09-06

Full adder cont.

Process cont.
If we put our full adder with signals in a process we get

ARCHITECTURE arch_full_adder OF full_adder 1S
BEGIN
full_adder_process:
PROCESS(a,b,cin)
BEGIN
a_bl_signal<=a XOR b; Updated when we leave
Sz:a:bl_signal XOR cin; the process
Incorrect values a_bz_Signal<:a AND b;
will be used a_cin_signal<=a AND b;
b_cin_signal<=b AND cin;
cout<=a_b2_signal OR
a_cin_signal OR
b_cin_signal cin);
END PROCESS full_adder_process;
END arch_full_adder;

Full adder cont.

Process cont.
We can get the correct behavior by using variables

ARCHITECTURE arch_full_adder OF full_adder IS
BEGIN
full_adder_process:
PROCESS(a,b,cin)
VARIABLE a_bl_variable:STD_LOGIC;
VARIABLE a_b2_variable:STD_LOGIC;
VARIABLE a_cin_variable:STD_LOGIC;
VARIABLE b_cin_variable:STD_LOGIC;
BEGIN
——» a bl variable:=a XOR b;
s<=a_bl variable XOR cin;
———— a_b2_variable:=a AND b;
-~ a cin_variable:=a AND cin;

» b_cin_variable:=b AND cin; Notice that the process still is
cout<=a_b2_variable OR sequential so the order between
a_cin_variable OR the statements is important

b_cin_variable;
END PROCESS full_adder_process;
END arch_full_adder;

16

2018-09-06

Multi bit adder

A one bit adder is not that useful.
We must use more bits.

Let’s look at a four bit adder.)
C; is zero

C3|C2|C1 |Co 0 We can see that it’s
az| A| 41| Qg actually four one bit
b3 b,| b, b0 adders.

S3| S2| S1| So

Why not reuse our one bit adder?

Multi bit adder cont.

We use the one bit adder as a component in our
four bit adder design and instantiate it four times.

Instantiate means to actually create the
component so we need to do this four times.

b(0) a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2) b(3) a(3)

No cin but it +

+ cint(2)

must have a cint(1)
value + cint(0)

0

We can of course keep cin and cout if we like.

s(3)

/ No cout

17

2018-09-06

Vectors

Before we move on we must look at how to

represent signals with more than one bit.

VHDL basics Cont. TYPE ubyte IS RANGE O TO 255;

Composite data types
Arrays, vectors

Since we have to form our multi-value signals from binary values in
our hardware implementation, binary vectors are our basic form
for signal description besides single binary bits

TYPE byte IS ARRAY (0 TO 7) OF std_logic;

Observe that this is not the same as the earlier type definition of ubyte.
Both can take on 256 different values but the types are not interchangable.

Indexes can have any range, they don’t have to start with zero (0) or one (1)
Increasing indexes use TO, descending indexes use DOWNTO

We can address individual bits and vector ranges in the array using indexes
SIGNAL xbit_signal:std_logic;

SIGNAL xbyte_signal:byte;
SIGNAL xnibble_signal:std_logic(0 TO 3);

Single bit
xbit_signal <= xbyte_signal(3);

xnibble_signal <= xbyte signal(2 JO 5);
—=t9 yte_signal(R)Subarray

8 bits

18

2018-09-06

VHDL basics cont.

Arrays, vectors cont

In many cases our vector represents a binary value,
In these cases it is more natural to use descending indexes

This type definition is in most cases not necessary since we
have predefined vector types for bits and std_logic

VHDL basics cont.

Arrays, vectors cont
Predefined types

SIGNAL bit_word_signal :{bit_vector{15 DOWNTO 0);
SIGNAL std_byte_signal:std_logic_vector|(7 DOWNTO 0);

SIGNAL std_signal:std_logic_vector(1 TO 12);

For these pre-defined types the indexes must be natural numbers,
that is positive or zero (0)

When we write a value to a std_logic_vector we treat the value as a string

std_logic_signal <= 700110110%;— Double quotations indicate string

It is recommended to avoid using bit_vector and always use std_logic_vectors

Use descending indexes if there is
no good reason to do otherwise

19

2018-09-06

VHDL basics cont.

