
2018‐09‐14

1

DAT093
Comments after lab 1

VHDL basics cont.

Basic VHDL structures
Conditional signal assignment

In concurrent code we have two structures for conditional signal assigment.

The first one, the WHEN statement, is simular to what we know as an
IF statement from software programming

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

y_signal <= ’1’ WHEN (a_signal=’0’) ELSE
’0’;

The parantheses are not necessary but
increase the readability

The signal must be assigned a value under all conditions
which means that the else clause is necessary

Example

2018‐09‐14

2

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

The statement could be expanded

SIGNAL y_signal:STD_LOGIC;
SIGNAL a_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
……

y_signal <= ’1’ WHEN (a_signal=”00”) ELSE
’1’ WHEN (a_signal=”01”) ELSE
’0’;

This could also be rewritten as

y_signal <= ’1’ WHEN ((a_signal=”00”) OR
(a_signal=”01”)) ELSE

’0’;

I think this is less readable though

Example

VHDL basics cont.

Basic VHDL structures
WHEN statement cont.

Observe that there is nothing to say that the selection condition
must be of the same type in all clauses

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
SIGNAL b_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
……

y_signal <= ’1’ WHEN (a_signal=’1’) ELSE
’1’ WHEN (b_signal=”01”) ELSE

’0’;

This kind of coding is very confusing and should not be used

Example

2018‐09‐14

3

VHDL basics cont.

Basic VHDL structures
WITH statement

The other concurrent conditional signal assignment is the WITH statement.
It has simularities with the CASE statement in software programming

We repeat our first WHEN exampl using the WITH statemente

This code won´t compile though it is formally correct and
we have covered both the high and the low signal values.

Why?

Example

SIGNAL a_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

y_signal<=’1’ WHEN (a_signal=’0’) ELSE
’0’;

SIGNAL x_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

WITH x_signal SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN ’1’;

condition signal

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

SIGNAL x_signal:STD_LOGIC;
SIGNAL y_signal:STD_LOGIC;
……

WITH x_signal SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN ’1’;

In the statement all possible values of the selector, here x_signal, has
to be covered and the std_logic variable x_signal has nine (9) possible
values (U, X, 0, 1, Z, W, L, H, -) that must be handled

2018‐09‐14

4

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

We rewrite the code

WITH x_signal SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN OTHERS;

Since the synthesized code only has values 0 and 1 (and Z,
but not as an input value), this covers all cases.

The OTHERS clause covers all cases when x/=’0’

The code gets somewhat clearer if we rewrite it as

WITH x SELECT
y_signal <= ’1’ WHEN ’0’,

’0’ WHEN ’1’,
’0’ WHEN OTHERS;

The synthisized result will be the same though

VHDL basics cont.

Basic VHDL structures
WITH statement cont.

Let´s rewrite the other WHEN statement, the one with the vector

WITH a_signal SELECT
y_signal <= '1' WHEN "00",

'1' WHEN "01",
'0' WHEN OTHERS;

In the WITH statement we can only have one selecter so we can not have
the mixed condition of the scalar a and vector b that we had in the WITH case.

The two cases that give the same result could be combined

WITH a_signal SELECT
y_signal <= '1' WHEN "00" | "01",

'0' WHEN OTHERS;

For enumerated types we can also give ranges using TO or DOWNTO

We´ll see this for the CASE statement later on

OR statement

SIGNAL y_signal:STD_LOGIC;
SIGNAL a_signal:STD_LOGIC_VECTOR(1 DOWNTO 0)
……

y_signal <= ’1’ WHEN (a_signal=”00”) ELSE
’1’ WHEN (a_signal=”01”) ELSE
’0’;

2018‐09‐14

5

VHDL basics cont.

Basic VHDL structures

Conditional signal assignment in sequential code

The WHEN and WITH statements used in concurrent
code can not be used in sequential code.

We have a couple of replacements

VHDL basics cont.

Basic VHDL structures

IF statement

The IF statement has simularities to the WHEN statement

The structure is

[IF_label:]
IF condition THEN

sequential code;
[ELSIF condition THEN

sequential code;]
[ELSE

sequential code;]
END IF [IF_label];

The IF label is optional but it might
encance the readability of the code

2018‐09‐14

6

VHDL basics cont.

