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Modern?

e Challenges:
o Complexity
e Performance
e Power dissipation
e Development rate

e Manufacturing cost
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Integrated Gircuit Complexity
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Performance
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Performance

Twisted—-pair Ethernet and 2.4GHz WLAN performance
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Power dissipation

Processor Power (Watts) - Active & Leakage
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Development rate
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Typical class project (hw / sw)

e Scope: small

e Team: small (often size 1)

e Task: well-defined from start
e External dependencies: none
e Planning: simple

e Progress: linear

e Tools: well-known
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Typical class project (hw / sw)
Typical real-world project (hw + sw + ...)

e Scope: small Large and growing
e Team: small (often size 1) “Big picture” very big
e Task: well-defined from start Evolving rapidly

e External dependencies: none  Many critical ones

e Planning: simple Complex
e Progress: linear Chaotic
e Tools: well-known Hmm... wonder what

this does?
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Big Issue

e “Everything” gets more difficult, often
exponentially with time

e How handle this explosion?

e How to design and develop, today?
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Q: How to design and develop,
today?

e (Required) A: a design/development method,
process, methodology, or approach, which
handles...

e ...large and larger projects
o . .full range of development tasks
e ...many kinds of requirements

e . .activity scheduling, cost estimates, risk
mitigation, etc

e (Concept examples: Waterfall, Agile, Lean
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1. Waterfall model
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Figure 2. implementation steps to develop a large computer program for delivery to a customer,

[Royce 1970]
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Waterfall characteristics

e Proceed in orderly fashion from step to step

e Finish each task before starting the next
one (never backtrack)

e Scrupulously document everything

e Pure Waterfall unrealistic even when first
published...
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Selected Watertfall problems

e Monolithic; no provisions for design re-use
e Very few projects start with clean sheet
e Assumes static environment
e | ate spec changes are not handled
e “Clean” hand-offs are rare
e |terations necessary in practice

e | ate-stage resources idle at start
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Evolved version

(Write specificationj
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[ Select or design J
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[ Deliver

180903 LJS |6



Evolved version

[Write specificationj Full detailed specification!

(Design architecturej

[ Decompose J

[ Select or design J

[ Integrate J

[ Deliver

180903 LJS |6



Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[ Decompose J

[ Select or design J

[ Integrate J

[ Deliver

180903 LJS |6



Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[ Decompose J Distribute requirements

[ Select or design J

[ Integrate J

[ Deliver J

180903 LJS |6



Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[ Decompose J Distribute requirements

“Design” means recurse [ Select or design J

[ Integrate J

[ Deliver J

180903 LJS |6



Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[ Decompose J Distribute requirements

“Design” means recurse [ Select or design J

Verify that reqs are met [ Integrate J

[ Deliver J

180903 LJS |6



Evolved version

[Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[ Decompose J Distribute requirements

“Design” means recurse [ Select or design J

Verify that reqs are met [ Integrate J

$3 :-) [ Deliver J

180903 LJS |6



Evolved version

(Write specificationj Full detailed specification!

(Design architecturej Hardware + software

[ Decompose J Distribute requirements

“Design” means recurse [ Select or design J

Verify that reqs are met [ Integrate J

Remaining iSS Ues? $5 :-) [ Deliver J

180903 LJS |6



2. Agile methods

e | ess of a blueprint, more of a philosophy
e Principles, practices, tools embody the philosophy

e Manifesto:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there 1s value in the items on
the right, we value the items on the left more.

180903 LJS |7 [www.agilemanifesto.org]
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Agile practices (examples)

User stories define final product

Test-driven development relies on automatic
application of functionality tests

Repeated refactoring for incremental design
during implementation

Pair programming reduces risk for “smart”

solutions which work for only 99% of the cases

Release early + often to get feedback
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3. Lean development

Origin in manufacturing rather than in software
development

“Lean manufacturing” @ Toyota, 1980’s

Introduced in software development ~2000

(Poppendieck & Poppendieck)

Key ideas:

Optimize the whole
Eliminate waste
Build quality In

Learn constantly

Deliver fast
Engage everyone

Keep getting better

[Poppendieck & Cusumano, 2012]
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Software vs. system development

e Here, “system” == software + digital
hardware + analog circuits + packaging +
services + ...

o Software development methods cannot be
applied blindly!

e Principles of Agile and Lean inspire
engineering development in all fields today
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Pitfalls (for any approach)

® Focus on tools or practices, w/o
understanding why they are important

e Missing the big picture

e | ack of skills and knowledge of specific
topic area

180903 LJS 21



It Is really all about learning.

e Designers / developers need
knowledge and skills

e You'll learn some in University
courses

e Design and development is learning

180903 LJS 22



Skills / knowledge:
aspects of design



1. Specifications
e Many kinds:

e Documents in natural language (English, etc)

e EXxecutable specifications

e Formal specifications

e Must include: e May include:
e functionality/behavior e timing LABS
¢ interfaces (to e performance
hardware and DATO096
software) * power

o testability ...
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e May include:
e timing
e performance
® power

o testability ...

LABS
DATO096



2. System architecture

e Major design decisions
e Hardware vs. software DAT096

* Analog vs. digital DAT116
MKM10S

e Mechanical construction

e Processor/memory hierarchies gpazz2

DAT105
EDAR83
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3. Hard vs Soft

e Hardware: inflexible, high performance
capability

e Software: flexible (well...), limited performance

e Reconfigurable hardware: flexible, intermediate
performance, high cost per part

e More In later lecture
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4. Analog vs Digital

e Digital embedded electronic systems
interact with analog world

e \Where to draw the A/D border? DAT116

e Often major influence on performance,
cost
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5. Digital design (or selection)

e Design what’s not available off-the-shelf
e Hardware Description Languages 1,ABS

¢ Design methods rely heavily on CAD
tools DAT110

e Still necessary to understand the
underlying circuit behavior MCCO92

e Determines achievable performance
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Digital =

design flow

e Stages as in
this diagram

e Additions,
deletions
common

e |terations

typically
necessary
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6. Integration & verification

e Putting the pieces together
¢ \ery time-consuming process!

e Must be considered from the outset!
e Errors must be patched

LABS
e Software vs. hardware

DATO096
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Summary

e Electronic-system design complexity ever-growing

¢ Includes software, analog/digital, packaging,
batteries, ...

e Design process is much more than putting
electronic components together!

e Designer needs “vertical” insight

e Career typically starts at implementation level,
moves “up”
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This week

e Two more lectures by Sven Knutsson
e VHDL + the lab series
e Note: room EF, EE (two floors up)
e VHDL kick-start workshop
e \WWednesday (+ Friday)

e Readings on design approaches (final
slide)
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To do:

Get registered for the course!

Verify access to PingPong web system!
Fill out the pre-workshop survey!

e |n Ping-Pong, under “Contents”
Watch VHDL movie (again)!

Optionally complete your VHDL library!

33



Background reading

e Royce: Managing the development of
large software systems (1970)
[available in PingPong]

o Wikipedia-article on Agile Software
Development

e Poppendieck, Cusumano: Lean
Software Development: a tutorial (2012)
[available in PingPong]
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