2018-09-14

DAT093
Comments after lab 1

VHDL basics cont.

Basic VHDL structures
Conditional signal assignment
In concurrent code we have two structures for conditional signal assigment.

The first one, the WHEN statement, is simular to what we know as an
IF statement from software programming

Example The parantheses are not necessary but
SIGNAL a_signal :STD_LOGIC; increase the readability
SIGNAL y signal:STD_LOGIC; /

/

y_signal <= ”1” WHEN (a_signaI:’O’)hELSE

3

The signal must be assigned a value under all conditions
which means that the else clause is necessary

2018-09-14

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

The statement could be expanded

Example

SIGNAL y_signal :STD_LOGIC;
SIGNAL a_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
y_signal <= ”1” WHEN (a_signal="00") ELSE
1" WHEN (a_signal="01") ELSE
07 -
This could also be rewritten as
y_signal <= *1” WHEN ((a_signal="00") OR
(a_signal="01")) ELSE
*0”:

| think this is less readable though

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

Observe that there is nothing to say that the selection condition
must be of the same type in all clauses

Example

SIGNAL a_signal:STD_LOGIC;

SIGNAL_y signal :STD_LOGIC;

SIGNAL b_signal:STD_LOGI
_ lg\\\ _

...... ~

CTOR(L DOWNTO 0);

y_signal <=’ HEN (a_signal="1") ELSE
’1° WHEN\(bigjgnaI:”Ol”) ELSE
’O’; ‘\\\

—

This kind of coding is very confusing and should not be used

2018-09-14

VHDL basics cont.

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal :STD_LOGIC;

yﬁsignal<=:1:_WHEN (a_signal="0") ELSE
Basic VHDL structures o
WITH statement

The other concurrent conditional signal assignment is the WITH statement.
It has simularities with the CASE statement in software programming

Example

We repeat our first WHEN exampl using the WITH statemente

SIGNAL x_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;

WITH x_signal/(JSiE’I;EC’T
y_signal <= *1” WHEN *0~,

0" WHEN ~17;

__——— condition signal

This code won’t compile though it is formally correct and
we have covered both the high and the low signal values.
Why?

SIGNAL x_signal :STD_LOGIC;
. SIGNAL y_signal :STD_LOGIC;
VHDL baS|CS cont. " WITH x_signal SELECT

y_signal <= ”1” WHEN *0~,

0” WHEN *17;
Basic VHDL structures
WITH statement cont.

In the statement all possible values of the selector, here x_signal, has

to be covered and the std_logic variable x_signal has nine (9) possible
values (U, X, 0,1, Z, W, L, H, -) that must be handled

2018-09-14

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

We rewrite the code

WITH x_signal SELECT
y_signal <= ”1” WHEN °0~,
’0” WHEN OTHERS;

The OTHERS clause covers all cases when x/="0"

Since the synthesized code only has values O and 1 (and Z,
but not as an input value), this covers all cases.

The code gets somewhat clearer if we rewrite it as

WITH x SELECT
y_signal <= ”1” WHEN ’0~,
0% WHEN ~°17,
0" WHEN OTHERS;

The synthisized result will be the same though

SIGNAL y_signal :STD_LOGIC;

\/ H D L ba S i CS CO nt) SIGNAL a_signal :STD_LOGIC_VECTOR(1 DOWNTO 0)

y_signal <= ”1” WHEN (a_signal="00") ELSE
*17 WHEN (a_signal="01") ELSE
07;

Basic VHDL structures
WITH statement cont.

Let’s rewrite the other WHEN statement, the one with the vector

WITH a_signal SELECT
y_signal <= "1" WHEN "00",
"1" WHEN "01",
"0" WHEN OTHERS;

In the WITH statement we can only have one selecter so we can not have
the mixed condition of the scalar a and vector b that we had in the WITH case.

The two cases that give the same result could be combined

WITH a_signal SELECT . —— ORstatement
y_signal <= "1* WHEN 00" | "O1",
0" WHEN OTHERS;

For enumerated types we can also give ranges using TO or DOWNTO

We’ll see this for the CASE statement later on

2018-09-14

VHDL basics cont.

