
Guidelines and conventions
for VHDL representation of digital hardware

Lars Svensson
larssv@chalmers.se

Version 1.2, August 19, 2015

1 Introduction

This is a collection of rules and guidelines intended to help you develop working designs in
VHDL. It is intended as a companion for a VHDL textbook or language reference, not as a
replacement for either. It builds heavily on several sets of rules and guidelines listed in Section 6.
It is intended to be brief; therefore it is assumed that the reader knows basic VHDL syntax
and semantics, and has some understanding of how code is turned into hardware.

Hardware description languages are superficially similar to programming languages such as C
or Java, but there are also important differences. You may recognize some of the rules from
similar rule sheets for software development. Other rules are peculiar to hardware design and
to VHDL in particular.

In special circumstances, there may be good reasons to ignore some of these rules. When
considering such a departure, be sure to document your decisions, and weigh the extra time
you are likely to spend in verification and debugging your design.

2 Lexical and syntactical issues

Syntax-sensitive editors (such as Emacs, or those built into many integrated design environ-
ments) will help the developer observe rules such as these.

2.1 Code readability

Code readability benefits from many of the same rules as in software programmes.

• Use a separate line for each statement or declaration (this practice also makes it easier
to comment out selected statements during development).

1



• Use spaces liberally to separate lexical elements.

• Use parentheses to control precedence in expressions.

• Avoid very long source code lines; 72 characters is a traditional limit. Split lines at
“logical” points.

• Use indentation to highlight code structure. 2 spaces is enough to serve the purpose and
will not use up too much of the line width. Do not use tab characters; text editors may
attempt to convert them to spaces, often with confusing results.

2.2 Comments

Guidelines for comments are similar to those for software programming languages.

• Use comments to explain and elucidate your code. Experience strongly suggests that no
code of more than trivial size is self-explanatory, however clear and lucid it may seem at
the time of writing.

• Strive for conciseness in comments, and place them close to the code they describe, but
not interfering with it.

• Strive to comment logical sections of code rather than single lines.

• Include a standard-format header in each code file, with author name, creation date,
modification history, an overall description of the module, and any legal matter which
your organization may require (such as copyright notices).

2.3 Names

In any project of more than trivial size, a naming convention should be developed, documented,
and used. It helps tremendously when working in a development team or when just coming
back to your own code after a few weeks. If possible, before you decide on conventions for a
project, verify compatibility with all tools you plan to use.

Be aware that many real-life projects will require you to interface to modules written in other
languages (such as VerilogHDL or SystemC). Sticking with a naming convention that works
also in other languages, at least for names that are visible outside your module, is likely to
minimize your problems. Case in point: VHDL basic identifier names are case-insensitive,
whereas VerilogHDL and SystemC identifier names are case-sensitive.

Here is a list of rules that may serve as a starting point for a naming convention:

• Use a consistent case for each identifier.

2



• Use lower-case letters for signal names, variable names, and port names.

• Use upper-case letters for constants and user-defined types.

• Use underscore to make identifiers more readable: high byte is better than highbyte.

• Use meaningful and descriptive names whenever possible (so addr rather than a, etc);
but see next point.

• Use short names rather than long ones; some tools will use a concatenation of module
and parameter names to refer to a certain cell or signal instance.

• Do not use VHDL “extended identifiers” in your source files.

• Use a consistent name for the clock signal, such as clk; in case you use several clock
signals, use a common prefix when naming them.

• Use a consistent name for reset signals, such as rst.

• Use s as a suffix for signal names and v for variable names.

• Use common suffixes for names of signals or variables that deviate from “default” prop-
erties, such as n for active-low signals, a for asynchronous signals, and z for tri-state
signals (the last category should be quite uncommon).

• Avoid using VerilogHDL or SystemC (etc) reserved words as identifiers.

• Use a consistent bit ordering in all multibit buses; (x downto 0) is suggested.

The state machine is a very common design pattern in digital hardware design. We primarily
recommend the Gaisler two-process model, revisited below in Section 4.6, for state machine
representation; if you decide not to use this model, the following rules may be useful:

• Use the names current state and next state in state machine descriptions. In case
you describe several of these in the same piece of code (a dubious practice), use suffixes
such as cs for current state and ns for next state.

