INTEGRATED PHOTONICS



INTEGRATED PHOTONICS

CLIFFORD R. POLLOCK
School of Electrical and Computer Engineering
Cornell University

MICHAL LIPSON
School of Electrical and Computer Engineering
Cornell University

Springer Science+Business Media, LLC



Library of Congress Cataloging-in-Publication
CIP info or:

Title: Integrated Photonics

Author (s): Clifford R. Pollock and Michal Lipson

ISBN 978-1-4419-5398-8 ISBN 978-1-4757-5522-0 (eBook)
DOI 10.1007/978-1-4757-5522-0

Copyright © 2003 by Springer Science+Business Media New York

Originally published by Kluwer Academic Publishers in 2003

Softcover reprint of the hardcover 1st edition 2003

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photo-copying,
microfilming, recording, or otherwise, without the prior written permission of the publisher,
with the exception of any material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work.
Permissions for books published in the USA: permissions@wkap.com
Permissions for books published in Europe: permissions@wkap.nl

Printed on acid-free paper.




Contents

Preface

1. INTRODUCTION AND OVERVIEW

1

2
3
4

A Brief History of Telecommunications
Development of the Optical Waveguide
Types of Optical Communication Systems
Opportunities in Optoelectronics

2. MAXWELL’S EQUATIONS

O 0 1 & W bW N —

10
11
12
13

Introduction: The Tools of the Trade

Maxwell’s Equations

Constitutive Relations

The Wave Equation

Solutions to the Wave Equation

Transverse Electromagnetic Waves and the Poynting Vector
Phase Velocity

Group Velocity

Boundary Conditions for Dielectric Interfaces:
Reflection and Refraction

Total Internal Reflection

Wave Description of Total Internal Reflection
Phase Shift Upon Reflection

Summary

3. THE PLANAR SLAB WAVEGUIDE

1
2

Introduction
The Infinite Slab Waveguide

xi

O O O L W — e

23
29
31
35
36

43
43
43



vi

INTEGRATED PHOTONICS

Electromagnetic Analysis of the Planar Waveguide
The Longitudinal Wavevector 3

Eigenvalues for the Slab Waveguide

The Symmetric Waveguide

Intuitive Picture of the Mode

Properties of Modes

Number of Guided Modes in a Waveguide
Normalized Propagation Parameters

The Numerical Aperture

Summary

4. STEP-INDEX CIRCULAR WAVEGUIDES

O 00 N9 N L AW N -

—
(=]

Introduction

The Wave Equation in Cylindrical Coordinates
Solution of the Wave Equation for F,

Field Distributions in the Step Index Fiber
Boundary Conditions for the Step-Index Waveguide
The Spatial Modes of the Step-Index Waveguide
The Normalized Frequency (V-number) and Cutoff
The Fundamental HE11 Mode

Total Number of Modes in a Step-Index Waveguide
Summary

5. RECTANGULAR DIELECTRIC WAVEGUIDES

1
2
3
4
5

6

Introduction

Wave Equation Analysis of a Rectangular Waveguide
Perturbation Approach to Correcting 3

Effective Index Method

Effective Index Method applied to Ex. 5.1

Summary

6. DISPERSION IN WAVEGUIDES

1

2
3
4

Introduction
Three Types of Dispersion
Material Dispersion

Modal Dispersion

44
46
48
55
56
58
60
62
65
67

73
73
74
75
77
80
81
89
91
92
94

99

99
100
109
113
118
119

125
125
126
127
136



Contents

5
6
7

Waveguide Dispersion
Simultaneous Effect of Material and Modal Dispersion
Summary

7. GRADED INDEX WAVEGUIDES

1

2
3
4
5

Introduction

Ray Tracing Model in Graded Index Material
Modal Picture of the Graded Index Waveguide
Direct Numerical Solution of the Wave Equation
Summary

8. ATTENUATION AND NONLINEAR EFFECTS

O 00 3 O Ui A W N —

—_
- O

12

Introduction

Intrinsic Absorption Loss
Rayleigh Scattering

Optical Fiber Manufacture
Losses in Rectangular Waveguides
Mechanical Losses

Nonlinear Effects in Dielectrics
Stimulated Raman Scattering
Stimulated Brillouin Scattering
Self-Phase Modulation

Optical Solitons

Summary

9. NUMERICAL METHODS

O 00 3 N B W —

—
(=]

Introduction

Beam Propagation Method

Superposition of Waves

The Fourier Transform in Guided Wave Optics
Beam Diffraction

The Beam Propagation Method

A MATLAB Program for One-Dimensional BPM
Waveguide Coupler

The Finite-Difference Time-Domain Method
Summary

vii

140
143
144

149
149
150
154
158
160

165
165
166
171
174
176
179
182
184
193
194
198
203

209
209
210
210
211
217
222
225
230
233
237



viii INTEGRATED PHOTONICS

10. COUPLED MODE THEORY 241
1 Introduction 241
2 Derivation of the Coupling Equation Using Ideal Modes 241
3 Nondegenerate Coupling Between Modes in a Waveguide 246
4 Degenerate Mode Coupling 255
5  Coupling by a Periodic Perturbation: Bragg Gratings 261
6  Summary 265
11. COUPLING BETWEEN SOURCES AND WAVEGUIDES 271
1 Introduction 271
2 Coupling of Modes Between Waveguides 271
3 Coupling From an Optical Fiber to an Integrated Waveguide 276
4  Coupling to an Optical Source 279
5 Surface Coupling a Beam to a Slab Waveguide 284
6  Grating Couplers 289
7 Summary 295
12. WAVEGUIDE MODULATORS 301
1 Introduction 301
2 Figures-of-Merit For a Modulator 302
3 Electrooptic Modulators and the Electrooptic Effect 304
4 Phase Modulators 312
5  Power Required to Drive a Phase Modulator 314
6  Electro-optic Intensity Modulators 317
7 Interferometric Modulators 319
8  Electro-Absorption Modulators 322
9  Acousto-optic Modulators 324
10  Applications of Acousto-Optic Waveguide Devices 328
11 Summary 329
13. PHOTONIC CRYSTALS 335
1 Introduction 335

2 Basic Physics of the Photonic Crystal 336
3 The Photonic Band Gap 339
4  Photonic States of a 1D Photonic Crystal 341
5  Photonic States of a Continuous Medium 342



Contents X

6  Onmnidirectional Photonic Band Gap 343
7 Two-Dimensional Photonic Band Gap Structures 346
8 Summary 347
14. INTEGRATED RESONATORS AND FILTERS 349
1 Introduction 349
2 Fiber Bragg Gratings 349
3 Resonators 352
4 1-D Cavity Resonator 353
5 2-D Cavity Resonators 354
6 2D Resonator Coupled to a Single Waveguide 357
7  Ring Resonator as an Add/Drop Filter 358
8 Sharp Bends Using Resonators 360
9 Summary 362
Appendices 363
The Goos-Hénchen Shift 363
References 365
Bessel Functions 367
1 Bessel Functions of the First Kind 367
2 Modified Bessel Functions 368
3 Asymptotic Expansions 368
Optical Power Limit of a Waveguide due to Stimulated 369
Raman Scattering
References 370

Useful Data 371



Preface

This book is directed at the issues of integrated photonics. Four major topics
are covered: 1) fundamental principles of electromagnetic theory; 2) wave-
guides; 3) simulation of waveguide modes, and 4) photonic structures. The
emphasis is slightly heavier into optical waveguides and numerical simulation
techniques because advances in optical communication will be based on nano-
structured waveguide structures coupled with new materials and structures. This
text is targeted for students and technical people who want to gain a working
knowledge of photonics devices. The text is designed for the senior/1st year
graduate student, and requires a basic familiarity with electromagnetic waves,
and the ability to solve differential equations with boundary conditions.

The first part of the text explores the basis for optical propagation and estab-
lishes the use of the MKS system, discussing the wave equation and the proper-
ties of materials such as attenuation and dispersion. The next section explores
the operation of optical waveguides. We start with planar slab waveguides, then
systematically advance to more complicated structures, such as graded index
waveguides, circular waveguides, and rectangular waveguides. The details of
coupling light between and within waveguide modes is clearly described, and
applied to optoelectronic devices such as modulators and switches. The final
section of the text discusses the examination of photonic bandgap crystals and
optical devices such as ring resonators. These topics are very active areas of
research today, and are likely to increase in significance as they mature.

From the beginning this text introduces numerical techniques for studying
non-analytic structures. Most chapters have numerical problems designed for
solution using a computational program such as Matlab or Mathematica. An
entire chapter is devoted to one of the numeric simulation techniques being
used in optoelectronic design (the Beam Propagation Method), and provides
opportunity for students to explore some novel optical structures without too
much effort. Small pieces of code are supplied where appropriate to get the
reader started on the numeric work.
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Chapter 1

INTRODUCTION AND OVERVIEW

1. A Brief History of Telecommunications

In 1837, the era of electrical communication began with the demonstration
of the telegraph by Samuel Morse. The telegraph passed information at a data
rate, in modern terminology, of a few bits per second, but the speed of propaga-
tion was essentially infinite compared to the message itself. The transmission
medium was wire cable. The telegraph was followed by Alexander Graham
Bell’s invention of the telephone. The first telephone exchange was operated
in New Haven, Connecticut, USA, in 1878. At approximately 4 kHz band-
width, the telephone represented a major increase in the effective bandwidth of
a moderate distance communication system.

Arguably, the greatest technological achievement of the 19th century was
James C. Maxwell’s elucidation [1] of “Maxwell’s Equations," in 1878. These
equations mathematically describe the propagation of electromagnetic waves.
Maxwell’s equations, and applications derived from them, are the foundation of
electrical machines and electronic devices which form what we now characterize
as “high technology." Based on the predictions of Maxwell, Heinrich Hertz
[2] demonstrated long radio waves in 1888, and in 1895, Guglielmo Marconi
demonstrated radio (communication without wires!) based on electromagnetic
waves.

Since these pioneering efforts, scientists and engineers have made steady
progress toward better and faster communication technologies. The trend has
been toward higher frequency carrier waves with proportionally increased mod-
ulation bandwidths for carrying information. Early radio, which carried voice
signals with 15 kHz bandwidth, operated in the 0.5-2 MHz range. Television,
which requires about 6 MHz bandwidth, raised carrier frequencies to 100 MHz.
During the 1940’s, radar research pushed frequencies to the gigahertz domain
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(microwaves). Low power microwave technology is now widely used in the 2.4
and 5 GHz region for cellular phone and wireless links between laptop comput-
ers, and high power applications include terrestrial and satellite communication
links operating at 18 GHz.

The push toward higher frequencies took a giant leap forward with the inven-
tion of the laser in 1960.[3] The first laser operated at a wavelength of 694 nm,
which corresponds to a carrier frequency of approximately 5x 104 Hz. People
noted that if even 1% of this bandwidth could be realized in a communication
system, it would represent a signal channel with S THz bandwidth (a terahertz is
10'2 Hz). Such a system could carry approximately 10° analog video channels
at 6 MHz per channel, or ~ 10° telephone calls at 5 KHz per call. However,
progress toward using this tremendous bandwidth was limited by two factors:

1. Electronic components did not operate at such frequencies or speeds.
Since most information today is ultimately converted to electronic form,
the speed of the electronics determines the realizable bandwidth of any
communication link. ‘

2. There was no dependable transmission media for light.

Truly incredible progress has been made in using optical carrier waves for
communication over the four decades since the first demonstration of the laser.
The electronic speed bottleneck is still a challenge to the direct use of the full
bandwidth of the optical carrier, but creative optical methods have been devel-
oped which circumvent some of these limits. The drive for increased bandwidth
has led to faster electronic components which have switching times approaching
several picoseconds. One can now install transmitters which operate at 40 Gi-
gaBits/second (giga = 10°), and 120GB/s transmitters are under development.
It is always dangerous to define limits, but many feel that electronic devices
are reaching their practical speed limits. Creative research into optically-based
information systems where for example, information is carried by many wave-
lengths simultaneously or by ultrashort optical pulses called solitons, is provid-
ing cost-effective access to the full bandwidth of the optical carrier. Without
doubt, the biggest research task in the next decade will be the development of
optical switches and devices and in better communication architectures.

The lack of suitable transmission media has been creatively addressed over
the past 40 years. The field of optical waveguides is well established and is
now a thriving industry. The first part of this text will develop the theory and
application of the optical waveguide, both for long distance communication
(optical fibers) and for integrated optic applications.

To address these problems, a new discipline has emerged called Photonics.
Using light to convey information requires special technologies. Information
must be put on the light beam using extremely high speed modulation. Once
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Information Information

I

Transmitter ">~ Channel [~ Receiver

Figure 1.1. A communication channel consists of a transmitter, transmission channel, and a
receiver. The transmitter converts information into an energy form appropriate for the trans-
mission channel. The channel carries the energy, but also distorts the signal and adds noise.
Following detection, the receiver regenerates the information in (hopefully) a nearly identical
form to the original signal.

modulated, the light must be carried over sizable distances, and directed or
switched to the desired receiver. When it arrives at the receiver, the information
must be extracted from the light. Consider the simplified block diagram of a
communication system shown in Fig. 1.1.

1. The Transmitter couples information onto a transmission channel in the
form of a suitable signal.

2. The Channel is a medium bridging the distance between the transmitter
and receiver. For electromagnetic signals, the channel might be a wire, a
waveguide, or free space. As the signal travels through the medium it is
progressively attenuated and distorted.

3. The Receiver extracts a weakened signal from the channel, and ampli-
fies it. A semblance of the original information (audio, video, etc.) is
generated from the modulated signal .

2. Development of the Optical Waveguide

Researchers rapidly discovered that free space propagation of laser beams
was not suitable for reliable communication links. Problems of bad weather
(precipitation), flying objects that interrupted the beam, and the need for “line-
of-sight" links complicated reliable transmissions. Laser beams are also dis-
torted and randomly aberrated by propagation through turbulent air (this effect
is called scintillation). There are a few specialized applications for free space
communication, such as communication between satellites in orbit, but most
terrestrial applications require a protected transmission channel.

A solution to these problems is to propagate light through a waveguide which
both protects the beam from interruptions, and counters diffraction (the ten-
dency of a wave to spread as it propagates). One scheme that is easy to analyze
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Lens Waveguide Continuous Lens

Figure 1.2. The optical waveguide is a natural extension of a lens waveguide

and visualize is the periodic lens waveguide shown in Fig.1.2. The lenses peri-
odically refocus the light, countering diffraction, and also allow light to travel
around gentle bends. It is fairly straightforward to select a focal length and lens
spacing that will provide a stable beam path [1]. Manufacturing difficulties
and surface reflection losses rule out such a structure as a practical solution for
waveguiding. However an extension of this idea is the continuous lens. Con-
sider making each lens continually weaker in focussing power, while increasing
the number of lenses so that the light stays confined. In the limit of weaker yet
more frequent lenses, one gets a continuous lens.

In the continuous lens,the ray of light is constantly bent back toward the
center of the waveguide. The continuous lens consists of a glass fiber with a
higher index of refraction at the core than at the outer perimeter. This waveguide
structure solves the problem of surface reflections and also allows the waveguide
to be bent. We will develop an understanding of these guiding structures in the
next chapters.

What about transmission losses? Is it possible to send light through kilome-
ters of dense material without excess attenuation? Glass is an obvious candidate
for making an optical waveguide; it is commonly available, easy to draw into
fibers, and looks transparent. However, our common experience with glass usu-
ally involves looking through plates no thicker than a few millimeters. What
happens if light passes though a kilometer of glass? Early measurements in-
dicated that the attenuation of near infrared light in glass was about 1000 dB
per kilometer. To fully appreciate this number, recall that a dB is defined as a
logarithmic ratio:

Power (dB) = 10log, ];;’“t (1.1)

mn

A 1000 dB loss represents P,,; = 107100P;! Considering that there are
approximately 10 photons per watt of visible light, this remarkable number
implies that it would be necessary to launch approximately 103° W of light to
get 1 photon through one kilometer length of glass. To put this in perspective,
the sun radiates only (!) 3.8 x 10%6 W.

In view of this incredible attenuation, it is impressive that far sighted re-
searchers pursued optical fiber waveguides. In 1966, K. Charles Kao of Stan-
dard Telecommunications Laboratories, in Harlow, England, suggested that the
high loss was due to impurities, and not an intrinsic property of glass. Kao
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went on to propose using fibers as a transmission medium, describing many
of the fundamental modes that such a fiber would carry in his classic paper
[5]. In 1970, Kapron, Keck, and Maurer[3] of Corning Glass Works confirmed
this prediction by making an ultrapure glass using chemical vapor deposition
techniques that displayed only 20 dB/km attenuation. Today, ultrapure glass
now displays intrinsic attenuation less than 0.2 dB/km near a wavelength of 1.5
pm.

Once the attenuation problem was mastered, optical fiber communication
become a major factor in communication systems, for both long distance and
local area networks. Motivations for using optical communication include:

1. Optical communication links have a wider bandwidth than copper or
microwave links, so more information can be carried on a given link. The
effective bandwidth of current optical fibers is approximately 30 THz.
(30 THz!!)

2. Attenuation in glass fibers is much less than experienced in copper or
microwave systems. Fewer repeaters are required, and longer distances
can be spanned more cost effectively.

3. Optical systems are smaller and lighter, giving them an advantage in
crowded ducts or aircraft.

4. Optical waveguides are difficult (but not impossible) to tap or monitor,
so data security is higher.

5. Optical waveguides are immune from electromagnetic interference (EMI),
ground loops, induced cross talk, etc.

6. Finally, and perhaps most important, semiconductor technology has de-
veloped a family of lasers, detectors, and other integrated optical devices
that are compatible with optical fibers in power, wavelength, and size.

3. Types of Optical Communication Systems

Two types of optical communication system have developed. Historically,
long distance telecommunication (Telecom) was the first optical communica-
tion application. Telecom primarily involves point-to-point links, such as a
long distance telephone link between two cities, which carry vast numbers of
multiplexed signals. Optical fiber has become the standard for telecommuni-
cation links for the reasons listed above, not the least of which is cost. All of
the advanced technology that appeals to engineers and scientists would never
be installed were it not the most cost-effective solution to most telecommunica-
tions problems. The major cost component in telecom is installing the optical
fiber.
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The second type of optical communication system is data communication
(Datacom). Datacom is used to link information devices such as computers,
memory banks, data bases, and workstations together in a local area network
that may span thousands of connections and hundreds of kilometers. Datacom
applications are different from telecom, in that the cost pressure is no longer
on the carrier medium (the optical fiber), but on the associated hardware such
as transmitters, connectors, switches, filters, and receivers. The need for cost-
effective devices for datacom applications is driving much of today’s research
in optoelectronics. Requests for "Fiber to the desk” are not unusual in new local
area network installations, but for data rates below 1 GigaBit/second, fiber is not
cost-competitive with copper right now. "Fiber to the home" faces the same cost
disadvantage: unless the bandwidth requirements of the typical home increase
dramatically, or the cost of neighborhood-level optical networks decreases, it
will be many years before optical fiber replaces residential copper coaxial cables
and telephone wires. Certainly optical fiber has the bandwidth to support such
a network, but the necessary support hardware is still not developed to the point
of cost-effective implementation.

4. Opportunities in Optoelectronics

To transfer information from one point to another, whether between two
workstations or two cities, communications systems will require switches, con-
nectors, amplifiers, filters, etc. While such devices are well developed for
copper-based and microwave communication links, the optical analogs of these
devices are still expensive and difficult to manufacture in an integrated fashion.

Unlike electronic communication systems that have a limited bandwidth,
optical systems can almost be treated as having infinite bandwidth. Most present
optical communication systems use simple digital modulation schemes (“on"
and “off"), much like Marconi’s early radio. Researchers are now exploring
frequency and phase modulation schemes called “coherent detection". These
offer improvements in signal-to-noise ratios. These “new" optical techniques
are really tried and true modulation schemes that are presently used in modern
radio communication systems. This new technology has also opened the door
to new phenomena, such as optical solitons, which exploit nonlinear properties
of optical fibers to make potentially better communication systems. A system
designer today will ask, “Should the huge bandwidth available in optical links be
exploited through time division multiplexing, using extremely short temporal
pulses? Or should Wavelength Division Multiplexing be used, where each
signal is transmitted at its own wavelength?" Most people today would reply that
wavelength division multiplexing is the answer. However disruptive technology
could easily appear that is better than both time domain and wavelength domain
multiplexing. Optical networks are still in a nascent stage, and so there is great
opportunity for new ideas.
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Noting that this book is primarily devoted to describing the hardware aspects
of optoelectronics, readers interested in the systems aspect of optical commu-
nications should also refer to the excellent book by Paul Green [7] on fiber
optic networks (datacom) and the books by Stuart Personik [8] on telecommu-
nications. These books serve as excellent companions to this one in terms of
complementary material and concept development.
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Chapter 2

FUNDAMENTAL TOOLS OF OPTOELECTRONICS:
MAXWELL’S EQUATIONS

1. Introduction: The Tools of the Trade

There are many tools available to analyze or design an optical device. Imag-
ine trying to characterize the optical behavior of a simple magnifying lens. We
might first project an image of an object onto a screen. Using a ray picture, we
could describe the magnification, focal length, principal planes, and so forth
(Fig. 1a) of the lens. This characterization is called geometric optics [1]. If
we were very perceptive, we might notice that different colors form images at
slightly different distances from the lens (Fig. 1b). To adequately describe this
effect,. we would have to understand and explore the material and dispersion
properties of the lens [2]. This is called physical optics. '

If we could shrink the diameter of the lens to dimensions on the order of
the wavelength of light, we would notice that the image begins to blur. Fringes

T—I~_

()

b. Blue Red

el
Figure2.1. Four (of many) ways to describe a lens. a) Animage is formed through ray tracing.

b) The image position may vary with wavelength, due to dispersion in the lens. ¢) Diffraction
can blur the image of a small object. d) An image being formed one photon at a time.
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begin to appear that are not apparent in the object. These diffraction phenomena
are most notable at small dimensions, where the geometrical optics assumption
that light travels in straight lines begins to fail. The proper description of these
effects requires wave theory based on Maxwell’s equations, and is called wave
optics[4].

If we repeat our measurements in very dim illumination, we will reach a point
where the corpuscular nature of light is evident. For sufficiently low intensity,
one photon at a time passes through the lens. The individual photons arrive with
certain statistical patterns (such as a Poisson distribution)[2]. Different sources
of light can have different statistical properties, and these properties will affect
the quality of optical information that can be extracted from the input signal.
In this photon realm, quantum optics is needed to describe the system [5].

Each of these optical methods is appropriate within a certain domain. When
dealing with the modes of a waveguide, we use physical optics. When dealing
with optical detection of signals, we use quantum optical concepts. In general,
we resort to the technique that leads to the most direct solution of a given
problem. In this chapter, we will introduce Maxwell s Equations, which are the
optical tools needed to describe the propagation of light in optical waveguides.
Using Maxwell’s equations, we will derive and solve the wave equation in an
isotropic media. Following solution of the wave equation, we will explore
refraction and reflection. Total internal reflection is addressed in the following
chapter.

2. Maxwell’s Equations

Maxwell’s equations are, arguably, the most significant scientific develop-
ment of the 19th century. It is impressive to realize that the same equations can
be applied from 0 Hz (DC) to frequencies exceeding 108 Hz (in fact, an upper
frequency limit on the validity of the equations has never been shown). The
four equations can be presented in differential or integral form. They are listed
below in both forms.

OB 5
) ’
VxH=J+ §H-dl=[J-dS+£ [ D-dS (22
ot area
V-B=0 /B-dS=0 (2.3)
V~D=p fD'dSzQenclosed (24)

where S is the unit normal to a surface, and the surface integrals extend only
over the area enclosed by the path of the line integral. In this text we will
use MKS units, with the exception that most physical distances will be related
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in centimeters where it is convenient and obvious. The units that describe an
optical field in MKS units are listed in Table 2.1 below.

Note that Eand H are amplitudes which describe the strength of a field at a
given point in space. D and B are fluxes. Unfortunately, due to the different
systems often used for electromagnetic quantities, the distinction between am-
plitude and flux is sometimes lost. This is especially true for the magnetic field.
Amplitudes and fluxes are both vectorial in nature, which means that direction
and magnitude are important.

These quantities are continuous functions of space and time, with continuous
derivatives. All real solutions will be bounded (no infinities exist in physical
situations) and will be single-valued at all points. At surfaces the distribution of
charge or current can be changed, so boundary conditions are used to connect
solutions in adjacent regions.

The integral form of the equations are listed more for reference than for po-
tential application in this text. They are, however, useful to establish boundary
conditions. The integral forms of the curl equations are readily derived from
the differential forms by application of Stokes Theorem. This theorem relates
the curl of a vector function, A, into a line integral of the function

(VxA)~dS:]§A-dl 2.5)

area loop

where dS and dl are unit vectors oriented normal to the surface, or tangential to
the loop, respectively. For the divergence equations, Gauss’ divergence theorem

D.dS= / V- Ddv 2.6)

closed surface volurne enclosed

Table 2.1. Electromagnetic Units in the MKS Format

Quantity  Description Units

E Electric field amplitude Volts/meter (V/im)

H Magnetic field amplitude ~ Amps/meter (A/m)

D Electric flux density Coulombs/meter®*  (C/m?)
B Magnetic flux density Webers/meter? (Wb/m?)
J Current density Amps/meter? (A/m?)

P Charge density Coulombs/meter®  (C'/m®)
Q Charge Coulombs ()
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relates the two forms. The integral forms are used only when fields have a high
degree of symmetry. This is not the typical case in optical waveguides, so the
differential forms of Maxwell’s equations are usually required.

3. Constitutive Relations

The flux densities, D and B, are related to the field amplitudes E and H by the
constitutive relations. The nature of the medium defines the functional form of
the relationship. For linear, isotropic media, the relations are simply given by

B = uH D=cE @.7)

where e is the electric permittivity of the medium, with units of Farads/meter,
and p is the magnetic permeability of the medium, with units of Henrys/meter.
A linear medium is one where the permittivity, ¢, and permeability, u, are
independent of field strengths. The assumption of linearity is valid only for low
intensities, where E is, for example, much less than the Coulomb fields that
bind electrons to the central nucleus. Since these binding fields are on the order
of 10'° V/cm, nonlinear effects are only observed using high intensity light.
Nonlinear effects can be exploited for various applications, and we will deal with
them in later chapters. Vacuum is a linear medium since there are no binding
fields to be distorted by intense fields. (However, under extreme intensities,
e.g. > 10%W/cm?, it is possible to spontaneously create an electron-positron
pair from vacuum, so even vacuum cannot be considered strictly linear. Such
field strengths are well beyond the realm of interest for present electrooptical
devices). The vacuum values of ¢ and  are symbolically denoted as ¢y and py,
respectively, and have values

€0 = 8.854 x 107!2 Farads/m (2.8)
po = 4m x 1077 Henrys/m 2.9)

In non-vacuum media, the general expressions for permittivity and perme-
ability are not necessarily scalar quantities. Since the field quantities are vec-
torial, the constitutive relationships must be described by a tensor. The electric
flux density, D, is properly described by

3
Di = fijEj = ZeijEj (2.10)
j=1

Einstein notation of repeated indices is used, and ¢;; is the permittivity tensor.
A similar tensor expression exists that relates the magnetic flux, B, to H[6]. The
components of ¢;; depend on the properties of the material. Crystals with low
degrees of symmetry generally have tensorial permittivity. Highly symmetric



Maxwell’s Equations 13

crystal structures, such as NaCl or silicon, and amorphous material such as
glass, are isotropic in permittivity, unless the symmetry of their structure is
perturbed through a strain.

