
180903 LJS

Modern embedded
electronic systems

design: a bird’s-eye view
Lars Svensson

lars.svensson@chalmers.se

mailto:lars.svensson@chalmers.se

180903 LJS

Modern?

• Challenges:

• Complexity

• Performance

• Power dissipation

• Development rate

• Manufacturing cost

• …

 2

180903 LJS

Complexity

 3

180903 LJS

Complexity

 3

180903 LJS

Complexity

 3

• 1997

• SMS

• Alarm

• Individual rings

180903 LJS

Complexity

 3

• 1997

• SMS

• Alarm

• Individual rings

180903 LJS

Complexity

 3

• 1997

• SMS

• Alarm

• Individual rings

• 2013

• Web browser

• Bluetooth

• WiFi

• Video

• Cameras

• Calendar

• MP3 player

• Android / Linux

• Color touch screen

• Multitouch

180903 LJS

Complexity

 3

• 1997

• SMS

• Alarm

• Individual rings

• 2013

• Web browser

• Bluetooth

• WiFi

• Video

• Cameras

• Calendar

• MP3 player

• Android / Linux

• Color touch screen

• Multitouch

• Address book

• Continuous internet
connection

• Social app support

• App store …

180903 LJS

Complexity

 4

180903 LJS

Performance

 5

readily available. Therefore, in this paper we equate computer

performance with CINT performance. We note, however, that

the performance development is likely to look different de-

pending on the workload used for comparison. All data used,

unless otherwise noted, are from publicly available databases1.

The SPEC benchmark suites are updated every few years in

order to adjust the workloads for modern machines. Measure-

ments on top-of-the-line machines are typically only available

for the latest benchmark. This is for good reasons, since old

benchmarks are likely to have footprints small enough to !t in

on-chip caches on modern machines and are not representative

of contemporary workloads, while new benchmarks have too

large workloads to run on old machines. Unfortunately, this

makes performance comparisons dif!cult. We have chosen

to treat each benchmark suite as representative of its time,

stressing both CPU and the memory system. Like in [5],

we attempt to normalize results from different benchmarks to

the same relative performance scale. Results are dated to the

month they were reported, which is typically close to when all

hardware and software used was available. There are, however,

some results which were clearly from machines much older

than the test date, and where hardware availability dates were

used instead. All data that was used can be found in Table II.

A. Normalizing Results from Different Bechmark Suites

In order to normalize the results from one benchmark suite

to another, we need to !nd results for both benchmarks from

the same (base) machine. We then normalize e.g. a CINT2000

result to a CINT95 result simply by multiplying it with the

ratio between the CINT95 and CINT2000 results on the base

machine. However, this ratio depends on the machine used

for normalization. In order to strengthen our conclusions, we

have chosen to use two different machines for each benchmark

transition. This leaves us with four performance numbers for

the most recent machines, since there are two benchmark

transitions where normalization is needed. We report the

highest and lowest performance numbers of these four (listed

in columns High and Low in Table II). Since the difference in

annual growth between the high and low performance numbers

is very small, we feel con!ndent that our results are not

signi!cantly biased by the normalization.

B. Beware of Benchmark Transitions

When compiling peak performance numbers to see perfor-

mance development, it is important to make sure the results

really are from top-of-the-line machines. This is not always

the case if you simply pick the highest currently available per-

formance number. For instance, picking top reported CINT95

results for Alpha processors in late 1995, and early 1996 would

encourage you to believe the performance growth was about

400% in a few months. This is not the case; the !rst reported

CINT95 results were actually for a machine released in 1992,

but since CINT95 was introduced in 1995, the test date was

from that year. The same is true when the IBM POWER3

1http://www.spec.org, http://performance.netlib.org, and Usenet archives.

is the CINT2000 performance leader for a brief period. In

both cases these machines seemed to be performance leaders

simply because there were no other reported results for the

new bechmark.

Another caveat is that as we normalize different benchmarks

we also postulate that the relative performance is the same for

both benchmarks on that machine. The percentual performance

growth before and after the switch is correct, but you cannot

easily compare other properties across this boundary. Espe-

cially, since the working sets of the newer benchmark is scaled

to better match contemporary workloads, the average IPC is

likely to be lower. This means if we have CINT95 IPC on a

machine it is not true that the relative performance advantage

of a machine measured with CINT2000 can be derived from

frequency and IPC increase; the effects of application scaling

is also included in the performance gain.