Basic VHDL structures

Conditional signal assignment in sequential code

The WHEN and WITH statements used in concurrent
code can not be used in sequential code.

We have a couple of replacements

VHDL basics cont.

Basic VHDL structures

IF statement

The IF statement has simularities to the WHEN statement

The structure is

[1F_label:] <

IF condition THEN The IF label is optional but it might
sequential code; encance the readability of the code

[ELSIF condition THEN
sequential code;]
[ELSE
sequential code;]

/

END IF [IF_label]; *

2018-09-14

VHDL basics cont.

Basic VHDL structures

IF statement cont.

Examples
Since the behavior at all values of a is not
IF (a="0") THEN declared a memory element must be used
y <= 7175
END IF;

IF (a="0") THEN

y <= *17; IF structure with complete assignment.
ELSE When all possibilities are fully declared
y <= 707; no memory element is needed
END IF;

Use this instead!

VHDL basics cont.
Basic VHDL structures

Examples cont. X .
__— The IF clause is evaluated first
compare_ab: “
IF ((a="1") AND (b=707)) THEN
a_high <= 717;
b_high <= ’07;
equal <= ’07;
ELSIF ((a=”0%) AND (b=717)) THEN < The ELSIF clause is only

a_high <= 707; evaluated if the IF clause
b_high <= ”1~7; is false
equal <= ’07;

ELSIF..

. ~ The ELSE clause is only evaluated if
ELSE < the IF and the ELSIF clause(s) are
a_high <= "07; false
b_high <= ”07;
equal <= 717;
END IF compare_ab;

We have a priority-encoded structure with dominance for the first IF statement

Try using ELSIF instead of separate IF statements

2018-09-14

VHDL basics cont.

Basic VHDL structures

CASE statement

The CASE statement has simularities to the WITH statement.

The structure is

[CASE_label:]<—

CASE selectorSignal IS ——— The CASE label is optional but it might
WHEN valuel => / encance the readability of the code
sequential code; /
WHEN valuel => /
sequential code; / If the WHEN cases don’t cover all of
[WHEN value2 => / the possible V?Iues for
sequential code;] // selectorSignal we must
[WHEN others => « ——/— includethe OTHERS clause. It

sequential code;
END CASE [CASE_label];

could actually be there even when
it is not needed so make it a habit
to include it

All cases have the same priority and they may not overlap

VHDL basics cont.

[Case label:]
CASE selectorSignal IS
WHEN valuel =>
sequential code;

Basic VHDL structures WHEN valuel =>

CASE statement cont.

sequential code;
[WHEN value2 =>

sequential code;]
[WHEN others =>

sequential code;]

END CASE [Case label];

selectorSignal is an input port, a signal or a variable.

The valueX could be one single value of
selectorSignal.

It could also be more than one value if we combine

them using the OR symbol |

or it could be a range of values if we use TO or DOWNTO

2018-09-14

VHDL basics cont.

Basic VHDL structures
CASE statement cont.

Examples

SIGNAL tal_signal : INTEGER RANGE O TO 20;
SIGNAL output_signal :STD_LOGIC_VECTOR(3 DOWNTO 0);

_— selector

output_signal <=

0001 selector values

output_signal <= "0010";
WHEN OTHERS =><« —————— OTHERS clause
output_signal <= "0000";
END CASE selector;

VHDL basics cont.

Basic VHDL structures

Examples cont.

SIGNAL tal_signal: INTEGER RANGE O TO 20;
SIGNAL output_signal :STD_LOGIC_VECTOR(3 DOWNTO 0);

— Single selector value

— Range of selector values

WHEN:S | 9=>.
outpiit_signal <= "0101";
WHEN OTHERS =>

—— Group of selector values

output_signal <= "0000";
END CASE;

2018-09-14

VHDL basics cont.

Basic VHDL structures
LOOP statement

We have one sequential statement that has no
concurrent correspondance, the LOOP statement.
The statement has a number of forms

« Infinite loop

* WHILE loop

* FOR loop

The FOR loop is the only LOOP statement that is synthesizable and
only under some circumstances that we will get back to

VHDL basics cont.