Example 2.1 Permittivity tensor of two crystalline materials

Two optical crystals are shown below, GaAs and Calcite. GaAs has the
diamond structure, and has an isotropic permittivity. The three crystalline axes
are chosen to lie along the three (100) axes of the crystal. The permittivity
tensor near A = lum is given by

11.56 0 0
€= ¢€g 0 11.56 0
0 0 11.56

If the GaAs crystal were rotated 90°, it would look and act exactly the same as
before the rotation.

Calcite has a less symmetric structure, as shown in the Fig. 2.2. If calcite is
rotated 90° about x-axis, the crystal will look quite different to a beam of light
travelling through it. For linearly polarized light propagating in the z-direction
in Calcite, the electric field can be x or y polarized, or some mixture of both.
The index of refraction for these waves is identical, and is called the ordinary
index of refraction. For polarized light along the z-axis, the index of refraction
is called the extraordinary index. The permittivity tensor for calcite is

2.75 -0 0
€ =€ 0 27 0
0 0 221

Calcite is called a negative uniaxial crystal, because the extraordinary index is
less than the ordinary index. For a good review of crystal optics, see Chapter 4
of Yariv and Yeh. {7]

In an isotropic medium, the permittivity is independent of orientation, and is
described accurately by the scalar relation D = ¢E. But beware! “Isotropic”

$ <0105 \‘\
. =&

<001>

GaAs Calcite

Figure 2.2. GaAs and Calcite have different regular structures. GaAs is a cube which looks
identical along each axis. Calcite has a different length crystal axis along each direction, and the
axes meet at non-right angles.
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does not necessarily mean homogeneous. The permittivity can be a function of
position, €(r). In an inhomogeneous medium, the electric field will encounter
a different permittivity, e, depending upon spatial location in the material. A
graded index waveguide, discussed in Chapter 7, is a good example of an
inhomogeneous medium.

For most optical dielectric materials, p is effectively 9. We can ignore mag-
netic effects except when dealing with special magnetic optical materials, such
as Yttrium Iron Garnet (YIG), used as an optical isolator between waveguides
and sources. Unless otherwise stated, it is safe to assume that the permeability,
I, is that of free space, p. We will discuss the frequency dependence of 1 and
€ in Chapter 7.

4. The Wave Equation

The electromagnetic wave equation comes directly from Maxwell’s equa-
tions. Derivation is straightforward if we assume conditions that are reasonable
for optical wave propagation. These conditions are that we are operating in a
source free (p = 0, J = 0), linear (¢ and y are independent of ' and H), and
isotropic medium. Egs. 2.1- 2.4 become

VxE = —0B/dt @2.11)
VxH = 0D/t (2.12)
V-D = 0 (2.13)
V-B = 0 (2.14)

These simple looking equations completely describe the electromagnetic
field in time and position. Are the assumptions reasonable? Sure, at high
frequencies (e.g. v > 10'3Hz) free charge and current are generally not
the source of electromagnetic energy. The typical sources of optical energy
are electric or magnetic dipoles formed by atoms and molecules undergoing
transitions. Maxwell’s equations account for these sources through the bulk
permeability and permittivity constants.

Eqgs.2.11- 2.14 are strongly coupled first-order differential equations. To
decouple the two curl equations we follow the usual technique of creating a
single second order differential equation by first taking the curl of both sides of
Eq. 2.11.

—-0B —-O0uH

o = VX o

Assuming that p(r, t) is independent of time and position, Eq. 2.15 becomes

Vx(VXE)=V x

(2.15)

VxVxE:—p(Vx?E>

= (2.16)
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Since the functions are continuous, the order of the curl and time derivative
operators can be reversed:

VxVsz—p%(VxH) 2.17

Substituting V x H = 6D/dt into Eq.2.17 and assuming e is time invariant

VxVxE =-ud/otoD
= —ucd*E/0t? (2.18)

Now we have a second order differential equation with only one variable, E.
The (V x V x) operator is usually simplified using a vector identity

VxVxE=V(V-E)-V%E (2.19)

The V2 operator should not be confused with the scalar Laplacian operator. The
V2 operator in Eq. 2.19 is the vector Laplacian operator that acts on a vector,
in this case E. For a rectangular coordinate system, the vector Laplacian can
be written in terms of the scalar Laplacian as

V’E = V?E,3 + V2E,§ + V?E,2 (2.20)

where Z, 9, and 2 represent unit vectors along the three axes. The V2’s on the
right hand side of Eq. 2.20 are scalar, given by

o2 o2 o2
52 T o2 T a2

in cartesian coordinates. Solution of the vector wave equation requires that
we first break the equation into the orthogonal vector components, which is
sometimes extremely difficult, and then combine the individual vector field
solutions together.

What about the term, V - E? It is not necessarily equal to zero, as is often
assumed. We know only that V- D = (. Simple calculus leads to an expression
for V-E:

V2 = (2.21)

vV:-D = 0
= V.¢E
= Ve-E+€eV-E (2.22)

Solve for V- E

V-E=-E — (2.23)
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Plugging this value into the linear wave equation for electromagnetic waves
yields
O’E
V2E — pe—s = —V(E : E) (2.24)
€
The right hand side deserves special consideration. It is non-zero when there
is a gradient in the permittivity of the medium. Index gradients are quite com-
mon in guided wave optics, since most guided wave structures use a graded
permittivity. So how do we deal with this extra term? Well, we ignore it! For-
tunately in most structures, the term is negligibly small. (Problem 2.2. explores
the limits of Ve/¢, showing that it is almost always negligible). Neglecting this
term, the wave equation reduces to its homogeneous form
O°E
2 —
Had we started with Eq.2.12 instead of Eq.2.11 we could have derived a similar
wave equation in terms of the magnetic field amplitude (see Prob. 2.9.),
0°H

V2H — pe sz =0 (2.26)

5.  Solutions to the Wave Equation

Consider the units of each term in either Eq. 2.25 or Eq. 2.26. The V2 term
has units of 1/(distance)?. The second order time derivative clearly has units
of 1/(sec)?. In order to make physical sense, the units of ;e must be (sec/m)?.
We will show, in a later section, that \/1/epu is the phase velocity of light in
a medium. Notice that the speed of propagation is determined by the material
parameters. In free space, /1/poeo = 2.998 x 108m/sec, or ¢, the speed of
light in vacuum.(The speed of light is now defined (not measured) to be exactly
299,792,458 m/sec. The meter is thus defined in terms of the speed of light,
being the distance light travels in 1/299,792,458 second, where the second is
now the primary standard.) We will discuss the speed of propagation more
thoroughly in the next section.

Egs 2.25 and 2.26 are vector equations. The equations can be simplified
by rewriting them in terms of the components of the field. In rectangular
coordinates, the vector Laplacian breaks into three uncoupled components.
The scalar component equations become

O?E;
ot?

Here the subscript indicates the it component, where i stands for z, y, or
z, and V? is the scalar Laplacian given in Eq. 2.21. Since the symbol for the

V2E; — pe =0 (2.27)
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exp(jot + jkz) exp(jwt - jkz)

Figure 2.3. The general solution to the wave equation in a linear homogeneous medium leads
to plane waves. Depending on the relative sign, the wave will travel left or right.

vector and scalar Laplacian look the same, we rely on context to distinguish the
operators.

The choice of coordinate system is critical to solving the wave equation.
For example, choosing rectangular coordinates to describe a wave in a cylinder
leads to inseparable coupling upon reflection at the cylindrical surface. We seek
a coordinate system with no coupling between the orthogonal components, and
in such a case the individual equations can be written as scalar wave equations.
The scalar wave equation is written as

O’E;
o2
where E; stands for one of the orthogonal amplitude components.

To find a valid solution to the wave equation, we use the separation of vari-
ables technique to get

Vin 3

=0 (2.28)

Ei(r, t) = E,‘(l‘)Ei(t)
Epexp(jk - r)exp(jwt) + c.c. (2.29)

The term Ej is the electric field amplitude: the separation constant, k, is called
the wavevector (in units of rads/meter); and w is the angular frequency of the
wave (in units of rads/sec). We will use the wavevector as the primary variable
in most waveguide calculations. The magnitude of the wavevector is defined in
terms of the angular frequency and the phase velocity:

k| = w\/5E = k (2.30)

The wavevector k points in the direction of travel for the plane wave. The
magnitude of |k| describes how much phase accumulates as a plane wave travels
a unit distance. Think of k as a spatial frequency.

Through proper choice of sign for each term, one can describe a wave that
travels in the forward or backward direction along the axis of propagation. Fig.
2.3 shows the two cases.
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A

ANANE.
AVERvE

Figure 2.4. Basic description of the wavelength. The wave accumulates 27 of phase after
travelling one wavelength.

Amplitude

In optics, it is common to describe optical fields by their wavelength. The
waveform in Fig. 2.4 shows the real part of the spatial component of the plane
wave, E(r) = Egel*". The distance between two adjacent peaks in amplitude
is called a wavelength, \. The amplitude of the wave at the first peak, e/ kri s
the same as the amplitude at the peak located one wavelength away, e/*¥("1+3),
We can find a relation between k and A:

eIkt pik(ri+A) (2.31)
— ik gikA (2.32)

This equality holds only if e/** = 1, which requires that |[k\| = 27. Solving
for k
|kl =27 /A (2.33)

6.  Transverse Electromagnetic Waves and the Poynting
Vector

Assume that a plane wave is propagating along the 2-direction and that the
electric field is polarized along the Z-axis, E(r,t) = £Ejcos{wt — kz). In
complex notation, this would be described as

E(r,t) = j;EO%(e*j(kZ~Wt)+e+j(k‘z—wt))
N j%e_j(kz—w” c.c. (2.34)

We use complex notation because derivative and integral operations do not
change the functional form. We must be careful to take the real part of expres-
sions like Eq. 2.34 when we want to describe the physical wave.

The magnitude of the magnetic amplitude can be derived from the electric
amplitude using Maxwell’s equations. Plug the electric amplitude (Eq. 2.34)
into Eq. 2.1 and use Eq. 2.9, and Eq. 2.29 to show

H(r,t) = @igﬂe“jkzejwt +c.c.
pw 2
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e B, S
yu?(]eﬁkzeawt +ec

1Ey 4, s
= gﬁge—f’czeﬂwwc.c. (2.35)

where 7 is called the characteristic impedance of the medium,

nN=4/— (2.36)
€
In vacuum, the characteristic impedance is 770 = 377€). The magnitude of the
magnetic amplitude is directly proportional to the magnitude of the electric
amplitude. Note that E is perpendicular to H.

A useful concept for characterizing electromagnetic waves is the measure of
power flowing through a surface. This quantity is called the Poynting vector,
defined as

S=ExH (2.37)

S represents the instantaneous intensity (W/m?) of the wave. The Poynting
vector points in the direction of power flow, which is perpendicular to both the
E and H fields. The time average intensity for a harmonic field (i.e. sinusoidal
waveform) is often given using phasor notation

@:%&EXW] 2.38)

where H* is the complex conjugate of H. The total electromagnetic power
entering into a volume is determined by a surface integral of the Poynting vector
over the entire area of the volume. In waveguides we are usually interested in
the average energy flow in one direction, e.g. along the axis of the waveguide.
In such cases, the dot product of the Poynting vector with the unit direction
vector must be evaluated,

(S,) = %Re[E < H" - 3] (239)

This value of (S.) is a function of position, so it is necessary to integrate the
Poynting vector over the cross section of the guide.

7.  Phase Velocity

Two velocities describe the propagation of electromagnetic waves: the phase
velocity, and the group velocity. We will consider phase velocity first. Consider
the sinusoidal electromagnetic wave plotted in Fig. 2.5 , travelling in the 2
direction. A point is attached to the top of one of the amplitude crests. How
fast must this point move to stay on the crest of the wave? Since this crest
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z(t)

Amplitude
\

[b]

Figure 2.5. The phase velocity is determined by the speed necessary for a point to ride the crest
of a wave.

represents a specific phase of the wave, the point must move at a speed such

that '
e~ I(kz=wt) — constant (2.40)

which is satisfied if kz — wt = constant. It is easy to see z(t) must satisfy

2(t) = %t + constant 241
We can differentiate z(t) with respect to time to find the phase velocity, v(t)
dz w
2= 2.42
dt k Up ( )
Also, recall from Eq. 2.30 thatw = k/,/u€, so
vp = 1//pt€ (2.43)

This is the same velocity that we derived in Eq. 2.25, so the “speed of light"
that comes from the wave equation is the phase velocity. If permittivity € > €g,
then v, is less than c, the speed of light in a vacuum. Except for unusual
circumstances, such as propagation in plasmas or x-rays in a certain frequency
range, most materials have a permittivity, ¢, that is greater in magnitude than
€o0. Do not be alarmed that the phase velocity can exceed c in certain situations.
Such instances are results of collective action by an oscillating medium. We
define the index of refraction, n, of a medium as the ratio of the phase velocity
of light in a vacuum to the velocity in the medium,
¢

n= (2.44)

or using Eq. 2.43
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= £ when W= fig. (2.45)
€0
The index of refraction is an important parameter in optical design and material
characterization. We will explore its dependence on wavelength in later chap-
ters. The ratio €/ ¢ is called the dielectric constant. The index of refraction, n,
is the square root of the dielectric constant. '

We often write the wavevector, k, in terms of the vacuum wavevector, kg,
and the index of refraction. The vacuum wavevector is the magnitude of the
wavevector in a vacuum, and is given by k = 27 /A. Using the relation k =
w. /g€, we can rewrite this as

€
k = w\/poe = wy/Lo€oy / % = wy/ppegn = kon (2.46)

Once we know the vacuum wavevector, we can define the magnitude of the
wavevector in all media based on the index of refraction.

To summarize, many parameters change inside a dielectric: the wavelength
is reduced by 1/n, k increases to kon, and the phase velocity reduces to ¢/n.
One parameter that stays constant is the angular frequency, w, which is identical
inall media. This follows from conservation of energy, where Planck’s relation,
E = hw, describes the energy in the wave.

8.  Group Velocity

Except in regions of high attenuation, energy in an electromagnetic wave
travels at the group velocity, v,. Information, which is carried by modulation
on a light wave, also travels at the group velocity. The group velocity describes
the speed of propagation of a pulse of light. A simple construction allows us
to develop an expression for the group velocity through a superposition of two
waves with different frequencies. With the frequencies assigned

w1 =w+ Aw wy =w— Aw (2.47)
the two associated wavevectors will have values
ki1 =k+ Ak ko =k — Ak (2.48)

Assuming the waves have equal amplitudes, Fy, the superposition can be de-
scribed as

E\+Ey (2.49)
= Ey(cos[(w+ Aw)t — (k + Ak)z] + cos [(w — Aw)t — (k — Ak)z])

Using the trigonometric identity

2coszcosy = cos(z + y) + cos(z — y) (2.50)
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Amplitude

Figure 2.6. Two waves of similar frequency will form a beat pattern. The envelope of the beat
travels at the group velocity.

the electric field superposition can be rewritten as
E1 + Es = 2Ej cos(wt — kz) cos(Awt — Akz) (2.51)

This superposition of two waves at different frequencies leads to a temporal
beat at frequency Aw and a spatial beat with period Ak. Fig. 2.6 shows the
superposition of the two waves. The envelope of the amplitude clearly depicts
the beat frequency.

The group velocity is the speed at which a pulse, or in this case, the envelope,
travels. The envelope is described by the cos(Awt — Akz) term of Eq. 2.51.
We again attach a point to the crest of the envelope, and ask what speed, v(t),
is required to stay on the crest of the envelope. Following the arguments used
to derive the phase velocity, we set the phase argument of the envelope, Awt —
Akz = constant. Solving for z(t),

Awt
= — t .52
z(?) AL + constan (2.52)
The group velocity is the derivative of this
dz  Aw . Aw  dw
Vg = % = E becomes Vg = Al:)IEO E = % (253)

The group velocity, vy, depends on the first derivative of the angular frequency
with respect to the wavevector. In free space, where w = kc, the relation is
simple and leads to dw/dk = c. In a vacuum, the phase and group velocities
are identical. The relation is more complicated in other media. The constitutive
constants, especially €, usually depend on frequency. Recall that w = kv, =
kc/n. Then

wo= deod by o kedn
97 dk  dk\n/) n n2dk
d
= L= (2.54)

n dx
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The last relation can be confirmed with a simple calculation. The group velocity
is nearly equal to the phase velocity, but is reduced or increased by a small term
proportional to the change of index of refraction with wavelength. This change
in index is called dispersion. In regions of regular dispersion, dn/dk > 0, the
group velocity is less than the phase velocity, ¢/n. Anomalous dispersion occurs
when dn/dk < 0. As we will see in subsequent chapters, both dispersions will
play roles in the propagation of pulses in an optical fiber.

9. Boundary Conditions for Dielectric Interfaces:
Reflection and Refraction

When two different media are adjacent to one another, the wave solutions in
the two regions must be connected at the interface. The rules for connecting
solutions are called boundary conditions. In general, if there is an index dif-
ference between two media, there will be a reflection. This is called a Fresnel
reflection, after the French scientist, A. J. Fresnel (1788-1827).

Consider the interface shown in Fig. 2.7. The k vector of an electromagnetic
wave propagates from one medium into another (accompanied by a partial
reflection back into the originating media). The wave has frequency w, and
is incident on the interface from region 1 at an angle of incidence, 8;. The
two regions have indices of refraction n; and ng, respectively. We want to
determine the amplitudes of the transmitted and reflected waves, F; and E,,
and their respective wavevectors, k; and k.

We must first solve the wave equation (2.25) in each region. This is straight-
forward and yields,

E(r,t) = Ege i KeT-wt) (2.55)
kr
H,
nqf N2
k
E & t
ar //’r’f"
) 0 4y 2
ki
Ei L
H; y

Figure 2.7. A ray incident on an interface at angle 6; will reflect and refract into two different
rays. The electric field in this figure is directed out of the page for all waves.
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where E is the amplitude. The subscript, g, refers to the three different fields
that will arise. The tough part of the problem is connecting these solutions at the
interface. The boundary conditions that apply to this situation can be derived
from the integral form of Maxwell’s equations. In a medium where there are
no sources, (p,J = 0), the boundary conditions are

$x (E2—E;) = 0 tangential E is continuous (2.56)
§x{(Hy —H;) = 0 tangential H is continuous 2.57)
§-(B2—B;) = 0 normal B is continuous (2.58)
§-(Dy —=Dj) = 0 normal D is continuous 2.59)

Where § refers to the unit normal to the interface.

There are two possible orientations for the electric field with respect to the
interface. The field can be perpendicular or parallel to the plane of incidence.
The plane of incidence contains both the k vector and §. When the electric field
is perpendicular to the plane of incidence, it is called a Transverse Electric, or
TE wave. Fig. 2.7 shows the specific case of a TE wave incident on an interface
at an angle 6;.

Fig. 2.7 shows there are six field amplitudes (¥;, E;, E,., H;, H;, H,), three
wavevectors (k;, k¢, k), and three angles (6;, 6¢, and 6,). Some of these, like
E; and 6;, are initial conditions of the problem while the others are dependent
variables. It is convenient to first relate the angle of incidence to the angle of

reflection:
0; =10, (2.60)

Justification is straightforward: we can apply Fermat’s principle (Prob. 2.4.),
or conservation of photon momentum (Prob. 2.5.)
The general description of the Z-polarized incident electric field is

E; = Ejpe ikifeivt (2.61)

The wavevector k; is described in terms of its vector components

k; = (2 cos 6; — §sin 6;)kgny (2.62)

where kg is the vacuum wavevector (w/c). Position, r, is also described in
vector form,
r=x&+yy+ 22 (2.63)

Substituting these terms into Eq. 2.61, the complete description of the incident
field is

Ei(l‘, Y, 2, t) — j}EiC_jkonl (2cos0;—gsin Hi)-(x:i+y1}+z2)ejwt

i’Eie_jkonl(z cos 0;—y sin Hi)ejwt (2.64)
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The incident field is completely defined in terms of direction, frequency,
and polarization. The frequency term, e/“*, can be dropped from the explicit
formulation because it is the same in all regions. The other electric fields in
Fig. 2.7 are similarly described.

Eiw,y,2) = #Be T
& Fye~kona(z cos 6 —ysin 6¢) (2.65)

Er(l',y,Z) - jETe—jkr.r
:iETe_jkonl(_z cos fr—ysin 6, ) (2.66)

We have assumed that the electric field will continue to point out of the page
for each component. This may or may not be true: in some cases the phase
of the field advances by 180°, and the direction would reverse (i.e. point into
the page). If this happens, when we have completed our solution, one of the
components will be multiplied by a negative sign. So do not be too concerned
about choosing the proper orientations initially, as these problems will solve
themselves.

We will need to describe the magnetic fields for the three waves. The appro-
priate k-vector for each magnetic field is the same as for the electric field. Note
that for TE waves, the H fields have two vector components, a z-component and
a y-component. The magnitude of the magnetic field is related to the electric
field through the impedance, 7, of the medium (Eq. 2.35)

|H| =|E|/n (.67

where n; = 1/ 1/¢€;. Using trigonometry, the correct expressions for the H-field
components are

H, = (E;/m)(2sin8;+ jcosb;)e imkolzcosbi=ysing) (3 cg)

(Et/n2) (2 sin6; + ,g cos et)e—jnzko(z cosf:—ysinbt) (269)

H. = (E./m)(Zsiné, — §cos Or)e“jnlko(”z cos b~y sin 6r) (2.70)

With a complete description of the field in all regions, (Egs. 2.64 -2.66 and

Egs. 2.68-2.70), we can connect the solutions at the interface, yielding formulae

for transmission and reflection. First, apply the condition that the tangential
component of E must be continuous across the interface,

Zx (Ei + Er)12=0 =ZX Etlz=0 (2.71)

F
|

The tangential E field at the interface is the E; component. Expanding this at
z = 0, and using the fact that £ x & = § and 0; = 6, yields

gEie(jkonU) sin ;) + gEre(jkonlySin 8;) —_ gEte(jkonzysin 0:) (272)
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Combining terms of equal phase
:’;(Ez + Er)e(jk""lysmei) — yEte(jkongysineg)' (273)

For this equation to hold, it must be true for all values of y. Aty = 0 the
equation becomes simply

E;+E, =E (continuity of magnitude) (2.74)
Substituting this into Eq. 2.73 and cancelling common terms yields
elikonysings) _ ,(jkonaysinft) (2.75)
which can only be true if
koniy sin 6; = konay sin 6; (2.76)
Cancelling common terms on both sides we arrive at Snell’s Law
n1sinf; = ng sin 6, 2.77)
From Snell’s law, the direction of the transmitted wave can be found. This
leaves only the amplitudes, F:, E,., H; and H, to be determined. To deter-

mine the amplitude of E, in terms of E;, we resort to the magnetic boundary
conditions. The continuity of tangential H requires that

2 x (H; + Hy)sm0 = 2 X He,_, (2.78)

In this case, H; has both 2z and y components, so we must be careful to carry only
the y component through the cross product. Using Eq. 2.68-2.70, 2 x g = —&,
and 6, = 0;,

:x H; = (—jEi cos 9i/771)e_jk°n1(_ysmg"‘) (2.79)
2 xHy = (—&E}cos by /ng)eTkona(~ysinb:) (2.80)
i xH, = (+&E, cosb;/m)e Thom(-ysinb:) (2.81)

where E;, E,, and E; represent magnitudes, not vectors. Adding the terms
according to Eq. 2.78, and applying Snell’s law (Eq. 2.77), we get

(E; — E) cos0;/m = E; cos b /n; (2.82)
Since £y = E; + E,., we can replace E; in terms of the other variables

(Ei — Ey) cosb;/m = (E; + Ey) cos b /m (2.83)
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and solve for the ratio of E,./E;

(12 cos B; — my cos ;)
E./E; = 2.84
v/ Ei (n2 cos 0; + m1 cos 6;) (2.84)

Similarly, we could eliminate E, from Eq. 2.83 and solve for the ratio E;/E;

21 cos 6;

E,/E; =
/i (m2 cos B; + n1 cos 6;)

(2.85)

It is more common to deal with the index of refraction, n;, than with impedance,
7, for a material (be careful to distinguish 7 from n). If 4 = p,, then 7 can be

rewritten as
m= o JHe = [He0 _TI0 (2.86)
€ €cp Ny

Substituting this expression into Eqgs. 2.84 and 2.85 generates the more familiar
forms of the amplitude transmission and reflection formulae for a transverse
electric field. In these formulae, the field is incident from the n; side, entering
into the ng side.

ny cos 8; — ng cos 6;
n1 cos 8; + ng cos 6,

E,/E; = 2.87)

2n1 cos 0;

Ei/E; = (2.88)

n1 cos 6; + ng cos B;

The expressions for transmission and reflection of a wave which has the mag-
netic field, H, perpendicular to the plane of incidence (the so-called Transverse
Magnetic or TM wave) are significantly different. Their derivation is left as an

exercise to show

71 cos By — ny cos b;

E./E; = )
r/Ei N9 cos 0; + ny cos By

(2.89)

2 cos b;
(n2/n1) cos b; + cos b

Ei/E; = (2.90)
One word of caution about the Fresnel formulae: they describe the amplitude
of the transmitted and reflected field, and not the power of the fields. In some
circumstances, the magnitude of the transmitted electric field is /arger than that
of the incident electric field. This dilemma is resolved when total power is
accounted for in the solution. One must account for geometric change of area
between the incident and transmitted beams and the impedance change. We can
also develop expressions for the H components, but these can be found simply
and directly through the impedance relationships.
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Example 2.2 Normal reflection from a glass interface

The most common example of Fresnel reflection is that which occurs when
light strikes a glass-air interface. Let’s apply the reflection formula to this
problem to illustrate the magnitude of the effect, and the phase shift which
occurs.

A beam of light is incident normally on a glass-air interface as shown in
Fig.2.8 What is the intensity of the reflected light if the glass has an index of
refraction of n = 1.5?

Solution: Plugging numbers into Eq. 2.88, noting that cosf = 1 in this
case, we get
1-15
1+15

The reflected amplitude is 20% of the incident amplitude. The negative sign
indicates that the reflected wave is 180° out of phase with the incident wave
{when light strikes a higher index, the phase of reflected wave will always be
reversed). Now, what is the intensity? Using the Poynting vector and the fact
that |H| = |E|/n, we find the incident intensity is

—0.2

E,/E; =

1E2
Sinc 5 '?0'
while the reflected intensity is only
1(0.2Ep)?
Sr&f = '2_—(—77—'(& = 0.04S5n¢

Thus, only 4% of the incident power is reflected by the glass interface. This
reflection can become a significant loss in certain applications. For example,
a camera lens often will consist of three or more separate lenses, representing
six glass-air interfaces. The total transmission for such a system would be
T = (0.96)® = 0.78 if the lenses are not modified. This represents a significant

n=1 n=1.5

Reflected
Light ~¢—

\ 4

Incident Light

Figure 2.8. A beam of light strikes a glass interface normally, causing a small reflection.
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loss of power in an application where light collection efficiency is critical. Not
only would the reflections require larger apertures and longer exposure times,
but they also could contribute ghost images on the film. These problems are
overcome by putting an anti-reflection (AR) coating on each surface. The AR
coating is basically a stack of A\/4 thick layers of dielectric material which
interferometrically reduce the total reflection coefficient.