SIGNAL stdbyte_signal:std_logic_vector(7 DOWNTO 0);
Arrays, vectors cont

We can also read or write parts of a vector
std_logic_signal (4 DOWNTO 2) <= 110”;

four_bit_signal <= std_logic_signal (4 DOWNTO 1);

or use concatination (&) to manipulate our vectors A new line within the code
line is fully acceptable
std_logice_signal <=
std_logic_signal (4 DOWNTO 2) & 00110”;

The number of bits on the two sides of the
assingment sign must of course match

VHDL basics cont.

Multidimensional arrays

An array can have more than one dimension

TYPE multiarray IS ARRAY (0 TO 9,0 TO 4) OF STD_LOGIC;
We address the individual elements using two indexes

SIGNAL ma_signal:multiarray;

ma_signal(5,3) <= "17;

20

2018-09-06

VHDL basics cont.

Arrays of arrays

In some cases it is more practical to be able to address the rows of
the multi dimensional array and not the individual elements.

This could be the case when we create a memory for byte sized data.
In these cases it is better to define a array of vectors

TYPE memory IS ARRAY (O TO 9) OF
STD_LOGIC_VECTOR(7 DOWNTO 0);

Here we address the rows of the array, that is the bytes and not the individual bits

SIGNAL mem_signal :memory;

mem_signal(5) <= ”00110110;

In this case we have no simple way of addressing the individual elements.

To do this we have to first read the row vector, address the individual bit in
the row and then write the row vector back to its place

ENTITY full_adder IS
PORT (a:IN STD_LOGIC;

Multi bit adder cont. b:IN STO_LOGIC:

s:0UT STD_LOGIC;

cout:OUT STD_LOGIC);

Back to the four bit adder END full_adder

First the entity

ENTITY four_bit_ripple_adder 1S
PORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0); <«
b:IN STD_LOGIC_VECTOR(3 DOWNTO 0); «~——
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); «
END four_bit_ripple_adder;

The entity is quite simular to the entity for our one
bit adder but the ports have changed to vectors

21

2018-09-06

ENTITY four_bit_ripple_adder IS
<L PORT(a: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Multi bit adder cont. b:IN STD_LOGIC_VECTOR(3 DOWNTO 0):
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

cout:0UT STD_LOGIC);
END four_bit_ripple_adder;

Then the architecture.

We start by declaring the component we will use,
the full adder

ARCHITECTURE arch_four_bit_ripple_adder OF
four_bit_ripple_adder 1S
COMPONENT full_adder IS
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:0UT STD_LOGIC;
cout:0UT STD_LOGIC);
END COMPONENT full_adder;

full_adder 1S
Multi bit adder cont. PORT (a:IN STD_LOGIC:

b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:0UT STD_LOGIC;
cout:OUT STD_LOGIC);
END[Jfull_adder;

The component declaration looks exactly as the
entity of the component with two differences.

full_adder 1S
PORT(a:IN STD_LOGIC;
b:IN STD_LOGIC;
cin:IN STD_LOGIC;
s:OUT STD_LOGIC;
cout:OUT STD_LOGIC);
END |COMPONENT| full_adder;

22

2018-09-06

b(0) a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2) b(3) a(3) s(3)
o o o o o o o o o o o o

Multi bit adder cont.

Then we need signals for our rippling carry signals

ARCHITECTURE arch_four_bit ripple_adder OF
four_bit _ripple_adder 1S
COMPONENT full_adder IS
PORT(a:IN STD_LOGIC; ,
b:IN STD_LOGIC: We don’t need a vector here,

cin-IN STD LOGIC: we can use single bit signals
S:OUT STD LOGIC; but the vector will simplify
cout:0UT STD LOGIC); things later on

END COMPONENT full_adder; ~

SIGNAL cint_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);

b(0) a(0) s(0) b(1) a(1) (1) b(2) a(2) s(2) b(3) a(3) s(3)
o o o o' o o o o o o o o

Multi bit adder cont.

ENTITY four_bit_ripple_adder IS
PORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
b:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); o

END four_bit_ripple_adder;
. . a - |
Next we instantiate the actual components. b " s
First bit 0. o > cout

Notice
full_adder_comp 0- ~ Name of the declared

" COMPONENT full_adder < component
The instantiated @Ia=>a(0) , Signal name on
b=>b(0)s— toplevel

component must
have a unique / Cin=>'0',\
name s=>y(0), Zero, no carry in

Port name within z _
cout=>cint_signal (0));

the component

23

2018-09-06

Multi bit adder cont.

