Modern embedded
electronic systems
design: a bird’s-eye view

Lars Svensson
lars.svensson@chalmers.se

mailto:lars.svensson@chalmers.se

Modern?

e Challenges:
o Complexity
e Performance
e Power dissipation
e Development rate

e Manufacturing cost

180903 LJS 2

180903 LJS

Complexity

Complexity

180903 LJS 3

Complexity

e |997

® SMS
® Alarm
® |ndividual rings

180903 LJS 3

Complexity

e |997

® SMS
® Alarm
® |ndividual rings

180903 LJS 3

180903 LJS

— e

| WURLD
il

Lo

1997
SMS
Alarm

Individual rings

Complexity

2013

Web browser
Bluetooth

WiFi

Video

Cameras

Calendar

MP3 player
Android / Linux
Color touch screen

Multitouch

3

Complexity

o 2013

Tt ® VWeb browser
' Ll
:ml‘ll LD

Lo

® Bluetooth

® WiFi

® Video

® Cameras

® C(Calendar

e [997 e MP3 player ® Address book

® SMS e Android / Linux e Continuous internet
connection

® Alarm ® Color touch screen

® Social app support
® |ndividual rings e Multitouch

® App store ...
180903 LJS 3

Integrated Gircuit Complexity

Transistors
Per Die

1010
0 & 1965 Actual Data 16 2G 46

10°-{ = MOS Arrays o MOS Logic 1975 Actual Data 1

108- 1975 Projection 64M 128M itanium™

Pentium®4
q07{ ™ Memory) . Pentium® Il
106-

A Microprocessor ium®@Il
Pentium®
105-

104
105

[

10°
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

180903 LJS

Performance

10000
1000

3400
& m
ﬁ T
£ . =
5 100 >
& g
2 g
E LL
£ 10 ;

. 16
1 [[[[[[

jun/85 feb/88 nov/90 aug/93 maj/96 feb/99 nov/01

[Ekman, Warg, Nilsson 2004]

180903 LJS 5

Performance

Twisted—-pair Ethernet and 2.4GHz WLAN performance

10 ["“\\V
e
E 108 ! “o‘\n]
Q : :
\ o
10’ ¢ 0]
of
106 | | |
1990 1995 2000 2005 2010

Year of standardization

180903 LJS 6

Power dissipation

Processor Power (Watts) - Active & Leakage

1000 -

100 -

1970 1980 1990 2000 2010

180903 LJS

Development rate

B Nokia GSM phones

50
38

2
> (through August)

13

0
1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Year of announcement

www.gsmarena.com
180903 LJS 8

http://www.gsmarena.com
http://www.gsmarena.com

Development rate

B Nokia GSM phones 28 Samsung GSM phones

140
105
/70

(through August)

35

0
1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Year of announcement

www.gsmarena.com
180903 LJS 9

http://www.gsmarena.com
http://www.gsmarena.com

Typical class project (hw / sw)

e Scope: small

e Team: small (often size 1)

e Task: well-defined from start
e External dependencies: none
e Planning: simple

e Progress: linear

e Tools: well-known

180903 LJS |0

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small

e Team: small (often size 1)

e Task: well-defined from start
e External dependencies: none
e Planning: simple

e Progress: linear

e Tools: well-known

180903 LJS |0

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing
e TJeam: small (often size 1)

o Task: well-defined from start

e External dependencies: none

e Planning: simple

e Progress: linear

e Tools: well-known

180903 LJS |0

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing

e Team: small (often size 1) “Big picture” very big
o Task: well-defined from start

e External dependencies: none

e Planning: simple

® Progress: linear

e Tools: well-known

180903 LJS |0

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing

e Team: small (often size 1) “Big picture” very big
e Task: well-defined from start Evolving rapidly

e External dependencies: none

e Planning: simple

® Progress: linear

e Tools: well-known

180903 LJS |0

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing

e Team: small (often size 1) “Big picture” very big
e Task: well-defined from start Evolving rapidly

e External dependencies: none Many critical ones

e Planning: simple

® Progress: linear

e Tools: well-known

180903 LJS |0

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing

e Team: small (often size 1) “Big picture” very big
e Task: well-defined from start Evolving rapidly

e External dependencies: none Many critical ones

e Planning: simple Complex

e Progress: linear

e Tools: well-known

180903 LJS 10

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing

e Team: small (often size 1) “Big picture” very big
e Task: well-defined from start Evolving rapidly

e External dependencies: none Many critical ones

e Planning: simple Complex

® Progress: linear Chaotic

e Tools: well-known

180903 LJS 10

Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing
e Team: small (often size 1) “Big picture” very big
e Task: well-defined from start Evolving rapidly

e External dependencies: none Many critical ones

e Planning: simple Complex
e Progress: linear Chaotic
e Tools: well-known Hmm... wonder what

this does?

180903 LJS 10

Big Issue

e “Everything” gets more difficult, often
exponentially with time

e How handle this explosion?

e How to design and develop, today?