10. Total Internal Reflection

An important physical process in guided wave optics is Total Internal Re-
flection. We will look at total internal reflection from two perspectives: ray
tracing, and the wave equation. Ray tracing is useful when the dimensions of
the optical element are large compared to the wavelength of light. Ray tracing is
useful for concepts such as the numerical aperture. The wave picture provides
a complete description of the phase shifts and evanescent fields that accompany
total internal reflection.

Ray Tracing

Ray tracing models light as rays travelling in straight lines between optical
elements. The only action of an optical element is to redirect the ray. The angle
of incidence of the ray, and the properties of the optical element establish the
degree to which the ray is redirected.

The important operational rules for ray tracing are Snell’s Law

nysinf; = nasinfy (2.91)
and the Law of Reflection,

Oincidence = Ore flected (2.92)

illustrated in Fig. 2.9. Using these two simple equations, a powerful calculus
can be developed for designing and evaluating lenses and optical systems. Many
excellent references [1], [8], [15] elaborate on the application of ray tracing to
optical design. Numerical matrix techniques have been developed based on
these simple laws which allow the engineer to design complex linear optical
systems. The ray tracing analysis is usually of limited use for guided wave
optical design, however, because the size of the waveguide is often comparable
to the wavelength of guided light. Ray tracing’s most common application is
to describe graded index waveguides, and to define the numerical aperture.

Total Internal Reflection using ray tracing

Total Internal Reflection (TIR) is the phenomenon where light is completely
reflected at a dielectric interface without the help of reflective coatings. TIR
is often exploited to make efficient achromatic reflectors. For example, right-
angle prisms are often used to redirect light from imaging systems such as
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Refraction (Snell's Law) Equal Angle Reflection

Figure 2.9. The two principle laws of ray tracing. The left figure shows Snell’s Law. The right
figure illustrates that the angle of incidence equals the angle of reflection.

binoculars, or to serve as rugged mirrors for high powered lasers. Here we
want to consider optical waveguides. Fig. 2.10 illustrates the ray picture of a
right-angle prism and of a waveguide. The key requirement for TIR is that the
light must be incident on a dielectric interface from the high index side. Thus
an optical waveguide must consist of a layer of high index dielectric surrounded
by material with a lower index.

Total internal reflection occurs over a certain range of angles. Fig. 2.11
shows a wave incident at an angle, 8, on a dielectric interface from the high
index side. The refracted ray in the low index medium, ng, exits at angle 5.
The exit angle is

0, = sin~ (" sin6;) (2.93)
ng
As the angle of incidence, 8y, increases, the angle of refraction, 5, must also
increase to satisfy the equality. But because 1y /ng > 1, the refraction angle,
03, will reach a value of 90° before #; does. This occurs when

sin 6 = -Z—% (2.94)
1

This value of 6; is known as the critical angle. For angles of incidence larger
than the critical angle, #2 must be a complex number (see Prob. 2.11.) to

: P

Figure2.10. Total internal reflection can be implemented in many ways. The right-angle prism,
and the optical waveguide both use total internal reflection to redirect or trap light, respectively.
Note that the light is incident from the high index side of the interface in all cases of TIR.
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Figure 2.11. Three cases where the angle of incidence is below, at, and above the critical angle
respectively.

Total Internal Reflection

/ n2

EANZON
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Figure 2.12. A waveguide can be formed when total internal reflection traps a wave between
two surfaces.

satisfy Snell’s Law. A complex angle in the expressions for transmission (for
example, Eq. 2.88) leads directly to a complex amplitude in the low index
region. Complex amplitudes simply mean that a phase shift occurs. While we
will not prove it here (see problems 2.4. and 2.5.), as with all simple reflections,
the angle of reflection is equal to the angle of incidence of the ray.

Total internal reflection is the key to optical waveguiding. Consider the di-
electric structure shown in Fig. 2.12. A dielectric slab of index n; is surrounded
by a lower index dielectric. A ray travelling within the high index material will
be total-internal-reflected at the upper and lower interfaces of this structure if
the angle of incidence at the interface exceeds the critical angle. This is a sim-~
plified picture, as the actual ray picture of a waveguide is more subtle in terms
of allowed directions for the rays (to be fully developed in the next chapter).
However, the essential idea behind the optical waveguide is that light is trapped
in a high index media through total internal reflection.

11.  Wave Description of Total Internal Reflection

We claim that the ray became totally reflected for angles beyond the critical
angle, yet the only evidence we offered to support this claim is fact that the
trigonometric identity is impossible to rationalize using real angles. We can put
the description on a more physical basis by examining total internal reflection
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Figure 2.13. A plane wave incident on a dielectric interface at angle 6; will refract at an angle
2 in the second medium. The reflected ray is not shown for clarity.

using electromagnetic waves. The wave picture provides a physical explanation
of the reflection, and yields information on the phase shift caused by reflection.

Consider a TE plane wave, polarized along the £-axis with amplitude, Ey,
incident on a dielectric interface, as shown in Fig. 2.13. The angle of incidence
is less than §.. Since the time behavior is identical for both, only the spatial
descriptions of the two waves are considered:

E1(y, z) — i.Eoe—jkoru(zcos&—ysin 01) + e
Ex(y,z) = r@Ege Tkona(zcosba—ysind2) 4 ¢ ¢ (2.95)

where 7 is the amplitude transmission coefficient (from Eq. 2.85). The angles
0, and 6, are related by Snell’s Law.

sinfl; = Elsin91
12
nl2 )
cosly = 1 - —5sin“6 (2.96)
na

Substituting these values into Eq. 2.65, we get an expression for the transmitted
amplitude, E,, that is a function of the incident angle, 6;,

“ . ni? 2 ny .
E; = 72Epexp ¢ —jkong | 24/1 — —5 sin“6; — y—sinb, (2.97)
ny n2

Physically, we can understand refraction by considering what happens to
the wavefronts at the interface. On the incident side, the wavefront strikes the
interface and is partially reflected and partially transmitted. If ; < 6., the
wavefronts must be continuous across the interface. The node where these two
wavefronts connect travels along the interface with a velocity, v,,4. as shown
in Fig. 2.14. The velocity of this intersection, vpneqge, is simply

Vnode; = Up,/ siné; (2.98)
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ny n,

Figure 2.14. The plane waves on either side of the interface must connect as they cross the
interface. These connecting nodes travel along the interface at a velocity that depends on the
angle of incidence.

where vp, is the phase velocity, ¢/n; in the first medium. The transmitted
wave, Eg, must travel in such a direction that the velocity of the nodes of its
phase front is identical to that of the incident field. Since the phase velocity in
medium ny is different, the only way the node velocities can be matched is if
the direction of the transmitted field refracts to angle 62 such that

Up,/ sin6; = vp,/sinby (2.99)

This is simply a restatement of Snell’s law.

As the angle of incidence #; increases, the transmitted waves must make a
larger angle 05 to maintain the proper velocity of the intersection at the interface.
At 6; = 6., cosf goes to zero, and the transmitted field contains only one
component,

E; = 12EgelUk0mY) 4 o at 6; = 0, (2.100)

This is the description of a plane wave travelling parallel to the interface in the
g direction. This direction will yield a node velocity that is as slow as can be
achieved in medium ng. In the ray picture, we would say that the transmitted ray
is parallel to the plane of incidence. Fig. 2.15 shows this condition. The plane
waves on either side of the interface must connect as they cross the interface.
These connecting nodes travel along the interface at a velocity that depends on
the angle of incidence.

What happens as 6; increases beyond the critical angle? The radical in Eq.
2.96 which describes cos 65, becomes imaginary, so the transmitted electric
amplitude is described as

E, = TiEoe—konm/(n¥/ng) sin2 6;—1 z gJkony sin 1y (2.101)
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Figure 2.15. At the critical angle, the transmitted plane waves travel parallel to the interface.

where we choose the proper sign of the radical to ensure that the amplitude
decays as distance from the interface increases. This cumbersome form is
often written as

E, = 78Ege "%l (2.102)

where  represents the attenuation coefficient (units: cm™1),

2
y= konz,/% sin26; — 1 (2.103)
2

and [ represents the propagation coefficient (units: rads/cm),
,B = konl sin 91 (2. 104)

Inspection of Eq. 2.103 shows that the field amplitude decays exponentially
away from the interface. This field is called the evanescent field. The evanes-
cent field contains real values of E and H, but they are 90° out-of-phase with
each other. The evanescent field contains reactive power, not real power. In
reactive power, no work is done, but energy is stored. This evanescent field is
very important to device applications. It is possible to tap some of the energy
away using special structures. We will see many such devices in later chapters
concerning switches, modulators, and couplers.

Returning to the physical picture, when 6; is increased beyond the critical
angle, the node velocity in n; is slower than the minimum possible velocity
of nodes in medium 75. In medium ng, the phase fronts advance beyond their
generating counterparts in n;. As the transmitted wave fronts travel ahead,
they run up on wavefronts emitted from earlier nodes. At a certain distance,
the fronts in g will be 180° out of phase with the nodes of n; and destructive
interference will occur. The larger the angle of incidence, 6, the slower the
node velocity in n; will be. Destructive interference will occur sooner, leading:
to increased attenuation. We see from Eq. 2.103 that the attenuation coefficient,
7, increases as the angle of incidence is increased.
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Figure 2.16. Beyond the critical angle, the plane waves on the low index side of the interface
travel faster than the nodes due to the incident field. They get ahead of their source nodes, and
then react back against them.

12. Phase Shift Upon Reflection

A more subtle, yet critically important effect that occurs in TIR is the phase
shift of the light upon reflection. These phase shifts help determine which
modes propagate in a waveguide. After reflection, the optical signal slightly
lags in phase compared to the incident wave. One can view this phase shift as
being due to the extra distance the light travels when going into and returning
from the low index media during its evanescent phase (this is called the Goos-
Hdnchen shift, see Prob. 2.17. and Appendix A: The Goos-Héanchen Shift), or
one can view the phase shift as occurring due to the mixing of two waves that
are slightly out of phase (the reflected and evanescent wave).

How big is the phase shift? For a TE wave, the phase shift can be determined
directly by writing the the amplitude reflection formula, Eq. 2.88, in polar form

E,.  (nicosf —ngacosby)

E;  (njcosf + nycosbh)

= |r| e/ (2.105)

The reflection coefficient is described in terms of its magnitude, ||, and phase
shift, 2¢. Beyond the critical angle, cosf, becomes pure imaginary (§ =

1-— n%/ng sin? ;). Letting o = ny cosfy, and jB = ny cos by, Eq.2.105
can be rewritten as

E, a-jB

= 2.106
E; a+j8 ( )
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Figure 2.17. Plot of the phase shift, @, as a function of the angle of incidence, 6. Note that the
phase shift below the critical angle is zero.

Substituting the value of cos §; from Eq.2.96, the phase of this transfer function

is
2brp = tan”! <:—ﬂ—) —tan~?! (é>
a o
= 2tan} (-_—ﬁ)
@
—y/n?sin? @ — n?
2tan~t Y 17 T (2.107)

71 cos 61

This equation is only valid for §; > 6... The magnitude of E,./E; is obvi-
ously unity. We leave it as an exercise to show that the correct formula for TM
waves is given by
_, [ —n2y/nisin® 6 —n3
&y = tan 5

ns 11 cos 01

(2.108)

Figure 2.17 shows the dependence of @7 as a function of the angle of incidence
61 for two ratios n; /ng. The ratios 0.3 and 0.7 correspond to the approximate
values of a GaAs-air and glass-air interface, respectively. The phase shift for
the TM case is similar.

For angles of incidence below the critical angle, there is no phase shift upon
reflection (actually, the phase shift can be 0 or 7, depending on the relative
indices).

13. Summary

This chapter reviewed Maxwell’s equations, using them to establish a set
of units (MKS), and several important quantities and concepts. We derived
the wave equation, and solved it in homogeneous media. From the solution,
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we developed expressions for phase and group velocity. The concept of the
wavevector was introduced and related to the angular frequency of a wave.
Using boundary conditions, we developed expressions for the reflection and
refraction of electromagnetic waves from a dielectric interface.

We then explored total internal reflection. Snell’s law was used to illustrate
the ray picture of total internal reflection. While Snell’s law, if used with com-
plex angles, can give a total description of the evanescent fields associated with
these reflections, the wave description based on Maxwell’s equations provides
a clearer picture. Using the wave picture, we used the Fresnel formulae for
reflection and transmission at a dielectric interface to develop expressions for
phase shift associated with TIR. This phase shift always accompanies TIR, and
plays a unique role in establishing which rays will be allowed inside an optical
waveguide.

The material parameters, 1 and ¢, play a critical role in determining the action
of a wave at a dielectric interface. We alluded to the frequency dependence of
these material parameters in the discussion of group velocity. This will be
further developed in Chapter 8.
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Practice Problems

1.

Derive the Fresnel amplitude reflection and transmission coefficients for
an electromagnetic wave that is polarized with the electric field in the
plane of incidence (TM wave).

. We simplified Eq. 2.24 by assuming that the term

—~V(E - Ve/e)

is negligible. Determine how small Ve must be for this assumption to be
reasonable. Starting from the exact wave equation (with the above term
included), use separation of variables to solve for the one-dimensional
wave (i.e. E = Z(2)T(t)). Solve for T(¢) in terms of separation constant
k and (ue)!/2. From the resulting equation for Z(z), find a rough value
for Ve over a characteristic distance of one wavelength of the field. How
small must % be to make it negligible (say less than 1% in magnitude)
compared to the other terms in the wave equation?

. Show that for an harmonic wave, the average value (S) = 1(E x H) =

ll(T ﬁE@, for a wave with wavevector, &, and electric amplitude, Ej.

Fermat’s Principle states that if a light ray travels between two points,
it follows the path that takes the least time. Use Fermat’s principle to
1) verify that the angle of incidence equals the angle of reflection for a
simple plane mirror, and 2) derive Snell’s law for a ray crossing a dielectric
interface.

Use conservation of momentum and the fact that a photon has momentum
given by
p = hk = hnkg

where ko is the vacuum wavevector of the photon, to 1) show that the angle
of incidence equals the angle of reflection for a simple plane mirror, and
2) derive Snell’s law for a ray crossing a dielectric interface.

Derive the four boundary conditions, Eqs. 2.57-2.59, relating E, H, D,
and B across a dielectric boundary. Use the integral form of Maxwell’s
equations.

. Consider the situation shown in the Fig. 2.18 below. A TE wave (po-

larized along ) with a wavelength of 1 um is incident from air onto the
GaAs-air interface, at an angle of incidence of 45°. The index of refrac-.
tion of GaAs equals 3.4 at | um. Describe the electric fields in all regions
surrounding the interface.
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Figure 2.18. A wave incident at 45° on a dielectric interface from the low index side. The
wave is TE polarized, and has a wavelength of 1 pm.

8.

10.

1.

12.

13.

14.

Using a computer and a program like Mathematica, plot the amplitude
and power reflection and amplitude and power transmission coefficients
as a function of angle for both TE and TM waves for a) a glass-air interface
(ngiass = 1.5), and b) a GaAs-air interface (ngaas = 3.4). Assume the
light is incident from the air side.

. Beginning with E. 2.12, derive the homogeneous wave equation in terms

of the magnetic field amplitude, H.

From the definition of the Poynting vector, Eq.2.37, show that Eq. 2.38
follows when the F field is a sinusoidal function of time.

It is easy to understand trigonometric identities as 6 becomes complex:
use the Euler identity, sinf = 1/2(e?® + ¢~7%), and let § become a
complex number, a + j3. Show that cos? § + sin? § = 1.

Confirm Eq. 2.108 for the phase shift that occurs for a TM wave upon
total internal reflection.

Consider a TE wave with amplitude Ej incident on an air-dielectric in-
terface from the dielectric side. The dielectric has an index of refraction,
ny, of 1.6. The angle of incidence is 5° larger than the critical angle.
A=1luym.

(a) What is the critical angle for this interface?

(b) Determine the electric field amplitude for all points on the air side of
the interface.

(c) What is the phase shift, 2@, for the reflected light?
The transmission coefficient 7 defined by Eq. 2.88 becomes a complex

number when the angle of incidence exceeds the critical angle. What does
it mean physically when the transmission coefficient becomes complex?
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15.

16.

17.

18.

19.
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Figure 2.19. Schematic representation for Prob. 2.17.

Use a computer and programming language such as Pascal or Mathemat-
ica to generate and plot phase shift curves for the TM wave, similar to
those in Fig. 2.17. Generate curves for dielectric-air interfaces, where
the dielectrics have indices of 3.34 (GaAs) and 1.45 (glass).

On a hot day on the highway, the distant road sometimes appears to be a
shining reflective pool of water. This phenomenon is really an example of
total internal reflection. The air directly above the surface of the road has a
lower index of refraction than that of the surrounding layers. Assume the
index of refraction of air at 273° is n= 1.0003, and the index is directly
proportional to the density of the air. If air follows the ideal gas law
(PV=NRT), and the surface layer of air on the highway is 30° higher than
the surrounding layer, what is the critical angle of incidence for Total
Internal Reflection at this interface?

In the wave picture, we know that upon Total Internal Reflection at an
interface, the guided wave undergoes a phase shift, 2&. However, in the
ray picture, we can interpret a phase shift as a lateral displacement of the
reflected wave. This is known as the Goos-Hdnchen effect. The lateral
displacement arises because wave energy actually penetrates beyond the
interface into the lower index media before turning around. Consider
Fig.2.19 showing a ray penetrating a surface. Assume that the incident
ray is striking the interface at an angle exactly 1° larger than the critical
angle. Referring to Appendix A, what is the depth of penetration for this
interface? What is the lateral displacement, 22,7 How does the depth
compare to the “depth” of the evanescent field from this structure?

A waveguide has a core index of 1.457 and a cladding index of 1.454.

(a) What is the critical angle for this interface?
(b) How far does the field extend into the cladding if excited by 1um
light at 88°?

Using the ray tracing picture of total internal reflection, and the Fresnel
expressions for transmission and reflection of the electric and magnetic
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fields, show that the electric and magnetic field are 90° out of phase in
the low index region near the interface.

20. Confirm that the reflection coefficient for the electric field, E, / E; is unity
for all angles greater than the critical angle for TE waves.



Chapter 3

THE PLANAR SLAB WAVEGUIDE

1. Introduction

In this chapter we establish the fundamental concepts of guided waves. It is
perhaps the most important chapter in the book, as almost everything else will
build on these concepts. This chapter includes many numerical examples and
problems. The homework problems offer many opportunities to test your un-
derstanding of the concepts. Due to the transcendental nature of the eigenvalue
equations, a computer with numerical analytical software is required to make
the computations feasible. You are strongly advised to develop a set of standard
programs that can quickly evaluate the basic waveguide parameters of a given
structure, based on the material in this chapter. You will find these programs
useful as we explore different types of waveguide, mode coupling, and device
construction later in the text.

2.  The Infinite Slab Waveguide

The simplest optical waveguide structure is the step-index planar waveguide.
The slab waveguide, shown in Fig. 3.1, consists of a high-index dielectric layer
surrounded on either side by lower index material. The slab is infinite in extent in
the yz-plane, and finite in the z direction. The index of refraction of the guiding
slab, ns, must be larger than that of the cover material, n., or the substrate
material, ng, in order for total internal reflection to occur at the interfaces. Ifthe
cover and substrate materials have the same index of refraction, the waveguide
is called “symmetric", otherwise the waveguide is called “asymmetric." The
symmetric waveguide is a special case of the asymmetric waveguide.

We will always choose the direction of propagation to be along the z-axis.
The slab waveguide is clearly an idealization of real waveguides, because real
waveguides are not infinite in width. However, the one-dimensional analysis is
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Figure3.1. Theplanarslab waveguide consists of three materials, arranged such that the guiding
index (ny), is larger than the surrounding substrate (n5) and cover (n.) indices.

directly applicable to many real problems, and the techniques form the foun-
dation for further understanding. We will begin by solving the wave equation
using boundary conditions for the slab waveguide structure. This will lead nat-
urally to the concept of modes. We will then develop formal mode concepts
such as orthogonality, completeness, and modal expansion. We will see that a
waveguide structure can support only a discrete number of guided modes. The
mode picture is very powerful, and will be used extensively as we delve deeper
into the subject of wave propagation in structures.

3.  Electromagnetic Analysis of the Planar Waveguide

Consider the waveguide structure shown in Fig. 3.1. The three indices are
chosen such that ny > n, > n,, and the guiding layer has a thickness h. The
choice of the coordinate system is critical in making the problem as simple as
possible [1]. The appropriate coordinate system for this planar problem is a
rectilinear cartesian system, because the three components of the field, E,, E,,
and F, are not coupled by reflections. For example, an electric field polarized
in the y-direction, E, will still be an E,, directed field upon reflection at either
interface; the reflection does not couple any of the vector field into the z or z
directions. We place the x = 0 coordinate at one of the interfaces, choosing
arbitrarily the top interface (between ny and n.).

We must consider two possible electric field polarizations, transverse elec-
tric or transverse magnetic [2]. The axis of the waveguide is oriented in the
z-direction. The k-vector of the guided wave will zig-zag down the z-axis,
striking the interfaces at angles greater than the critical angle. The field can be
Transverse Electric (TE) or Transverse Magnetic (TM), depending on the ori-
entation of the electric field. The TE case has no longitudinal component along
the z-axis; the electric field is transverse to the plane of incidence established by
the normal to the interface, and the & vector. Because of the different boundary
conditions that control both fields, the TE and TM cases are distinguished in
their mode characteristics as well as their polarization. In the section below,.
we will consider the TE case, leaving derivation of the TM case to problems at
the end of the chapter.
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Figure 3.2. Transverse Electric (TE) and Transverse magnetic (TM) configurations. A cross
indicates the field is entering the page.

In the TE case, the E field is polarized along the y-axis (into the page) of Fig.
3.2. We assume the waveguide is excited by a source with frequency wp and a
vacuum wavevector of magnitude ky = wg/c. To find the allowed modes of the
waveguide, we must first solve the wave equation in each dielectric region, and
then use the boundary conditions to connect these solutions. For a sinusoidal
wave with angular frequency wy, the wave equation (Eq. 2.30) for the electric
field components in each region can be put in the scalar form

V2E, + kin*E, =0 (3.1
Y 04~y

where n; = ny, ng, nc, depending on the location. Ey(x, ) is a function of
both z and 2, but because the slab is infinite in extent in the y-direction, £,
is independent of y. Due to the translational invariance of the structure in the
z-direction, we do not expect the amplitude to vary along the z-axis, but we do
expect that the phase varies. We write a trial solution to Eq. 3.1 in the form

E,(z,2) = Ey(z)e P? (3.2)

B is a propagation coefficient along the z-direction, but we do not know its
magnitude yet. Plugging this trial solution into Eq. 3.1, and noting that
d?E,/dy? =0

’E,

9z?
The choice of n; depends on the position z. For z > 0, we would use n, while
for 0 > & > —h, we would use ny, etc. The general solution to Eq.3.3 will
depend on the relative magnitude of 3 with respect to kgn;. Consider the case
where 3 > kon;. The solution to the wave equation, Eq. 3.3, will have a real
exponential form ‘

+ (kjn? - BHE, =0 (3.3)

Ey(z) = Ege*VF%™%  for B> kon; (3.4)

where Ej is the field amplitude at 2 = 0. To be physically reasonable, we
always choose the negatively decaying branch of Eq. 3.4. This solution should
remind you of the evanescent field of a total internally reflected (TIR) wave at
an interface.
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Figure 3.3.  Geometric relation between 0, k, and k.

In the case where 8 < k,n; the solution has an oscillatory form
E,(z) = EgetIV kgni —B2a for3 < kon; (3.9)

So depending on the value of (3, the solution can be either oscillatory or expo-
nentially decaying. If 8 > kgn; we define an attenuation coefficient, v,

v =1/B% - kgn? (3.6)

and describe the field as E,(z) = Fpe . (Note the similarity to Eq. 2.108
for the evanescent field of a TIR wave.) If 8 < kgn; then we define a transverse

wavevector, K,
K =/ k§ni — B 3.7)

so E,(z) = Epe?**. From Eq. 3.7 we see that 3 and x are geometrically
related to the total wavevector, k = kon ¢, in the guiding film.

0 and « are called the longitudinal and transverse wavevectors, respectively,
inside the guiding film. These terms will be used extensively to characterize
many types of waveguide mode, so become familiar with the relation shown in
Fig. 3.3.

4. The Longitudinal Wavevector 8

It is important to recognize that 3 is simply the z-component of £. Fig.3.4
plots the transverse electric field distribution in a slab waveguide for various
values of 3, as the angle between k and z varies from 90° to 0°. Note that
the magnitude |k| does not change, only its z component changes. [ is the
z-component. [4]

The top sketch of Fig. 3.4 shows the ray picture of the field, while the lower
sketch shows the wave picture (solutions to Eqs. 3.3 and 3.4). There are three
special points on the § axis: the first one is at § = kgn.. For 8 < kon,,
solutions to the wave equation in all regions of space are oscillatory (Eq. 3.5).
The ray picture shows that when = 0, the wave travels nearly perpendicular
to the z-axis of the waveguide. Like light going through a sheet of glass, the
ray refracts at the dielectric interfaces, but is not trapped. An oscillatory wave
is present in the three distinct dielectric regions.



The Planar Slab Waveguide 47

/'/f\\\/\:
= B .
sa i, (I
e
| ; } —f

Figure 3.4. Ray and wave picture of the electromagnetic fields as a function of 3.

The second special point occurs at kgng. For kon, < 8 < kgng, the ray
picture shows a ray total-internally-reflecting at the film-cover interface, but
refracting at the lower substrate-film interface. In the wave picture, the field
becomes evanescent in the cover region. The field will still be oscillatory in the
film and substrate regions. This condition is called a substrate mode.

As (3 increases beyond kon, the evanescent conditions are satisfied in both
the cover and substrate region, and oscillatory solutions are found in the film
itself. Such solutions are, in fact, the guided modes of the film. The ray picture
depicts a ray trapped between the two interfaces.

If B continues to increase beyond kony (physically it is not clear how this
could ever be done, since 3 is simply the z-component of kon ), then Eq. 3.6 is
satisfied everywhere, so the three regions must have exponential solutions. The
only way to satisfy boundary conditions is to choose exponentially increasing
fields in the surrounding dielectric regions, causing the field to explode toward
infinity as the distance from the film increases. Satisfying this solution would
require infinite energy, which is unphysical, hence it cannot occur.

