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Modern?

• Challenges: 

• Complexity

• Performance

• Power dissipation 

• Development rate

• Manufacturing cost

• …
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• Individual rings

• 2013

• Web browser
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readily available. Therefore, in this paper we equate computer

performance with CINT performance. We note, however, that

the performance development is likely to look different de-

pending on the workload used for comparison. All data used,

unless otherwise noted, are from publicly available databases1.

The SPEC benchmark suites are updated every few years in

order to adjust the workloads for modern machines. Measure-

ments on top-of-the-line machines are typically only available

for the latest benchmark. This is for good reasons, since old

benchmarks are likely to have footprints small enough to !t in

on-chip caches on modern machines and are not representative

of contemporary workloads, while new benchmarks have too

large workloads to run on old machines. Unfortunately, this

makes performance comparisons dif!cult. We have chosen

to treat each benchmark suite as representative of its time,

stressing both CPU and the memory system. Like in [5],

we attempt to normalize results from different benchmarks to

the same relative performance scale. Results are dated to the

month they were reported, which is typically close to when all

hardware and software used was available. There are, however,

some results which were clearly from machines much older

than the test date, and where hardware availability dates were

used instead. All data that was used can be found in Table II.

A. Normalizing Results from Different Bechmark Suites

In order to normalize the results from one benchmark suite

to another, we need to !nd results for both benchmarks from

the same (base) machine. We then normalize e.g. a CINT2000

result to a CINT95 result simply by multiplying it with the

ratio between the CINT95 and CINT2000 results on the base

machine. However, this ratio depends on the machine used

for normalization. In order to strengthen our conclusions, we

have chosen to use two different machines for each benchmark

transition. This leaves us with four performance numbers for

the most recent machines, since there are two benchmark

transitions where normalization is needed. We report the

highest and lowest performance numbers of these four (listed

in columns High and Low in Table II). Since the difference in

annual growth between the high and low performance numbers

is very small, we feel con!ndent that our results are not

signi!cantly biased by the normalization.

B. Beware of Benchmark Transitions

When compiling peak performance numbers to see perfor-

mance development, it is important to make sure the results

really are from top-of-the-line machines. This is not always

the case if you simply pick the highest currently available per-

formance number. For instance, picking top reported CINT95

results for Alpha processors in late 1995, and early 1996 would

encourage you to believe the performance growth was about

400% in a few months. This is not the case; the !rst reported

CINT95 results were actually for a machine released in 1992,

but since CINT95 was introduced in 1995, the test date was

from that year. The same is true when the IBM POWER3

1http://www.spec.org, http://performance.netlib.org, and Usenet archives.

is the CINT2000 performance leader for a brief period. In

both cases these machines seemed to be performance leaders

simply because there were no other reported results for the

new bechmark.

Another caveat is that as we normalize different benchmarks

we also postulate that the relative performance is the same for

both benchmarks on that machine. The percentual performance

growth before and after the switch is correct, but you cannot

easily compare other properties across this boundary. Espe-

cially, since the working sets of the newer benchmark is scaled

to better match contemporary workloads, the average IPC is

likely to be lower. This means if we have CINT95 IPC on a

machine it is not true that the relative performance advantage

of a machine measured with CINT2000 can be derived from

frequency and IPC increase; the effects of application scaling

is also included in the performance gain.

III. INTERPRETING THE NUMBERS

Figure 1 plots relative performance, normalized to the

CINT89 performance scale, as well as clock frequency from

1985 to 2004. There are three curves in the !gure. The

two upper curves describe the performance depending on the

normalization used in the benchmark transitions. The highest

curve peaks at about 9000 and represents the most optimistic

performance growth, while the middle curve represents the

pessimistic growth and peaks 16% lower. The clock frequency

peaks at 3.4 GHz. In 1985 the relative performance was about

1.8 while frequency was 16 MHz, leading to a total increase

in performance of more than 5000x, while clock frequency

has scaled over 200x. This translates into an annual growth in

performance of 56% or 58% (depending on the normalization),

and 33% in clock frequency. Since the chosen normalization

does not affect the result much, we have chosen the one

yielding a 58% annual growth in the rest of this paper.

Fig. 2. Computer performance 1985-2004, logarithmic scale.