180903 LJS |l

Q: How to design and develop,
today?

e (Required) A: a design/development method,
process, methodology, or approach, which
handles...

e ...large and larger projects
o . .full range of development tasks
e ...many kinds of requirements

e . .activity scheduling, cost estimates, risk
mitigation, etc

e (Concept examples: Waterfall, Agile, Lean

180903 LJS 12

Q: How to design and develop,
today?

e (Required) A: a design/development method,
process, methodology, or approach, which
handles...

e ...large and larger projects
o . .full range of development tasks
e ...many kinds of requirements

e . .activity scheduling, cost estimates, risk
mitigation, etc

e (Concept examples: Waterfall, Agile, Lean

180903 LJS 12

1. Waterfall model

SOFTWARE
REQUIREMENT

==

ANALYSIS

|N

PROGRAM
DESIGN

CODING

\

TESTING

.

| OPERATIONS

Figure 2. implementation steps to develop a large computer program for delivery to a customer,

[Royce 1970]

180903 LJS 13

1. Waterfall model

SOFTWARE
REQUIREMENT

S]N

ANALYSIS

PROGRAM
DESIGN a

CODING

TESTING

.

| OPERATIONS

Figure 2. implementation steps to develop a large computer program for delivery to a customer,

180903 LJS 13

[Royce 1970]

Waterfall characteristics

e Proceed in orderly fashion from step to step

e Finish each task before starting the next
one (never backtrack)

e Scrupulously document everything

e Pure Waterfall unrealistic even when first
published...

180903 LJS |4

Waterfall characteristics

e Proceed in orderly fashion from step to step

e Finish each task before starting the next
one (never backtrack)

e Scrupulously document everything

e Pure Waterfall unrealistic even when first
published...

“\\\\\!q‘

180903 LJS |4

Selected Watertfall problems

e Monolithic; no provisions for design re-use
e Very few projects start with clean sheet
e Assumes static environment
e | ate spec changes are not handled
e “Clean” hand-offs are rare
e |terations necessary in practice

e | ate-stage resources idle at start

180903 LJS |5

Selected Watertfall problems

e Monolithic; no provisions for design re-use
e Very few projects start with clean sheet

e Assumes static environment

e “Clean” hand-offs are rare g
e |terations necessary in practice LZ)
@,
Q

e | ate-stage resources idle at start

180903 LJS |5

Evolved version

(Write specificationj

(Design architecturej

[Decompose J

[Select or design J

[Integrate J

[Deliver

180903 LJS |6

Evolved version

[Write specificationj Full detailed specification!

(Design architecturej

[Decompose J

[Select or design J

[Integrate J

[Deliver

180903 LJS |6

Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[Decompose J

[Select or design J

[Integrate J

[Deliver

180903 LJS |6

Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[Decompose J Distribute requirements

[Select or design J

[Integrate J

[Deliver J

180903 LJS |6

Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[Decompose J Distribute requirements

“Design” means recurse [Select or design J

[Integrate J

[Deliver J

180903 LJS |6

Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[Decompose J Distribute requirements

“Design” means recurse [Select or design J

Verify that reqs are met [Integrate J

[Deliver J

180903 LJS |6

Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[Decompose J Distribute requirements

“Design” means recurse [Select or design J

Verify that reqs are met [Integrate J

$3 :-) [Deliver J

180903 LJS |6

Evolved version

(Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[Decompose J Distribute requirements

“Design” means recurse [Select or design J

Verify that reqs are met [Integrate J

Remaining iSS Ues? $5 :-) [Deliver J

180903 LJS |6

2. Agile methods

e | ess of a blueprint, more of a philosophy
e Principles, practices, tools embody the philosophy

e Manifesto:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there 1s value in the items on
the right, we value the items on the left more.

180903 LJS |7 [www.agilemanifesto.org]

http://www.agilemanifesto.org

180903 LJS

Agile practices (examples)

User stories define final product

Test-driven development relies on automatic
application of functionality tests

Repeated refactoring for incremental design
during implementation

Pair programming reduces risk for “smart”

solutions which work for only 99% of the cases

Release early + often to get feedback

180903 LJS

Agile practices (examples)

User stories define final product

Test-driven development relies on automatic

application of functionality tests

Repeated refactoring for incremental design
during implementation

Pair programming reduces risk for “smart”

solutions which work for only 99% of the cases

Release early + often to get feedback

All applicable to hardware/system design

|18

180903 LJS

Agile practices (examples)

User stories define final product

Test-driven development relies on automatic

application of functionality tests

Repeated refactoring for incremental design
during implementation

Pair programming reduces risk for “smart”

solutions which work for only 99% of the cases

Release early + often to get feedback

All applicable to hardware/system design

|18

180903 LJS

3. Lean development

Origin in manufacturing rather than in software
development

“Lean manufacturing” @ Toyota, 1980’s

Introduced in software development ~2000

(Poppendieck & Poppendieck)

Key ideas:

Optimize the whole
Eliminate waste
Build quality In

Learn constantly

Deliver fast
Engage everyone

Keep getting better

[Poppendieck & Cusumano, 2012]