Basic VHDL structures

IF statement cont.

Examples

IF (a=’0’) THEN
y <= ’1’;

END IF;

IF (a=’0’) THEN
y <= ’1’;

ELSE
y <= ’0’;

END IF;

IF structure with complete assignment.

When all possibilities are fully declared
no memory element is needed

Use this instead!

Since the behavior at all values of a is not
declared a memory element must be used

VHDL basics cont.
Basic VHDL structures

Examples cont.

compare_ab:
IF ((a=’1’) AND (b=’0’)) THEN

a_high <= ’1’;
b_high <= ’0’;
equal <= ’0’;

ELSIF ((a=’0’) AND (b=’1’)) THEN
a_high <= ’0’;
b_high <= ’1’;
equal <= ’0’;

ELSIF..
..
ELSE

a_high <= ’0’;
b_high <= ’0’;
equal <= ’1’;

END IF compare_ab;

The ELSIF clause is only
evaluated if the IF clause
is false

The ELSE clause is only evaluated if
the IF and the ELSIF clause(s) are
false

The IF clause is evaluated first

We have a priority‐encoded structure with dominance for the first IF statement

Try using ELSIF instead of separate IF statements

2018‐09‐14

7

VHDL basics cont.

Basic VHDL structures

CASE statement

The CASE statement has simularities to the WITH statement.

The structure is

[CASE_label:]
CASE selectorSignal IS

WHEN value1 =>
sequential code;

WHEN value1 =>
sequential code;

[WHEN value2 =>
sequential code;]

[WHEN others =>
sequential code;]

END CASE [CASE_label];

All cases have the same priority and they may not overlap

If the WHEN cases don´t cover all of
the possible values for
selectorSignal we must
include the OTHERS clause. It
could actually be there even when
it is not needed so make it a habit
to include it

The CASE label is optional but it might
encance the readability of the code

VHDL basics cont.

Basic VHDL structures

CASE statement cont.

selectorSignal is an input port, a signal or a variable.

The valueX could be one single value of
selectorSignal.

It could also be more than one value if we combine
them using the OR symbol |

or it could be a range of values if we use TO or DOWNTO

[Case label:]
CASE selectorSignal IS

WHEN value1 =>
sequential code;

WHEN value1 =>
sequential code;

[WHEN value2 =>
sequential code;]

[WHEN others =>
sequential code;]

END CASE [Case label];

2018‐09‐14

8

VHDL basics cont.

Basic VHDL structures

CASE statement cont.

Examples

SIGNAL tal_signal:INTEGER RANGE 0 TO 20;
SIGNAL output_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);

selector:
CASE tal_signal IS

WHEN 1 =>
output_signal <= "0001";

WHEN 2 =>
output_signal <= "0010";

WHEN OTHERS =>
output_signal <= "0000";

END CASE selector;

selector values

OTHERS clause

selector

VHDL basics cont.

Basic VHDL structures

Examples cont.

SIGNAL tal_signal:INTEGER RANGE 0 TO 20;
SIGNAL output_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);

CASE tal_signal IS
WHEN 1 =>

output_signal <= "0001";
WHEN 2 TO 4 =>

output_signal <= "0011";
WHEN 5 | 9 =>

output_signal <= "0101";
WHEN OTHERS =>

output_signal <= "0000";
END CASE;

Single selector value

Range of selector values

Group of selector values

2018‐09‐14

9

VHDL basics cont.

Basic VHDL structures

LOOP statement

We have one sequential statement that has no
concurrent correspondance, the LOOP statement.

The statement has a number of forms

• Infinite loop

• FOR loop

• WHILE loop

The FOR loop is the only LOOP statement that is synthesizable and
only under some circumstances that we will get back to

VHDL basics cont.