2.4 Ports and generics

Ports provide interfaces for modules. A complex module may have many ports, and mixing
them up is likely to cause bewildering malfunction. The same goes for generics, which provide
module parameters for things like word lengths.

• Decide on a principle for ordering the list of ports, and use it consistently; the following
order is suggested:

3



– Inputs, bidirectionals (if any), and outputs.

– Within each category, list clocks, resets, enables, and other control signals, and finish
with data and address lines.

• Use a separate source code line for each port; describe individual ports and port groups
in comments.

• Use explicit mapping via port and generic names rather than relying on positional asso-
ciation.

3 Code organization

Decide on and document a code organization convention, so as to make it easy to find a given
piece of code. Your design tool environment might prefer a certain file organization, or even
liberate you from thinking about the files; but beware that you may want to re-use your code
in another environment some day.

• Describe only one entity and one architecture in each file. Use the entity name as the
file name.

Digital hardware is often highly regular, so a one-for-one description would be repetitive, making
it easy for a typo to hide in the code. Also, when a change is needed, that change must be
repeated in each code instance; missing one instance will typically introduce a bug. Use available
abstractions to avoid this source of mistakes, to reduce code size, and to speed up simulation
and analysis.

• Use functions rather than repeating complex expressions.

• Use loops to improve readability of repetitive code.

• Use arrays and vector operations rather than individual operations per bit.

VHDL does not provide true abstract data types, but the package construct can be used to
group constants, types, and functions that together describe a reusable part of a design. The
library construct encapsulates packages. A composite type is best represented by a record,
which corresponds to a struct in C or C++ or a java class with fields but no methods.

• Use packages to group related constructs under a single name, and libraries for encapsu-
lation.

• Use records to collect related signals for passing to other entities.

4



Many language constructs (in particular loops, processes, and components/instances) may be
labeled with identifiers. Such labels are very useful in debugging.

• Use labels for all loops, processes, and components.

• Use a naming convention to set labels apart from other identifiers; xxx loop, xxx proc,
and xxx comp are suggested.

3.1 Constants

Design constants should never be entered literally in the code. Then, if you need to change the
value, you must recall to change it everywhere.

• Use constant declarations for design parameters such as word length, and derive related
values with arithmetic expressions.

• If you might need to use the same block more than once in the same design, but with dif-
ferent parameter values, use generic rather than constant declarations. (This is actually
the preferred alternative in most cases.)

3.2 Types

Certain types (such as integer) are built into VHDL, and some others are provided in standard
libraries. For hardware design, especially std logic, std ulogic, and bit (and their associated
vector versions) are useful. Functionally, these types overlap to a large extent. Using one of

them consistently lets you avoid explicit type conversions.

• Use std logic rather than std ulogic or bit unless you have good reasons not to (and
document those reasons in that case).

• Use the numeric std package to provide the types signed and unsigned for two’s-
complement arithmetic. Avoid std logic signed and std logic unsigned, as inter-
actions with the numeric std types are easy to mishandle.

VHDL allows creation of data types by enumeration and by subtyping from existing types.
Each of these mechanisms must be handled with care. Enumerated types have no obvious
hardware representation; and many disjunct subtypes may necessitate explicit type conversions
in expressions and thus make the code difficult to understand. (The exception is subtypes
of integer, which may indeed make arithmetic more readable without introducing arbitrary
width restrictions.)

• Avoid enumerated types in code that is to be synthesized. (Exception: states in state
machines fit nicely with enumerated types; cf. Section 4.6).

5



• Be restrictive in the number of subtypes you declare.

VHDL allows operator overloading, such that a newly defined type may be operated upon with
arithmetic operators such as “+”. This mechanism may confuse even experienced designers.

• Only use operator overloading if you design a full package of operations on a new type.

4 Hardware corresponding to certain constructs

It is always good to keep hardware in mind while writing VHDL. Designers have over the years
arrived at certain design practices which yield good synthesis results.

4.1 Register inference

Strive to use registers rather than latches to keep state. Registers will be synthesized properly
if a process block uses edge triggering as in these examples.

-- process with asynchronous reset

asynch_reset_proc: process (clk, rst_a)

begin

if rst_a = ’1’ then

...

elsif rising_edge(clk) then

...

end if;

end process asynch_reset_proc;

-- process with synchronous reset

synch_reset_proc: process (clk)

begin

if rising_edge(clk) then

if rst = ’1’ then

...

else

...

end if;

end if;

end process synch_reset_proc;

• Use edge triggering in sequential processes. Follow a process template such as one of
those above.