III. INTERPRETING THE NUMBERS

Figure 1 plots relative performance, normalized to the

CINT89 performance scale, as well as clock frequency from

1985 to 2004. There are three curves in the !gure. The

two upper curves describe the performance depending on the

normalization used in the benchmark transitions. The highest

curve peaks at about 9000 and represents the most optimistic

performance growth, while the middle curve represents the

pessimistic growth and peaks 16% lower. The clock frequency

peaks at 3.4 GHz. In 1985 the relative performance was about

1.8 while frequency was 16 MHz, leading to a total increase

in performance of more than 5000x, while clock frequency

has scaled over 200x. This translates into an annual growth in

performance of 56% or 58% (depending on the normalization),

and 33% in clock frequency. Since the chosen normalization

does not affect the result much, we have chosen the one

yielding a 58% annual growth in the rest of this paper.

Fig. 2. Computer performance 1985-2004, logarithmic scale.

With exponential growth scenarios it is often more informa-

tive to consider a logarithmic scale. This is shown in Figure

2. There are several curves plotted in the !gure. Result high

plots the performance of the currently best reported results

during the entire time frame. It starts at 1.8 and continues in

a shaky walk up to 9102. The following !ve curves connects

the peaks of the performance curve and forms the convex hull.

ACM SIGARCH Computer Architecture News 145 Vol. 33, No. 1, March 2005

[Ekman, Warg, Nilsson 2004]

180903 LJS

Performance

 6

1990 1995 2000 2005 2010
106

107

108

109

1010
Twisted−pair Ethernet and 2.4GHz WLAN performance

Year of standardization

b
/
s

180903 LJS

Power dissipation

 7

!"#$%&'#$()*+&,-+#)*./01$2+#3!"#$%&'#$()*+&,-+#)*./01$2+#3

!"!"

#"#"

$#"$#"

%&$"%&$"
!'!'

!$'!$'
#'#'

$#'$#'

#((##((#

)()()()(

)()$)()$

)(%)$)(%)$
+)$,+)$,

#)$,#)$,
-./0*12-./0*1233

-./0*12-./0*1233 4444

-./0*12-./0*1233 !!!!!!

%&$'%&$' &!%'&!%'

-./0*12-./0*1233 #

405/*12405/*12,,

!6!6
%6%6

#6#6

!%)'!%)'

!$"!$"

"#$%&''()*%%%%%%%"#$%+,-./%0123%&/45(6%7(4("#$%&''()*%%%%%%%"#$%+,-./%0123%&/45(6%7(4(

089

088

0808

:'(;*.*4,'*:'(;*.*4,'*

<='%7.=<='%7.=

01>3%&/45(6%7(4(01>3%&/45(6%7(4(

081

$,5'/=?%!;4=6%$,5'/=?%!;4=6%

!! ""=@,')=@,')

0123%<',A=/4.,;0123%<',A=/4.,;08B

082
!! "./',C',/=**,'"./',C',/=**,'

08>

083

08D

08E

080

01>801>8 01>301>3 01280128 01230123 01B801B8 01B301B3 01180118 01130113 E888E888 E883E883 E808E808

180903 LJS

Development rate

 8

0

13

25

38

50

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Nokia GSM phones

www.gsmarena.com

(through August)

Year of announcement

http://www.gsmarena.com
http://www.gsmarena.com

180903 LJS

Development rate

 9

0

35

70

105

140

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Nokia GSM phones Samsung GSM phones

www.gsmarena.com

(through August)

Year of announcement

http://www.gsmarena.com
http://www.gsmarena.com

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

“Big picture” very big

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

“Big picture” very big

Evolving rapidly

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

“Big picture” very big

Evolving rapidly

Many critical ones

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

“Big picture” very big

Evolving rapidly

Many critical ones

Complex

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

“Big picture” very big

Evolving rapidly

Many critical ones

Complex

Chaotic

Typical real-world project (hw + sw + …)

180903 LJS

Typical class project (hw / sw)

• Scope: small

• Team: small (often size 1)

• Task: well-defined from start

• External dependencies: none

• Planning: simple

• Progress: linear

• Tools: well-known

 10

Large and growing

“Big picture” very big

Evolving rapidly

Many critical ones

Complex

Hmm… wonder what
this does?

