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Why?

e Course focus (especially lab series) on rather small, self-
contained designs

e Necessary skills regardless of design scope

e Actual industry/research designs larger, with many
constraints and dependencies

e Some conseguences addressed in other courses

e Discuss some other consequences today
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Why not just
“system design”?

e Common aspects of system design apply also for SoC
design

e Size, complexity, team size, evolving specifications, ...
e Implementation medium adds emphasis to some

o Will exemplify in this lecture
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What?

e SoC: System on Chip

e “an integrated circuit that integrateomponents of
a computer or other electronic system” [Wikipedia]

e Not only a many-core microprocessor
e “Next step” in trend towards higher integration
e ... but term was introduced already in the 1990s

e Recall: a microcontroller is a processor with some
peripherals (hard vs soft lecture, 181004)

e SoC: A microcontroller on steroids?
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IPhone 6
PCB

antenna switch
(RFMD)
RF1331 4KTM

LED driver (Tl)
TPS65730

e Apple A8 pProcessor A8 (2014)
e 20nm (TSMC), 2B transistors, 89 mm?2
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Common observations

e Several different programmable processors
e A8:2 ARM cores, 4 GPU cores
e Xavier: 8 ARM cores, many GPU cores
e Lund chip: RISCV + vector processor
e Memory (cache or other)
e Misc. peripherals (memories, JTAG, USB, etc)

e |[nterconnect for all this
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1. Complexity

 Not only very many transistors, but also many very
disparate parts and sub-designs

e Several “processors” with very different architectures

e “Accelerators” (special-purpose blocks, very efficient at
certain well-defined tasks)

e Interfaces (memory, networking)
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Complexity, cont.

e Each part must be programmed, configured, debugged,
etc

e Multiple instruction sets
e Multiple programming languages/paradigms

e Signal processing, graphics, machine learning, etc in
addition to “standard” imperative programming

e Design team for 1B-transistor SoC needs much broader
skill set than for 1B-transistor memory chip
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2. Performance

 Not only performance requirements on blocks/cores, but
also on all interconnects, data transfers, etc (involves
interactions of several blocks)

e Bus interconnects such as in the Lund chip
e Contention limits total bandwidth

e Network-on-Chip (NoC)
e Similar abstractions as in data networks
e Scalability, modularity

e Guest lecture by loannis Sourdis tomorrow
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3. Power dissipation

e Not only need to cope with total power, but also with distribution in
time and space

* Include blockwise power-down mechanisms (unused
processors, etc) and adaption (DVS; cf power lecture)

* Hot-spots may affect performance in many ways!

* EX: clock skew may depend on heat profile!

[Liu et al. ICCD 2008, pp. 107—113]
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“Dark silicon”

e Maximum allowable overall power may be lower than sum
of powers of all blocks

 Then all blocks cannot be active simultaneously!

e Dark silicon: it’s there, but you cannot see/use/detect it

e Viable idea e.qg. if power is more important than chip area

e EX: Include several versions of a filter with different
power/performance, use the best one for each use
case

181018 LJS 14



4. NRE cost

e Not only design and verify each block, but also verify the
whole system

e Complex systems have more ways to malfunction
e Simulation coverage shrinks with growing system size
e How select simulation cases?
e Malfunction very expensive for large chip
e Direct cost of re-spin

e | ost market opportunity
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Verification dominates

Verification Consumes Majority of Project Time More Verification vs Design Engineers
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* These numbers are across 1886 chip designs of all sizes

[Wilson Research Group + Mentor Graphics, 2014 Functional Verification study]
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Verification success

2014 Number of Spins kb

Smaller designs are less likely
to achieve first silicon success?

Design Projects

1 (FIRST 2 3 4 5 6 7 SPINS or
SILICON MORE
SUCCESS)

Number of Required Spins by Design Size
(Gate Count Excluding Memories

Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

wwmentorcom T GNSRIY
e Larger, more expensive designs are taken more seriously?

e Attempted mostly by more mature organizations?
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5. Production cost

Overview of P1500 Architecture
System Chip with P1500 Cores

Chip
Inputs

TAM-Sink
User Defined Test Access Mechanism '—>

¢ TAM-In TTAM-Out ¢ TAM-In TTAM-Out

TAM-Source

Wrapper Controls

I
P1500 WIP

i Chip
} QOutputs

® TAM Source/Sink
+ From chip I/0, test bus/rail, BIST, etc...

® TAM In/Out

« 0to n lines for parallel and/or serial test data, or test control

® P1500 Wrapper Interface Port (WIP)
+ From chip-level TAP Controller, chip I/0, etc...

|IEEE P1500 Architecture Task Force, 1988.
Copyright 1999 IEEE P1500

Piso00

Embedded Gore Test

* Not only production testing of each block, but also validation of their interactions
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e Cannot cover all possible interactions, so select significant use cases!

* Test parallelism may be limited by power dissipation (“dark silicon” again)
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Are these “SoCs”
really full systems?

What about the analog parts?



Bluetooth transceiver

digital

e 180nm CMOS, 16 mm2, >1M digital gates, 2.4 GHz radio front end
e Digital and analog parts designed separately and combined at layout

e 300um “moat” around the RF to attenuate switching noise
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e 180nm CMOS, 12-bit ADC @ 512 S/s, 32 uW

[Kim et al. IEEE Trans. on Biomedical Circuits and Systems, Apr. 2014]
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e Cardiac sensing and pacing, transcutaneous power
supply

e 350nm, 2.4mm?2, 48uW

[Lee et al. IEEE Trans. on Biomedical Circuits and Systems, Dec. 2011]
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Summary

e Systems-on-Chip offer unique integration benefits

e Size, performance, power, reliability, cost (provided
large volumes)

e Design process includes extra complications
e In practice similar to “Structured ASICs” of early 2000’s
e Processors, memory, interfaces, interconnects

e Adaptable to several similar applications
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Summary, cont.

Microbumps
*  Accessto power / ground / IOs
* __Access 1o lodic reqions

Through-silicon Vias (TSV)

* Only bridge power / ground / [0s to C4 bumps
« Coarse pitch, low density aids manufacturabiity
« _Eich process (not laser dnlled)

Passive Silicon Interposer (65nm Generation) |
* 4 conventional metal layers connect micro bumps & TSVs
« No transistors means low risk and no TSV induced

performance degradation
Side-by-Side Die Layout |

*  Minimal heat flux issues
[— *  Minimal design tool flow impact
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e Don’t forget alternatives such as System-in-Package!

e Several chips sharing physical enclosure
e May be built in different technologies (CMQOS, memory techs, GaAs, etc)

* Chips may be tested separately

e Used today for large FPGAs, telecom applications, etc
[Xilinx.com]
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