We conclude from this discussion that a guided wave must satisfy the con-
dition

kons < ﬂ < konf (3.8)

where it is assumed that n, < ns. This is a universal condition for any dielectric
waveguide, regardless of geometry.
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5.  Eigenvalues for the Slab Waveguide

To find the values of [ that lead to allowed solutions to the wave equation,
we must apply the boundary conditions to the general solutions developed in
Egs. 3.4 and 3.5. Assume that (3 satisfies Eq. 3.8. Then the transverse portions
of the electric field amplitudes in the three regions are

Ey(z) = Ae 7 O<zx
Ey(x) = Becos(ksr)+ Csin(kysr) —h<z<0 39
Ey(z) = Der@+h) z < —h

where A, B, C, and D are amplitude coefficients to be determined from the
boundary conditions, -y, and -y, refer to the attenuation coefficients in the cover
and substrate, respectively (from Eq.3.6) and s is the transverse component
of k in the guiding film (from Eq. 3.7). The boundary conditions that connect
the solutions at the interfaces are:

1. Tangential F is continuous
2. Tangential H is continuous

We rarely worry about continuity of the normal components of D and B, because
these conditions are almost always satisfied when we satisfy the transverse
conditions. Since Ey, is transverse to the interface, the first boundary condition
is straightforward to apply. What about the condition for continuity of magnetic
field, H? Should we write down a set of equations similar to Eq. 3.9 that
describe the magnetic field as a function of position? Indeed, we could do
that, but there is usually a simpler way to derive expressions for the magnetic
field. If we assume that the fields are harmonic, then we can describe the
magnetic intensity in terms of the electric intensity, and derive a simple boundary
condition for the magnetic terms. Recall that

oB
VXxE= 5 (3.10)
For a sinusoidal field,
B(t) = uH(t) = uHoe™" (3.11)
)
V x E(t) = —pjwH(t) 3.12)

We need an expression for the tangential component (the z-component in this
case) of H. Expanding the V x term of Eq. 3.10 into its individual components,
and taking the z-component, we get

. (OE, OE;\ _ )
z<—a;—— By)_ uijwH, (3.13)
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Since there is no E; component to the field, (it would not vary with y even if
it did exist due to the infinite planar structure), we get an explicit equation for
the tangential component of the magnetic field, H,,

_ 3 08y
 uw Oz

e (3.14)
The tangential component of H, H,, is thus defined in terms of the electric field
quantities. Since u and w are identical in all the media, the continuity of the
tangential magnetic field is guaranteed if 0 E, /9z is made continuous across
the interface. Hence we can now find the amplitude coefficients, A, B, C, and
D using only the electric field description.

At the « = 0 interface, the condition that E,, be continuous requires that

Ae™ " = Bcos(x;0) + C'sin(k40) (3.15)

which is satisfied only if A = B. Making the magnetic field continuous at
z = 0 requires that the first derivative, 0E, /Oz, be continuous at z = 0

—Ave™® = —Brysin(ks0) + Cr s cos(k£0)
—Av. = +Cky (3.16)
yielding
C=-42 (3.17)
Ky

All coefficients are written in terms of A. Using these coefficients, and applying
the condition that E;, be continuous at x = —h (h is a positive number) yields

Alcos(—ksh) — Z—f sin(—rksh)] = De¥s =) (3.18)
This can be solved for D (noting sin(—z) = — sin(z) and cos(—z) = cos(z))
D = Alcos(ksh) + Z—; sin(k sh)] (3.19)
Putting all the terms together,
E, = Ae 7 z>0
E, = A [cos(nfx) - -’Z? sin(/sfx)} —-h<z<0 (3.20)

E, = A [cos(ﬁfh) + Z—c sin(nfh)] @t g < —h
!

where A is the amplitude at the x = 0 interface. Eq. 3.20 describes the
amplitude of the electric field in all regions of the problem. Note that negative
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values of = must be used in the guiding and substrate layers — otherwise the
formula will give nonsensical values. This equation is very handy for plotting
out the mode profiles of guided modes.

Having found the amplitude coefficients in Eq. 3.20, is this description of
the transverse electric field complete? Not quite! The propagation and decay
constants, v, s, and x, all depend on 3, which is still undefined. The fourth,
and final, boundary condition, namely the continuity of 0E, /0x at z = —h,
gives an equation for 3.

0E,

p = Alsssin(kfh) — yccos(kgh)] (filmterm)  (3.21)
T=—h

= Alcos(ksh) + % sin(kgh)]ys (substrate term)
f

Divide both sides of the equation by cos(x ¢h) to get the eigenvalue equation

tan(hey) = —1e TV (3.22)
daet

This is a transcendental equation that must be solved numerically or graphi-
cally. All terms (7s, 7., <r) depend on the value of 5. Eq. 3.22 is called the
characteristic equation for the TE modes of a slab waveguide. Solution of this
equation will yield the eigenvalues, 37 g that correspond to allowed TE modes
in the waveguide. Had we set up our initial problem with transverse magnetic
fields, as opposed to transverse electric fields, we would have arrived at a differ-
ent characteristic equation for the eigenvalues, Bra;. We leave it as an exercise
(see Problem 3.1.) to confirm that for the TM case, the eigenvalue equation for
Bis
n2 ’I'L2
Kf ‘:Tlé’)’s + ;é")'c]
n4
K’} - ﬁg{{g’YC'YS

Every waveguide structure, no matter what shape or symmetry, will have a
characteristic equation that must be solved to find the eigenvalues of the modes.

The transcendental equation can be solved numerically on a computer, or

it can be solved graphically. To provide insight into the eigenequation, the
example below shows the graphical solution.

tan(hkyf) = (3.23)

Example 3.1 Graphical and numerical solution to the 3 eigenvalue
equation

Consider the planar dielectric structure shown in Fig. 3.5. The guiding index.
has value 1.50, the substrate index is 1.45, and the cover index is 1.40. This
is an asymmetric waveguide. The thickness of the guiding layer is 5um. We
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Figure 3.5. Planar slab waveguide configuration.

want to determine the allowed values of 3 using Eq. 3.22 for this structure.
Assume that light with wavelength of 1um is used to excite the waveguide.

Solution: We will use x as the variable for plotting all the terms of the
equation. This choice is arbitrary (we could have chosen 3), but it makes the
argument of the tan(x¢h) term linear. Hence all variables must be defined in
terms of k¢

B = /k3(1.5)2 — K%

v =/~ k3(1.45)?

Ye =y B? — k(2)(1-4)2

Using these values, both sides of the TE characteristic equation (Eq. 3.22) are
plotted as a function of ¢ on the graph in Fig. 3.6. The variable x; ranges

from a value of 0 (when § = ko7 ), t0 Kimaz = |/k2n% — k2n2. The tan(rsh)

term generates the typical pattern of a repeating function extending from —oo
to +o00. The right-hand side of Eq. 3.22 yields a slower function that diverges
toward —oo around x =20,000 cm™' and then comes in from +o0o0. At the
points where the two curves cross, Eq. 3.22 is satisfied. These points represent
allowed values of « for this waveguide. From the plot we see that the allowed
k values are approximately 5,500, 12,000, 16,500, and 21,500 cm 1.

This plot was generated using Mathematica, although there are several other
suitable numeric packages that can perform these calculations and plots. To
serve as a guide, the Mathematica code is listed below:

nf=1.50; ns=1.45; nc=1.40;

h=0.0005;

lambda= 10~ (-4);

k=2 Pi/lambda;

beta=Sqrt[ k™2 nf~2- kappa~2];

kappamax=Sqrt (k"2 nf"2 - k"2 ns"2];

gammas=Sqrt [beta~2-k~2 ns~2];

gammac=3qrt [beta~2-k"2 nc"2];

Plot [{Tan[kappa h], (gammas+gammac)/(kappa(1-gammas gammac/kappa®2))},
{kappa, 1, kappamax}, PlotRange ->{-10,10}]
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Figure 3.6. Graphical plot of Eq. 3.22 for the waveguide shown in Fig. 3.5

The transcendental characteristic equation must be solved numerically,
which is a relatively straightforward action for many mathematical software
packages. Again using Mathematica the following command was used repeat-
edly to find each root of the equation.

FindRoot [Tan[kappa h]== (gammas+gammac)/(kappa(1-
gammas gammac/kappa~2)), {kappa,5000}]

The last bracket of the command tells Mathematica to begin its search around a
value of k = 5000. The program returned the first x value of 5497.16. To find
higher roots, we used values taken from the graph as starting points, and let the
computer return the more accurate value. Numerically, the eigenvalues for «
were found to be 5497.16, 10963.2, 16351, and 21545 cm ™. The eigenvalues
in terms of 3 can be found directly from the individual « values using Eq. 3.23
to be 94087, 93608, 92819, and 91752 cm™1!, respectively.

This example shows some typical features of optical waveguides. First, the
thickness of the guiding film need not be very thick. It is generally on the order
of afew wavelengths. Second, the index difference required to achieve a guiding
structure is small. In this case, An = 0.05 between the core and substrate. This
is actually a huge difference compared to many practical devices which have
index differences as small as 0.001. Finally, inspection of Fig. 3.6 shows that
if the waveguide is made too thin (so that the argument xh does not extend
beyond approximately m/2) it is possible that the two sets of lines will never
cross, and there will be no mode allowed in the structure.

The example yielded four solutions for 3, or four allowed modes. What
does this mean? Each mode has the same wavelength of light, they each just
travel in a slightly different direction within the waveguide. In the ray picture,
the modes would be shown as four discrete rays travelling at slightly different
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Figure 3.7. Ray depiction of the four allowed modes in the waveguide. Each ray has the same
magnitude of k-vector, they are simply oriented slightly differently with respect to the z-axis.

angles, as shown in Fig. 3.7. Notice that only a few discrete rays actually
propagate in the waveguide.

To those familiar with basic quantum mechanics, the problem outlined in
the example above should look very familiar. This graphical technique is often
used to find the allowed energy eigenvalues of a particle in a finite potential
well [4]. The analogy between the particle-in-a-box and the optical waveguide
problem is very strong: both situations describe waves which are confined
between two reflecting boundaries. In both cases the waves partially tunnel into
the surrounding potential barrier before turning around. Only certain allowed
energies in the case of the particle, or transverse propagation coefficients (k)
in the case of the optical wave, are found to create a standing wave in the
one-dimensional system.

To complete the solution, the coefficient, A, should be related to a physical
parameter. In practice, A is related to the power carried in the waveguide. The
power is calculated by integrating the z-component of the Poynting vector over
the cross-sectional area of the guide

S, = —;—%e(E x H- %) (3.24)

Note that we are using the time-averaged power. The average power in a TE

mode is
P 1/OOEHd (ﬂ )/w|E|2d (3.25)
= — iE:L‘: .
‘2 —00 v 2wpg /) J-o0o vl &%

where the coefficient A is contained in E,. Since the integral spans only one
direction, the integral has units of power per unit length (in the y-direction).

It is enlightening to see the actual mode solutions that correspond to each
value of 8. Using the following Mathematica commands to evaluate Eq. 3.20
with the values of 3 found above, and normalizing each mode using Eq. 3.25
to have 1 W/unit length in each mode, we plotted the total amplitude profile for

each of the allowed modes in Ex. 3.1.
wave [x_] := Exp[-gammac x] /; x>0
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Figure 3.8. Modal field patterns for the first four TE modes of waveguide described in Ex. 2.1.
The vertical lines represent the location of the dielectric interfaces.

wave [x.] := Cos[kappa x]-(gammac/kappa)Sin[kappa x]/; (x<=0)&&(x>-h)

wave [x_] := (Cos[kappa h]+(gammac/kappa)Sin[kappa h])*

Exp[gammas (x+h)]/; x<=-h;

amplitude=1/Sqrt[beta/(2omega mu) NIntegratel[(wave[x])~2,

{x,-0.001,0.0002}1]

Plot [amplitude * wave[x] ,{x, -h-0.0003, 0.0002}]

Fig.3.8 illustrates the amplitude solutions for the four modes of Example
3.1. Since the waveguide is asymmetric, the modes are slightly asymmetric,
although it is not obvious to the casual glance. Notice that the modes have
alternating even and odd symmetry, and that the evanescent tails of the higher
order modes extend slightly further into the cladding than do the tails of the
lowest order mode. The modes are labelled by the number of nodes they have.
The TEy mode is the lowest order (which means the mode with the smallest
value of k), and it has no (0) nodes. The TE; mode has one node, the TE,
mode has 2 nodes, etc. There will also be a set of TM modes with similar
designations.

Power in the guiding layer is found by integrating the Poynting vector over
the area of the waveguide structure. The fraction of the power contained in the
core is simply

Peore _ Jon By(2) Hy (x)dz
Protal  [Zo Ey()Hj(z)dz

(3.26)
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In general, higher order modes are less confined than their lower order
counterparts. Application of Eq. 3.26 on mode 0 shows it has a power confine-
ment 0f 99.47%, while mode 3 has only 85.9% confinement. Mode confinement
is an important property for waveguide designs. A mode that is loosely con-
fined will be more affected by bends and more strongly couple evanescently to
neighboring structures than will a tightly bound mode.

6. The Symmetric Waveguide

Fig. 3.9 shows a symmetric waveguide, where a guiding film with index
n¢ and thickness A is surrounded on both sides by an index 7. It is convenient
to place the coordinate system in the middle of this waveguide since the fields
will reflect the symmetry of the structure.

We leave it as an exercise to show that the general field description of a TE
mode within this symmetric structure is

E, = A= (@=h/2) forz > h/2
COS KT sin Kx
—_— _— —_ <zr< 2
E, cos /2 or s for ~h/2<z<h/2(3.27)
E, = + AeY(@th/2) forz < —h/2

The magnetic amplitude of the TM mode can be similarly described. There are
two choices for the description of the field in the guiding layer, depending on
whether a symmetric (cosine) or antisymmetric (sine) mode is excited. The fact
that the modes can be uniquely characterized in terms of even or odd groups is a
natural consequence of the symmetry of the index structure. The characteristic
eigenvalue equation for the TE modes in a symmetric waveguide is

tankh/2 = ~/k foreven (cos) modes
= —k/v forodd (sin) modes. (3.28)

The characteristic equation for the TM modes is

tankh/2 = (nf/ns)2 v/& for even (cos) modes

Figure 3.9. The symmetric waveguide is surrounded by material with the same index .of re-
fraction. The axis of symmetry is usually chosen to be the x=0 axis.
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= —(nf/ns)2 /v for odd (sin) modes. (3.29)

A unique feature of the symmetric waveguide is that it will always support
at least one mode. Consider the graphical solution for a symmetric waveguide
described in Example 2 below.

Example 3.2 Modes of he symmetric waveguide

Suppose the waveguide shown in Fig. 3.9 has a film index of ny = 1.49,
and cladding index equal to ng, = 1.485. The difference in index between
the two layers is very small. Let the wavelength be 0.8um. We will use the
graphical solution to find 3, as it illustrates demonstrates why the symmetric
waveguide will always support at least one mode. Two thicknesses will be
examined; h = 3um, and h = 15um.

Solution: There are only two variables in this problem: v and x. Asin
the last example, we will plot functions in terms of «.

vs = \/ﬂ2—kgn§:\/k3(n§—n§)—m2
B = ,/k?)n%—nz

Evaluating these expressions, using kg = 27/\ = 7.853 x 10%cm™!, yields

v = V9.176 x 107 — k2

B = v1.3694 x 1010 — k2

To find the eigenvalues of the TE modes, we must solve Eq. 3.28. Graphically,
the functions tanxh/2 , v/k, and —k/~y are plotted on the same graph as a
function of . These are plotted against « for the case where h = 3um in Fig.
3.10.

The top curve, which corresponds to the even mode, begins at +oo, and
terminates with a value of 0. Notice that the tan xh/2 starts at zero and in-
creases. It is unavoidable that the two curves cross, so there must always be at
least one mode, no matter how thin the waveguide.

As the waveguide is made thicker, more modes appear. Consider the graph-
ical plot of the equations for the case when the waveguide slab is 15 um thick,
as shown in Fig. 3.11.

Note that as the transverse wavevector (k) increases, the allowed modes
alternate between even and odd structure. The spatial profile of these allowed
modes is very similar to that shown in Fig. 3.8.

7.  Intuitive Picture of the Mode

Solution of the wave equation leads to physical solutions which we can plot
out on a graph. But looking beyond the math, it is straightforward to understand



The Planar Slab Waveguide 57

10

-10

Figure 3.10. For the thin waveguide, there is only one allowed mode, which occurs near
Kk = 6000cm™".
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Figure 3.11. The thick waveguide supports both even and odd modes.

the mode structure. Mode structure arises from interference patterns within the
waveguide between components of waves travelling in opposite directions. The
field within the guiding layer of an even mode in a symmetric waveguide has
the form

E,(z) = Acos kz e IP* (3.30)
Since cos kz = (e7*% + e77%) /2, we can rewrite Eq. 3.30 as
E, = g [eﬂ'(m—ﬁZ) + e-]’(m+ﬁ2)} (3.31)

Eq. 3.31 represents the superposition of two plane waves, shown schematically
in Fig. 3.12. Each plane wave has a k-vector with a transverse component,
k, and a z-component, 5. One plane wave has components k = % + (2,
while the other has components k = —x& + §Z. Each k-vector has a plane
wave associated with it. These two plane waves zig-zag down the waveguide,
continuously crossing each other’s paths as they travel along. Being excited by
the same source, the waves are coherent with one another at a given plane in the
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waveguide, and so they form stable interference patterns. The structure of the
mode is a result of this interference. When the modes constructively interfere,
the electric field is maximum, and where destructive interference occurs, the
intensity is a minimum.

7.1  Why is 3 discrete?

The discrete nature of 3 can be found using this same model of interfering
waves. To avoid decay of energy due to destructive interference as the waves
travel through the waveguide, the total phase change for a point on the wavefront
that travels from one interface (z = 0) to the next (x = —h), and back again,
must be a multiple of 2. For a wave incident at angle 6, a phase shift of
kngh cos 6 is accumulated on the first transverse passage through the film, and
a phase shift of —2®, occurs at the film-cover interface. Another kn sh cos 6 of
phase is accumulated travelling back down, and finally there is a —2®, phase
shift at the film-substrate interface. The transverse resonance condition requires
that

2knghcos@ — 29, — 205 = 27w (3.32)

where v is an integer. This expression is effectively a dispersion equation for
the waveguide. We will use it in the next chapter to develop a generalized
dispersion relation for slab waveguides of any construction.

8. Properties of Modes

Once [ is determined for a waveguide, the field amplitudes can be described
in all regions of the waveguide using Eqs. 3.20 or the equivalent for TM waves.
We have been referring to these field distributions as modes. The concept of
the mode is very powerful — and perhaps a little confusing to the uninitiated.
Here we review some of the major properties of modes and modal analysis [5].

The general expression for the electric field solution in all space is

E(z,y,2) = E(z,y)e 7% (3.33)

n, &

Phase Fronls—/

Figure 3.12. A mode can be described as having two plane waves at a slight angle to one
another, forming an interference pattern. When the phase fronts cross, there is a maxima.
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The term E(z, y) describes the transverse structure of the field, and is usually
called the mode structure or mode shape. There is a corresponding magnetic
field distribution for each mode, given by H(z,y, z). The modes have the
following properties.

1.

Every eigenvalue (3 corresponds to a distinct confined mode of the system.
Every (8 will have a unique field distribution (shape). The amplitude of
the mode is established by how much power is carried in the mode.

Only a finite number of modes will be guided. These are associated with
the solutions to the eigenvalue equation for 8. The spectrum of 3 for
guided modes is discrete.

Most modes will not be guided. Most values of 3 will lead to unguided,
or radiation modes. The spectrum of 3 for unguided modes is continuous,
meaning there are an infinite number of unguided modes.

. All modes are orthogonal. This is a very important point. For guided

modes, orthogonality requires that

Ei(m, Y, Z) X Hj (ac, Y, Z)] -dA = (5,']‘ (334)
area
where §;; is the Kroenecker delta function, the area of the integral is
the infinite zy plane at a particular value of z, and where E;(z,y, 2)
and H;(z, y, z) represent normalized modes of the system. For radiation
modes, the formal relation is

/ [E(i) x H(j)] - dA = 6(i — §)P (3.35)
area
where P is the power in the mode. Radiation modes cannot be normalized

as they represent infinite plane waves. Each mode is unique, and cannot
be described in terms of other modes.

. Some modes are degenerate. Degenerate modes will share the same

value of 3, but will have distinguishable electric field distributions. In
such degeneracies, field solutions can be found which are orthogonal,
and they will satisfy Eq. 3.33. A good example of such a degeneracy is
the fundamental mode in a circular dielectric fiber. The mode can have
two different electric field polarizations, E; and E, respectively, each of
which has the same spatial energy distribution.

The modes of a given system form a complete set. Completeness means
that the allowed modes span the entire space of the system. 4ny contin-
uous distribution of electric field can be described as a superposition, or
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sum, of the appropriately weighted modes of the waveguide.

guided

E(may: 2) = Z aiEi(I7y7 Z) + d(ﬁ)E(:ﬂ,y,z,,@) d:B

radiation
(3.36)
where E;(z, y, 2) are the discrete modes of the system, the a; are weight-
ing coefficients for each mode, and the E(Q) are the radiation modes of
the system, with their respective weighting factor, a(3).

i

The power of the mode concept lies in completeness and the use of superpo-
sition. This superposition concept is very powerful for calculating coupling be-
tween two different systems. We will explore coupling in detail in Chap. XXX.
In general, a given mode in one system will be described as a superposition of
modes in a second system, some of which may be guided and some may be
radiative.

9. Number of Guided Modes in a Waveguide

We often use terms like “single-mode" or “multimode” to characterize a
waveguide. The importance of this distinction will become apparent when we
discuss information bandwidth in later chapters, and when we discuss cou-
pling between devices. In this section, we develop some approximations of the
number of guided modes in a planar waveguide.

Recall the planar waveguide described in Example 3.2. The waveguide
supported a different number of modes depending on its thickness. If we had
adjusted the relative indices between the layers, we would also have found that
the mode number varied. The lowest order mode has a k vector that is nearly
parallel to the z axis

Plowest order = ks (3.37)
The highest order mode will have a wavevector at nearly the critical angle

5highest order & kng €08 Ocritical = ks (3.38)

The rest of the modes will have eigenvalues for 3 that fall between these two
extremes. To get an idea of the number of modes in the waveguide, recall the
general eigenvalue equation for the TE modes,

tan(kh) = —2et e _ (3.39)
an(kh) n(l - :Yﬂz)

Graphically the two sides of the equation can be plotted against « to create a
plot such as Fig. 3.13, which is a modification of Fig. 3.6.

The right-hand-side of the equation starts at zero, slowly diverges to —oo,
then comes in from +o0o and terminates at a value somewhere above zero at
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Figure 3.13. The graphical solution to the eigenmode equation for an asymmetric waveguide
shows that every time the argument Kmazh increases by m, another mode is allowed in the
waveguide.

Kmaz- The left-hand-side of Eq. 3.39 is a periodic function (tan(xh) that goes
from —oo to +00 every time xh increases by 7. Notice that if the value of
Kmazh is greater than /2, then we are guaranteed to find at least one TE mode
in the waveguide. If kyqzh > 37/2, then we are guaranteed to find at least
two TE modes in the waveguide. These values of k4,0 are known as cut-off’
conditions. Every time K, R increases by 7, another mode is allowed. The
approximate number of modes, 2, can be found from

m = Int [hkmgq/m)
Int [hk(n} —n2)!/? /] (3.40)

This approximation is most accurate when m is a large number. Itis approximate
because the exact location of the last crossing is not known. Note that the mode
count increases with the thickness, h, of the guide, with the difference in index,
(n% —n?2), between the core and cladding, and as the wavelength of the guided
light gets shorter. Also note that the point at x = 0 is not considered to be an
allowed mode, even though it appears on the graph that the two equations are
crossing at that point.
We usually characterize a waveguide by its normalized frequency, defined
as
V = hk(n} — n2)1/? (3.41)

In terms of the normalized frequency, the approximate number of modes, m, in
a waveguide is m ~ V/m. The mode cut-off conditions are usually described
in terms of the normalized frequency. For example, if it is desired to build a
waveguide that only carries the first three TE modes, what should the dimen-
sions and index difference be? We can adress such issues knowing the cut-off
conditions by trading thickness for index difference. The normalized frequency
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establishes the relationship between the parameters that influence the number
of modes carried by a waveguide.

Why do we worry about the number of modes in a waveguide? The answer
is pulse distortion and bandwidth. When a pulse is launched on a waveguide,
such as in a digital communication system, the pulse energy will become dis-
tributed over all the allowed modes of the waveguide. If each mode travels at
a slightly different velocity, as is often the case, the temporal form of the pulse
will change as the pulse propagates. This lengthens the pulse, and effectively
reduces the rate at which pulses can be sent.

10. Normalized Propagation Parameters

If you have calculated the mode eigenvalues of a waveguide, you already
appreciate how cumbersome the process can be. We can develop normalization
rules for slab waveguides which allow for simple graphical solution to the wave-
guide problem (an example of how this can be applied to a coupled waveguide
taper is given in Example 11.4). There are five independent parameters to deal
with in a slab waveguide problem: i) the refractive index of the guiding layer,
ng, ii) the refractive index of the substrate, n;, iif)the refractive index of the
cover, n,iv) the guiding layer thickness, h, and v) the vacuum wavevector, kg.
These parameters can be reduced into normalized values which allow a general
description of the dispersion and cutoff conditions for modes. We have already
defined a Normalized Frequency, V (3.41 ). From the five variables above, we
can also define an asymmetry parameter, a, and a normalized effective index, b

[4]:
|4

a

koh( 2 _ n2)1/2
(n? - ng / nf» ) (3.42)

(
( Nepf — ng)/(n?c )

Il

(3.43)

where n.rr = (3/ko is defined as the effective index of the guide. The nor-
malized index, b, is zero at cutoff, and approaches unity far away from it. The
asymmetry parameter ranges from 0 for a symmetric waveguide, to infinity for
strong asymmetry (ns > n.).

These definitions are used in conjunction with the transverse resonance
condition, Eq. 3.32, to define universal dispersion relations. The transverse
resonance condition state that the waveguide acts like a standing wave cavity
in the transverse direction. In order to be resonant, the round trip phase of a
transverse component of k¥ must add up to an integer number of 27r. Recall Eq.
3.32 states

2konshcosd — 29, — 20, = 27y,
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Figure 3.14. The normalized index, b, is plotted against the normalized frequency, V, for three
values of the asymmetry coefficient, a, and for the first three values of v. Values of a = 0,
a = 10, and a = oo were evaluated.

where v is an integer. Substituting the normalized parameters into this equation
yields the normalized dispersion relation

VVI—b=vr+tan "t /b/(1—b)+tan"'y/(b+a)/(1-b) (3.44)

At first glance, this may appear as needless complication of straightforward
equations, but there is a good reason for this normalization. We can numerically
generate a set of curves which relate the normalized index, b, to the normalized
frequency, V, using Eq. 3.44. Once the curves are generated, we can relate
the calculation to any new waveguide through appropriate scaling. Fig. 3.13
shows the numerically derived relation between the normalized index, b, and
the normalized frequency, V.

Example 3.3 Evaluation of a waveguide using normalized parameters

To illustrate the power of using the normalized parameters, let’s reconsider
the waveguide used in Example 3.1, which had a guiding index, ny = 1.5, a
substrate index ns = 1.45, a cover index n, = 1.40, a film thickness A = 5um,
and a driving wavelength of Ay = 1um. Using a numerical solution, we found
the eigenvalues for the first three modes to be 3 = 94087, 93608, and 92819
cm~!. We can determine the propagation coefficients by inspection using the
graph in Fig. 3.14. First we must normalize the waveguide parameters,

2
V = koh(n —n2)? = ﬁ;—l&um\/l.fﬂ —1.452 = 12.065
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Figure 3.15. Data from Example 3.2 plotted on graph from Fig. 3.14.

a = (n2-n2)/(n}—n?) =(1.45% — 1.40%)/(1.55% — 1.45%) = 0.475

The asymmetry value a = 0.475 lies near the a = 0 value of Fig. 3.13, so we
will interpolate between the two plotted lines for each value of v in the plot.
We draw a line on the graph at V=12.065, as shown in Fig. 3.14, and read the
b values from the scale.