There are two ways to assign signals to the ports
of the component

full_adder_comp_0O: full_adder_comp_O:
COMPONENT full_adder COMPONENT full_adder
PORT MAP(a=>a(0), PORT MAP(a(0),
b=>b(0), b(0),
cin=>"0", 0",
s=>y(0), y(0),
cout=>cint_signal (0)); cint_signal (0));

Use the left one, it’s much more readable

b(0) a(0) s(0) b(1) a(1) (1) b(2) a(2) s(2) b(3) a(3)
o o o o' o o oo o o o

Multi bit adder cont.

. . . a - |
Bit one is very simular. . . ’:s
> cout

full_adder_comp_1:
COMPONENT full_adder
PORT MAP(a=>a(l),
b=>b(1),
cin=>cint_signal(0), ~__
s=>y(1),
cout=>cint_signal (1));

Carry from bit zero

s(3)
)

24

2018-09-06

b(0) a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2) b(3) a(3) s(3)
o o o o o o o o o o o o

Multi bit adder cont.

And bit two b;} +I:js

full_adder_comp_2:
COMPONENT full_adder
PORT MAP(a=>a(2),
b=>b(2),
cin=>cint_signal(1), -~
s=>y(2),
cout=>cint_signal(2));

Carry from bit one

b(0) a(0) s(0) b(1) a(1) (1) b(2) a(2) s(2) b(3) a(3) s(3)
o o o o' o o o o o o o o

Multi bit adder cont.

Finally bit three : i:s
b +
= cout

full_adder_comp_3:
COMPONENT full_adder
PORT MAP(a=>a(3),
b=>b(3),
oo _
Z;Qy(;;;f_SIgnal (2. Carry from bit two

Since we don” t use cout from bit three we can just leave it out

25

2018-09-06

b(0) a(0) s(0) b(1) a(1)
o o o o o

s(1) b(2) a(2) s(2) b(3) a(3) s(3)
o o o o o o o

Multi bit adder cont.

The use of components means that we can reuse code but the shown
method will get quit tiresome if we have many bits.

Let’s look at a 32 bit adder

ENTITY bit_32_ripple_adder IS

END bit _32_ripple_adder ;

Multi bit adder cont.
32 bit adder

(og)a
(0g)
o (0g)s
(1e)a
(e
(1e)s

Not used (0)o

The entity is the same as for the four bit adder exept for the

number of bits The name can” t

start with a digit

PORT(a: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
b:IN STD_LOGIC_VECTOR(31 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

26

2018-09-06

Multi bit adder cont.

32 bit adder cont.

Not used (0)o

If we look at the 32 bit adder we can see that the 30 adders in the middle have
identical behavior while the first and the last adder have other sets of signals.

The declaration of the one bit adder component is the same as before.

The signal for the ripple values are the same but with another number of

values.

SIGNAL cint_signal:STD_LOGIC_VECTOR(30 DOWNTO 0);

We instantiate the LSB and MSB adders one their own since they are different.

Multi bit adder cont.
32 bit adder cont. : N

Not used (0)o

full_adder_comp0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>"0",
s=>s(0),cout=>cint_signal(0));

full_adder_comp31:COMPONENT full_adder
PORT MAP(a=>a(31),b=>b(31),
cin=>cint_signal (30),s=>s(31));

27

2018-09-06

Multi bit adder cont
32 bit adder cont. 2

Not used (0)o

Name of the We use a LOOP GENERATE statment for the 30 one bit adders in between.
GENERATE

statement

G:FOR i IN 1 TO 30 GENERATE
full_adder_comp_i:COMPONENT full_adder
PORT MAP(a=>a(i),b=>b(i), cin=>cint_signal(i-1),

s=>s(i),cout=>cint_signal(i));
END GENERATE;

Component name,
the same name for
all 30 components

Note that this is not the same as a loop in software.

The declaration will not loop but actually instantiate
30 one bit adders in hardware

Multi bit adder cont.
N bit adder

Now what if we want to use our multi-bit adder as a component
in another top level design.

Is there a simple way to implement an adder with the required
number of bits for that specific design?

Yes there is! We can use a GENERIC.

28

2018-09-06

Multi bit adder cont.
GENERIC

A GENERIC is simular to a constant, but not quit.

We declare the GENERIC in the ENTITY.