Basic VHDL structures

Infinite LOOP statement NOTICE! This is not synthesizable

As the name suggests this loop goes on forever
The structure is

[LOOP_label:]<— —
LOOP

sequential code; __— encance the readability of the code

END LOOP [LOOP_label];
Example

VARIABLE counter_variable:NATURAL;

__—Infinite loop

count_variable:=0; ///// Triggered every clock cycle
counter12:LOOP <«

on positive clock edge
WAIT UNTIL rising_edgé(clk);

count_variable:= The counter counts from 0
(count_variable+1l) MOD 12; <——— to 11 on the rising edge of
END LOOP counterl2;

clk and then restarts

~ The LOOP label is optional but it might

2018-09-14

VHDL basics cont.

Basic VHDL structures

WHILE LOOP statement NOTICE! This is not synthesizable
The WHILE LOOP goes on while some condition is true

The structure is

[LOOP_label:] <
WHILE condition LOOP

sequential code; -
END LOOP [LOOP_label];”

~ The LOOP label is optional but it might
" encance the readability of the code

Example
VARIABLE sum_variable:NATURAL:=0;

add_loop:

WHILE (sum_variable < 100) LOOP
sum_variable:=sum_variable + 3;

END LOOP add_loop;

VHDL basics cont.

Basic VHDL structures
FOR LOOP statement

This loop goes on for some range of an identifier

. Parentheses not allowed
The structure is

[Loop label:] <——— — The LOOP label is optional
FOR identifier IN dlscrete range LOO ~ but it might enhance the

sequential code; readabillity of the code
END LOOP [Loop label];

Example To be synthesizable these must be constant values
one_Till: . —
FOR index IN 15 DOWNTO O LOOP
vector(index)<=717;
END LOOP one_fill;
A way to fill the vector with ones.
Could be replaced by

vector <= (OTHERS=>"17);

10

2018-09-14

VHDL basics cont.

Basic VHDL structures
LOOP control

We have a couple of functions to control the loop
With the EXIT statement we can break out of the loop and leave it.
The basic form is

IF condition THEN
EXIT;
END 1F;

The code could be shortened to

EXIT WHEN condition;

VHDL basics cont.

Basic VHDL structures

EXIT statement cont.

Example

VARIABLE count_variable:NATURAL;
- Start value for the count

LOOP Triggered by clk or reset

WAIT UNTIL ((clk="1") OR (reset="1")):
EXIT WHEN (reset="1"); <«

count_variable:= ~———— Leave the loop and start
(count_variable+1) MoD 12; all overagain when
END LOOP; reset is activated

The process continously counts from 0 to 11 on positive edge of the clock
signal and is restarted when reset is one (1)

11

2018-09-14

VHDL basics cont.

Basic VHDL structures
Creating a clock for simulation
Example

clk_proc:
PROCESS
BEGIN

WAIT FOR 50 ns;
clk_tb_signal<=NOT(clk_tb_signal);

END PROCESS clk_proc;

This will create a clock with a period time of 100 ns

This will not be synthizisable but it can be used
in a test bench to create a clock for simulation

Something is missing though. What?

VHDL basics cont.

Basic VHDL structures

Creating a clock for simulation

Example cont.

We must set a initial value for the clock signal ond we
do this in the signal declaration

SIGNAL clk_tb_signal:STD_LOGIC:="0";

Setting initial values this way won’t transfer to synthis but
this clock is just used for simulation so it will work

clk_proc:
PROCESS
BEGIN
WAIT FOR 50 ns;

clk_tb_signal<=NOT(clk_tb_signal);

END PROCESS clk_proc;

12

2018-09-14

VHDL basics cont.

Basic VHDL structures

NEXT statement

The NEXT statement breaks the current loop round and
moves on to the next round

The basic form is

IF condition THEN
NEXT ;
END 1IF;

The code could be shortened to

NEXT WHEN condition;

VHDL basics cont.

Basic VHDL structures

NEXT statement cont.

Example

ones_variable:=0;

FOR index IN WIDTH-1 DOWNTO O LOOP Move to the next bit
NEXT WHEN vector(index)="0"; < inthe vector when
ones_variable:=ones_variable+1; ~ the current bit is zero

END LOOP;

The code counts the number of ones (1) in vector

13

2018-09-14

Also look at the Accessing a component from
a process document in the Reading folder

14