Chaotic

Typical real-world project (hw + sw + …)

180903 LJS

Big Issue

• “Everything” gets more difficult, often
exponentially with time

• How handle this explosion?

• How to design and develop, today?

 11

180903 LJS

Q: How to design and develop,
today?

• (Required) A: a design/development method,
process, methodology, or approach, which
handles…

• …large and larger projects

• …full range of development tasks

• …many kinds of requirements

• …activity scheduling, cost estimates, risk
mitigation, etc

• Concept examples: Waterfall, Agile, Lean
 12

180903 LJS

Q: How to design and develop,
today?

• (Required) A: a design/development method,
process, methodology, or approach, which
handles…

• …large and larger projects

• …full range of development tasks

• …many kinds of requirements

• …activity scheduling, cost estimates, risk
mitigation, etc

• Concept examples: Waterfall, Agile, Lean
 12

180903 LJS

I SYSTE M

I ANALYSIS

PROGRAM
DESIGN

I c o o , . o

TESTING

I OPERATIONS

Figure 2. Implementation steps to develop a large computer program for delivery to a customer.

I believe in this concept, but the implementation described above is risky and invites failure. The

problem is illustrated in Figure 4. The testing phase which occurs at the end of the development cycle is the

first event for which timing, storage, input /output transfers, etc., are experienced as distinguished from

analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various

external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated

code wil l not f ix these kinds of diff icult ies. The required design changes are l ikely to be so disruptive that the

software requirements upon which the design is based and which provides the rationale for everything are

violated. Either the requirements must be modif ied, or a substantial change in the design is required. In effect

the development process has returned to the origin and one can expect up to a lO0-percent overrun in schedule

and/or costs.

One might note that there has been a skipping-over of the analysis and code phases. One cannot, of

course, produce software wi thout these steps, but generally these phases are managed wi th relative ease and

have l i tt le impact on requirements, design, and testing. In my experience there are whole departments

consumed with the analysis of orbi t mechanics, spacecraft att i tude determination, mathematical opt imizat ion

of payload activity and so forth, but when these departments have completed their di f f icul t and complex work,

the resultant program steps involvea few lines of serial arithmetic code. If in the execution of their d i f f icul t

and complex work the analysts have made a mistake, the correction is invariably implemented by a minor

change in the code with no disruptive feedback into the other development bases.

However, I believe the illustrated approach to be fundamental ly sound. The remainder of this

discussion presents five addit ional features that must be added to this basic approach to eliminate most of the

development risks.

329

1. Waterfall model

 13

[Royce 1970]

180903 LJS

I SYSTE M

I ANALYSIS

PROGRAM
DESIGN

I c o o , . o

TESTING

I OPERATIONS

Figure 2. Implementation steps to develop a large computer program for delivery to a customer.

I believe in this concept, but the implementation described above is risky and invites failure. The

problem is illustrated in Figure 4. The testing phase which occurs at the end of the development cycle is the

first event for which timing, storage, input /output transfers, etc., are experienced as distinguished from

analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various

external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated

code wil l not f ix these kinds of diff icult ies. The required design changes are l ikely to be so disruptive that the

software requirements upon which the design is based and which provides the rationale for everything are

violated. Either the requirements must be modif ied, or a substantial change in the design is required. In effect

the development process has returned to the origin and one can expect up to a lO0-percent overrun in schedule

and/or costs.

One might note that there has been a skipping-over of the analysis and code phases. One cannot, of

course, produce software wi thout these steps, but generally these phases are managed wi th relative ease and

have l i tt le impact on requirements, design, and testing. In my experience there are whole departments

consumed with the analysis of orbi t mechanics, spacecraft att i tude determination, mathematical opt imizat ion

of payload activity and so forth, but when these departments have completed their di f f icul t and complex work,

the resultant program steps involvea few lines of serial arithmetic code. If in the execution of their d i f f icul t

and complex work the analysts have made a mistake, the correction is invariably implemented by a minor

change in the code with no disruptive feedback into the other development bases.

