
2018‐09‐06

1

Introduction to Electronic System Design

Sven Knutsson

svenk@chalmers.se

Dept. Of Computer Science and Engineering

Chalmers University of Technology

Gothenburg

Sweden

Laboratory assignment 3

Test benches and design synthesis

Goals

• Introduce metods to test your VHDL designs

• Test if the code you have written is synthesizable

Can the code be transfered to hardware?

Does the synthesized hardware behave
like the VHDL code did?



2018‐09‐06

2

Testing the design
We have been using QuestaSim to test our designs

In this we have written script files, do files,  for the test

These files can only create the instimuli for the test

To check the correctness of the design we have to 
manually inspect the resulting output signals

This won´t work for larger designs

We need ways to check the results against
the expected outcome

This is where test benches come into play

You can find a desctription of test benches in part 2 
of the VHDL presentation

Test benches
Assignment

You should write a  test bench of type 3 for the counter
specified below

This means that you have to write the test bench from reading
the specifications for the design

When you write the test bench there is a big risk that you do 
the same logical misstake as you might have done at design 
time

To avoid this someone else should write the test bench
for your design

We do this like a real case where we start writing the test 
bench before the design is finished



2018‐09‐06

3

Test benches
Design specification

Write a test bench type 3 for a modulo‐20 up/down counter

It should have the following features

The counter should count from 0 to 19 and then
restart (up) from zero or count from 19 down to 0 
and then restart (down) from 19

Test benches
Design specification

• The counter counts clock pulses

• A reset signal sets the count value to zero

• An enable signal must be activated for
the counting to take place

• A load signal loads a new value (data) into
the counter in parallel. Values outside of
the counting range should be ignored

• An up/down signal controls the counting direction

Asynchronous

Synchronous

• Reset and load can take place irrespective of the
setting of the enable signal

1

2

3

Order of dominance



2018‐09‐06

4

Test benches
Design specification cont.

The design has the entity

ENTITY counter IS
GENERIC(N:POSITIVE:=20);
PORT(clk:IN STD_LOGIC;

reset:IN STD_LOGIC;
enable:IN STD_LOGIC;
load:IN STD_LOGIC;
up_down:IN STD_LOGIC;
data:STD_LOGIC_VECTOR(INTEGER

(CEIL(LOG2(REAL(N))))-1 DOWNTO 0);
count:OUT STD_LOGIC_VECTOR(INTEGER

(CEIL(LOG2(REAL(N))))-1 DOWNTO 0));
END counter;

The word length used is set as needed to hold values up to N‐1

Note how the bit range of the vectors is calculated. It uses a 
library called math_real

Test benches

Assignment test

How do we find out if the test bench works and 
catches any errors?

In the lab the assistants will test it on our supplied
counter designs.

Some of the designs have errors, some don´t.

Try to identify if there are any errors and what
might have caused these errors.

The supplied designs are given as encrypted files
witch means that you can´t read the code.

There is a papers on the homepage on how to 
simulate encrypted files.



2018‐09‐06

5

Synthesis

Synthesis means turning our code into hardware.

In our case this means placing the design in a FPGA.

Not all code is synthesizable, that is it might not be possible to 
transfer it to hardware

Here we will synthesize the code and make sure that it is 
synthesizable

And we will also make sure that the synthesized design works
as expected by simulating it after syntesis and implementation

Synthesis

We will use the tool Vivado from Xilinx to synthesize and 
implement our design

There is a paper on using Vivado on the homepage.

The paper includs descriptions on how to use QuestaSim to 
simulate synthesized and placed and routed code.



2018‐09‐06

6

Synthesis

Synthesize the  designs from lab assignment 1 and 2

Assignment

• Ripple carry adder/subtracter
with overflow and saturation

• Serial adder/subtracter

• Direct implemented FIR filter

• Serially implemented FIR filter
Compare size and speed

Compare size and speed

If the code doesn´t pass the synthesis process try to find out why and 
rewrite the code.

Not only errors but also warnings from the synthesis process might be 
important

The same applies if the synthesised code doesn´t pass the simulation

Synthesis

Although your code passes the syntesize stage it may still not work the 
way it should.

Assignment cont.

The way you write your code may make the synthesis tool get it wrong.

To check this we will simulate the code after it has been placed and 
routed into the FPGA.