At a normalized frequency of V' = 12.065 there are three values of b:
0.575, 0.813, and 0.965. (Note: the fourth mode that we found in Example 3.1
is not found here because the graph in Fig. 3.14 does not show a curve for the
v = 3 case. The vertical line in Fig. 3.15 shows the intersections. Using the
expression for b

b= (ngff - ni)/(n% —n)
we can solve this for 3 noting that n.sy = 8/ko

/3 = k() (’n?- - n?)b+nf

Plugging values into the equation, we get the first three allowed values of .
These are tabulated alongside the “exact" values obtained by numeric technique
for comparison.

The agreement is remarkable: better than 1 part in a 1000, which can be
attributed to ones ability to read the graph in Fig. 3.13. The virtue of the
normalized method is that the entire eigenvalue calculation can be carried.out
on a hand calculator, and the accuracy is probably better than we need.
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Table 3.1. Comparison of 3 values from normalized and exact methods.

b Brorm e~ Begac cm™!  “error" cm™!
+0.575 92926 92819 -107

+0.813 93668 93608 -60

+0.965 94139 94087 -52

From the data plotted in Fig. 3.13, we can extract some additional infor-
mation. The cutoft frequency for each mode occurs when b = 0. Therefore
the intersection of each line corresponding to a mode number v (e.g. TE,, or
TM,) and an asymmetry factor a corresponds to the normalized frequency of
the longest wavelength that will be carried by the mode. We see by inspection
that the lowest order (v = 0) symmetric waveguide mode reaches b = 0 at
V' = 0, indicating that this mode never is cut-off, in agreement with our un-
derstanding of this mode. Formally, setting b = 0 and solving Eq. 3.44 for V'
yields the cutoff conditions for all modes in the step index waveguide

V =tan"'ya+uvr (3.45)

To apply the normalization technique to TM modes, we need only adjust the
asymmetry parameter,

2.2 2
ne ne —

=t (.46
ng n§ —ng

11.  The Numerical Aperture

A very common parameter for characterizing waveguides is the numerical
aperture. The concept is based on ray tracing and refraction, so technically it
is only applicable to multimode waveguides, although it is sometimes used in
characterizations of single mode waveguides. Consider the optical waveguide
shown in Fig. 3.16, where a high index layer with index n; is surrounded
symmetrically by a lower index medium, ny. The thickness of the guiding
layer is not critical, so long as it is many times greater than the wavelength of
the light being carried. We want to explore how light (in the form of rays) can
couple into the end of such a structure. A ray is shown entering the edge of
the waveguide, where we assume the index of refraction corresponds to that
of air (essentially n=1). The entering ray is refracted according to Snell’s law,
bending toward the axis of the waveguide. The ray travels until it strikes one
of the dielectric interfaces. If the ray strikes the interface at an angle smaller
than the critical angle, it will not be guided. The ray in Fig. 3.16 is oriented
such that the refracted ray in the n; region does not satisfy the TIR condition at
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Figure 3.16. A ray incident on the waveguide at too steep an angle will not satisfy the condition
for TIR inside the guide. The wave partially reflects and partially transmits at each reflection.

-
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_t 90°
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Figure 3.17. The incident ray just satisfies the condition that the refracted ray will strike the
interface at the critical angle, and thus be totally internally reflected. 0, is the maximum angle
for a guided ray.

the cover-film interface. This ray is partially reflected and partially transmitted
at the interface. As it bounces down the waveguide, a fraction of its energy
leaks out at each reflection, and the guided energy is attenuated. Such rays are
unguided.

The numerical aperture is defined in terms of the maximum angle that
an incident ray can have, and still be trapped by the waveguide. Consider the
critical case where the ray just satisfies the TIR condition as shown in Fig. 3.17

The refracted ray strikes the interface between the guiding film, n;, and
the cladding, no, at and angle 8,,;;. The angle between the ray and the axis of
the waveguide is the complement of that angle, 90 — 6.. Applying Snell’s law
to the input face of the waveguide, we can determine the maximum incident
angle, Opmqz:

sinfi,. = m sin(90 - acritical) ="y Cos(acritical)
— 202 _ 2 /2
= m \/1 — 8in® Ocritical = M1 \/1 - TL2/’IL1
_ 2 2
VAL B L

The numerical aperture is defined as the sin of the acceptance angle

NA =sinbpmay = \/n? —n (3.47)
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64 n=1.5
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Figure 3.18. The acceptance angle of this structure is 64°. Notice that the Numerical Aperture
does not depend on the dimensions of the waveguide, only the relative indices.

As we will see later, the NA is a useful parameter for large core, multimode
waveguides where propagation of light is rather difficult to express in terms
of electromagnetic fields. Pragmatically, to couple light into a waveguide it is
essential that the light be focussed in such a way that all incident rays lie within
this angle 0,4

Example 3.4 The numerical aperture for a symmetric waveguide

Consider a symmetric waveguide with a guiding film index n; = 1.5, and
surrounding indices na = 1.4 as shown in Fig. 3.18. The numerical aperture
is directly found from Eq. 3.46

NA=+V152-142=0.539

This corresponds to input angle,
Ormaz = sin~1(0.539) = 32°

so the full width of the acceptance angle is about 64°.

According to ray analysis, any ray incident on the waveguide within the
numerical aperture will be guided. The NA effectively defines the cone of
acceptance. Only for large structures (where the guiding film thickness is on
the order of 50-100 ), is the ray picture reasonably accurate.

12. Summary

We have introduced many important concepts of optical waveguides in
this chapter. We used formal electromagnetic analysis to solve for the aliowed
field structure inside a dielectric waveguide. We found that boundary condi-
tions establish the connecting formulae that define the shape of a mode. We
derived a characteristic equation for both TE and TM modes. This equation
is transcendental, so it requires numerical or graphical solution. We explored
both forms of solution in an example. We distinguished asymmetric guides
from symmetric guides, and noted that a symmetric guide will always carry at
least one mode. We reviewed the mathematical details of the mode concept,
stating but not proving the important properties such as orthogonality and com-
pleteness that a mode solution will satisfy. These properties will be used in
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later chapters when calculating coupling. Finally, we described the numerical
aperture of a waveguide, based on a ray tracing analysis of the total internal
reflection condition for a waveguide.
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Practice Problems

1.

Using the boundary conditions for a TM wave, confirm Eq. 3.23 for the
eigenvalue equation of an asymmetric waveguide.

Confirm the field expression for the TE electric field in a symmetric
waveguide, Eq. 3.27.

. Develop the eigenvalue equation for the TM modes in a symmetric wave-

guide.

For an asymmetric planar waveguide with ny = 1.5, ny = 1.47, and
ne = 1.0, determine the allowed values of 3 for waveguide thickness
h = Tum. Assume the excitation wavelength is 1um.

For the waveguide described in Problem 5., at what wavelength does a
second TE mode appear?

Which is the lowest order mode in an asymmetric waveguide— the TE,
mode or the TMy mode? Prove your case graphically.

Use the Fresnel reflection formula for TE waves to determine the attenua-
tion coefficient for a leaky ray in a waveguide. Assume that the waveguide
is symmetric, and is 50um thick. Assume the the power lost per reflec-
tion is given by I'| = 1 — |r2|, where r is given by Eq. 2.89. Express
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10.

11.

the answer in terms of nepers/meter as a function of angle. Assume the
guiding layer has index 1.5, and the surrounding layers have index 1.45.

Evaluate the size of a confined mode as a function of the guiding film
dimension. Consider a symmetric waveguide with guiding index of 3.5,
and surrounding indices of 3.3.

(a) Write an explicit description of the field for the TEg mode.

(b) Define the “mode size" of the field by the distance between the points
where the amplitude is reduced to 1/e of the peak intensity. Find the
full width of the TEg mode for film thickness, h, ranging from 1 to
20 pm.

(c) What film thickness leads to the smallest mode?

(d) Calculate the mode confinement for h = 20um, h = 10um, and
h =2um.

. Forthe waveguide described in Ex. 3.1, at what distance into the substrate

is the evanescent field equal to 0.001 Ey, where Ey is the peak amplitude
of the mode? Determine this for each mode. At what distance into the
cover is the field the same value? What does this tell you about how thick
to make the cladding layers on a waveguide?

Consider a waveguide with a guiding film 5um thick, surrounded by thick
films with index 1.45.

(a) If the guiding film index is 1.5, calculate the numerical aperture of
the waveguide.

(b) What is the mode confinement for T’Ey mode in this waveguide?

(c) Ifthe guiding film is made to be 10um, what is the mode confinement
of the T Ey mode?

Consider a planar slab waveguide of infinite extent in the y- and z-
directions. The guiding film index is 1.5, the substrate index is 1.48,
and the cover index is 1.0. The thickness is h = 2um. The waveguide is
excited with a 1.3 pm source. For TE modes

(a) What is the range of allowed 3 values for this waveguide?

(b) What is the numerical aperture for this waveguide?

(c) Numerically or graphically, determine the allowed values of 8 and »
for h = 2um.

(d) How many modes will this waveguide carry if the excitation wave-
length is 0.600 um?
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12.

13.
14.

15.

16.

17.

18.

19.

20.
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Show that the eigenvalue equation for § for the asymmetric waveguide
reduces to that of the symmetric waveguide when n, = n,.

Show that H, = ;%Ey for a TE wave.

For a symmetric waveguide of thickness h, show that the coefficient, A,
is given by
4n2wuoP

(h + %) (k2 47?2)

where P is the power per unit length carried by the waveguide.

A% =

For an asymmetric planar waveguide with ny = 1.5, n;, = 1.48,and a
thickness of 8u4m, how many TE modes for A = 1um will there be under
the following conditions:

(a) covered by air (n, = 1)

(b) covered by water (n, = 1.33)

(¢) covered by another substrate (n, = 1.45)

(d) Explain in words why the number of modes did or did not change in
these three cases.

(e) If n, = 1.45, what thickness waveguide is needed to increase the
number of modes to ten?

(f) How will the number of TM modes vary in a), b), and ¢)?

Given a symmetric waveguide with ny = 1.5,n; = 1.47,A = 1.0um,
determine the fraction of power carried in the cladding if the guiding layer
is 3um thick.

Derive the mode cut-off condition for the T'F,, mode in terms of V' for
the symmetric waveguide.

Repeat Ex. 3.1 for the TM mode case. Make plots of the allowed modes
similar to those shown in Fig. 3.8

Plot the mode profiles for the TEy and TE; modes in a slab waveguide
with a core index ny = 1.5, ny = 1.49, and n, = 1. The film thickness
is 10um thick, and the guided wavelength is 1 pm.

Consider an asymmetric planar waveguide with a film index, ny = 1.50,
a substrate index ng = 1.495, and a cover index n, = 1.40.

(a) If the vacuum wavelength of the guided light is 1 um, what is the
thickest that the guiding layer can be to support a TE mode? Use a
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21.

22.

computer to find the solution by making graphic plots of Eq. 3.22, and
adjusting the thickness until the eigenequation cannot be satisfied.

(b) Increase the thickness of the guide by 1%, and determine the eigen-
value 3 of the TE mode

(c) Calculate the confinement factor for this mode which is near cut-off.

(d) Plot the mode profile for this mode. What can you generalize about
modes near cut-oft?

A planar waveguide is made with ny = 1.48, ny = 1.46 and n, = 1.44.
The thickness of the guiding film is 10um. What is the longest wavelength
that can be carried in a TE mode in this waveguide?

Extend the development of the modal eigenequation to a four layer struc-
ture, with four potentially different indices, and two layer thickness (the
cover and substrate are assumed to extend an infinite distance beyond
the layers). Perhaps the simplest way to do this is to write the boundary
conditions in a matrix form, and use linear algebra techniques to find the
roots. Demonstrate the performance of your program with some simple
structures.



Chapter 4

STEP-INDEX CIRCULAR WAVEGUIDES

1. Imtroduction

The circular waveguide has found extensive use in optical communications
systems, especially long distance communication links. The circular waveguide
has no intrinsic advantage over rectangular waveguides except in one critical
area: cost. Manufacturing circular waveguides from glass is a well established
technology. Industry can produce hundreds of thousands of kilometers of cir-
cular dielectric waveguide each year. The same cannot be said about planar
or rectangular waveguides. In this chapter, we will develop a description of
wave propagation along a circular waveguide. This chapter deals with the
“step—index" fiber (Fig. 4.1). Light is guided by a high-index circular core
of uniform index, surrounded by a lower-index cladding layer. The cladding
layer is usually covered with a plastic coating to protect the fiber from envi-
ronmental hazards and abrasion. To find the modes of the circular step-index
fiber, we must solve the wave equation in cylindrical coordinates. The modes
of the cylindrical structure are more abstract than those of the planar structure.
Not only are they circular in symmetry which will require a more complicated
solution to the wave equation, but they are two dimensional, so there will be

Cladding
Plastic

.' : @ = Coating
Core i A

Figure4.l. The cylindrical step waveguide consists of a high index core surrounded by alower
index cladding.
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Figure 4.2. A radial field at one point in the waveguide will become an azimuthal field at
another location. Notice that the field is not converted between the components by reflection,
but by propagation through the coordinate system.

two mode numbers. We will see a similar effect when we discus rectangular
waveguides in the next chapter.

Once the modes in the step-index fiber are established, we will develop
useful formulae for mode-cutoff conditions, numerical aperture, and normal-
ized frequency. As before, the eigenvalue equations will require graphical or
numerical solution.

2. The Wave Equation in Cylindrical Coordinates

We have already derived the homogeneous wave equation for the planar
waveguide structure.
&’E
V?E — pe—=s =0 4.1
To solve this equation in a cylindrical waveguide, we must write this equation
in cylindrical coordinates. The electric field is a vector, and there are three

components, each of which is a function of r, ¢, and z
E(r,¢,2) = 7B (r,$,2) + $Ey(r,6,2) + 2E;(r, ¢,2)  (4.2)

In cylindrical coordinates, the vector Laplacian (V?) is a rather unwieldy ex-
pression (see reference [1]). The cylindrical wave equation must be evaluated
in the following form:
- . OE

V(V.E)—VXVXE—/’LE_BZT:O (43)
Unlike the vector Laplacian in rectilinear coordinates, Eq. 4.3 can not be easily
decomposed into three individual components. The transverse components of
the field are tightly coupled. Imagine for example a linearly-polarized field
travelling at a slight angle to the axis of a cylindrical waveguide, as shown in
Fig. 42. At z = 0, the field is purely radial, but as it travels down the axis,
it becomes an azimuthal (¢) field. It is impossible to decouple the E, or Ey
components in this example.
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Here is the critical point in understanding the analysis of a two-dimensional
waveguide: only the Z-component of a field, E,, does not couple to other
components as it propagates. Even after reflection at a cylindrical surface, the
E, component remains oriented along the z-axis. Hence, we will attempt to
find a solution for F, using the wave equation. Once we have a solution for
E,(r,0,¢), we can use Maxwell’s equations to relate E, to £, and Ey. In this
indirect fashion, all field components within a circular waveguide are derived.
Fig. 4.3 shows an example of how the F, field component remains pure.

Since FE, couples only to itself, it is possible to write the scalar wave
equation for F, directly in cylindrical coordinates,

16<6Ez> 1 82E, aE

— — —_— 2 ==
oo )t eee o +kn’E, =0 (4.4)

and to solve this equation for F,.

Figure 4.3. The longitudinal component of the electric field does not change through either
propagation or reflection at the cylindrical surface.

3.  Solution of the Wave Equation for E,

Since F, is a function of r, ¢, and z, we can employ separation of variables
to solve the scalar equation, Eq. 4.4. Setting E.(r, ¢, 2) = R(r)®(¢)Z(2),
and substituting this into Eq. 4.4 results in

R'®Z + lR’@Z + lR@”Z +ROZ" + k2n?R®Z =0  (4.5)
r r2 0

Multiply Eq. 4.5 by 72/ R®Z to get
RI/ R/ @/I Z
2 2.2 2
L A S = 4
TR+TR+<I>+ Z-chr =0 (4.6)

Due to the translational invariance along the z-axis, we can assume a phase
term describes the z-dependence,

Z(z) = e @7

where 3 is (again) the z-component of the wavevector, k, in the waveguide.
Using Eq. 4.7, we find that Z”/Z = —(3?, which can be substituted into the
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wave equation

RII R/ @I/
7‘2?3— trEt T r?B? + kgn*r? =0 4.8)
Now we can use standard separation techniques to find
R/I RI q)//
Tzf -}-TE — 72682 + k2n r? = =—3 = v 4.9)

The term v is called the separation constant. Eq. 4.9 can be solved directly for

o(¢):
"(¢) = 1@ (4.10)

which has the solution ‘
B(p) = A + c.c. (4.11)

where A is a normalization constant. Since circular symmetry requires ®(¢) =
& (¢ + 2m), we can infer that v must be an integer.
Substituting Eq. 4.10 into Eq. 4.8 yields an equation that only contains

R(r):
2 2
r%—?—k ?—i—r <k§n2—ﬁ2—%>R:O (4.12)
The solutions to this differential equation is given by Bessel functions [2]. There
are many different types of Bessel function, and to the uninitiated, the choice
can look formidable. Bessel functions share these properties with sine and
cosine functions: i) the value of the function must be calculated or looked up in
a table ; ii) the functions are orthogonal to one another; and iif) they are defined
everywhere. It is primarily the lack of familiarity with Bessel functions that
causes trepidation. Appendix B: A Brief Synopsis of Bessel Functions reviews
useful relations and properties of relevant Bessel functions.

Two types of Bessel functions solve Eq. 4.12. Bessel Functions of the
First Kind of Order v, symbolized by J, (xr), are the proper solution when the
argument (kZn? — 8% — v%/r?) is positive. For all cases that we will examine,
v is an integer. & is defined through the expression

k% = kin? — 52 (4.13)

Note that this is the same definition used in Chapter 3 for the transverse wavevec-
tor. The symbol, «, has the same meaning in these cylindrical waveguide equa-
tions.

When the argument (k3n? — 8% — v2/r2) inEq. 4.12 is negative, Modified
Bessel Functions of the Second Kind of Order v, symbolized by K, (yr), are
the proper solution. -y is defined as

7' = % — kgn? (4.14)
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Figure 4.4. The first three Bessel functions of the first kind, J, (x7), and of the second kind,
K. (yr).

Again, the notation is intentionally chosen to correspond to the decay parameter,
~, used in Chapter 3. As with «, the function v plays the same role in cylindrical
waveguides that it did in planar waveguides.

Plots of both types of Bessel function are shown in Fig. 4.4. The J,(xr)
functions are periodic along the radial axis. Only Jo(xr) has finite value at
r = 0; all others J,»o(xr) functions are zero at the origin. For large arguments,
the Bessel function of the first kind can be approximated as

2 vm T
Ju(sr) = 4/ — cos <m" —5 = Z) for rr large (4.15)

These Bessel functions can be viewed as damped sine waves. The amplitude
decreases slowly with radial distance, much like the amplitude of a spreading
wave in a pond. As we shall see, the J,, Bessel functions describe the radial
standing wave in a cylindrical structure.

The modified Bessel functions, K, (yr), display a monotonic decreasing
characteristic. The higher orders of the function decrease at a slower rate, but
all orders have the same functional form. In the limit of large 7, the function
can be approximated as

e 7"

V2myr
Again, this looks like a radially damped exponentially decreasing function.
Note that at large distance, all orders of K, (yr) look approximately the same.
The +/1/27yr dependence is the natural decrease of a wave as it expands
with radius, while the exponent represents decay due to evanescent interfer-
ence. K, (yr) functions are used to describe evanescent fields in the optical
waveguide.

Ky(yr) ~

(4.16)

4. Field Distributions in the Step Index Fiber

In this and the next section, we derive expressions for the fields and the
characteristic equation for the cylindrical dielectric waveguide. Consider the
fiber waveguide shown in Fig. 4.5. The fiber waveguide has a core of radius
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Core

Cladding

Figure 4.5. The cylindrical waveguide has a core radius of dimension a.

a surrounded by a cladding with lower index. Since we expect oscillatory
solutions to the transverse wave equation in the core, J,, (kr) solutions will be
sought in this region. From the analysis above we can see that an oscillatory
solution only occurs when [ satisfies

koncore > B > koNciad (4.17)

Outside the higher index core, the field exponentially decays, so we choose
the K, (+yr) solutions for 7 > a. The only criteria on the size of the cladding is
that the evanescent field should decay to negligible values long before the outer
radius of the cladding is reached. It is possible to excite “cladding modes" in
which the glass core and cladding form the core of the waveguide (with a 125
pm diameter) and the plastic coating forms the cladding. Cladding modes play
arole in coupling energy from fiber Bragg gratings, and causing spectral holes
to appear in the reflection spectrum of some gratings.

Let’s construct a solution to the wave equation. The complete longitudinal
fields (E, and H,) in both regions can be written as

forr<a  E,(r,$,2) = AJ,(kr)e%e 8% 1+ cc.
H,(r,¢,2) = BJ,,(/-cr)ej”‘Pe“mz +c.c.

(4.18)
forr >a Ez(}”, $,2) = CK,(yr)elV®e=iP* + c.c.
H,(r,¢,z) = DK,(yr)e/"%e 9P + c.c.

Note that the electric and magnetic fields have the same spatial dependence.
Also note that v is a mode number, or eigenvalue. Determining the coefficients
A, B, C, and D requires application of the boundary conditions, specifically,
continuity of the tangential £ and H fields. These steps involve a lot of math-
ematics, but are necessary for finding the eigenvalue equation of the step index
fiber. Boundary conditions require that we know the azimuthal field compo-
nents, Ey and Hy, in addition to the longitudinal components (£, and H.).
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From F, in Eq. 4.18 We can get the azimuthal components in terms of E, from
Maxwell’s equations:

OB OH

E = — = — |} —

v ot~ Mo

Expanding the V x E term in cylindrical components, and then collecting terms,
the field components H,, Hy, E, and Ey4 can be described [3] in terms of the

longitudinal components:

= —pjwH 4.19)

By = %(é%*wﬂaliz)

a? \r 0¢ or
Hy = %(wea;; z+§a£2> (4.20)
- )

where o? stands for k2n? — 2. Note that o? is a positive quantity in the core,
and a negative quantity in the cladding for allowed values of 3.

Using the longitudinal fields described in Eq. 4.18, the field components
in Egs. 4.20 can be exactly calculated. In the core region (r < a) we get

E. = :’:Tﬂ [AnJ,’,(m*) + %BJ,,(KT)] eIvPeiPz
E, = %ﬂ- [jTVAJ,,(nr) - %Bh).f,’,(/ﬁ’l‘):‘ IvbeiPz
H, = %—ﬂ— [BnJ,’,(m") - zw—eﬂc;tiyAJy(nr)] eIve—ibz
H, = :’-52—-’3 [ZTKBJV(M) + %TEAK,J,’,(KT):‘ eIvbemibz

4.21)
where J,, (k1) = dJ, (k) /d(kr). In the cladding region (r > a) we get

By =B [Crk) () + 1 DK, (r)| e0e 5
By =1 [LCK, () - % DyK(yr)] eivte 35
Hy = 3 [DyK,(yr) - 25ai CK, (y7)] e94e 30+
Hy =1 [ZDK, (yr) + 241 CyK} (yr)] elbei5=
(4.22)
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where K (yr) = dK,{yr)/d(yr).

5. Boundary Conditions for the Step-Index Waveguide

To determine 3, and the amplitude coefficients, A, B, C, and D of Eq. 4.18,
we need to apply the boundary conditions. The boundary conditions at r = o
require that the four tangential components, £, Ey, H,, and H be continuous
at the core-cladding boundary. For example, the longitudinal electric field
must satisfy AJ,(ka)e’V?e %% = CK,(ya)e?"?e~78% The simplest way to
simultaneously satisfy all four boundary value equations is to write the four
linear equations in matrix form, and then set the determinant of the matrix
equal to zero.

Ju(ka) 0 —K,(va) 0 A
0 Ju(ka) 0 —K,(vya) B
oadu(ka)  j2I(ka)  ZK,(ya)  j2K|(ya) || C
D

—jehee Iy (ka) L5, (ka) —jeEI(v0) 5K, (va) o)

For non-trivial solutions (i.e. non-zero amplitudes), the four equations will
simultaneously equal zero if and only if the determinant of the matrix equals
zero. Expansion of the determinant yields the “characteristic equation" for the
step-index fiber.

AT 172
a2 27 K2 T
{ Jy(ka) | K, (ya) } _ [kgnz?emna) " kznz%dxm (4.24)
kJy(ka)  vK,(va) wJy (ka) YK, (7a)

This formidable equation requires numerical or graphical solution. There is only
one unknown: 3. As with the slab waveguide, the terms « and -y are functions
of B and the local index. Due to the oscillatory nature of J,(xa), there can
be several values of 3 for a given structure. Since there are two dimensional
degrees of freedom in the cylindrical waveguide, solutions to the wave equation
are labelled with two indices, v and m. Both numbers are integers. The m value
is called the radial mode number, and represents the number of radial nodes that
exist in the field distribution. The integer v is called the angular mode number,
and represents the number of angular nodes that exist in the field distribution.
Once 3 is determined from Eq. 4.24, three of the coefficients (A, B, C, and
D) can be determined in terms of the fourth by solving the individual equations
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of the matrix. For example, from the boundary condition for continuity of E,
atr =a,

AJy(ka) = CK,(va) (4.25)
One can solve for coefficient C in terms of A

Ju(ka) A

C= 4.26
K,(va) (4:26)
Similarly D can be solved in terms of B
Ju(ka)
D= 4.27)
K, (va)

The coefficients A and B can be related to one another using the continuity of
E4 or Hy, and Eqs. 4.26 and 4.27. Using the electric field continuity one gets

Bl | 17[Jike) | Kl(ya) 17!
B—w—ua{z ﬂ [muma) m«m] 4 (28

If the magnetic field continuity is used, one gets

; 2 U 2 U -1
_ Jia_ Neore Jz/(’k“’a) Nelad Ku(’ya) [_1__ _]-_:l
B= By [ Kk Ju(ka) + v K,(ya) + A (4.29)

K2 2
The choice of which equation to use depends on the type of mode carried in
the waveguide. This is explained in the next section. Note that B/A is purely
imaginary in both cases, indicating that the two longitudinal fields are 7 /2 out
of phase. On an instantaneous basis, there is radial power flow, but due to the
/2 phase shift the power is reactive, so it averages to zero.

6.  The Spatial Modes of the Step-Index Waveguide

Unlike the slab waveguide with only two possible types of mode (TE or
TM), the circular waveguide has four types of mode. The quantity | B/A]| is of
particular interest in determining the relative size of the longitudinal compo-
nents of the E and H fields. These, in turn, characterize the type of mode. We
will start with the simplest mode.

6.1  Transverse Electric and Transverse Magnetic Modes

Consider the characteristic equation (Eq. 4.24) for the case where v = 0.
Since v represents angular dependence of the solution, the field solutions to E,
when v = 0 will be rotationally invariant. The equation simplifies to

‘: ,]L(K,a,) Kl// (’ya) J kgngore‘]ll/(’{'a) kgnzladelJ ('ya)
&Jy(ka) = YK, (va) kdy(ka) 7Ky (va)

=0 (4.30)
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Either term on the left hand side can be set to zero to satisfy the equation. The
two terms in Eq. 4.30 appeared individually in Eqs. 4.28 and 4.29, where the
amplitude A was related to amplitude B. If the first term of Eq. 4.30 is set to
zero, then A must also be zero to keep the magnitude of B in Eq. 4.28 finite.
If A =0, then E, = 0, and the electric field will be transverse. Such modes
are called TE modes.

