
2018‐09‐06

1

DAT093
Introduction to Electronic System Design

Sven Knutsson

svenk@chalmers.se

Dept. Of Computer Science and Engineering

Chalmers University of Technology

Gothenburg

Sweden

Laboratory assignment 2

FIR Filters

Goal

Introduce methods to implement transversal digital filters

Assignments

• Direct (parallel) implementation of a FIR filter

• Serial implementation of a FIR filter

• Implementation of a FIR filter using distributed arithmetics

Finite Impulse Response Filters (FIR)

To begin with we need to talk about DSP (Digital Signal
Processing) systems, sampling and digital filters

The distributed implementation is for the digilent student
but won´t give any extra credits

There are test benches for the direct and the serial
implementation on the PingPong homepage

2018‐09‐06

2

DSP systems

Let´s look at a typical DSP system

Keep the signal constant
during the AD conversion

Convert to digital signal

Convert back to analog signal

Remove ripple (’staircase’)
from output signal

We´ll get back to this

Process control

DSP systems
Sampling

A digital system can not work with signals that are continous in time

We need to read the analog input signal at discrete times

We sample the signal using a clock

How often do we need to sample the signal?

Demonstration!

This is normally done at constant time intervals

2018‐09‐06

3

DSP systems
Sampling cont.

We need to sample the signal more than twice each signal period.

Conclusion!

That is the sampling frequency must be more than twice
the highest signal frequency

The sampling theorem

If this is not accomplished we will get false signal frequences

We will get aliazing

This kind of distorsion can not be removed afterwards

The frequencies of these false signals are not random though.
We can calculate them if we like

DSP systems
What are the mathematical tools we have in a DSP system?

• Scaling (amplification)

• Summation

• Delay

y[n] = A∙x[n]

y[n] = a[n] + b[n]

y[n] = x[n‐1]

2018‐09‐06

4

DSP systems
A simple DSP system (filter)

Input signal
Output signal y[n]=x[n]+t∙x[n‐1]

One sampling period delayed signal x[n‐1]

Scaled, delayed signal t∙x[n‐1]

Demonstration!

DSP systems
A more general system

We can use more samples to build a more complex filter

           321 3210 nxtnxtnxtnxtny

   





1

0

N

k
k knxtny

Output

Current sample

The sample one sampling period ago

The sample two sampling periods ago

2018‐09‐06

5

DSP systems
A more general system cont.

           321 3210 nxtnxtnxtnxtny

   





1

0

N

k
k knxtny

Demonstration!

The number of terms in the sum, N, is called the order of the filter
or the number of taps

Observe that an impulse will pass the filter in N sampling periods
and that the output series will be the same as the filter
coefficients

That is the impulse response is finite in time

We call this a Finite Impulse Response filter (FIR)

It is also called a transversal filter

The filter coefficients are given by the impulse response of the system

DSP systems
An even more general system

We can also use delayed output signals to form our system

         

      







321

321

321

3210

nyrnyrnyr

nxtnxtnxtnxtny

     









1

1

1

0

M

p
p

N

k
k pnyrknxtny

We can not use the current output sample
since that is the result of the calculation

We call the system a recursive system

or an Infinite Impulse Response (IIR) filter

This will give more efficiant filters than the transversal filters

but they can get unstable because of the feedback loop

2018‐09‐06

6

DSP systems
An even more general system cont.

Demonstration!

Warning! The feedback paths can make the system
unstable if the filter coefficients are badly choosen

The feedback loop means that the impulse response in the general case
never will die, that is it is infinite in time. Therefore the name

DSP systems
How do we design a FIR filter?

• Inverse fourier transform

• Equi‐Ripple filter (Parks‐McClellan)

There are a number of methods.

We will have a look at design using inverse fourier transform

Most known are

2018‐09‐06

7

DSP systems
FIR filter design using inverse fourier transform

The discrete version of the inverse fourier transform will give us the impulse response

   


 



 22

1
deHnh nj

Normalized angular frequency
sf

f
 2

The sampling frequency

Integration over 2π of the normalized angular frequency is the
same as an integration over the frequency range zero to fs

The frequency spectra that should
correspond to the impulse response

Impulse response

DSP systems
FIR filter design using inverse fourier transform cont.

We can conclude that the impulse response has the same values as the coefficients
in our FIR filter so we can use the inverse fourier transform to design our filter

We can see that if we apply a impulse to
this system the output will be a series of
values that are the same as our filter
coefficients.

In digital systems an impulse is a signal that
has the value one (1) at time zero and is
equal to zero at all other times.

2018‐09‐06

8

DSP systems
FIR filter design using inverse fourier transform cont.
Example

Use inverse fourier transform to design a low pass filter with the
cutoff frequency 3.2 kHz when the sampling frequency is 8 kHz.
The passband gain should be 0.8.

Our digital characteristics gives that there will be a mirror image of the passband
above half the sampling frequency. Let´s also normalize the frequency

Observe that we have only specified
the amplitude behavour. We want
a filter with zero phase.

4.0
8

2.3


s

offcut

f

f

Such a filter can not be realized in
real time but we can get linear
phase which is just a delay of the
signal

DSP systems
FIR filter design using inverse fourier transform cont.
Now we have to use the inverse fourier transform and
integrate to get our time samples.

We can see that there are two intervals where H is separated from zero
meaning that we have two integrals to solve.

Since the digital spectra is cyclic we can redraw the picture of the spectra
using negative frequencies

This will give us only one interval and therefore only one integral.

Let´s calculate

2018‐09‐06

9

DSP systems
FIR filter design using inverse fourier transform cont.