However, I believe the illustrated approach to be fundamental ly sound. The remainder of this

discussion presents five addit ional features that must be added to this basic approach to eliminate most of the

development risks.

329

1. Waterfall model

 13

[Royce 1970]

Software
example

180903 LJS

Waterfall characteristics

• Proceed in orderly fashion from step to step

• Finish each task before starting the next
one (never backtrack)

• Scrupulously document everything

• Pure Waterfall unrealistic even when first
published…

 14

180903 LJS

Waterfall characteristics

• Proceed in orderly fashion from step to step

• Finish each task before starting the next
one (never backtrack)

• Scrupulously document everything

• Pure Waterfall unrealistic even when first
published…

 14

Why?

180903 LJS

Selected Waterfall problems

• Monolithic; no provisions for design re-use

• Very few projects start with clean sheet

• Assumes static environment

• Late spec changes are not handled

• “Clean” hand-offs are rare

• Iterations necessary in practice

• Late-stage resources idle at start

 15

180903 LJS

Selected Waterfall problems

• Monolithic; no provisions for design re-use

• Very few projects start with clean sheet

• Assumes static environment

• Late spec changes are not handled

• “Clean” hand-offs are rare

• Iterations necessary in practice

• Late-stage resources idle at start

 15

DO
ES

 N
O

T
SC

AL
E

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Requirements

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Requirements

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Hardware + software

Requirements

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Hardware + software

Distribute requirements

Requirements

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Hardware + software

Distribute requirements

“Design” means recurse

Requirements

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Hardware + software

Distribute requirements

“Design” means recurse

Verify that reqs are met

Requirements

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Hardware + software

Distribute requirements

“Design” means recurse

Verify that reqs are met

Requirements

$$:-)

180903 LJS

Evolved version

 16

Write specification

Design architecture

Decompose

Select or design

Integrate

Deliver

Full detailed specification!

Hardware + software

Distribute requirements

“Design” means recurse

Verify that reqs are met

Requirements

$$:-)
Remaining issues?

180903 LJS

2. Agile methods
• Less of a blueprint, more of a philosophy

• Principles, practices, tools embody the philosophy

• Manifesto:

 17 [www.agilemanifesto.org]

http://www.agilemanifesto.org

180903 LJS

Agile practices (examples)

• User stories define final product

• Test-driven development relies on automatic
application of functionality tests

• Repeated refactoring for incremental design
during implementation

• Pair programming reduces risk for “smart”
solutions which work for only 99% of the cases

• Release early + often to get feedback

 18

180903 LJS

Agile practices (examples)

• User stories define final product

• Test-driven development relies on automatic
application of functionality tests

• Repeated refactoring for incremental design
during implementation

• Pair programming reduces risk for “smart”
solutions which work for only 99% of the cases

• Release early + often to get feedback

 18
All applicable to hardware/system design

180903 LJS

Agile practices (examples)

• User stories define final product

• Test-driven development relies on automatic
application of functionality tests

• Repeated refactoring for incremental design
during implementation

• Pair programming reduces risk for “smart”
solutions which work for only 99% of the cases

• Release early + often to get feedback

 18
All applicable to hardware/system design

180903 LJS

3. Lean development
• Origin in manufacturing rather than in software

development

• “Lean manufacturing” @ Toyota, 1980’s

• Introduced in software development ~2000
(Poppendieck & Poppendieck)

• Key ideas:

 19

• Optimize the whole

• Eliminate waste

• Build quality in

• Learn constantly

• Deliver fast

• Engage everyone

• Keep getting better

[Poppendieck & Cusumano, 2012]

180903 LJS

3. Lean development
• Origin in manufacturing rather than in software

development

• “Lean manufacturing” @ Toyota, 1980’s

• Introduced in software development ~2000
(Poppendieck & Poppendieck)

• Key ideas:

 19

• Optimize the whole

• Eliminate waste

• Build quality in

• Learn constantly

• Deliver fast

• Engage everyone

• Keep getting better

[Poppendieck & Cusumano, 2012]

Similarities

w/ Agile?