With exponential growth scenarios it is often more informa-

tive to consider a logarithmic scale. This is shown in Figure

2. There are several curves plotted in the !gure. Result high

plots the performance of the currently best reported results

during the entire time frame. It starts at 1.8 and continues in

a shaky walk up to 9102. The following !ve curves connects

the peaks of the performance curve and forms the convex hull.

ACM SIGARCH Computer Architecture News 145 Vol. 33, No. 1, March 2005

[Ekman, Warg, Nilsson 2004]
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Typical class project (hw / sw)

• Scope: small 

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known
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Large and growing
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Evolving rapidly
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Complex
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this does?
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Typical real-world project (hw + sw + …)
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Big Issue

• “Everything” gets more difficult, often  
exponentially with time

• How handle this explosion? 

• How to design and develop, today?

 11
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Q: How to design and develop, 
today? 

• (Required) A: a design/development method, 
process, methodology, or approach, which 
handles…  

• …large and larger projects 

• …full range of development tasks

• …many kinds of requirements 

• …activity scheduling, cost estimates, risk 
mitigation, etc 

• Concept examples: Waterfall, Agile, Lean
 12
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I SYSTE M 

I ANALYSIS 

PROGRAM 
DESIGN 

I c o o , . o  

TESTING 

I OPERATIONS 

Figure 2. Implementation steps to develop a large computer program for delivery to a customer. 

I believe in this concept, but the implementation described above is risky and invites failure. The 

problem is illustrated in Figure 4. The testing phase which occurs at the end of the development cycle is the 

first event for which timing, storage, input /output  transfers, etc., are experienced as distinguished from 

analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial 

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various 

external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated 

code wil l  not f ix  these kinds of diff icult ies. The required design changes are l ikely to be so disruptive that the 

software requirements upon which the design is based and which provides the rationale for everything are 

violated. Either the requirements must be modif ied, or a substantial change in the design is required. In effect 

the development process has returned to the origin and one can expect up to a lO0-percent overrun in schedule 

and/or costs. 

One might note that there has been a skipping-over of the analysis and code phases. One cannot, of 

course, produce software wi thout  these steps, but generally these phases are managed wi th relative ease and 

have l i tt le impact on requirements, design, and testing. In my experience there are whole departments 

consumed with the analysis of orbi t  mechanics, spacecraft att i tude determination, mathematical opt imizat ion 

of payload activity and so forth, but when these departments have completed their di f f icul t  and complex work, 

the resultant program steps involvea few lines of serial arithmetic code. If in the execution of their d i f f icul t  

and complex work the analysts have made a mistake, the correction is invariably implemented by a minor 

change in the code with no disruptive feedback into the other development bases. 

However, I believe the illustrated approach to be fundamental ly sound. The remainder of this 

discussion presents five addit ional features that must be added to this basic approach to eliminate most of the 

development risks. 

329 

1. Waterfall model

 13

[Royce 1970]
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Software 
example
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Waterfall characteristics

• Proceed in orderly fashion from step to step 

• Finish each task before starting the next 
one (never backtrack)

• Scrupulously document everything

• Pure Waterfall unrealistic even when first 
published…

 14
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Selected Waterfall problems

• Monolithic; no provisions for design re-use

• Very few projects start with clean sheet 

• Assumes static environment 

• Late spec changes are not handled

• “Clean” hand-offs are rare

• Iterations necessary in practice

• Late-stage resources idle at start
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Evolved version
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2. Agile methods 
• Less of a blueprint, more of a philosophy

• Principles, practices, tools embody the philosophy

• Manifesto: 

 17 [www.agilemanifesto.org]

http://www.agilemanifesto.org


180903 LJS

Agile practices (examples)

• User stories define final product 

• Test-driven development relies on automatic 
application of functionality tests

• Repeated refactoring for incremental design 
during implementation 

• Pair programming reduces risk for “smart” 
solutions which work for only 99% of the cases

• Release early + often to get feedback 

 18



180903 LJS

Agile practices (examples)

• User stories define final product 

• Test-driven development relies on automatic 
application of functionality tests

• Repeated refactoring for incremental design 
during implementation 

• Pair programming reduces risk for “smart” 
solutions which work for only 99% of the cases

• Release early + often to get feedback 

 18
All applicable to hardware/system design



180903 LJS

Agile practices (examples)