Conversely, if the second term in Eq. 4.30 is zero, then the amplitude B
will be zero (see Eq. 4.29), and the longitudinal component of the H field will
be zero. The solution will therefore be a TM mode. Thus, if v = 0, the allowed
modes will be either TE or TM.

The problem of finding the allowed values of the propagation vector, 3,
reduces to finding the roots of Eq. 4.30. These equations for the TE and
TM modes can be further simplified using the Bessel function relations (see
Appendix B)

J, J,
KA’]}V = :t K'Jul :F EVI
Kl
—71; = :F_{f;gul ¥ 4.31)
v

Consider first the TE mode. The first term of Eq. 4.30 should be set equal
to zero. Using the relation in Eq. 4.31 the eigenvalue equation for TE modes

becomes
_ Ji(ka)  Ki(ya) _

rdo(ka)  vKo(va)
The other half of Eq. 4.30 is the eigenvalue equation for TM modes. These can
be solved numerically or graphically. We will use Mathematica to do both in
the following example of a TE mode.

(4.32)

Example 4.1: Eigenvalues for the TE modes in a step-index fiber

Let’s analyze a step-index circular fiber with a core index , n¢ore = 1.5, 2
cladding index nciqq = 1.45, and with a core radius, @ = 5um. The wavelength
of the light is 1.3um. We want to determine the allowed eigenvalues for 3 for
the TE modes. A simple Mathematica command evaluates and plots the two
terms in Eq. 4.32

k=2 Pi /(1.3 10°(-4));

a=5 10" (-4);

ni=1.5;

n2=1.45;

kappamax=Sqrt [k"2(n1"2-n2"2)];

gamma = Sqrt[ kappamax~2-kappa~2];

Plot [{BesselJ[1,kappa a]/(kappa BesselJ[0,kappa al),

-BesselK[1,gamma a)/(gamma BesselK[0,gamma a])},{kappa,O,kappamax}]
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Figure 4.6. The eigenvalue equation plotted against s for a waveguide with core index 1.5,
cladding index 1.45, and wavelength 1.3 pm.

The graphical output is presented in Fig. 4.6. As in previous chapters,
we chose to plot the functions against the transverse wavevector, k, instead of
against 3. The plot extends from k = 0 to K,q, Which is given by

Kmaz@ = \/kgngo,.e — k3n?,, a (4.33)

The Ji(ka)/kJo(ka) term explodes to infinity at every root of Jy(xa). Since
the roots of Jy(ka) occur (almost) periodically, the ratio J; / Jy regularly sweeps
from —oo to +0o. The K /K term monotonically decreases as « increases.
Every time the two lines cross in Fig.4.6, there is an allowed TE mode. In
this case, three TE modes are allowed, with approximate « values of 7000,
12500, and 17500 cm~!. The exact values are easily found using a root finding
command. In Mathematica the appropriate command is

FindRoot [-BesselK[1, gamma al/(gamma BesselK[0, gamma a])==

BesselJ[1,kappa al/(kappa BesselJ[0, kappa al), {kappa, 5200}]
The exact values for this example are k = 6902, 12549, and 17795 cm™ L. The
corresponding values of 3 can be determined from Eq. 4.13.

The transverse modes (TE and TM) have no azimuthal structure (v = 0).
We will look at the field solutions in a later section, but in the ray picture these
modes are geometrically represented by Meridional rays. As seen in Fig. 4.7,
the ray associated with these modes travels through the origin, » = 0.

6.2 The Hybrid Modes

When v # 0, the characteristic equation is a little more complicated to
solve. The values of 8 will correspond to modes which have finite compo-
nents of both E, and H,, and are therefore neither TE nor TM modes. These
modes are called EH or HE modes, depending on the relative magnitude of the
longitudinal E and H components [4, 5].

If A=0 thenthe mode is called a TE mode
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g7 T

Meridional Ray (TE or TM Modes)

Figure 4.7. A meridional ray zig-zags down the fiber, passing through the origin. There is no
angular rotation of the ray path as it propagates.

2 O

Skew Ray (EH or HE Mode)

Figure 4.8. A skew ray travels in a spiral path down the fiber. The ray does not go through the
origin.

If B=0 then the mode is calleda TM mode
If A> B then the mode is called anHE mode (F, dominates H,)
If A< B thenthe mode is called anEH mode (H, dominates E,).

The EH and HE modes are called “hybrid" modes, because they have both
longitudinal H and E components in the waveguide. The EH and HE modes
exist only for v > 1, so they have azimuthal structure. In the ray picture, these
modes are called “skew" rays, because they travel down the waveguide in a
screw-like pattern (Fig. 4.8), glancing off the interface as they spiral down the
axis. The azimuthal structure is apparent from the cyclical path of the ray.

The EH and HE modes have complicated field patterns. These patterns
are not only difficult to determine, but they are hard to visualize. Because
of this, and the limited utility derived in actually graphing such distributions,
we will not pursue their description. Instead, the next subsection develops a
useful approximation that simplifies both the calculation and visualization of
the hybrid modes.

6.3  The Linearly Polarized Modes (LP modes)

The characteristic equation for the hybrid modes is difficult to solve for
8. Fortunately, a very simple and reasonable approximation makes solution
straightforward [6]. Consider again the characteristic equation, Eq. 4.24

ACEY

aZ |42 7 k2
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rJy(Ka) 'yK 'ya) '“J" ke

For v = 1,2,..., HE and EH modes are possible. Unfortunately, even with
powerful software, finding the roots of this equation is very difficult. Dramatic
simplification occurs if we make the weakly guiding approximation. For many
practical optical fibers, the core and cladding index are nearly identical. Typical
commercial fibers have An = ncpre — Neiaqg ON the order of 0.001-0.005. In
view of this, it is not unreasonable (at least for the purpose of finding roots) to
approximate that the core and cladding index are identical, 1icore = N¢lad = 7.
This approximation will introduce an error on the order of less than 1 part
per thousand in the actual value of the propagation vector, but will enable easy
solution to the problem. In the weakly guiding approximation Eq. 4.24 reduces

to

2,2 2 / K! 2
a? v kK kdy(ka) YK, (va)

This can be further simplified noting that if ncore = Neiaq, then f% = kZn?

and these terms can be cancelled from both sides. Taking advantage of some
Bessel function identities

Jy (ka) Joe1

kgnd 4K, (va)

Ka)
+ 1K, ’Ya)

v = i ) ¥ T”
IiJ,,(Iia) kady(ka K“a
K{/('Ya) _ Kuti(ya
—_— - 4.35
’)’K,,(Iﬁa) ’yaK,, Yya :F ( )
simplifies Eq. 4.34, leaving only
Jl/:tl(na) _ Kllﬂ:l(’ya) (436)

kJy{ka) - ~vK,(va)

These are the characteristic equations for the EH (top sign) and HE (bottom
sign) modes. Solution will yield the eigenvalues for the allowed modes. A little
more manipulation with Bessel function identities reduces these two equations
into one single equation [7]
Jiilea) _ Kia(ye)
J;(a) K, (ya)

The indices define the mode as follows:

@.37)

ji=1 TE, TM modes
j=v+1 EH,, modes
j=v-1 HE, modes
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Two different modes can have the same eigenvalue, or mathematically
speaking, they are degenerate. In the weakly guiding approximation, the TEy,y,
is degenerate with the TMg,,, mode (will have the same eigenvalue, §) and
will propagate at the same velocity (at least to the accuracy of the weakly
guiding approximation). Similarly, the HE, ;1 ,, modes and EH, 1 ,,, modes
are degenerate.

Since degenerate modes travel at the same velocity, it is possible to define
stable superpositions of different modes. Certain combinations of degenerate
modes can be found which are linearly polarized. Furthermore the superpo-
sitions are primarily transverse modes, meaning E, is negligible. This is best
illustrated by example. We will take a “back door" approach to creating a su-
perposition that leads to a linearly polarized mode, by initially assuming that a
mode has a transverse field configuration, and then derive what the longitudinal
mode structure must be.

6.4  Linearly Polarized Mode Based on a Superposition of
Two Degenerate Modes

Let’s start by describing an idealized transverse electric field inside a step—
index fiber, polarized in the y—direction

Ey(r,¢,2) = §EoJ, (k) cos(vp)e P> (4.38)

where Ej is the amplitude, and the functional form is consistent with the fields
we defined in Eq. 4.18 for cylindrical symmetry. We have assumed that the
azimuthal dependence is in the form of a cosine term. If the electric field is trav-
elling in the z-direction and polarized in the y-direction, then the magnetic field
must also be transverse and oriented in the z-direction. Using the impedance
of the medium, we can write an expression for H in terms of E/

Hy(r,¢,2) = x%J (kr) cos(vg)eIP? (4.39)

Since we have simply “assumed" a transverse field, it would be valuable to
actually verify that the longitudinal component, E,, is negligibly small. The
longitudinal component can be found using Faraday’s equation

dD
VxH= = —jweE (4.40)
dt
where we have assumed that E is a time harmonic field with angular frequency
w. Expanding the curl equation, and noting that only H, has non-negligible
values, E, can be written as

L od, 1 2[—L;-yz],,(,‘-cr)cos(ygzﬁ)e“jﬂzJ (4.41)

Ez )y ¥ = . - .
(r,,2) —jwe Oy —jwe Oy
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To evaluate this derivative, the operator /9y must be written in terms of 7 and ¢.
Using the identities » = /22 + y2, and ¢ = tan~1(z/y), it is straightforward
to show that

d cos ¢ 0
= — 4.42
P ¢ r 04 (4.42)
Apply this operator to Eq. 4.41 to get
E,(r,¢.2) = ;niy sin(¢)kJ,, (kr) cos(vg) — Leos ¢ J, (kr) sin(vg) | e 7752
€
(4.43)
This can be simplified with two Bessel function identities:
Jy(kr) = g [Jo-r(kr) = Jysa(sr)]
%Jy(nr) = 1 [Jy—1(kr) + Ty (s7)] (4.44)
and the trigonometric identity
1
sina cos B = 5 [sin(a + B) + sin(a — )] (4.45)

Substituting these into Eq. 4.43, and cancelling terms yields

By K _
Bu(r,,2) = T2 [pea(sr) s = 16 = s (o) s + 1 e 9%
(4.46)
Recall that the general modal solution for the longitudinal field is described as
E.(r,¢,2) = AJ,(kr) cos(vep)e P? (4.47)

We can see by inspection that E, is, in fact, a superposition of two modes,
one with index v + 1 and the other with index » — 1. Now recall that in
the weakly guiding approximation, the HE, 1 » mode is degenerate with the
EH, _1,,» mode. This shows that it is possible to add two modes in such a way
that the residual longitudinal component of the field is essentially zero. The
coefficient, A, describing the amplitude term can be expressed as

A=E K K

—=F,— 4.48
Y onwe Yokon (4.48)

Since the transverse wave vector, «, is much smaller than the wavevector, &,
there is little amplitude in the longitudinal field. Thus our initial assumption of
a perfectly transverse field (i.e. no longitudinal components) is nearly satisfied
through proper superposition of degenerate hybrid modes.

From the example, we can see how two modes can be combined to create a
linearly—polarized, cartesian—coordinate referenced, electric field distribution.
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LP14 TEpy HE24

Figure 4.9. The LP1; mode is a superposition of the TEo; and HE21 modes. Note that the
LP mode is linearly polarized, in contrast to the electric fields of the two constituent modes.
E; polarization is shown, although with appropriate superposition, an E, polarized mode could
have been created.

These superposition modes are called the LP,,,, modes. The designation and
construction of an LP mode is as follows:

LP1,, — sum of TEg,,, TMg, and HE,,,, modes
LP.,,, — sum of HE, {1 ,,, and EH, _1 ,,, modes
LPop, —  HEj,, mode only (special case)

Fig. 4.9 shows a sketch of the mode structure of an LP;; mode, and a
sketch of the two modes that are combined to form it. As seen from the figure,
the mode profiles of the HE;; and TE(; modes are best described in cylindrical
coordinates, one having purely azimuthal fields, and the other having radial
fields. However, the superposition leads to a mode with two lobes that is
linearly polarized. The plot shows ¢ polarization, but the mode could also be
polarized along the & axis. Also, the lobes could be rotated by 90°, making
the null region lie along the = 0 axis. Thus there are four degenerate LP;;
modes (two orientations of the lobes, each with two possible polarizations).

The LP modes have many practical advantages. First, the LP modes provide
an easy way to visualize the structure of the guided modes. Because most of
the energy is stored in the transverse field of the LP mode, we can ignore the
complications of energy stored in the longitudinal terms. Second, the LP modes
represent actual energy distributions that a polarized source would excite in a
fiber. For example, a polarized laser uniformly illuminating the end of a step
would create a linearly polarized transverse field on the input. Finally, LP
modes allow for a simplified characteristic equation that can be solved with
straightforward numeric or graphical techniques.

The disadvantages of LP modes are due to the fact that they are not true
modes, but are in fact a superposition of slightly nondegenerate modes. The
individual EH, HE, TM, and TE modes travel at slightly different velocities,
so the polarization state of the initial superposition will change as the modes
propagate down the axis of the guide. The LP modes are, in summary, only
an approximation of the true mode structure of the fiber. They allow a simple
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Figure 4.10. The electric field distribution of five different modes in a step index circular
waveguide.

way to visualize the mode, and describe the actual field patterns excited by real
sources.

6.5 Summary of Mode Shapes

As can be seen in Fig. 4.10, there are many possible orientations of the
electric field within a step-index waveguide. Here we schematically represent
the electric field lines for five different modes. The magnetic lines are transverse
to the electric fields.
Detailed tables of the functional form of the fields in the modes of a step-index
fiber can be found in the literature [5].

7. The Normalized Frequency (V-number) and Cutoff

Often we are concerned whether a given mode will propagate within a
fiber. For example, we might need a single mode fiber for an experiment using
a visible laser, such as the HeNe laser operating at A = 633 nm, but all we
can find is single mode fiber that is designed for operation at 1.3 um. How
can we determine if this fiber will be satisfactory? To answer this, we need to
develop what are known as “cut-off" conditions, which determine under what
circumstances a mode will propagate in a fiber.

The characteristic equation (Eq. 4.24) contains a term with the ratio of
Bessel functions, J,,+1/J,. This term explodes to infinity at each root of J,,,
as was illustrated in Fig. 4.6. To insure that there is at least one solution to the
equation (i.e. one place where the lines cross), the argument xa must extend
beyond the first root. Each time xa increases beyond another root of J,+1/J,,
another mode will be allowed. The roots of the Bessel functions are thus the
signposts for establishing mode cutoff conditions.
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Figure4.11. a)The firstthree J, Bessel functions are plotted, with the mode cutoff conditions of
a few modes indicated at the various roots of the curves. b)The condition 2J; (ka) = kaJ>(ka)
is plotted for the HE2.» mode cutoff conditions. Cut-off occurs where the curves cross.

We can generalize the cutoff conditions for the modes in terms of the roots
of the appropriate Bessel function. For example, referring back to Fig. 4.6,
it is clear that no TE mode will exist if ka < 2.405. The TEg; can only
exist if ka > 2.405, so we say that the cut-off condition for the TEg; mode is
rka = 2.405. The cutoff condition for the TEgs mode occurs at the second root
of the Bessel function, Jy(xa), which occurs 5.405. The cutoff conditions for
every variety of mode can be found in a similar fashion. These cutoff conditions
are

TEg,, modes ka > m* root of Jo(ka)
HE,,, mode ka > m* root of Jy(ka)
EH,,,, mode ka > m* root of J,(ka)

with the added constraint that the first root is not 0
HE,,, modes (%ﬁ + 1) Jy-1(ka) = % J,(ka).

Fig. 4.11a shows a plot of the first three Bessel functions, with notations
on the cutoff points for a few modes. For example, if ka is greater than 2.405,
then the TEg;, TMg1, and HE5; modes will be allowed. This is in addition to
the HE;; mode, which is always allowed. The HE;; mode is a special case
which is described in the next section. The HE,,, modes have a complicated
cutoff formula which requires knowledge of the refractive indices of the core
and cladding. In most cases the ratio can be approximated as unity. Fig. 4.11b
shows the cut-off conditions for the HE5,,, modes.

The parameter used to characterize a waveguide is the Normalized Fre-
quency or the V-number. For a cylindrical fiber, the V-number is defined as

Kmaz Q-

2ma
V-number = ako V Nisre = nzlad = v Nore — nzlad (4.49)
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where a is the core radius. The normalized frequency provides a quick way
to determine the number of modes in a waveguide, and is often used as a
specification for optical fibers and devices. The cutoff conditions can all be
evaluated once the V-number of a fiber is given.

Example 4.2 Number of TE Modes in a step—index fiber

Consider a step index fiber that has a core index, ngore = 1.45, a cladding
index n¢qq = 1.44, and a core radius of 25 ym. If the excitation wavelength is
1.5 pm, how many TE and TM modes will exist in the waveguide?

Solution: First calculate the normalized frequency for the fiber

V = (2r 25um/1.54m)v/1.452 — 1.442

17.802 (4.50)

The zeros of the Jy(xa) = 0 occur at 2.504, 5.520, 8.654, 11.791, 14.931,
18.071, etc.. (See Appendix B: Bessel Functions). Clearly, V is larger than the
first five roots, but is smaller than the sixth root at 18.071. So five TE modes
(and five TM modes) will be allowed in this waveguide at that wavelength.

The V-number is useful for determining cutoff conditions, as well as a
number of other parameters, like the total number of allowed modes and power
profiles. The V-number is often specified in the purchase of optical single mode
fiber. For example, the cut-off condition for a single mode fiber occurs when
the V-number reaches 2.405 (the first root of the Jy Bessel function). The term
“cut-off” refers to the point where the TEq;, TMg:, and HE2; modes cease to
propagate if VV becomes smaller. The wavelength at which a single-mode fiber
suddenly becomes multimode is called the “cut-off" wavelength, ..

8. The Fundamental HE,; Mode

A mode which deserves special attention is the HE;; mode, sometimes
called the fundamental mode, or also the LPg; mode. It has no cutoff condition;
every step—index fiber will support at least this mode. The transverse field of
the HE;; mode is described by the Jy Bessel function (see Prob. 9.) in the
core region, but because Bessel functions are not convenient to mathematically
manipulate,the mode field distribution is often approximated by a Gaussian
shape,

w

2
E(r) = Egexp | - (—) 4.51)
The parameter, w, is adjusted to give the “best fit" between the actual Bessel
function and the Gaussian approximation. For a fiber with a core diameter of
a, w is chosen to be [8]

% = 0.65 + 1.619V 3 +2.87y 6 (4.52)
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T
i

Figure 4.12. The electric field of the HE;; mode is transverse, and approximately Gaussian.
The mode field diameter is determined by the points where the power is down by e =2, or where
the amplitude is down by e ™. The MFD is not necessarily the same dimension as the core.

This approximation provides a good overlap (better than 96%) between the
Bessel solution and Gaussian function over the range from 0.8 to 2., where
A is the cutoff wavelength.

The amplitude profile for the HE;; mode is shown in Fig. 4.12. The dis-
tance between the 1/e points of the amplitude profile define the Mode Field
Diameter, MFD, which is twice the mode field radius, w. Notice that the MFD
depends on the wavelength of the normalized frequency. When coupling be-
tween two single mode waveguides, matching the MFD is a critical parameter
to minimize loss. When the mode is not well described by a Gaussian param-
eter, definition of the MFD becomes less clear. Several techniques have been
proposed, and are still being considered for standards [9].

The cutoff wavelength defines the boundary between single mode and mul-
timode operation of a fiber. Wavelengths shorter than the cutoff wavelength can
excite more than one spatial mode. The cutoff wavelength is defined in terms of
the cutoff parameter for the onset of the TE and TM modes, namely V' = 2.405,

2T T o
AC = 2'405 [ ngo,re - nglad (4.53)

The HE;; mode can be polarized in any arbitrary direction in the z-y plane, so
it has a degeneracy of two.

9.  Total Number of Modes in a Step—Index Waveguide

For large core diameter fibers with many modes, it is possible to provide an
approximate formula describing the total number of modes that will propagate.
Recall the characteristic equation for the LP modes (Eq. 4.36)

Jimika) _ _7Kj—1(7a)
Jj(ka) Kj(va)

For values of ka far from cutoff, the term ya will be large, and the asymptotic
value of the K, functions can be used. Since K;(ya) — /7/2yae™ " for large
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ka, the ratio K;_,)/K; goes to unity for large arguments. The characteristic
equation reduces to

Ji-
J l(K’a) — _1 (454)
Ji(ka) K
For a given value of v, the number of allowed modes will be proportional to the
number of roots of J;(xa) between 0 and ka = V. In the approximation that
Ka is large, the asymptotic expansion of J;(xa) can be used

2 vw
Jj(ka) = 4/ p— cos(ka — - = Z) (4.55)

There will be one root every time the ratio goes to infinity, i.e. each time the

argument increases by 7. For a given value of v, the number of roots will be
approximately

= -——— 4.56

m=(ra -2 = D)/ (456)

Solving this in terms of the normalized frequency, V' = k420, and ignoring
the /4 term

V = Kmaga = (2m + I/)g— 4.57)

This equation, while only an approximation, shows the general relationship
between the azimuthal number, v, and the number of radial nodes in the mode,
m. As v increases, indicating more angular lobes, the maximum value of m
must decrease, implying that the radial structure becomes smoother.

Since there is an allowed mode for each value of m and v, we can graph-
ically plot the number of modes. The largest possible value for m, from Eq.
4.57,is V/m, when v = 0. Likewise, the maximum value for v is 2V/7. These
allowed values are plotted in Fig. 4.13.

Each dot represents an allowed combination of m and v. The total number
of allowed modes is geometrically determined from the area of the triangle in
Fig. 5.13, which will be (1/2)MmazVmaez = V2 /7r2. We must recall that for
each mode, there are two angular orientations (cosine or sine solution), and two
possible polarizations (z or y in the LP mode approximation). The number of
modes is increased by a factor of four. So the number of allowed modes in a
fiber waveguide is given by the approximation

2
N= 4% (4.58)

Again, we stress this formula is an approximation, and is only good when V is
large.
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2Vin

Mode Boundary Formed by
V=(v + 2m)(n/2)

Figure 4.13.  Graphical plot of the allowed values of v and m for the step—index fiber. The
boundary is determined by the condition listed in Eq. 4.58. The number of points beneath the
curve is proportional to the area of the shaded region.

10. Summary

In this chapter, we developed the fundamental concepts of the circular
dielectric waveguide. Solution of the wave equation in cylindrical coordinates
led to mode solutions in the form of cylinder functions such as sin¢g and the
Bessel functions, J,(x7). As was found in planar waveguides, the propagation
parameters, 3, for the modes were found from solution of a transcendental
equation, and the values of 8 were restricted to lie between kyncore > B >
koneaqg- We developed explicit solutions to the longitudinal electric fields of
the modes, and using Maxwell’s equations, we found expressions for all field
components. The formal modes are complicated in terms of their field structure,
so a picture based on the weakly guided mode approximation was developed
which simplified both the characteristic equation for finding 3, and the physical
description of modes as linear superpositions which were linearly polarized.

We concluded the chapter with a number of short topics, such as the cutoff
conditions, the V' -parameter, the number of modes, and the power confinement
of the modes. One topic that was not discussed was dispersion, which is a very
important topic for any long—distance optical waveguide system. We defer a
complete discussion on dispersion in waveguides until the Chapter 6, where
graded index waveguides are described.
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Practice Problems

1.
2.

Confirm Eq. 4.28 (an exercise in Bessel functions).

Determine the cladding index of refraction of a fiber which has a core
index of 1.5, a core radius of 5 ym, and V = 2.0 at A = 1.5um. At what
wavelength does the fiber cease to be a single mode fiber?

. Consider a fiber with core index 1.5, cladding index 1.495, and a core

radius or 5 ym.

(a) How many modes exist for a wavelength of 1 um?

{b) How many modes exist for a wavelength of 0.5 ym? List each mode,
and its cutoff condition.

Consider a step—index fiber with n o = 1.5, ngjeq = 1.495, and a =

Yum,

(a) What is the wavelength that corresponds to the single mode cutoff
for this fiber?

(b) At what wavelength does the HE33 mode cutoff?

(c) List all the modes that propagate in the fiber at 1.5 pm.

. For the fiber in problem 3, list all the LP modes that would exist at

A = 0.8um.
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6.

10.

11.

12.

13.

14.

INTEGRATED PHOTONICS

A step—index fiber has an ncre = 1.47 and ngeq = 1.46. The core
radius is 3um. For A = 1.3um, determine the following parameters:
N.A., V-number, Mode Field Diameter of the HE,; mode, and the cutoff
wavelength.

A step index fiber is operated at 1.3um. The core radius is 25um, 1¢ore =
1.465 and n g = 1.460. Use the “weakly guided mode approximation”
and plot the eigenvalue equation for the v = 0 and v = 1 cases. Find the
value of 3 for the highest order TE mode.

. Identify which modes exist and specify the cutoff parameter for each

mode in a step—index fiber with V = 5.5,

If a single mode fiber has a longitudinal field given by

E.(r,¢,2) =—j korfm cos ¢n§;§23 for0<r<a

cos ¢7§;§;’3 fora <r

_ _s_FE
= 7 Fonetaa

show that

Ey(r,¢,z) = EgJo(kr)/Jo(ka) for0 <r <a
= EyKo(vyr)/Ko(va) fora < r

Make a sketch of the amplitude distribution inside and outside the core.

To learn about Bessel function identities, fill in the missing steps in the
derivation of the characteristic equation for the LP modes.

Compare the overlap of the transverse mode for an HE{; mode to the gaus-
sian approximation for that mode. Design a fiber that has a normalized
frequency, V = 2. Explicitly describe the transverse field in all regions
of space. Compare the Gaussian approximation to this by calculating the
sigma squared deviation between the two normalized field patterns.

Make a plot for designing a single mode fiber. Use axes of core radius
versus the difference in the index of refraction between the core and
cladding for a single mode fiber. Plot a curve showing the boundary
between single-mode and multi-mode operation of the waveguide. Do
this for A = 1.5um, and 1.3um. Assume the core index is n = 1.5.

A step-index fiber has a V-number of 10. For the LP;; mode, what
fraction of the power is contained in the core, and what fraction is in the
cladding?

A step—index fiber is made with a core index, 7., = 1.45 and a cladding
index ngaq = 1.44. Using the Gaussian approximation, make a plot of
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15.
16.

17.

the core diameter versus the MFD for the HE;; mode over the range
V = 0.8 — 2.2. Assume A\ = 1.5um.

Confirm Eq. 4.32 using Eq. 4.30 and the identities listed in Eq. 4.31.

A step-index fiber is to be constructed using silicon for the cladding and
germanium-silicon for the core. The index of the cladding is n.y,q = 3.5
exactly, and the index of the core is nggre = 3.503.

(a) What radius should the core have in order to insure that the waveguide
will remain single mode until A = 1.2um?

(b) What is the numerical aperture of this fiber?

Using a computer, determine the waveguide dispersion od a step-index
single mode fiber. Design two single mode fibers with V' = 2, one with
a small core and large An, and the other with a small An and a large
core. Choose a core index of n = 1.50. By calculating 3 at a number
of wavelengths around 1.3 pm, determine the waveguide dispersion for
each fiber. Which fiber has the least waveguide dispersion?