Basic VHDL structures

Infinite LOOP statement

The structure is

[LOOP_label:]
LOOP

sequential code;
END LOOP [LOOP_label];

As the name suggests this loop goes on forever

Example

VARIABLE counter_variable:NATURAL;
……
count_variable:=0;
counter12:LOOP

WAIT UNTIL rising_edge(clk);
count_variable:=

(count_variable+1) MOD 12;
END LOOP counter12;

Triggered every clock cycle
on positive clock edge

The counter counts from 0
to 11 on the rising edge of
clk and then restarts

Infinite loop

The LOOP label is optional but it might
encance the readability of the code

NOTICE! This is not synthesizable

2018‐09‐14

10

VHDL basics cont.

Basic VHDL structures

WHILE LOOP statement

The structure is

[LOOP_label:]
WHILE condition LOOP

sequential code;
END LOOP [LOOP_label];

The WHILE LOOP goes on while some condition is true

Example

VARIABLE sum_variable:NATURAL:=0;
……
add_loop:
WHILE (sum_variable < 100) LOOP

sum_variable:=sum_variable + 3;
END LOOP add_loop;

The LOOP label is optional but it might
encance the readability of the code

NOTICE! This is not synthesizable

VHDL basics cont.

Basic VHDL structures
FOR LOOP statement

The structure is

[Loop label:]
FOR identifier IN discrete_range LOOP

sequential code;
END LOOP [Loop label];

This loop goes on for some range of an identifier

Example

one_fill:
FOR index IN 15 DOWNTO 0 LOOP

vector(index)<=’1’;
END LOOP one_fill;

Parentheses not allowed

A way to fill the vector with ones.

Could be replaced by

vector <= (OTHERS=>’1’);

The LOOP label is optional
but it might enhance the
readabillity of the code

To be synthesizable these must be constant values

2018‐09‐14

11

VHDL basics cont.

Basic VHDL structures
LOOP control

We have a couple of functions to control the loop

With the EXIT statement we can break out of the loop and leave it.

The basic form is

IF condition THEN
EXIT;

END IF;

The code could be shortened to

EXIT WHEN condition;

VHDL basics cont.

Basic VHDL structures

EXIT statement cont.

Example

VARIABLE count_variable:NATURAL;

……
count_variable:=0;
LOOP

WAIT UNTIL ((clk=’1’) OR (reset=’1’));
EXIT WHEN (reset=’1’);
count_variable:=

(count_variable+1) MOD 12;
END LOOP;

The process continously counts from 0 to 11 on positive edge of the clock
signal and is restarted when reset is one (1)

Leave the loop and start
all over again when
reset is activated

Start value for the count

Triggered by clk or reset

2018‐09‐14

12

VHDL basics cont.
Basic VHDL structures

Creating a clock for simulation

Example

clk_proc:
PROCESS
BEGIN

WAIT FOR 50 ns;
clk_tb_signal<=NOT(clk_tb_signal);

END PROCESS clk_proc;

This will create a clock with a period time of 100 ns

This will not be synthizisable but it can be used
in a test bench to create a clock for simulation

Something is missing though. What?

VHDL basics cont.

Basic VHDL structures

Creating a clock for simulation

Example cont.

SIGNAL clk_tb_signal:STD_LOGIC:='0';

We must set a initial value for the clock signal ond we
do this in the signal declaration

Setting initial values this way won´t transfer to synthis but
this clock is just used for simulation so it will work

clk_proc:
PROCESS
BEGIN

WAIT FOR 50 ns;
clk_tb_signal<=NOT(clk_tb_signal);

END PROCESS clk_proc;

2018‐09‐14

13

VHDL basics cont.

Basic VHDL structures

NEXT statement

The NEXT statement breaks the current loop round and
moves on to the next round

The basic form is

IF condition THEN
NEXT;

END IF;

The code could be shortened to

NEXT WHEN condition;

VHDL basics cont.

Basic VHDL structures

NEXT statement cont.

Example

ones_variable:=0;
FOR index IN WIDTH-1 DOWNTO 0 LOOP

NEXT WHEN vector(index)='0';
ones_variable:=ones_variable+1;

END LOOP;

Move to the next bit
in the vector when
the current bit is zero

The code counts the number of ones (1) in vector

2018‐09‐14

14

Also look at the Accessing a component from
a process document in the Reading folder