180903 LJS

3. Lean development
• Origin in manufacturing rather than in software

development

• “Lean manufacturing” @ Toyota, 1980’s

• Introduced in software development ~2000
(Poppendieck & Poppendieck)

• Key ideas:

 19

• Optimize the whole

• Eliminate waste

• Build quality in

• Learn constantly

• Deliver fast

• Engage everyone

• Keep getting better

[Poppendieck & Cusumano, 2012]

Similarities

w/ Agile?

Differences

wrt Waterfall?

180903 LJS

Software vs. system development

• Here, “system” == software + digital
hardware + analog circuits + packaging +
services + …

• Software development methods cannot be
applied blindly!

• Principles of Agile and Lean inspire
engineering development in all fields today

 20

180903 LJS

Pitfalls (for any approach)

• Focus on tools or practices, w/o
understanding why they are important

• Missing the big picture

• Lack of skills and knowledge of specific
topic area

 21

180903 LJS

It is really all about learning.

• Designers / developers need
knowledge and skills

• You’ll learn some in University
courses

• Design and development is learning

 22

180903 LJS

Skills / knowledge:
aspects of design

 23

180903 LJS

1. Specifications

• Must include:

• functionality/behavior

• interfaces (to
hardware and
software)

• May include:

• timing

• performance

• power

• testability …
 24

• Many kinds:

• Documents in natural language (English, etc)

• Executable specifications

• Formal specifications

LABS

DAT096

180903 LJS

1. Specifications

• Must include:

• functionality/behavior

• interfaces (to
hardware and
software)

• May include:

• timing

• performance

• power

• testability …
 24

• Many kinds:

• Documents in natural language (English, etc)

• Executable specifications

• Formal specifications
What makes each kind useful?

LABS

DAT096

180903 LJS

2. System architecture

• Major design decisions

• Hardware vs. software

• Analog vs. digital

• Mechanical construction

• Processor/memory hierarchies

• …

 25

DAT096

DAT116

DAT105
EDA332

EDA283

MKM105

180903 LJS

3. Hard vs Soft

• Hardware: inflexible, high performance
capability

• Software: flexible (well…), limited performance

• Reconfigurable hardware: flexible, intermediate
performance, high cost per part

• More in later lecture

 26

180903 LJS

4. Analog vs Digital

• Digital embedded electronic systems
interact with analog world

• Where to draw the A/D border?

• Often major influence on performance,
cost

 27

DAT116

180903 LJS

5. Digital design (or selection)

• Design what’s not available off-the-shelf

• Hardware Description Languages

• Design methods rely heavily on CAD
tools

• Still necessary to understand the
underlying circuit behavior

• Determines achievable performance

 28

DAT110

MCC092

LABS

180903 LJS

Digital
design flow
• Stages as in

this diagram

• Additions,
deletions
common

• Iterations
typically
necessary

 29

12 Reuse Methodology Manual

[Keating, Bricard 2002.]

180903 LJS

Digital
design flow
• Stages as in

this diagram

• Additions,
deletions
common

• Iterations
typically
necessary

 29

12 Reuse Methodology Manual

What does

this diagram

remind you of?
[Keating, Bricard 2002.]

180903 LJS

6. Integration & verification

• Putting the pieces together

• Very time-consuming process!

• Must be considered from the outset!

• Errors must be patched

• Software vs. hardware

 30

LABS

DAT096

180903 LJS

Summary

• Electronic-system design complexity ever-growing

• Includes software, analog/digital, packaging,
batteries, …

• Design process is much more than putting
electronic components together!

• Designer needs “vertical” insight

• Career typically starts at implementation level,
moves “up”

 31

180903 LJS

This week

• Two more lectures by Sven Knutsson

• VHDL + the lab series

• Note: room EF, EE (two floors up)

• VHDL kick-start workshop

• Wednesday (+ Friday)

• Readings on design approaches (final
slide)

 32

180903 LJS

To do:

• Get registered for the course!

• Verify access to PingPong web system!

• Fill out the pre-workshop survey!

• In Ping-Pong, under “Contents”

• Watch VHDL movie (again)!

• Optionally complete your VHDL library!

 33

180903 LJS

Background reading

• Royce: Managing the development of
large software systems (1970)
[available in PingPong]

• Wikipedia-article on Agile Software
Development

• Poppendieck, Cusumano: Lean
Software Development: a tutorial (2012)
[available in PingPong]

 34