Chapter 5

RECTANGULAR DIELECTRIC WAVEGUIDES

1. Introduction

The rectangular dielectric waveguide is the most commonly used structure
in integrated optics, especially in semiconductor diode lasers. Demands for
new applications such as high-speed data backplanes in integrated electronics,
waveguide filters, optical multiplexors, and optical switches are driving tech-
nology toward better materials and processing techniques for planar waveguide
structures. The infinite slab and circular waveguides that we have already stud-
ied are not practical for use on a substrate: the slab waveguide has no lateral
confinement, and the circular fiber is not compatible with the planar processing
technology being used to make planar structures. The rectangular waveguide
is the natural structure.

In this chapter we will study several methods for analyzing the mode struc-
ture of rectangular structures, beginning with a wave analysis based on the pi-
oneering work of Marcatili[1]. The wave analysis provides a good description
of the modes far from cut-off, but becomes less accurate for small V-number
waveguides. We will then look at look at a popular analysis method called the
Effective Index Method. One of the simplest structures to build is the ridge
waveguide. An example using the effective index method will be used to illus-
trate these useful structures. Finally, we will review perturbative solutions to
improve the results of wave analysis.

Applications for rectangular waveguides typically involve short lengths
(distances of no more than a few centimeters). Unlike the optical fiber, which is
primarily a way to convey optical signals over a long distance, integrated wave-
guides are used to make devices such as power splitters, wavelength-selective
filters and drops, modulators, switches, and other devices that are useful for
controlling information on an optical network. The physical mechanisms used
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Figure 5.1. Three possible configurations for rectangular waveguides. In a) the cover index is
air. Inb) the guiding layer is completely surrounded by a cladding layer. In c) lateral confinement
is established by the dielectric ridge on top of the substrate.

to control this information varies with the device. Power splitters and interfer-
ometers might use Y-junctions, while filters might rely on evanescent coupling
between adjacent waveguides. Design and analysis of these problems requires
knowing the exact mode structure of the field in order that coupling can be
accurately predicted. We will see that unlike the planar slab waveguide or the
circularly symmetric fiber waveguide, it is generally impossible to find exact
analytical solutions to these structures. Most work is now done using numerical
simulations, which are described in a following chapter.

2. Wave Equation Analysis of a Rectangular Waveguide

Fig. 5.1 shows three types of rectangular waveguide that can be employed
in an integrated optical circuit. They illustrate the surface waveguide, the buried
waveguide, and the ridge waveguide. These geometries are relatively simple
to create using standard lithographic and overgrowth techniques. As usual, the
index of the rectangular region must be slightly larger than the surrounding
medium for the structure to guide light. Our goal is to determine the mode
structure of these waveguides. To begin the analysis we will develop a wave
equation expression that is accurate well above cutoff.

A cross-section of a generalized embedded waveguide is shown in Fig. 5.2.
There are nine distinct dielectric regions in this structure. Analysis is difficult
because it is impossible to simultaneously satisfy all the boundary conditions
in this structure.

The difficulty in analyzing this structure originates in the four shaded re-
gions. These regions act as the coupling zones for the x and y solutions of the
field. Well above cut-off, the electromagnetic mode is tightly confined within
the core, and the amount of energy in the corner regions is negligible, so the
wave equation can be solved using standard separation of variables. Near cut-
off, however, the mode will have a significant amount of power in the corner
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Figure 5.2. A general dielectric structure. The core (n1) is surrounded on every side by a lower
index material. The index in the shaded regions is neglected in the first-order approximation to
solutions to the waveguide. The regions are numbered for identification only; there is no implicit
relationship between the various indices, except that n; is larger than all others.

regions. The x and y dependent solutions will be strongly coupled through
the boundary conditions in the corner regions, making them mathematically
inseparable. Therefore, neglecting the field in the corner regions will be the
substance of our approximation. As we shall show in a subsequent section,
perturbation techniques can be used to “clean-up" the solutions near cut-off.

2.1  Mode Designation

The mode designation commonly used for rectangular structures is slightly
different than the terminology we have used for circular or slab waveguides.
Since in rectangular dielectric waveguides the field is neither purely TE or TM
(there is generally a skew in the mode), a different designation is called for.
In the limit of small index differences, the guided optical fields are essentially
transverse, and the transverse component of the electric field will be aligned
either with the z or y axis of the structure. Modes are designated £Y , if in the
limit of total confinement the electric field is parallel to the y-axis, and as EZ,_,
modes if the electric field is parallel to the z axis. As in the microwave notation,

the nm subscripts designate the number of maxima in the z and y directions.

2.2 Formulation of the Boundary Value Problem

To determine the mode field configuration, we must find the eigenvalue 3
for each mode. If we are far from cut-off, or if the index difference between
the guiding region and cladding is small, the fields are effectively transverse.
This condition is similar to the LP modes described in Chapter 4. Since the
boundaries of the waveguide are rectangular there will be no conversion of £,
into Ey or I, upon incidence at an interface. Therefor vector wave equation can
therefore be converted into a scalar equation for each component. We assume
that the longitudinal field dependence follows the form Z(z) = exp(—j8z) +
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c.c., thus the scalar wave equation becomes

PE O*FE

a7 topt [k (z,y) - 0| E=0 .1)

where kg is the free space wavevector, 3 is the unknown propagation constant,
and n(z, y) is the index of refraction for the structure. Notice that this is similar
to the wave equation we solved in Chapter 3 for the slab waveguide, except now
there is a possibility of change in the y-direction.

We use separation of variables to find a solution E(z,y) = X(z)Y (y),
where X (z) is the amplitude distribution function along z, and likewise Y (y)
is the amplitude distribution in the y direction. Ignoring the four corner regions,
there will be five solutions, one for each region of the waveguide. The guided
mode solutions in the core (region 1) should vary sinusoidally along the z
and y direction. Boundary conditions require that the transverse component of
the fields must be continuous across each interface. In regions 2 and 3, the y-
dependence must therefore have the same sinusoidal structure as in the core, but
the z dependence should decrease exponentially away from the core. Similarly,
in regions 4 and 5, the field will display the same sinusoidal dependence in the
z direction as the field in the core, but should exponentially decay with y. The
general form of the solution is

E(z,y) = Ege I kaiwthuiv) =Bz | ¢ ¢ (5.2)

where the propagation coefficients, ky;, and ky;, can be real or imaginary,
depending for which region, 4, the solution is valid. The z-propagation constants
kz1, kza, and kg5 in regions 1, 4, and 5, must be identical and independent of y.
Using separation of variables, letting F(z,y) = X (z)Y (y), it is easy to show
the wave equation can be written as

X + % + k§n2(x,y) —-p2=0 (5.3)

Rearranging, the equation becomes

X 9 o Y

T = kon'(@.y) + 67— 5 = —k7 (54)
where &2 is a separation constant. Using this result, we can solve for the Y’
function .

Y

7 = ~ken*(@,9) + B2 + ;= - (5.5)

We will assume a step-index structure. In the core, where n(z,y) = n;, the
guided mode solutions must be oscillatory, implying that x; and x, must be
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Figure 5.3. Geometric interpretation of the three propagation vectors in a rectangular wave-
guide.

real. The allowed core solutions will have the form

X(z) = Acos(kgx + ¢y)
Y(y) = Bcos(kyy + ¢y) (5.6)

where ¢, and ¢, are phase constants that are adjusted to match boundary con-
ditions. The separation constants, . and s, must satisfy (from Eq. 5.5)

B% =kini — k% — K2 6.7

Notice the similarity between this equation and that for the slab waveguide
(Eq. 3.7). In the case of the 2-dimensional rectangular structure, there are two
transverse wavevectors. Fig. 5.3 illustrates the geometric view of the relation
between the three orthogonal wavevectors.

Outside the core, the guided mode solutions must have at least one com-
ponent which displays exponential decay. Consider the solution in region 3 of
Fig. 5.2 (x > 0). To match boundary conditions, the Y (y) in this region must
be identical to the y-solution found in the core. So the 92¥/9y? term simply
becomes —«2, and the equation in region 3 reduces to

o’V
. K20 + (kgn3 — %) ¥ = 0) (5.8)
Substituting Eq. 5.7 into Eq. 5.8, and using the notation of separation of
variables, yields
X3 5
X - ~(k§n3 - 6° — )

= (kgn} - k§n3 — x2) (5.9)

which has the solution

Xs(z) =€ P* for >0 (5.10)
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exp(-y3 X) Cos(kyy + @y) exp(-3 X)
exp(s ) exp(-y3 X) 3 exp(-s (y-b))
Cos(xy X + dy) Cos(ky X +®y) Cos(ky X + ®y)
exp(¥s ¥) 5 Cos(ky y + @y) . exp(-y4 (y-b)) .
exp(y; (x-a)) Cos(xy y + ®@y) exp(-y4 (y-b))
exp(ys Y) exp(y2 (x-a))  , | exp(y(x-a))

Figure 5.4. The rectangular waveguide can be described as nine separate regions, each with
its own electromagnetic field description. (For simplicity, amplitudes are not matched across
boundaries in these expressions.)

where

v3 = \/kg(n% ~n3) — k2 (5.11)
So the total field in region 3 can be described as
E(z,y) = Ccos(kyy + ¢py)e™?® for z>0,0<y<b (5.12)

Through a similar set of solutions we can find the scalar solutions to the x- and
y-components of the field in regions 2, 4, and 5

Xo(z) = €7@t forz<b
Ya(y) = e 1 fory >a
Ys(y) = €™ fory <0 (5.13)

where the exponential decay constants are given by
v = \/k2 n? — n2) — k2
Y4 = \/k2 2—nd) — K2
VR(n? —nd) - K2) (5.14)

I

75

These fields are summarized in Fig. 5.4, where the appropriate product of X (z)
and Y (y) solutions are listed in each region, and the transverse solutions for
several modes are plotted in Fig. 8.5.

2.3  Solution to the Boundary Value Problems

To complete the solution, we must determine the specific values for k4, &y
and 8. This is done by applying the boundary conditions that connect the
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Figure 5.5. The transverse scalar field distributions for the = and y directions.

solutions between the various regions. Since there are many fields, and many
interfaces, matching all the boundary conditions is a complicated and tedious
process (see for example [2]). Consider the situation where an E* mode is
being guided. Fig. 5.6 shows a cross-section of the waveguide, along with the
two transverse components of the field in the core.

In this waveguide, we must insure the continuity of the tangential electric
field at the y = 0 and y = b planes, and continuity of the tangential magnetic
field at the z = 0 and £ = —a planes. The other boundary conditions (con-
tinnity of D,,opm and Bporn,) are almost automatically satisfied in the weakly
guiding approximation, at least they are close enough to be insignificant. From
the boundary condition point-of-view, the £ field looks like a TE mode in a
slab waveguide of thickness b, and a TM mode in a slab waveguide of thickness
a. After lengthy calculation [1], the characteristic equation for &, can be shown

T
1 y

| |
1 b *|

Figure 5.6. The E field in the core will have the electric field polarized along the z direction,
and the magnetic field polarized along the y direction.
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to be
Ny§74 + ) (5.15)
K’y — Y475

This is identical to the characteristic equation for the TE mode in a slab wave-
guide, which seems reasonable. Similarly, matching the tangential components
of the Hy field only involves the interfaces at z = 0 and x = —a between the
core region and regions 2 and 3 of Fig. 5.2. After much algebra, the character-
istic equation for x,, can be shown to be [1]

tan kyb =

2 2
2 (N33 + n372)
tankga =nj—5—5—5—5

(5.16)
nin3k2 — nyav3

which is the characteristic equation for a TM mode in a slab of thickness b. These
results should seem intuitively plausible, even if the mathematical derivation is
not presented in all its detail. Using these eigenvalues, we can finally determine
the propagation constant 3 from Eq. 5.9.

The complete description of the modal fields can now be written. There
are five regions, so five separate electric fields and five separate magnetic fields
must be specified to completely describe the field. Reference [2]has a complete
listing of these fields.

The phase terms in Eq. 5.6, are found from [2]

2

tang, = —%%
1

tm%::%ﬁ (5.17)
Y

We can see that the rectangular waveguide mode, to first order, is simply
the product of two orthogonal spatial modes, one which acts like a TE wave,
and the other a TM wave. The o dependence of the mode is found by effectively
solving a slab waveguide problem as if there were no structure to the waveguide
in the y-direction. Similarly, the y dependence of the mode is found by treating
the waveguide as a slab with infinite extent in the z-direction. The two solutions
are coupled through the selection of the propagation coefficient, 3, where both
transverse propagation coefficients, «, and x, are subtracted quadratically from
k()nl.

The critical cut-off condition will be determined by the smaller of the
two dimensions (a or b) of the waveguide. The normalized frequency for a
rectangular waveguide is defined as

a
V=m?M$mg (5.18)

where a is the smaller dimension, n; is the core index, and ns is the next smaller
index.
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The EY,, modes can be obtained in close analogy with the E%  modes.
In this case, the F, and H; components are dominant. Following Marcuse [2],
the fields in the five regions can be derived from the longitudinal fields, F, and
H, using Maxwell’s equations.

The characteristic equations for these modes are

tamga = S22
(K3 = 7273)
2 2 2
tan kyb nary (574 + 1) (5.19)

2,,2,.2 2

and the phase terms can be found from

K.
tan7, = 2 tan, :;l—%'y_z
i

Example 5.1: Analysis of a symmetric embedded waveguide

Consider the embedded waveguide shown in Fig. 5.7. The core has an
index n1, and it is surrounded by index n. Assume thatn; = 1.5, ny = 1.499,
a = 5um, and b = 10um, and the electric field is oriented in the y-direction. We
will first determine the normalized propagation coefficient for the waveguide
over the 0.5 to 2.0 um region.

Developing an expression for the propagation coefficient, 3, requires solv-
ing the wave equation. Because this waveguide forms a symmetric structure,
we will place the origin in the center of the waveguide. We want to define the
index of refraction in such a manner that it satisfies the requirement of being
separable in the x and y coordinates. We define n?(z,y) as follows:

n?(z,y) = n"(z) + n"(y) (5.20)
where

n?(z) = n2/2, for|z|< a/2

Tn1

i -

s

Figure 5.7. A symmetric waveguide is comprised of a rectangular dielectric of index n sur-
rounded by an index n2. The origin of the system is situated in the center of the guiding core.
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= n2—ni/2 for|z|>a/2
n"*(y) = ni/2,  forly| <b/2
= n-n2/2 forlyl >b/2 (5.21)

The definition above accurately describes the index of refraction in the five
regions that we will seek a solution. The index description is not correct in the
corner regions, but we are not going to solve the wave equation there, so the
error is of no significance to our ability to find a solution.

The index distribution (Eq. 5.21) is symmetric, so the separable solutions
to the wave equation will have the form

COS Ke

= A—_ f 2
X(z) "y or |z] <a/
= Ae =92 for |z| > a/2
COS iy Y
Y = B—Y° f <b/2
(v) cosmbz O lyl <b/

= Be w2 for |y > b/2)

for the symmetric modes. Similar expressions can be found for the antisymmet-
ric modes (replace cosine by sine and adjust the signs). The transverse wave
vectors, «z and ky, are found from the transcendental equations derived for
symmetric planar waveguides in Chap. 3 (Egs. 3.28, 3.29). If we assume an
EY mode, then the characteristic equations for the transverse wavevectors are

e _ Mlcg(anng)—nﬁ

tan kya/2 =1 -
T T
2 2 /& “n2) w2
_nyy _ 1 Vkg(ni—n3)—kj
tan K}yb/? = —T:g"iy = ;g oy

From these values, we can can find the allowed value of 3 using Eq. 5.7

6% = Kin? — k2 — 2

Using a numeric program in Mathematica, we calculated the allowed trans-
verse wavevectors and values of 3 over the wavelength range 0.5-2 um. The
normalized value of the propagation vector, b, defined as

_ B — kg3

=55 —5x 5.22
RanT — kin] 6-22)

was then plotted in Fig. 5.8. Please note, the normalized propagation vector,
b, should not be confused with the spatial dimension, b, of the waveguide. We
will rely on context to avoid any confusion between this shared symbol.

Blind application of the formula for 3 led to values for the normalized
propagation coefficient, b, which in some regions are negative. This is clearly
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Figure 5.8. The normalized propagation coefficient for the waveguide. Note that b is less than
zero for certain ranges of the normalized frequency. This is unphysical, and these modes are
therefore below cut-off.

not physical; the only interpretation of these points is that they represent modes
that are beyond cut-off. Unfortunately, in a symmetric waveguide we expect that
there will always be at least one allowed mode, in contrast to what the numeric
results are telling us. It turns out that the calculated solution is increasingly
inaccurate in the region of normalized frequency V' < 2. This is an example of
where we must be careful about neglecting the corner dielectric regions. The
wave equation solution is valid, however, for values of V' > 2, as we shall show
in the next section.

2.4  Solutions Near Cut-Off

The analysis presented above is an approximation based on neglect of
certain regions of the waveguide. So long as the mode is well above cut-off, the
solutions and expressions for the eigenvalues will be nearly indistinguishable
from the exact value. For modes where V' < 2, we can expect the exact solution
to deviate from the calculated value because there will be non-negligible fields in
the corner regions. To reduce this error, one must resort to numerical techniques,
or to perturbation methods.

The results of Example 5.1 are disturbing: we expect that for a symmetric
waveguide, there will always be at least one guided mode. In fact, thisis true. So
the calculations are in error. The next section deals with a first order correction
to this problem.

3.  Perturbation Approach to Correcting 3

The major problem with the analytical approach is that it relies on the mode
being tightly coupled to the core, so that relatively little field exists in the four
corner regions. The source of error that arose in the last example came from
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neglecting the field in the corner regions surrounding the rectangular waveguide.
This results in an underestimate of the propagation coefficient.

One method to find an improved solution is to apply a perturbative correc-
tion to the solutions obtained above. The true waveguide-mode, ¥, is assumed
to be a solution to the scalar wave equation

V2U + [k2n?(z,y) — T =0 (5.23)

where n(z,y) is the actual index distribution for the structure. In general,
n(z,y) is too complicated to allow an analytical solution to the wave equation.
So we seek an index distribution, ng(z, y), that is close to the actual distribution
and which can be analytically solved. The wave equation for this modified index
distribution,

V20, + (k§nj(z,y) — B2) ¥y =0 (5.24)

has solutions ¥,,, where n is the mode index. In general there will be an
infinite number of such solutions, most of which will be unguided (radiation)
modes, and a finite number will be guided modes. Based on the completeness
of the modes, any reasonable distribution of electromagnetic energy can be
described by an appropriate superposition of these modes. The secret to making
perturbation theory work well is to select the trial index, ng(x, y), to be close
enough to the actual index so that the trial and actual solutions will not be
significantly different. Let’s assume that a suitable index has been identified,
and that one of the trial solutions, ¥,,, closely resembles the true solution, U.

When the true mode and the trial mode are very close, we can approximate
the actual mode in terms of a superposition of the orthonormal calculated modes
of the waveguide,

U="Up+Y an¥n (5.25)

where a,, is the amplitude of each of the other modes. We have separated the
closest calculated mode from the superposition, so n # m in the summation.
In this way the summation represents the total perturbation on the solution. Of
course, all we have done is traded an infinite series for an insolvable problem,
which might strike you as poor progress. However, we can dramatically sim-
plify this series by taking advantage of mode orthogonality. We do this in the
next few steps.

If we multiply Eq. 5.24 by ¥, and multiply Eq. 5.23 by ¥,,, we can
subtract the two equations, and then integrate over a surface transverse to the
axis of the waveguide to get

(8~ B) [ W0adS = K} [ (n’(w,9) - nE)WL,ds

_ / (IV20, — U, V20)dS  (5.26)
S



Rectangular Dielectric Waveguides 111

The last term vanishes due to Green’s second identity, leaving

(n%(z,y) — nd)V¥,dS

0TS (5.27)

g - g2 = k3ls

This gives us an expression for determining the difference between the actual
value of 3, and (3, for each of the modes in the simplified waveguide.

In order to get a complete description of the perturbed mode, we must
evaluate the summation in Eq. 5.25. Multiplying both sides of Eq. 5.25 by one
of the modes of the simplified index distribution,¥,,, integrating over surface
S, and invoking the orthogonality of the ¥,, modes, we get

/5' \I/\I’n/dS = fg U W + Zn;ém Qn fS \P"\Ijn/
= 5mn/ —I— andnn’ (528)

where §,,, represents the Kronecker delta function, which is unity only if
m = 7/, and is equal to zero otherwise. Substituting from Eq. 5.27 the
expression for [¢ ¥, we get an expression for ay,

Qp =

2
_ky / (n2(z,y) —nd) UV, dS m+£n  (529)
(B2 =B3) Js
Unfortunately, in order to calculate the terms a,, needed to create a superposition
that resembles the true mode, ¥, we need to know\ ¥. But we do not know U,
and it looks like we are going in circles. Fortunately, in calculating coefficients,
it is generally sufficient to retain the zeroth order solution. We can assume that
the true mode V¥ closely resembles one of the modes from the modified index
distribution, namely ¥,,,, and that the value of 8,, =~ 3. Replacing ¥ with ¥,
and 3 with G,,, we get

an = -—kg—/(nz(:n y) —nd) 0, 0,.dS m#n (5.30)

n ( 16%1 — 1872; ) s ] 0 m*n

The correction to the propagation coefficient with the same approximations is

T5 V2.9

2
o6 = - 52, = ks (531)
These are general equations that can be applied to any waveguide. The correc-
tion to 3 is proportional to the index difference between the actual and modified
profiles, weighted by the intensity of the field in the region of the index dif-
ference. In the case of the rectangular structure, we would need to integrate
only over the four corner regions where the index differs from that assumed in
the solution. It should also be noted that to get a true description of the modal
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field distribution, the radiation modes should be included in the superposition.
However, since to second order the propagation coefficient only depends on the
overlap integral of the index difference with the square of the approximate mode,
including the radiation modes will not significantly influence the calculation for
B.

To illustrate the power of the perturbative method, let’s continue Example
5.1, and see how inclusion of the field in the corner regions leads to improved
physical solutions.

Example 5.2 Perturbative correction to a symmetric waveguide

In Example 5.1 we found that a solution which inaccurately predicted cut-
off for the fundamental mode. We know this is physically impossible, so the
solution must be in error near cut-off. In this example we apply perturbation
theory. The correction to 3, and thus the normalized propagation constant, is
given by Eq. 5.31. In the example, the actual index in the corner regions was
n?(z,y) = n3, while in the solution, the corner regions were given a value
n3(z,y) = 2n3 — n?. The difference in index between the actual and trial
index is given by

n?(z,y) — nj = nj — (2n —n}) =nf — nj (5.32)
The correction to the propagation coefficient will thus be

4 f<f/02 fbo/%("% —n3) 02 dz dy

2 _ 1.2
O =k 1 52 dr dy

(5.33)

The factor of four comes from symmetry and the fact that we must evaluate the
integral over all four corners. For the trial solution, ¥,,, we use the solution
found in Example 5.1. Using the mode described in Eq. 5.21, the integral can
be evaluated. This integral often will require numeric solution. Fortunately for
the symmetric waveguide used in this example, a closed form solution can be
found which dramatically increases calculation speed. After tedious algebra
[3], the correction to the normalized propagation constant, b, can be shown to
be

i = [14 (D 1) (spghtne)|

-1
k2(n2—n2) 2 /g bsin b
* [1 + ( K2 N 1) <l+:t C(l)s :yb) (5:34)
where the top sign (4) corresponds to even modes, and the bottom sign (—) cor-
responds to antisymmetric modes. This function can be numerically calculated
and added to the original data that formed b. The results are shown in Fig.5.9.
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Figure 5.9. The normalized propagation constant after being corrected with the perturbation
correction. The solid line represents the perturbation corrected solution, and the dotted line
represents the data from Example 5.1. Notice now that the cut-off is closer to what it should be.

The two curves are superimposed on each other to illustrate the difference
that the perturbation adds to the solution. While the perturbation correction does
not bring the cut-off point to V' = 0, as we know it should be, it does improve
the overall curve. Comparison of this result with more accurate numerical
modeling shows the perturbative correction is good to about V' = 0.7 for
the fundamental mode, and is an excellent fix for most higher order mode
calculations [3]. Nevertheless, the small magnitude of the correction makes
it clear that perturbation analysis is only useful for cleaning up an already
reasonable calculation.

4. Effective Index Method

As we have seen in the last two sections, exact analysis of the mode struc-
ture of a dielectric waveguide can involve rather extensive calculations. In this
section, a method known as the Effective Index Method is developed [4]. 1t
is very similar to the first technique that we developed using the solutions to
two orthogonally oriented waveguides to find the allowed value of the propa-
gation coefficient, 3, except here the direct interaction of the two waveguides
is accounted for.

The effective index method converts a single two dimensional problem into
two one-dimensional problems. Consider the buried rectangular waveguide
shown in Fig. 5.10. To use the effective index method, we first stretch the
waveguide out along its thin axis, in this case along the y-axis, forming a planar
slab waveguide.

The thin one-dimensional slab waveguide can be analyzed in terms of TE
or TM modes to find the allowed value of 3 for the wavelength and mode of
interest. Once /3 is found, the effective index of the slab is determined through
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Figure 5.10. A buried dielectric waveguide can be decomposed into two spatially orthogonal
waveguides: a horizontal and a vertical slab waveguide. The thin waveguide is analyzed in terms
of the actual indices that form the structure. The thick waveguide is analyzed using the effective
index found from the first waveguide analysis.

the expression

Meff = kﬁ (535)
0

where kyp is the vacuum wavevector of the light being guided. After this effective
index is determined, we return to the original structure, and stretch it along the
thick axis (in this case vertical), forming a slab waveguide in the z-direction.
The modes for this waveguide can now be found, only instead of using the
original value of the index for the guiding film, the effective index found in
the first step must be used. The value of 3 found from this last step is the
actual value for the mode. A note of caution: to be accurate, the aspect ratio
of the width/height aspect ratio of the waveguide must exceed a factor of three
to be accurate. Thus the effective index method is not applicable to square
waveguides.

As with the wave analysis, we must be careful to use the proper character-
istic equations for each waveguide. For example, if in Fig. 5.10, the electric
field is polarized in the z-direction, then for the thin waveguide, the field will
appear to be a TM mode, and the appropriate characteristic equation must be
used. When the thick slab is analyzed, the field will look like a TE mode, and
so the TE characteristic equation should be used to find 3. When the index
difference between the guiding and cladding layers is large, using the proper
characteristic equations is critical for getting a reasonable answer.

The effective index method is best illustrated with example. In Example
5.3, we present an description of a waveguide taken from published literature
[5] which describes a ridge waveguide on a silicon substrate. Since silicon is
the primary material for electronics, there is much interest in creating optical
waveguides on silicon substrates.

N4
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Figure 5.11. A ridge waveguide constructed from Si and SiGe alloy. The alloy is 6.5 um thick
under the Si ridge, and is 5.4 pm thick elsewhere.

Example 5.3: Silicon-Germanium Ridge Waveguide

The structure in Fig. 5.11 is to be used as a waveguide on an silicon
substrate. This is an example of a ridge waveguide, where the mode is confined
underneath the ridge in the Si-Ge layer. We can use the effective index method
to find the eigenvalue 3 for the waveguide, and determine the mode size for the
fundamental mode in this structure. The waveguide isto operateat A = 1.32um.
Assume that the guided light is polarized in the z-direction.

The index of refraction of Si-Ge (assuming a 1.2% Ge concentration) is
given by [6]

ng = 3.5
ngi,_.Ge, = "Sit 0.1042(x=0.012) = 3.50125

The mode will be confined under the ridge due to the effective index created
by the ridge. There are three different horizontal regions, each with a different
effective index.

