Introduction to Electronic System Design

(DAT093)
Lab 0: Tool and task kickstarter

Sven Knutsson, Lars Svensson

Version 2.1, August 30, 2018

1 Introduction

In this initial lab session, you will carry out several tasks:

e Design and verify a one-bit full-adder circuit.

e Use your full-adder as a component to construct a four-bit adder circuit,
and verify that design.

e Develop the four-bit adder into a four-bit counter, and verify that design.

The adder is a combinational circuit, where the output values depend only on
the present inputs (after some inevitable circuit delay). In contrast, the counter
is a sequential design, where a clock signal paces execution, and input values
arbitrarily far back in time may affect the outputs.

Verification will be carried out by means of provided test benches, which specify a
behavior by detailing the expected outputs for given combinations of inputs. For
each test bench proper (a VHDL file), there is also a do file which specifies the
simulator commands to be run, including commands that show informative error
messages in case the design behaves in an unexpected manner. Test benches that
specify expected outputs are highly useful for small designs such as these, and
make the checking a go/no-go question! provided that the design has the correct

'In case of bugs, you must of course not change the provided test benches to make your
design pass the test! If you wish to carry out further tests than those provided, make a copy of
the test bench and/or the do file and modify those. In the lab, we will test your design using
the unaltered test benches.

DATO093, Lab 0, Version 2.1 2

numbers and types of input and output connections.

2 Preparation

You should already have received a pointer to a VHDL video tutorial from the
FPGA manufacturer Altera?. If you did not watch it yet, do so before coming to
the lab. If your previous viewing was your first introduction to VHDL, it would
be a good idea to watch it once more.

It is assumed that you are familiar with two’s-complement representation of in-
tegers. A quick brush-up may be found in Wikipedia and in any undergraduate
textbook on digital design. You may also refer to companion documents in this
course, and to the VHDL lecture slides.

3 Getting started

For these and most other tasks in this lab series, we will use the Windows com-
puters available in the course lab. These computers already have QuestaSim
installed with a shortcut icon on the desktop (most computers at Chalmers don’t
have this software installed).

e Log into the system, using your Chalmers ID and CDKS password. Your
first login may take extra time due to setup and initialization; be patient.

e Double-click on the QuestaSim icon to launch it.

An integrated design environment (IDE) window with multiple panes appears.
Only the bare essentials of QuestaSim will be described here; refer to the com-
panion documents and to the built-in tool help system for more details.

Most designs comprise several files: in addition to the VHDL code files, there will
typically be test bench files, simulation results, and maybe other temporary files.
As is common also in software IDEs, all these files and documents are collected
in a project.

e Select File—New Project... A dialog window opens, allowing you to se-
lect a name for the project and a file system location®. Experience suggests

’https://www.youtube.com/watch?v=k8YOfWOpbg8
3Do not store your files on the C: volume, as this is local to the computer you happen to

DATO093, Lab 0, Version 2.1 3

to use the same name for project and file-system folder. In the following,
we assume that you use the name labOa for your first project.

e Click OK to create the project. The middle pane of the IDE has a Library
tab and a Project tab. Select the Project tab and verify that your new
project is the current one. A new dialog has also opened to let you add files
to or create files for the project.

4 A simple full adder

a b cin|s cout

N 0 0 010 0
7 . cout 0 0 1|1 0
R 01 0|1 0
s 0 1 110 1

cin | 1 0 0|1 0
1 0 110 1

1 1 010 1

11 1|1 1

Figure 1: FA block diagram and truth table.

A full adder (FA) is a logic block with three one-bit inputs (a, b, and cin) and
two one-bit outputs (s and cout). Its block diagram and truth table are shown
in Figure 1. Your next task is to design an FA in VHDL and verify it using the
provided test bench.

e In the QuestaSim project dialog, click Create New File and specify the
file name full adder.vhdl. Click OK and verify that the file appeared in
the file list for the project.

e Enter the VHDL code for the entity declaration in the new file. Use the
entity name full_adder, as this is what the test bench expects. Use the

type STD_LOGIC for input and output signals, again to fit with the test
bench. Save the file.

In the project file list, your newly created file is highlighted with a blue question
mark (?7), indicating that compilation has not yet been carried out.

use at the moment; in the next session, you may be seated at another computer! Instead, use
your directories on the network file system, which should be mapped to volume Z:.

DATO093, Lab 0, Version 2.1 4

e Right-click on the file name and select Compile—Compile Selected. If
all goes well, the file highlight marker changes into a green checkmark, and
green status messages appear in the Transcript pane at the bottom of
your window. If errors occur, the file highlight marker changes into a red
X, and red error messages appear in the Transcript pane.

e [f there were errors, double-click on the error messages in the Transcript
pane starting from the top?, inspect the code and fix the errors, save the
file, and recompile. Repeat until all errors have been eliminated.

The next step is to verify that your entity is in accordance with the test bench.
You need to include the test bench files in your design project and recompile the
files together.

e Download the test bench file full_adder_tb3.vhdl from the course home-
page and place it in your project directory.

e Right-click in the project window, select Add To Project—Existing
file. .., and select the test bench file. Click OK.

e Right-click in the project file list pane and select Compile—Compile All.
Correct any errors as before (without modifying the test bench file—see
footnote on page 1!).