Signal type Default value (can in

Name of generic some cases be left out)

The value is given by the
GENERIC

X Notice

GENERIC(WIDTH:NATURAL:=32);

PORT(a:IN STD_LOGIC_VECTOR(WIDTH-1 |DOWNTO 0);
b:IN STD LOGIC_VECTOR(WIDTH-1 |DOWNTO 0);
y:OUT STD_LOGIC_VECTORBWIDTH—1|DOWNTO 0));

END adder_x_bit;

Multi bit adder cont.
N bit adder cont.

We do some simular changes to the ARCHITECTURE.

First the ripple signal vector.

SIGNAL cint:STD_LOGIC_VECTOR(WIDTH-2 |[DOWNTO 0);
Instantiation of LSB is the same while the MSB changes.

full_adder_comp_0:COMPONENT full_adder
PORT MAP(a=>a(0),b=>b(0),cin=>"0",
s=>s(0),cout=>cint_signal(0));

full_adder_comp_N_1:COMPONENT full_adder
PORT MAP(a=>a(WIDTH-1),b=>b{(WIDTH-1),

cin=>cint_signal(WIDTH-2),s=>s{WIDTH-1));

29

2018-09-06

Multi bit adder cont.
N bit adder cont. :

Not used (0)o

Finally the LOOP GENERATE statement.

G:FOR i IN 1 TO WIDTH-2 GENERATE
full_adder_comp_i:COMPONENT full_adder
PORT MAP(a=>a(i),b=>b(i), cin=>cint_signal(i-1),
s=>s(i1),cout=>cint(i));
END GENERATE;

Multi bit adder cont.

To use our generic multi bit adder

Let’s say that we want a design with two adders, one with 8 bits and one with
16 bits.

First the entity.

ENTITY dual_adder IS Ports for
GENERIC(WIDTH8:NATURAL :=8, the 8 bit
WIDTH16:NATURAL:16) adder
PORT(cin:IN STD_LGIC; F///
a8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);

b8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
al6:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);

b16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0)% ;zﬁgiﬁ
s8:0UT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0); T adder

s16:0UT STD_LOGIC VECTOR(WIDTH16-1 DOWNTO 0);
cout:0UT STD_LOGIC);
END dual adder ;

30

ENTITY dual_adder IS
GENERIC(WIDTH8:NATURAL:=8,

<L WIDTH16: NATURAL : 16)
M UItl blt adder cont. PORT(@8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
b8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0):
. _— al6:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);
To use our generic multi bit adder b16:IN STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);

s8:0UT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);

s16:0UT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);

. cout:OUT STD_LOGIC);
Then the architecture. END dual_adder ;

ARCHITECTURE arch_dual_adder OF dual_adder 1S

COMPONENT adder_x_bit IS
GENERIC(WIDTH:NATURAL:=32); Note that this
PORT(cin:IN STD_LOGIC;
a:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
b:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
y:0UT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
cout:OUT STD_LOGIC);
END COMPONENT adder_x_bit;

We only need to declare the component once although
it’s used, instantiated, twice with different number of
bits.

version have
both cin and
cout

ENTITY dual_adder IS
GENERIC(WIDTH8:NATURAL:=8,

< Lo WIDTH16:NATURAL : 16)
M Ultl blt adder cont. PORT(a8:IN STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);
b8:IN STD_LOGIC_VECTOR(WIDTHS-1 DOWNTO 0):

. _— al6:IN STD_LOGIC_VECTOR(WIDTHL6-1 DOWNTO 0);

To use our generic multi bit adder b16:IN STD_LOGIC_VECTORQWIDTH16-1 DOWNTO 0):

s8:0UT STD_LOGIC_VECTOR(WIDTH8-1 DOWNTO 0);

s16:0UT STD_LOGIC_VECTOR(WIDTH16-1 DOWNTO 0);

. . cout:OUT STD_LOGIC);
Then we instantiate the adders. END dual_adder ;

adder_8_bit_comp:

COMPONENT adder_x_bit IS Nptethatthe8—
ENERIC MAPXWIDTH=>WIDTH8); bit adder has a
//////’PORT MAP(cin=>cin,a=>a8,b=>b8,s=>s8); cin but no cout

Notice i}
adder_16_bit_comp:

COMPONENT adder_x_bit IS

ENERIC MAPJ(WIDTH=>WIDTH16);
//59RT MAP(cin=>"0"a=>al6,b=>b16,s=>s16,cout=>cout);
Note that the 16-
Notice bit adder has no
cin but a cout

2018-09-06

31