180903 LJS

3. Lean development

e QOirigin in manufacturing rather than in software ‘\’{\65

development

\e
“Lean manufacturing” @ Toyota, 1980’s \N| PO

Introduced in software development ~2000
(Poppendieck & Poppendieck)

o Key ideas:

Optimize the whole e Deliver fast
Eliminate waste e [Engage everyone
Build quality in o Keep getting better

Learn constantly

19 [Poppendieck & Cusumano, 2012]

180903 LJS

e QOirigin in manufacturing rather than in software
development

3. Lean development

\e
“Lean manufacturing” @ Toyota, 1980’s \N| PO

* Introduced in software development ~2000 (\065
(Poppendieck & Poppendieck) ‘\’(\G‘e \?
Ol et
e Key ideas: WL
e (Optimize the whole e Deliver fast
¢ FEliminate waste e [Engage everyone
e Build quality In o Keep getting better

Learn constantly

19 [Poppendieck & Cusumano, 2012]

Software vs. system development

e Here, “system” == software + digital
hardware + analog circuits + packaging +
services + ...

o Software development methods cannot be
applied blindly!

e Principles of Agile and Lean inspire
engineering development in all fields today

180903 LJS 20

Pitfalls (for any approach)

® Focus on tools or practices, w/o
understanding why they are important

e Missing the big picture

e | ack of skills and knowledge of specific
topic area

180903 LJS 21

It Is really all about learning.

e Designers / developers need
knowledge and skills

e You'll learn some in University
courses

e Design and development is learning

180903 LJS 22

Skills / knowledge:
aspects of design

1. Specifications
e Many kinds:

e Documents in natural language (English, etc)

e EXxecutable specifications

e Formal specifications

e Must include: e May include:
e functionality/behavior e timing LABS
¢ interfaces (to e performance
hardware and DATO096
software) * power

o testability ...

180903 LJS 24

180903 LJS

1. Specifications

e Many kinds:

e Documents in natural language (English, etc)

e EXxecutable specifications

e Formal specifications

e Must include:
e functionality/behavior

¢ interfaces (to
hardware and
software)

24

e May include:
e timing
e performance
® power

o testability ...

LABS
DATO096

2. System architecture

e Major design decisions
e Hardware vs. software DAT096

* Analog vs. digital DAT116
MKM10S

e Mechanical construction

e Processor/memory hierarchies gpazz2

DAT105
EDAR83

180903 LJS 25

3. Hard vs Soft

e Hardware: inflexible, high performance
capability

e Software: flexible (well...), limited performance

e Reconfigurable hardware: flexible, intermediate
performance, high cost per part

e More In later lecture

180903 LJS 26

4. Analog vs Digital

e Digital embedded electronic systems
interact with analog world

e \Where to draw the A/D border? DAT116

e Often major influence on performance,
cost

180903 LJS 27

5. Digital design (or selection)

e Design what’s not available off-the-shelf
e Hardware Description Languages 1,ABS

¢ Design methods rely heavily on CAD
tools DAT110

e Still necessary to understand the
underlying circuit behavior MCCO92

e Determines achievable performance

180903 LJS 28

Digital =

design flow

e Stages as in
this diagram

e Additions,
deletions
common

e |terations

typically
necessary

180903 LJS 29

unctiona

- o o s o S O am G MR GE M S M G B M M o o o e W _w W W W W E W R e i R mE mE

[Keating, Bricard 2002.]

Dlgltal """""" We ------------ B AR AR S SRR
design flow T

e Stages as in
this diagram

e Additions, | —
deletions =~ e
common p &%

: /’&
e |terations). "¢

typically AL
necessary O(/ /)7 [build and test }

180903 LJS 29 [Keating, Bricard 2002.]

6. Integration & verification

e Putting the pieces together
¢ \ery time-consuming process!

e Must be considered from the outset!
e Errors must be patched

LABS
e Software vs. hardware

DATO096

180903 LJS 30

Summary

e Electronic-system design complexity ever-growing

¢ Includes software, analog/digital, packaging,
batteries, ...

e Design process is much more than putting
electronic components together!

e Designer needs “vertical” insight

e Career typically starts at implementation level,
moves “up”

180903 LJS 31

This week

e Two more lectures by Sven Knutsson
e VHDL + the lab series
e Note: room EF, EE (two floors up)
e VHDL kick-start workshop
e \WWednesday (+ Friday)

e Readings on design approaches (final
slide)

180903 LJS 32

180903 LJS

To do:

Get registered for the course!

Verify access to PingPong web system!
Fill out the pre-workshop survey!

e |n Ping-Pong, under “Contents”
Watch VHDL movie (again)!

Optionally complete your VHDL library!

33

Background reading

e Royce: Managing the development of
large software systems (1970)
[available in PingPong]

o Wikipedia-article on Agile Software
Development

e Poppendieck, Cusumano: Lean
Software Development: a tutorial (2012)
[available in PingPong]

180903 LJS 34