• Use the standard-logic function rising edge(clk) rather than (clk’event and clk =

’1’). The former expression is shorter and clearer. The latter expression will return
TRUE even if clk goes from Z or U to 1, which is probably not what you want.

• Use a reset signal to initialize registered signals, rather than assigning initial values in the
signal declarations. (Initial values are commonly ignored by synthesis tools, so hardware
might behave differently from simulation.)

• At reset time, all bi-directional ports should be in input state, so as not to inject X values
into the surrounding logic.

6



4.2 Latch avoidance

Latches should generally be avoided, as their timing requirements are very different from those
for flip-flops, which means that they complicate clock generation and distribution and also
static timing analysis. Also, certain common VHDL coding mistakes typically cause latches to
be generated; by not ever using latches on purpose, you can use their appearance as a warning
sign.

The following rules will ensure that all signals are assigned values for all input combinations;
otherwise, a latch will typically be generated to hold the previous value.

• Assign default values for all signals at the beginning of a combinational process block.
(See Section 4.1 for sequential blocks.)

• Assign output values for all combinations of input conditions.

• Use an else clause rather than an elsif clause to end an if construct in a combinational
process.

4.3 Combinational feedback

In addition to flip-flops and latches, it is possible to keep state in a feedback loop built from
combinational circuits. Such state variables will be unreachable for scan-chain insertion and
the circuits will be very difficult to analyze for timing.

• Do not use combinational feedback loops unbroken by clocked elements (such as flip-flops).

4.4 If-then-else vs. case statements

In many software languages, a case statement is equivalent to a set of nested if-then-else

statements which embody the same logic. In VHDL, the two alternatives will typically1 re-
sult in different hardware implementations: the case statement produces a single multi-input
multiplexer, whereas the if-then-else version will produce a chain of two-input multiplexers
corresponding to the nested if statements. In the latter case, one condition will dominate the
others, which may sometimes be useful. Also, the inputs will have different timing properties,
and thus it is possible to assign a shorter input-output delay to a late-arriving input signal.

1Some design toolchains may optimize these structures such that no difference is seen in the result. You
should not trust such optimizations to be available. In any case, many designers would prefer to turn off such
optimizations in order to retain more control over the results.

7



case foo is

when 0 =>

bar <= d0 ;

when 1 =>

bar <= d1 ;

when 2 =>

bar <= d2 ;

when others =>

bar <= d3 ;

end case ;
foo

bar

HHH
HHH

��
��

��

d0

d1

d2

d3

if foo = 0 then

bar <= d0 ;

elsif foo = 1 then

bar <= d1 ;

elsif foo = 2 then

bar <= d2 ;

else

bar <= d3 ;

end if ;

bar

@
@
@

@
@
@

@
@
@

�
�
�

�
�
�

�
�
�

foo = 0

foo = 1

foo = 2

d0

d1

d2

d3

4.5 Sensitivity lists

The sensitivity list for a process indicates when the process code should be evaluated. An
incorrect list could cause synthesized logic to behave differently than simulations predict.

• Include all input signals of a combinational block in its sensitivity list.

• Include the clock signal (and any asynchronous signals, such as an asynchronous reset
signal) in the sensitivity list for a sequential block; cf. code examples in Section 4.1.

4.6 Two-process model

VHDL does not enforce a certain style of hardware organization. In particular, it is possible
to mix sequential and combinational parts freely. For state machines, a more restricted design
style, the two-process model, has been observed to improve readability and simplify debugging,
especially for larger designs.

8



In the two-process model, one process each is used for combinational logic and sequential flip-
flops. Data input and output from the sequential portion is collected in a record type used only
within the module, which makes it very simple to add a signal if necessary. A full description
of the two-process model is available from Gaisler Research (see Section 6), and is highly
recommended reading.

A more elaborate three-process version of the two-process model separates the combinational
logic into two parts: one generating the input for the sequential logic, and one for generating the
output signals. It may give clearer code in some circumstances, at the cost of extra verbosity.

• Select the two-process model or the three-process model for sequential logic, and use the
selected model consistently.