• User stories define final product 

• Test-driven development relies on automatic 
application of functionality tests

• Repeated refactoring for incremental design 
during implementation 

• Pair programming reduces risk for “smart” 
solutions which work for only 99% of the cases

• Release early + often to get feedback 

 18
All applicable to hardware/system design



180903 LJS

3. Lean development
• Origin in manufacturing rather than in software 

development 

• “Lean manufacturing” @ Toyota, 1980’s 

• Introduced in software development ~2000 
(Poppendieck & Poppendieck)

• Key ideas: 

 19

• Optimize the whole 

• Eliminate waste 

• Build quality in 

• Learn constantly 

• Deliver fast 

• Engage everyone 

• Keep getting better 

[Poppendieck & Cusumano, 2012]
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Software vs. system development

• Here, “system” == software + digital 
hardware + analog circuits + packaging + 
services + …

• Software development methods cannot be 
applied blindly!

• Principles of Agile and Lean inspire 
engineering development in all fields today

 20
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Pitfalls (for any approach)

• Focus on tools or practices, w/o 
understanding why they are important

• Missing the big picture 

• Lack of skills and knowledge of specific 
topic area 

 21
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It is really all about learning. 

• Designers / developers need 
knowledge and skills

• You’ll learn some in University 
courses

• Design and development is learning

 22
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Skills / knowledge:
aspects of design

 23
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1. Specifications

• Must include:

• functionality/behavior 

• interfaces (to 
hardware and 
software)

• May include:

• timing

• performance 

• power

• testability …
 24

• Many kinds: 

• Documents in natural language (English, etc) 

• Executable specifications

• Formal specifications

LABS

DAT096
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• Many kinds: 

• Documents in natural language (English, etc) 

• Executable specifications

• Formal specifications
What makes each kind useful?

LABS
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2. System architecture  

• Major design decisions 

• Hardware vs. software 

• Analog vs. digital 

• Mechanical construction 

• Processor/memory hierarchies 

• …

 25

DAT096

DAT116

DAT105
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3. Hard vs Soft 

• Hardware: inflexible, high performance 
capability

• Software: flexible (well…), limited performance 

• Reconfigurable hardware: flexible, intermediate 
performance, high cost per part 

• More in later lecture 

 26



180903 LJS

4. Analog vs Digital

• Digital embedded electronic systems 
interact with analog world 

• Where to draw the A/D border? 

• Often major influence on performance, 
cost

 27

DAT116
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5. Digital design (or selection)

• Design what’s not available off-the-shelf 

• Hardware Description Languages

• Design methods rely heavily on CAD 
tools 

• Still necessary to understand the 
underlying circuit behavior

• Determines achievable performance  

 28

DAT110

MCC092

LABS
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Digital 
design flow 
• Stages as in 

this diagram

• Additions, 
deletions 
common

• Iterations 
typically 
necessary

 29

12 Reuse Methodology Manual

[Keating, Bricard 2002.]
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12 Reuse Methodology Manual

What does 

this diagram 

remind you of?
[Keating, Bricard 2002.]
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6. Integration & verification

• Putting the pieces together 

• Very time-consuming process! 

• Must be considered from the outset!

• Errors must be patched 

• Software vs. hardware 

 30

LABS

DAT096
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Summary

• Electronic-system design complexity ever-growing 

• Includes software, analog/digital, packaging, 
batteries, …

• Design process is much more than putting 
electronic components together!  

• Designer needs “vertical” insight

• Career typically starts at implementation level, 
moves “up” 

 31
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This week

• Two more lectures by Sven Knutsson 

• VHDL + the lab series

• Note: room EF, EE (two floors up) 

• VHDL kick-start workshop 

• Wednesday (+ Friday)

• Readings on design approaches (final 
slide)

 32
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To do: 

• Get registered for the course!

• Verify access to PingPong web system! 

• Fill out the pre-workshop survey!  

• In Ping-Pong, under “Contents”  

• Watch VHDL movie (again)!

• Optionally complete your VHDL library!  

 33
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Background reading

• Royce: Managing the development of 
large software systems (1970) 
[available in PingPong]

• Wikipedia-article on Agile Software 
Development 

• Poppendieck, Cusumano: Lean 
Software Development: a tutorial (2012) 
[available in PingPong]
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