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Networks on chip: Why?

• What do they interconnect?
• Why needed?
• What are the design objectives?
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Wire delay/gate delay does not scale
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Important Paradigms for NoC

• More scalable 
performance

• Re-use
• Flexibility
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What factors determine which 
interconnect solution you pick?

• Performance
– Latency
– Throughput

• Energy efficiency & Power
– Energy per transferred bit

• Other metrics:
– Quality of Service
– Fault tolerance



On-Chip vs. Off-Chip Differences
Advantages of on-chip
• Wires are “free”

– Can build highly connected networks with wide buses
• Low latency

– Can cross entire network in few clock cycles
• High Reliability

– Packets are not dropped and links rarely fail 

Disadvantages of on-chip
• Sharing resources with rest of components on chip

– Area
– Power

• Limited buffering available
• Not all topologies map well to 2D plane
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Routing Mechanism
• Arithmetic

– Simple arithmetic to determine route in regular topologies
– Dimension order routing in meshes/tori

• Source Based
– Source specifies output port for each switch in route
+ Simple switches 

• no control state: strip output port off header

- Large header

• Table Lookup Based
– Index into table for output port
+ Small header
- More complex switches
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Routing Algorithm
• Types
– Oblivious: do not consider network state (e.g., 

random)
• Deterministic: always choose the same path

– Adaptive: adapt to state of the network

• How to adapt
– Local/global feedback
–Minimal or non-minimal paths
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Deadlock
• No forward 

progress
• Caused by circular 

dependencies on 
resources

• Each packet waits 
for a buffer 
occupied by 
another packet 
downstream
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Turn Model to Avoid Deadlock
• Idea

– Analyze directions in which packets can turn in the network

– Determine the cycles that such turns can form

– Prohibit just enough turns to break possible cycles

• Glass and Ni, “The Turn Model for Adaptive Routing,” 

ISCA 1992.
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On-chip Networks
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Router Design: 

Functions of a Router

• Buffering (of flits)

• Route computation

• Arbitration of flits (i.e. 

prioritization) when 

contention

– Called packet scheduling

• Switching

– From input port to output 

port
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Router Pipeline

• Five logical stages
– BW: Buffer Write
– RC: Route computation
– VA: Virtual Channel 

Allocation
– SA: Switch Allocation
– ST: Switch Traversal
– LT: Link Traversal

BW RC VA SA ST LT
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Wormhole Router Timeline

• Route computation performed once per packet
• Virtual channel allocated once per packet
• Body and tail flits inherit this information from head flit

BW RC VA SA ST LT

BW

BW

BW

SA ST LT

SA ST LT

SA ST LT

Head

Body 1

Body 2

Tail
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Dependencies in a Router

Dependence between output of one module and input of another
• Determine critical path through router
• Cannot bid for switch port until routing performed

Decode + Routing Switch Arbitration Crossbar Traversal

Wormhole Router

Decode + Routing Switch Arbitration Crossbar Traversal

Virtual Channel Router

VC Allocation

Decode + Routing Speculative Switch 
Arbitration

Crossbar Traversal

Speculative Virtual Channel 
Router

VC Allocation
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Pipeline Optimizations: Lookahead Routing

• At current router perform routing 
computation for next router
– Overlap with BW

– Precomputing route allows flits to compete for 
VCs immediately after BW

– RC decodes route header
– Routing computation needed at next hop

• Can be computed in parallel with VA

• Galles, “Spider: A High-Speed Network 
Interconnect,” IEEE Micro 1997.

BW
RC VA SA ST LT
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Pipeline Optimizations: 
Speculation

• Assume that Virtual Channel 
Allocation stage will be 
successful
– Valid under low to moderate 

loads
• Entire VA and SA in parallel

• If VA unsuccessful (no virtual 
channel returned)
– Must repeat VA/SA in next cycle

• Prioritize non-speculative 
requests

BW
RC

VA
SA ST LT
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Pipeline Optimizations: Bypassing

• When no flits in input 

buffer

– Speculatively enter ST

– On port conflict, 

speculation aborted

– In the first stage, a free VC 

is allocated, next routing is 

performed and the 

crossbar is setup

VA
RC

Setup
ST LT
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Conceptual
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Interconnection Network 
Performance
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Tilera Networks
• 2D Mesh

• Five networks

• Four packet switched
– Dimension order routing, 

wormhole flow control

– TDN: Cache request packets

– MDN: Response packets

– IDN: I/O packets

– UDN: Core to core messaging

• One circuit switched
– STN: Low-latency, high-

bandwidth static network

– Streaming data
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Research Topics in NoCs
Plenty of topics in on-chip networks. Examples:

• Performance: 
– Reduce packet latency
– Improve Throughput

• Energy/power efficient/proportional design

• Adaptivity: Ability to adapt to different access patterns

• QoS, performance isolation, prioritization
– Reducing and controlling interference, admission control
– Request prioritization, priority inversion, coherence, …

• Co-design of NoCs with other shared resources
– End-to-end performance, QoS, power/energy optimization

• Scalable topologies to many cores

• Fault tolerance

• New technologies (optical, 3D, …)
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NoC research at Chalmers

• Freeway NoC
• RQNoC
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FreewayNoC: 

Objectives And Key Concepts

Primary objective is to improve performance:

• Improve network throughput

• Reduce packet latency

45

FreewayNoC is based on two concepts:
1. Operate datapath (ST, LT) at DDR to maximize its utilization
2. Provide a simplified pipeline stage bypassing to reduce latency
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NoCs Datapath Is Underutilized

46
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Operate Datapath In DDR
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FreewayNoC: 
Improve DDRNoC Latency Using 

Pipeline Bypassing

48
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Pipeline Bypassing: Conflict Check

49
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FreewayNoC: 
Simplified Pipeline Bypassing 

50
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FreewayNoC Simplified Pipeline 
Bypassing: Performance Implications

51
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The FreewayNoC vs. ShortPath & 
DDRNoC

52

Throughput
25% higher
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22% higher
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22% higher

Latency
7% higher

Throughput
22% higher

Latency
5% Lower

vs DDRNoC
Same Throughput

Latency: up to 41% lower

vs ShortPath
Throughput: 22-25% higher

Latency: Improves as hop count increases

A. Psarras et al., "ShortPath: A Network-on-Chip Router with Fine-Grained Pipeline Bypassing”, in IEEE Transactions on Computers, 2016
A. Ejaz et al., "DDRNoC: Dual Data-Rate Network-on-Chip”, in ACM Transactions on Architecture and Code Optimization, 2018

© Ahsen Ejaz, CE, Chalmers, Sweden 

Clock Frequency:
• ShortPath: 2.38 GHz
• DDRNoC and FreewayNoC: 1.47 GHz 
Traffic Pattern: Uniform Random
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q Microarchitectural Fault Tolerance 
technique

qTolerating faults at routers and links
§ We are explicitly targeting permanent faults

q Service-Oriented NoC
§ Supporting multiple 

traffic classes
requirements, e.g. 
latency and throughout.

21

Background: NoC
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The Core Idea: 
Allowing service redirection 
(In presence of a faulty resource on the path)

22

RQNoC: A Resilient Service-Oriented NoC
    

    

   
     

    
    

    
   



The Core Idea: 
Allowing service redirection 
(In presence of a faulty resource on the path)

q Through alternative path on the
same service:

§ Service Detour (SDetour) 

RQNoC: A Resilient Service-Oriented NoC

– Longer alternative path
+ Maintaining service isolation
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The Core Idea: 
Allowing service redirection 
(In presence of a faulty resource on the path)

q Through alternative path on the
same service:

§ Service Detour (SDetour) 

q Through resources of another service:

§ Service Merge (SMerge)

RQNoC: A Resilient Service-Oriented NoC

– Longer alternative path
+ Maintaining service isolation

+ Shorter path
– Breaching service isolation
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Summary of Part 2

Sharing resources between traffic classes imposes 
considerable latency and throughput penalty but improves 

the network connectivity to a very high degree

q Objective: 
To design and evaluate a service-oriented NoC that 
enables us to trade service isolation for fault tolerance.

q RQNoC supports two alternatives for service redirection:
qSDetour: Use alternative resources on the same service
qSMerge: Share resources with another service

• SDetour 
§ Requires 9% more resources vs. Baseline
§ Latency increased up to 24% and throughput up 

to 50% reduced
§ Maintains 41% connectivity in presence of 32 

fault

• SMerge 
§ Requires 22.4% more resources vs. Baseline
§ Latency increased up to 3.8x and throughput up 

to 70% reduced
§ Maintains 90% connectivity in presence of 32 

faults

A.Malek et.al., 
TECS’16
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Summary of Lecture
• NoCs basics
• NoCs design alternatives:

– Topologies
– Flow control
– Routing
– Router architecture
– Packet scheduling

• Research on NoCs

Reading:
• Principles and Practices of 

Interconnection Networks, 
Book by Bill Dally and Brian 
Towles
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