    





 











 

4.0

4.02

8.0
2

1

2

1
dedeHnh njnj

 n
nn

ee njnj

















4.0sin
8.0

2
8.0

4.04.0

For this to be true we need to include all values of n in
the impulse response from –infinity to infinity.

This is something that we obviously can not do since it would give a filter
with a infinite number of coefficients and this can not be realized.

We have to take a smaller number of coefficients and this will make our
representation of the frequency spectra an approximation. It will be less accurate.

The more coefficients the better the approximation but at the same time the
complexity and delay through the filter increases.

DSP systems
FIR filter design using inverse fourier transform cont.
It can also be shown that we have to use symmetrical terms, that is use
values of n that are ±1, ±2 and so on. We will also include the value for n=0

This will give a filter

   






2

1

2

1

N

N
k

k knxtny

Here we have some samples of the type x[n+k] and these can not be realized
in real time since they are future samples that don´t exist yet.

To solve this we delay or samples and only use current and past samples

  









 


2

1

2

1 2

1
N

N
k

k

N
knxtny

Our phase contribution will because of this no longer be zero but it will
be linear, which means that there will be a constant and equal time
delay through the filter for all frequencies, all frequencies are delayed
the same amount of time

2018‐09‐06

10

DSP systems
FIR filter design using inverse fourier transform cont.

Since we are using symmetrical values and the value for n=0 is
included the number of filter coeffients will be odd.

We can use an even number of filter constants but then
we have to calculate the coefficients using

5.0
2

,5.1
2

,5.0,5.0,,5.1
2

,5.0
2


NNNN

n 

Demonstration!

DSP systems
Our system

We will focus on FIR filters and create a four tap filter in three different ways.

We have to start by describing how to represent the filter coefficients

We will talk about fractional numbers

Just four taps is not enough coefficients to give a good filter but it is enough
to demonstrate the principle and still keep the debugging pretty simple.

2018‐09‐06

11

DSP systems
Fractional numbers

A fractional number is a number with
a magnitude less or equal to one.

If we look at a four bit signed number this means that
for a positive number we have

We can see that the maximal value would be

125.025.05.0

2

1

2

1

2

1
2220

321

332211
3

3
2

2
1

1321


















bbb

bbbbbbbbb

MSB is always zero for a positive number

875.0125.025.05.0 

That is almost one, but not quit

DSP systems
Fractional numbers cont.

The maximal positive value of a fractional number is always

LSBofweight 21

Let´s look at a negative number, still with four bits.

The negative number with the highest magnitude is 1000.

We convert it to magnitude (2´s complement).

111
1000 → 0111

+ 1
1000

and we will get

1202020211000 3210  

That is our largest negative number is ‐1 so there is a slight
difference between the positive and the negative side

2018‐09‐06

12

DSP systems
Fractional numbers cont.

In the assignment you have four fractional filter constants

k tk
0 -0,32
1 0,23
2 0,23
3 -0,32

Use the given method to convert the
cofficients to binary fractional
numbers.

You will not get the exact values but go
as close as possible with the choosen
number of bits. The testbench assumes
that you truncate your values

Demonstration!

There is an additional text on fractional
numbers on the homepage

The filter will have the filter curve
given below

DSP systems
Filter implementations

We have the filter equation

           



3

0
3210 321

k
k knxtnxtnxtnxtnxtny

This equation can be directly implemented as a number of
multiplications and summations and this is our first goal.

Make sure to choose the number of bits in your vectors
so there is no risk of overflow.

Direct implementation

2018‐09‐06

13

DSP systems
Filter implementations

To simplify testing we will use a predefined interface for our design

Direct implementation cont.

In this lab assignment we leave out the sampling of the signal and just
use a start signal to trigger the calculatation of a new output sample.

For this to work properly you must include aclock signal i your design.

DSP systems
Filter implementations cont.

We serialize the circuit and only use only one multiplier and one adder

Serial implementation

This will of course be slower but we use less hardware

Demonstration!

The implementation requires a clock do shift the values

2018‐09‐06

14

DSP systems
Filter implementations cont.

Once again we stick to a defined interface for our design

Serial implementation cont.

Here we need a clock signal to shift in the bits and a signal to indicate
when the calculation is done

DSP systems
Filter implementations cont.

Let´s have a look at a very simple FIR filter with
just three taps and three bits word length

Distributed arithmetics

2]-x[nt+1]-x[nt+x[n]t=k]-x[nt =y[n] 210

2

0k
k 



We break down the samples to individual bits

2
b22b21b20

1
b12b11b10

0
b02b01b00

2)2]-x[nt+1]-x[nt+x[n](t

2)2]-x[nt+1]-x[nt+x[n](t

2)2]-x[nt+1]-x[nt+x[n](t=y[n]





 LSB of samples

MSB of samples

2018‐09‐06

15

DSP systems

If we look at the sum of products for LSB of the samples

Distributed arithmetics cont.

b02b01b00 2]-x[nt+1]-x[nt+x[n]t 

this is really only a sum of constants since we only have one bit
from each sample and this bit can only be one or zero

We can have 2number of taps different sums

We can calculate these sums one time for all in the design phase and then store
these values in a memory where we use the current bit from the samples as addresses

To perform the filter calculation we can now shift out bit by bit from the samples,
use them as addresses to the memory and step by step sum up our filter output

Remember that the new product have to be shifted to the left
before it is added to the earlier temporary sum

We can accomplish the same thing by shifting the earlier sum to the left

DSP systems
Distributed arithmetics cont.

Demonstration!

2018‐09‐06

16

DSP systems
Distributed arithmetics cont.

We can use the same interface as we used for the serial implementation