5 Clocking and synchronization

Strive to use simple constructs for clocks and reset signals. In general, simple clocking structures
are easier to understand, analyze, and maintain.

5.1 Clock gating

Clock gating is a very useful technique to reduce power dissipation in digital ASIC systems; as
most of the dissipation is caused by signal transitions, eliminating unnecessary transitions will
typically improve power. Present-day synthesis tools can recognize many cases when the clock
can be turned off locally without changing the behavior. At a larger scale, clocks for a module
may be turned on and off explicitly with VHDL logic; but functionality of such a clock-gated
system may be difficult to verify.

• Do not use gated clocks to define the functionality of a module. The module should
behave identically with all clocks active as with a correctly gated clock.

• When explicitly defining gated clocks in your VHDL code, isolate the clock generation
circuits in a module of its own, to be able to verify it and the clock-gated module sepa-
rately.

9



whole thing

ckgen

-
ck

?

-
ck1

-
ck2

main part

�
ctl

Reset signals should be subject to similar restrictions as the clocks.

• Use a single reset signal for all registers in the module.

• Use a single reset level (either high or low; document!) for all registers.

• Use the reset signal only for clearing all flip-flops.

• If you must use a conditional reset, derive the signal in an external module, as for the
gated clocks.

5.2 Clocks in FPGAs

While it is in general possible to map the same VHDL code both to ASIC and FPGA plat-
forms, certain constructs are more or less suitable for the different target technologies. FPGAs
typically offer clock-enable (CE) inputs on each memory element, but on the other hand the
number of clock buffers and clock nets available is limited. As a result, fine-grain clock gating
is often impractical, and the corresponding power savings cannot be fully realized. It is still
possible to inhibit unnecessary output toggling by using conditions in the CE signal instead:

ENABLE <= IN1 and IN2 and LOAD;

process (CLK)

begin

if (rising_edge(CLK)) then

if (ENABLE = ’1’) then

DOUT <= DATA;

end if;

end if;

end process; ""
bb

""
bb

""
bb

""
bb

""
bb

CLK

LOAD

IN1

IN2

DATA

&

D Q

CE

""
bb

DOUT

∧

10



5.3 Dual-edge clocks

It may occasionally be useful to use both the positive and the negative edges of a clock signal
in different parts of a design. If you do, correctness will in general depend not only on the clock
frequency but also on the duty cycle, which therefore must be controlled and verified. Also, be
aware that flip-flop scan chains will require all flip-flops to use the same clock edge.

• Avoid using dual-edge clocking as far as possible. Preferrably, use only positive-edge
clocking.

• If you absolutely must use dual-edge clocking, document the duty-cycle assumptions you
rely on.

• Even when you do use dual-edge clocking, don’t let one process trigger on both edges of
a clock signal.

5.4 Multiple clock domains

There are cases, especially in large designs, when it is impossible or impractical to use a single
clock to synchronize all activity. The design must then be split into several clock domains,
each controlled by a separate clock signal. Signals emanating in one clock domain must then
be re-synchronized to the clock in the receiving clock domain. Such synchronization of signals
across clock-domain borders brings a danger of metastability and malfunction. The exact
metastability parameters will often be unknown at module design time, so synchronizer design
may have to be revisited at a later stage.

• Use the minimum number of clock domains in order to reduce hardware and design-time
overhead.

• Use a single synchronizer design for all cross-clock-domain signal transfer.

• Label the synchronizer components distinctively to make special treatment possible, as
may be required when modules are assembled into a system.

6 To probe further

Keating, Bricaud. Re-use Methodology Manual for System-on-Chip design, 3rd ed. Springer, 2002.

Jiri Gaisler. A structured VHDL design method. http://www.gaisler.com/doc/vhdl2proc.pdf.
Accessed on August 19, 2015.

Jan Decaluwe. These ints are made for countin’. http://www.jandecaluwe.com/hdldesign/counting.
html. Accessed on August 19, 2015.

11



OpenCores HDL modeling guidelines. http://cdn.opencores.org/downloads/opencores_coding_
guidelines.pdf. Accessed on August 19, 2015.

Philippe Garrault, Brian Philofsky. HDL Coding Practices to Accelerate Design Performance. Xilinx
White Paper, http://www.xilinx.com/support/documentation/white_papers/wp231.pdf. Ac-
cessed on August 19, 2015.

12


