Introduction to Electronic System Design

Laboratory assighnment 3
Test benches and design synthesis

Sven Knutsson
svenk@chalmers.se
Dept. Of Computer Science and Engineering
Chalmers University of Technology
Gothenburg
Sweden

Goals

* Introduce metods to test your VHDL designs
* Test if the code you have written is synthesizable

Can the code be transfered to hardware?

Does the synthesized hardware behave
like the VHDL code did?

2018-09-06



Testing the design
We have been using QuestaSim to test our designs

In this we have written script files, do files, for the test

These files can only create the instimuli for the test

To check the correctness of the design we have to
manually inspect the resulting output signals

This won’t work for larger designs

We need ways to check the results against
the expected outcome

This is where test benches come into play

You can find a desctription of test benches in part 2
of the VHDL presentation

Test benches
Assignment

You should write a test bench of type 3 for the counter
specified below

When you write the test bench there is a big risk that you do
the same logical misstake as you might have done at design
time

To avoid this someone else should write the test bench

for your design

We do this like a real case where we start writing the test
bench before the design is finished

This means that you have to write the test bench from reading
the specifications for the design

2018-09-06



Test benches
Design specification

Write a test bench type 3 for a modulo-20 up/down counter

clk ——=
reset ——=|
enable ——>{ Modulo-N [—~—> count
up/down —— counter
load ——=

data —=—

The counter should count from 0 to 19 and then
restart (up) from zero or count from 19 down to 0
and then restart (down) from 19

It should have the following features

alk

Test benches .

. . i enable = Modulo-N
Design specification uplawn —— counter
load
* The counter counts clock pulses data —
* A reset signal sets the count value to zero
@ g z <~ Asynchronous
@ * An enable signal must be activated for
the counting to take place
Synchronous

@ * Aload signal loads a new value (data) into ~
the counter in parallel. Values outside of‘/
the counting range should be ignored

* An up/down signal controls the counting direction

* Reset and load can take place irrespective of the
setting of the enable signal

Order of dominance

count

2018-09-06



Test benches .=

. . . enable = Modulo-N
Design specification cont. uplown —— eounter
load

The design has the entity

ENTITY counter 1S
GENERIC(N:POSITIVE:=20);
PORT(clk:IN STD_LOGIC;
reset:IN STD_LOGIC;
enable:IN STD_LOGIC;
load:IN STD_LOGIC;
up_down: IN STD_LOGIC;
data:STD_LOGIC_VECTOR(INTEGER
(CEIL(LOG2(REAL(N))))-1 DOWNTO 0);
count:OUT STD_LOGIC_VECTOR(INTEGER
(CEIL(LOG2(REAL(N))))-1 DOWNTO 0));
END counter;

The word length used is set as needed to hold values up to N-1

Note how the bit range of the vectors is calculated. It uses a
library called math_real

= count

Test benches

Assignment test

How do we find out if the test bench works and
catches any errors?

In the lab the assistants will test it on our supplied
counter designs.

The supplied designs are given as encrypted files
witch means that you can’t read the code.

There is a papers on the homepage on how to
simulate encrypted files.
Some of the designs have errors, some don’t.

Try to identify if there are any errors and what
might have caused these errors.

2018-09-06



Synthesis

Synthesis means turning our code into hardware.

In our case this means placing the design in a FPGA.

Not all code is synthesizable, that is it might not be possible to
transfer it to hardware

Here we will synthesize the code and make sure that it is
synthesizable

And we will also make sure that the synthesized design works
as expected by simulating it after syntesis and implementation

Synthesis

We will use the tool Vivado from Xilinx to synthesize and
implement our design

There is a paper on using Vivado on the homepage.

The paper includs descriptions on how to use QuestaSim to
simulate synthesized and placed and routed code.

2018-09-06



Synthesis

Assignment
Synthesize the designs from lab assignment 1 and 2
* Ripple carry adder/subtracter

with overflow and saturation -
Compare size and speed

« Serial adder/subtracter

* Direct implemented FIR filter

Compare size and speed
* Serially implemented FIR filter

If the code doesn’t pass the synthesis process try to find out why and
rewrite the code.

Not only errors but also warnings from the synthesis process might be
important

The same applies if the synthesised code doesn’t pass the simulation

Synthesis

Assignment cont.

Although your code passes the syntesize stage it may still not work the
way it should.

The way you write your code may make the synthesis tool get it wrong.

To check this we will simulate the code after it has been placed and
routed into the FPGA.

2018-09-06