Once a correct entity has been created, it is time to create the FA architecture.
There are many ways to implement the behavior encoded in the Figure-1 truth
table. If you cannot decide, we suggest that you start with the selected signal
assignments shown in the video tutorial (keywords WITH, SELECT, and WHEN) and
optionally try alternatives when you have verified that one.

e Double-click on full_adder.vhdl again to open the file.

e Add code for the architecture of the full adder to the file. Save the file
and close it.

e Compile all files as before, and fix any compile-time errors.

When the compile-time errors have been fixed, the design may be simulated to
find out if it behaves as expected by the test bench.

4As in most software programming, you may view the compilation process as sequential,
such that one error may cause or hide errors further ahead in the source code. Starting from
the top is usually the quickest way to address all compilation errors.

DATO093, Lab 0, Version 2.1 5

e Add the do file full_adder_tb3.do to your project in the same way as you
added the test bench file above. (Note that by default, the file selection
dialog only lists files with certain filename extensions, and that .do is not
among thouse extensions. Make sure to select All Files to see the do file.)

e Select Simulate—Start Simulation... A dialogue opens to let you
choose what to simulate. Your compiled designs are in the library named
work. Open that library, select the testbench entity, and click OK. The
middle pane of the QuestaSim main window splits in two, where the right-
hand window shows the signals in the design.

e Right-click on the do file in the project file list and select Execute. A
waveform window opens to show the results of the simulation.

The test bench has been designed to flag all unexpected behavior with messages
in the Transcript pane of the main window.

e Inspect the Transcript pane. If any errors were flagged, study the wave-
forms and your code in order to identify the error. Edit your architecture
source code to correct the error, save the file, recompile, and simulate again.
Repeat until all errors have been eliminated.

5 A ripple-carry adder

b —4~ 4
4 +74'Y

Figure 2: Four-bit ripple-carry adder block.

The next task is to design a four-bit ripple-carry adder using the FA as a com-
ponent. The desired entity is illustrated in Figure 2. An example of a block
diagram of a ripple-carry adder is shown in Figure 3. Note that you will need to
modify this diagram to have the correct number of FA components and to handle
the carry signals in accordance with the entity!

e Create a new design directory and a new project 1abOb for the new task.

e Download the provided test bench files ripple adder tb3_4 bit.vhdl and
ripple_adder_tb.do and add them to your project.

DATO093, Lab 0, Version 2.1 6

a(0) b(0) a(1) (1) a(2) b(2)

cin | —{ T T cout

s(0) s(1) s(2)

Figure 3: Example ripple-carry adder block diagram, using the full adder de-
scribed in the previous section.

e Create the entity according to Figure 2. Refer to the test bench to get
names and types right: name your entity ripple_adder_4_bit, and use the
type STD_LOGIC_VECTOR for the input and output signals.

e Create the architecture for the ripple-carry adder in accordance with the
entity. Use your previously-designed full-adder as a component—do not
repeat the FA code multiple times in the ripple-carry adder! Use Figure 3
as inspiration and modify as needed.

e Verify the functionality of your ripple-carry adder using the test bench files.
Fix bugs (if any).

6 A simple counter

resetn | W

C 74, count

clk]

Figure 4: Up-counter block.

The last task of this lab session is to extend your ripple-carry adder from Section 5
to design an up-counter. This block counts the number of pulses at its clock input
and increments its output value once per cycle, restarting from 0 after N cycles;
N is a design-time parameter.

DATO093, Lab 0, Version 2.1 7

The entity is illustrated in Figure 4. In addition to the clk input and the count
output, the reset n input is an asynchronous active-low reset signal. When
reset n is deactivated, the counter should count clk pulses from 0 to N — 1,
triggering on the rising edge of c1k. When count is N — 1, the next pulse should
return the state to 0 for the next lap. The width W of count is determined by the
number of bits necessary to represent the range of values®.

e Create a work directory 1abOc and a new project of the same name.

e Create the entity needed for the counter, using the name counter and the
types STD_LOGIC and STD_LOGIC_VECTOR for its external signals. Refer to
the test bench files counter_tb3.vhdl and counter_tb.do to get the names
and types right. Assume that N = 13.

Before you write the code for the counter architecture, spend a few minutes
considering a suitable hardware implementation of the counter. Often, these few
minutes will help you to quickly find a viable and understandable VHDL-code
representation of a block. (Example: a counter must include some means to
maintain the current value and some means to calculate the next value. As these
would typically be implemented separately—with registers and with adder logic,
respectively—it may be good to let the VHDL code reflect this practice and use
a separate process statement for the registers.) Refer again to the video if you
feel unsure about how to represent sequential behavior.

e (Create the architecture for the counter, using your ripple-carry adder as
a component. Use the type STD_LOGIC_VECTOR for the internal counting
value. Check consistency with the test benches as above. Simulate your
design in its test bench to detect bugs (if any). Correct any bugs and
re-simulate, following the same general procedure as above.

7 Wrap-up

After completing this lab session, you are expected to be able to carry out the
following tasks:

e Launch QuestaSim.

e Create projects, VHDL entities, and VHDL architectures in QuestaSim.

5As will be seen in a later lab, it is entirely possible to calculate the necessary width from
the value of . For simplicity, you may use a constant width of 4 here.

DATO093, Lab 0, Version 2.1 8

e Create simple combinational and sequential digital designs and verify their
behavior, using provided test bench files and do files.

These skills will be used in subsequent lab sessions in the series. Then, the
description of the different steps involved will not be as detailed as here.