In order to apply the effective index method to the horizontal confining
structure, we must find the effective index of all three regions. Since the field
is polarized vertically (in the z-direction), the field will be a TM mode in the
horizontal structures.

We will begin with the ridge. The Si cover layer can be assumed to be
effectively infinite, because the evanescent waves will not penetrate very far into
the layer. Therefore the structure can be considered to be symmetric waveguide,
with thickness h; = 6.5um. We use the characteristic equation for the TM
mode in a symmetric waveguide,

tankhy/2 = J
K

Sl



116 INTEGRATED PHOTONICS

; |
f |
Air : Si ! Air
Si-Ge | Si-Ge : Si-Ge
Si | Si | Si
r | x | m

Figure 5.12. The ridge waveguide has three distinct vertical structures. Regions I and III are
identical, and consist of a Si-Ge layer on a Si substrate and capped by air. Region II has a Si-Ge
layer surrounded on both sides by Si.

where n; = 3.50125, ng = 3.5, and y = kg(nf — n%) — 2. Using numeri-
cal techniques we find
Kk = 2769.22cm™!

B = /k3n} — K2 = 166636 cm™*

v = /K3 -nd) — k2 = 3487 cm™!

The effective index of the ridge section is
Neffy = s = 3.50077
ko

Now we must repeat this process for the two side regions. These form asym-
metric waveguides. The characteristic equation for the TM mode is (Eq. 3.23)

2 2 4 -1
n n n
tan(hokys) = K {;é% + n—é%} [ff% - WJ;?%%}

Here, hy = 5.4um , v5 = /kZ3(n? — n2) — k2, and v, = \/k3(n? — 1) — K2,

where n; = 3.50125, n, = 1, and ng = 3.5. Evaluating Eq. 3.23 numerically
with these values yields

k = 3866.75cm™!
B = 166614 cm™
neff 3.50031
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Figure 5.13. The horizontal structure of the waveguide can be modelled as a symmetric slab
waveguide constructed with three layers, and the index of each layer is determined by the effective
index determined by the vertical structure of the waveguide.

Armed with the three indices for regions I, II, and III, we can now describe the
effective waveguide in the horizontal direction. Fig.5.13 shows the structure
that must be analyzed. Note that the three regions carry the three effective
indices that were evaluated in the last steps.

In this structure, the z-polarized field will appear as a TE wave, so the
characteristic equation for this symmetric structure is given by Eq. 3.28, using

h3 = 16um,
tan ("‘y—h:") = (5.36)
2 Ky
Numerical solution leads to
ky = 1323cm™!
v = 2352cm™! (5.37)

g = 166631 cm™!

This value g is the eigenvalue for the mode of the waveguide.
Since the effective waveguide is symmetric, the lowest order spatial mode
of the waveguide is described by Eq. 3.27

. Cos(kzT)

E(ﬂ?) :Em for I(L‘| < (1/2
= Aze Pl for|lz| > a/2
. cos(kyy)

E(y) - COS(I‘Eyb/2) fOI‘ |yl < b/2

= ze Wl forly| > b/2

Plugging numbers into these expressions and plotting the results, we find the
mode field shown in Fig. 5.14.
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Figure 5.14. The calculated mode intensities derived from the constants given in the text. The
calculated dimensions agree well with the experimentally measured values of 8.0 pm, and 13.9

pm.

5. Effective Index Method applied to Ex. 5.1

Let’s complete the example we began in the wave analysis and perturbation
theory sections by using the effective index method to calculate the normalized
propagation coefficients for the waveguide first introduced in Ex. 5.1.

The calculation is relatively straightforward. First, the waveguide is an-
alyzed as if it were a S5um-thick slab waveguide. Since the electric field is
oriented in the y-direction, the mode can be analyzed as a TE mode for the thin
dimension. The transverse wavevector, s, was found for a range of wavelengths
spanning 0.5 — 2um using

tan rza/2 = \/kgn? — k2 /Ky (5.38)

From this data, an effective index was assigned for each k-vector

ness =\ kgni — w3 /ko (5:39)
|‘— 10 pm —'r
T
5um| n=1.5 ——— +
= I
n=1.499
Rectangular Thin Slab Thick Slab
Waveguide Waveguide Waveguide

Figure 5.15. The rectangular waveguide of Example 5.1 is decomposed into two slab wave-
guides for analysis by the effective index method.
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Figure 5.16. Comparison of the normalized propagation coefficient derived from the three
methods described in this chapter.

Using this value of n , the transverse wavevectors, «,, were found using

2
tan kyb/2 = n—ean—fq/k%anf — K2/Ky) (5.40)
2

The propagation coefficient, 8 was found from
8= k%ngff — K2 (5.41)

Finally, to compare these results with the previous methods, the normalized
propagation coefficient was calculated using the actual values of the indices,
but the final value of the propagation coefficient, 3

_ B —kind

hp= L 072
2.2 2.2
kgni — kgns

(5.42)

The results of the effective index method are plotted in Fig.??.

The effective index method is the only technique which predicts that there
will be at least one mode. Careful comparison of the three methods discussed
so-far with other more exact numerical techniques show that the perturbation
solution is the most accurate around V' = 1, while obviously the effective
index technique is the only viable option in the region below about V' = 0.7.
Unfortunately, the Effective Index method is only accurate when the aspect
ratio (width/height) > 3.

6. Summary

We have seen that calculation of the allowed mode field distributions and
eigenvalues is an laborious task, although the techniques themselves are rel-
atively straightforward. We explored three basic techniques: the analytical
approach developed by Marcatili; the perturbation techniques which improve
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on the analytical solutions; and the effective index method. Achieving accu-
rate solutions with analytical techniques is difficult because of the presence of
corners. We found the solutions were accurate only far from cut-off. Pertur-
bation techniques probably allow the greatest accuracy, although they come
at the price of considerable effort. The effective index method is perhaps the
most commonly employed technique for waveguide design. It is relatively
straightforward to understand and apply, and its results are not too far from
those generated from exact analysis. Comparison with numeric results show
that near cut-off, the effective index method slightly overestimates the actual
B of the mode. The effective index method also leads to ambiguous results
in square waveguides, giving different results for E,,,,, and E,,, modes which
should be degenerate.

The next chapter introduces a basic numeric technique called the Beam
Propagation Method for waveguide evaluation. With the advent of stable pack-
ages that can model waveguide structures, simulation via numeric technique
is becoming the standard analytical tool in waveguide design. Nevertheless,
techniques such as perturbation analysis are very useful for designing certain
optical devices, especially those that rely on coupling to evanescent fields.
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Practice Problems

1. A symmetric step-index slab waveguide is shown in Fig. 5.17a. The
guiding layer is 10 um thick, and the fundamental TE mode is described
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Figure 5.17.  Figure for Problem 1.
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For this waveguide, the propagation coefficient, 3 = 94220 cm™!, and
k = 2300 cm~!. The waveguide is modified by adding a region of
suppressed index around the the guiding film, as shown in Fig. 5.17b.
Use perturbation theory to determine the exact change, 632, for this new
structure.

2. Consider a buried rectangular waveguide similar in structure to Fig. 5.1.b.
The core index is n; = 1.5, while the horizontal side regions have index
ng = ns = 1.49, and the top and bottom regions have index ng = ny =
1.495. The dimensions of the waveguide are a = 10um, and b = S5um.
If an optical wave with vacuum wavelength A = 1um is carried by the
guide, which direction of polarization will have the largest value of 3?
E* or EY?

3. The waveguide shown in Fig. 5.18 is to be used in an electronic package
connecting two high speed computer chips. What is the cutoff wavelength
for the lowest order mode? Use the first order theory described in Section
5.2 to answer this question.

Air |+—10 pm —| |
| n=1.5 _Z_p_m
n=1.495 T

Figure 5.18. Figure for Problem 3.
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Figure 5.19.  Figure for Problem 6.
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Figure 5.20. Figure for Problem 7.

. Use the effective index method to find 5 in the waveguide of Fig. 5.18

for A + 0.8um.

For the waveguide described in Example 5.1, find the description for the
E¥, mode for a wavelength of 0.4 um.

. Use perturbation theory to find the longitudinal wavevector, 3, for the

waveguide structure shown in Fig. 5.19. Assume the guided wavelength
is 1 ym,

. Consider the square symmetric waveguide in Fig. 5.20, with core index

n = 1.5, and surrounding cladding index n = 1.499. Since the wave-
guide is symmetric, it must guide at least one mode. For a wavelength
of A = 1.3um, determine the amplitude distribution of the lowest order
guided mode.

Use the effective index method to determine the mode in the ridge wave-
guide shown in Fig.5.21. Assume the field is polarized in the y-direction.
and the wavelength is 1.55 pm.
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Figure 5.21. Figure for Problem 8.

9. Calculate the mode confinement factor for the mode described in Prob.
8.

10. For the waveguide described in Prob. 2., use Mathematica or some other
numeric package to calculate the exact profile for the lowest order x-
polarized mode, and make a two dimensional plot of the mode amplitude.



Chapter 6

DISPERSION IN WAVEGUIDES

1. Introduction

One of the strongest motivations for using optical waveguides is the large
information capacity of an optical link. Much of this capacity comes from the
high carrier frequency of the light itself (on the order of 10! Hz). If even 1% of
the total bandwidth available could be utilized, the information transmitted on
one optical beam would be enough to handle over 102 telephone calls. While
it is unlikely there will ever be demand for that many simultaneous telephone
calls on one line, applications such as video require large bandwidths and can
take advantage of such capacity.

The system designer must be aware of the fundamental bandwidth lim-
itations in optical waveguides. The most prominent limitation is dispersion.
Dispersion describes the spreading of a signal in time. Fig. 6.1 illustrates how
dispersion limits the information capacity of a communication channel. At the
input, a series of pulses (representing perhaps binary information) are launched
onto an optical waveguide. Dispersion causes each of these pulses to spread in
time. When they arrive at-the output, the pulses have broadened to the point
where they begin to seriously overlap adjacent pulses. The temporal spreading
effectively establishes the maximum data rate for a communication link.

In this chapter, we examine the mechanisms which lead to dispersion in
waveguides. Armed with this understanding, we can appreciate the specialized
waveguides such as the graded index waveguide that are described in later
chapters. There are many clever equalization techniques, both optical and
electronic, which are being developed to extend the useful bandwidth of optical
fibers. These topics are not covered in this chapter, but are referenced where
appropriate.
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Figure 6.1.  Short temporal pulses experience pulse spreading in a dispersive media. If they are
not separated by enough time they will begin to overlap.

2. Three Types of Dispersion

Optical waveguides display three types of dispersion: material dispersion,
modal dispersion and waveguide dispersion. In material dispersion, different
wavelengths of light travel at different velocities within a given medium. Con-
sider a pulse that has a finite spectral bandwidth, A\. If the pulse is launched
in a dispersive material, each wavelength component of the pulse will travel
at a different velocity. The pulse effectively spreads out (or disperses) in time
and space. “Aha!", you might be thinking, “why not just make the pulse have
only one wavelength?" Nice idea, but it won’t work. Because of the Fourier
relation between pulse duration and frequency bandwidth, all finite temporal
pulses have a finite frequency bandwidth. Dispersion is a fundamental issue
with system design.

Modal Dispersion arises in waveguides with more than one propagating
mode. Unless the waveguide has been specially designed (for example, the
graded index waveguide described in the next chapter), each allowed mode in
the waveguide will travel with a different group velocity. The pulse energy
in a waveguide will be distributed among the various allowed modes, either
through the initial excitation, or through mode coupling that occurs within the
waveguide. The modes arrive at the end of the waveguide slightly delayed
relative to each other. This effectively spreads the temporal duration of the
pulse, which again limits the bandwidth.

Waveguide dispersion is a more subtle effect. The propagation constant
0 depends on the wavelength, so even within a single mode different wave-
lengths will propagate at slightly different speeds. Compared to material and
modal dispersion, waveguide dispersion is usually the smallest in magnitude.
However, in the vicinity of the so-called zero dispersion point for materials,
waveguide dispersion can the dominant effect in a single mode system. Wave-
guide dispersion can be used to cancel material dispersion, allowing the design
of special “dispersion shifted" waveguides. Control of waveguide dispersion
is therefore critical to many waveguide designs. In the next three sections, we
will discuss these three dispersions.
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3. Material Dispersion

A general understanding of the optical properties of dielectrics is essential
in optoelectronics. The index of refraction, n, is the most widely used material
parameter for waveguide design. In this section, we will explore the index of
refraction’s functional dependence on wavelength using the Lorentz model.

3.1 Frequency Dependence of the Permittivity, e

We will assume that the dielectric tensor is a simple scalar, i.e., the dielectric
material is isotropic. The index of refraction is defined in terms of the relative

permittivity of a medium:
€

n=,/— 6.1)
€0
The permittivity, ¢, relates the electric flux, D to the electric field, E,
D =¢E (6.2)

We want to develop a model relating the permittivity, €, to an applied electric
field. Consider the simple atomic model consisting of a positively charged
nucleus and a surrounding negatively charged cloud. When there is no electric
field present, the two charges are centered upon one another.

No Field E-field
—_—

Figure 6.2. Pictorial depiction of the dipole moment induced in a neutral atom by an external
field.

When an electric field is applied to the atom, the negatively-charged elec-
trons and positively-charged nucleus experience opposite forces due to the field,
and slightly separate. The charge separation forms a microscopic dipole mo-
ment, defined as

p=gqr (6.3)
where ¢ is the charge, and r is the relative distance from equilibrium that the
charges move.

The constitutive equation (6.2) can be written in terms of this dipole mo-

ment. :
D=cE=¢E+P (C/mz) (6.4)
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Nucleus Spring Electron

Figure 6.3. The Lorentz model of the atom consists of a heavy nucleus bound to a light electron
through a spring. zo represents the equilibrium distance between the charges when no external
forces are present. z represents the displacement from equilibrium.

where P is the bulk polarization of the material, defined by
P = Np= Ngr (6.5)

and N is the number of dipoles per unit volume.

To develop an analytical description of the permittivity, we will use the
one dimensional Lorentz model of the atom. Lorentz [1] modelled the atom as
two particles bound together by a spring. The model is shown in Fig. 6.3. The
position x represents the equilibrium position of the two charges when there
are no external forces. xo could easily be zero.

Modelling the attraction between an electron and a nucleus with a spring
might seem a little crude, but it is actually based on sound physical reasoning.
The binding energy of an electron to a positively-charged nucleus has a general
form as shown in Fig. 6.4.

The electron will reside at the minimum of a potential well, zg. Near zg,
the potential can be approximated in a Taylor series expansion as

av 1d%V o 1d%V 3
V(z) =V($o)+a;(m—xo)+§az§(x—xo) +6W(x—xo) +... (6.6)
V(x)
>
Xo Position

Figure 6.4. The binding potential of an electron to a positive nucleus will look roughly like
this. The exact shape is generally unknown, but the potential will have a smooth minimum at
some point, designated zg.
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At the minimum, xo, the first derivative, dV'(z¢)/dz, is zero, so it can be
dropped from the expansion. To second order, the potential can be described as

1d*vV
V(z) = V(zo)+ 5@(90 — 3g)?
= W+ %ka when z9=0 6.7)

where k is a constant. This is the simple “Hooke’s Law" potential for a spring,
where k is the spring constant (not to be confused with the wavevector). This
expansion is only accurate for small values of z, but if the applied electric fields
are small compared to the binding potential of the electron (which is on the
order of 101 V/cm) the approximations are reasonable.
In the presence of an electric and magnetic fields, a charge g experiences
the Lorentz force
F=¢E+%xB) 6.8)

where ¥ is the charge’s velocity. Only at relativistic speeds or under conditions
of strong DC bias, as in Hall measurements, is the magnetic term significant.
We thus can ignore the magnetic force in optical interactions, simplifying the
driving force on the charges to be

F =qE (6.9)

We will use the center of mass picture, in which all the motion can be attributed
to the electron with an effective mass of
MelMn
=—"T ~m 6.10
Me + My ¢ (6.10)

The net forces acting on the electron determine it’s motion. These forces
include the external force from the applied field, acceleration, friction, and

spring restoring forces. Summing these forces together (recall ¢ = —e)
d*x dx

We have introduced a decay term, ym dz/dt, which acts as a friction term.
Do not view this term literally: it accounts in a phenomenological manner for
energy dissipation that occurs due to radiation or phonon emission.

Dividing both sides of the equation by mass, m, and recalling that for
a spring-and-mass system, the resonant frequency of oscillation is given by

wo = k/m, yields

dx  dx

e
7o) + ’YE +wyx = ——njL-E(t) (6.12)
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To solve for a particular solution, we must specify the driving term. Assume
that E(t) has a harmonic dependence, E(t) = Epel* (where it is understood
that the actual electric field is given by the real part of the expression). A trial
solution, z(t) = zoe’**, leads to the following solution:

—e/m

2

= Egelvt 6.13
wg — w? + jyw 0 6.13)

x(t)

where the displacement is parallel to the applied electric field. Knowing x(t),
we can directly relate the effect of an applied field to the polarization of the
material through the relation p = gz. Note that z(t) is a complex number,
which simply means that there will be a phase shift between the applied field
and the response of the medium. Using Eq.6.4, we can determine the electric
displacement vector

D=¢E = ¢E+ Ngx=¢E— Nex
Ne?
Wy — w* + Jyw

<60 + M) E (6.14)

W — w? + jyw

I

The frequency-dependent form of the dielectric constant can be extracted from
this expression

€(w)

— = )+ W)

€0
_ (Ne?/m)(w§ — w?) . (Né2/m)(yw) ,
- eol (W — w2 + 7% ]60[(w(2) - w?)? + y2w? 6.15)

The index of refraction is defined as the square root of the complex dielectric
constant {2]

n(w) = ew) _ \/ (Ne2/m)(wh — w?) iy (Ne2/m)(yw)
€0 eo(wf — w?)2 +12w? 60[(w(2)7 — w22 § 207
(6.16)

The index of refraction increases with the density of dipoles (atoms in this case)
through N. The denser the media, the larger will be the index of refraction.
This explains why air has a low index (on the order of 1.0003) while solids have
indices in the range of 1.4 - 3.5.

The imaginary part of the index of refraction leads to attenuation or gain,
depending on the sign. In regions of transparency, the imaginary component
of the index of refraction of dielectrics is negligibly small, dramatically sim-
plifying the expression. We will concentrate on the transparent region in this
chapter, saving a technical description of attenuation for Chapter 8.
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1.6 [~

1.5

Index of Refraction
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Frequency (x1014)

Figure 6.5. The real part of the index of refraction as predicted by the Lorentz model. In this
plot, the resonant frequency, wo is at 10° rads/sec, and the damping constant is v = 10%3
rads/sec. Note that the index n increases in magnitude, except in the immediate vicinity of the
resonance.

The index of refraction slowly increases with frequency, except near a
resonance, wg, as shown in Fig. 6.5. A resonance occurs when the frequency
of the applied field is identical with a transition frequency between two energy
states of the system. As the frequency passes through the resonance, the index
rapidly drops and then again begins to increase. The region where the index of
refraction decreases as the applied frequency increases is generally not a useful
region in which to work, because the absorption losses (imaginary part of n)
are highest there.

What happens when there are many electrons, each with a different resonant
frequency? We simply add the effect of each resonance together

=t Y NE/m_ (6.17)

where f; is called the oscillator strength of each resonance. This oscillator
strength takes into account the possibility that each electron interacts differently
with the applied field.

In optics it is more common to deal with wavelength than with frequency.
Using the relation w = 27¢/\ in Eq.6.17, and assuming that the damping terms,
~, are negligibly small, one can rewrite the expression for the index of refraction
in terms of wavelength. This form, commonly called the Sellmeier equation, is

n— A=Y X-\} (6.18)
k
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Table 6.1. Sellmeier coefficients for several dielectrics

NaCl (4 = 1.00055)  SiO2 (A =1) Al,Os(A =1) CaFy (A=1)
Ak (um) Gk Ak (,um) Gk /\k(,um) Gk Ak (,um) Gk
0.1 0.48398 0.0684  0.69617 0.0615 1.0238  0.0503  0.56758

0.158 0.25998 0.1162  0.40794 0.1107 1.0583 0.1004  0.471091
40.5 0.08796 9.8962  0.89748 17.926 52808 34.649  3.84847
60.98 3.17
0.05 0.198
0.128 0.3869

where the terms A, )\, and Gy, are called the Sellmeier coefficients, and rep-
resent resonant wavelengths and oscillator strengths, respectively, for a given
system. Tables of Sellmeier coefficients can be found in many physics or optics
handbooks [3, 6]. As an example, Table 6.1 lists the Sellmeier coefficients for
several optically transparent materials in the visible region. This data will be
used in subsequent examples and homework problems.

Note that NaCl has resonances at several wavelengths, such as 50nm,
100nm, 158nm, and 40.5um. The short wavelength resonances are due to elec-
tronic transitions within the NaCl crystal structure. The resonances at 40.5um
and 60.98um are due to ionic vibrations. These vibrations occur at lower fre-
quencies than the electronic resonances, because the masses of the atoms are
larger than those of the electron. We will use these Sellmeier coefficients to
analyze the dispersion of the materials.

3.2  Group Index and Group Delay

A useful term is the Group Delay, 7,. Group delay is defined as the time it
takes for a pulse of light to travel a unit distance. For example, it takes a light
pulse about 3.336 nsec to travel one meter in vacuum. Thus the group delay
for vacuum is 3.336 nsec/m. By definition, group delay is the inverse of the
group velocity

Tq = 1/vy = dk/dw 6.19)
To relate this to the index of refraction, n(w), substitute £ = nw/cinto Eq.6.19
d(nw/c)
T = dw

dnw ndw

=

dwec cdw

dn

= m_+“)_dw_) (6.20)

c
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The group delay, 7,4, depends on the index of refraction and the first derivative
of the index with respect to frequency. Inverting 7,, we get an expression for
vg that has a form similar to the phase velocity, v, = ¢/n,

vg =c/(n +w‘f%")
= ¢/N, (6.21)

where the term N is called the Group Index, and is defined to be

d
Ny =n+was (6:22)
dw
We will find the Group Index more useful when defined in terms of wavelength.
Simple calculation leads to

dn

Ng:n—)\d)\

(6.23)
Keep in mind the dn/d\ is negative in most regions. The group index, N,
is always larger than the regular index of refraction, n, except in regions of
anomalous dispersion.

3.3  Group Velocity Dispersion

If a signal or pulse contains more than one wavelength, the individual com-
ponents of this signal will travel at different group velocities. These components
will reach the receiver at different times, effectively stretching out the time it
takes for a signal to arrive. This effect is called Group Velocity Dispersion
(GVD).

Consider an optical pulse with a finite spectral bandwidth, A, travelling
through a dispersive medium. The time required to travel a distance L is called
the latency, and is the product of the group delay, 7, with the propagation

distance, L
L

r= =Ny (624)
The spectral width of the pulse spans from Aj to Ag (i.e. A = |\ — Ag|

Each wavelength component will propagate at a slightly different speed.
In the time domain, the pulse spread wiil be

At = Z(Ny() - NyOw)
L
= _C—AN‘(]

Lan,

Z AN (6.25)
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Figure 6.6. An optical pulse with a finite spread in wavelength.

So what is dN,/dA? We can derive an expression for this from Eq. 6.23

dN, d dn
il A COR i
d DTG
dn_dn | dn
drx  dX dx?
d*n
= —-A03 6.26
Combining Eq. 6.26 with Eq. 6.25 yields an expression for the spread in the

pulse arrival time
L d*n
AT = —=A—5A\ 6.27
v (6.27)
We see that pulse spreading depends on the second derivative of the material
dispersion. The term
Ad®n
D=—-——— 6.28
c d)\? (6.28)
is called the material dispersion. One often finds material dispersion listed in
units of psec/(nm km), i.e., the number of picoseconds the pulse will spread as
it travels one kilometer per nanometer of spectral bandwidth. Also, be aware
that sometimes the minus sign is carried in the material dispersion term, D, as
we have done, and sometimes it is carried in the latency expression as in Eq.

6.27.

Example 6.1 Group velocity dispersion in sapphire

The Sellmeier coefficients for sapphire are listed in Table 6.1. What is the
index of refraction, group velocity, and group velocity dispersion (GVD) for
sapphire over the range from 0.5 to 2.5 ym?
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Figure 6.7. The index, group velocity, and group velocity dispersion of sapphire in the near
infrared region.

Solution:The solution requires use of a computer to evaluate the Sellmeier
equation for a number of wavelengths over the desired range, and to calculate
the first and second derivative of the calculated index. In this example, we
used Mathematica to evaluate first n()\), dn()\)/d), and d?n(\)/d\2. The
results from n(\) were plotted directly. To find the group velocity, the equation
vg(A) = ¢/(n — Adn/d)) was calculated and plotted. Eq. 6.28 was evaluated
to find the group velocity dispersion.
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Notice that n()\) decreases monotonically as the wavelength increases (i.e.,
the frequency decreases); this is normal dispersion. The group velocity reaches
a maxima near 1.4um, and then decreases again. Please notice that the Group
Velocity Dispersion goes through zero at the point where the group velocity
is maximum. The zero dispersion point is the wavelength where the GVD is
equal to zero.

There is a lot of information in the graphs of Fig. 6.7. First, note that the
group velocity dispersion goes through zero at a particular wavelength. This
wavelength is called the “zero dispersion point", and is denoted by the symbol,
Xo. For A < ), the material has positive group velocity dispersion. Positive
GVD is characterized by propagation where a long wavelength pulse travels
faster than a short wavelength pulse. For wavelengths longer than Ay, negative
group velocity dispersion is displayed.

The region near \g, where GVD goes through zero, is one of the desired
operating points for optical communications systems, because signal distortion
is minimal, however there is still some residual pulse broadening due to third
order effects. The zero dispersion point can be shifted through compositional
changes. Fused silica has a zero dispersion point near 1.3 um (see problem 6.)

4. Modal Dispersion

In multimode structures, the dominant cause of pulse spreading is due to
modal dispersion. The difference in velocity of the extreme modes determines
the magnitude of the pulse spreading. Low-order modes (3 ~ kn ) are highly
confined within the core, and effectively travel at the group velocity allowed
by the guiding film. For modes near cutoff, most of the field is in the cladding
layers. These modes effectively travel at the group velocity allowed by the
cladding index.

The ray picture shown inFig. 6.8 provides a simple (but unfortunately
incorrect!) picture of modal dispersion, where the two extreme modes travel
obviously different paths, and therefore travel different path lengths as they
propagate down the waveguide. Unfortunately, the ray model give opposite
results, one predicting that the low order mode travels faster, while the other
predicts it will travel slower. We will use the correct wave model for subsequent
calculations.

If we assume that there are many modes in the waveguide, then to first
approximation the difference in group delay between the fastest and slowest
mode is

AT = Tlow — Thigh (6.29)
where 7y, is the group delay of the lowest order mode (i.e. the mode with

the largest value of ) and 73,45, is the group delay of the highest order mode.
Recall (Eq. 6.19) that the group delay in a bulk medium is 1 /vgroup = dk/dw.
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Nt

Ng

Figure 6.8. To travel a distance [ down the waveguide, the ray corresponding to a low order
mode can go directly, while the ray corresponding to a higher order mode must actually travel a
distance I’ = [/ cos 6.

In a waveguide, the group delay is similarly defined in terms of the propagation
coefficient 43

= (6.30)
To evaluate Eq. 6.30, we need to express § in terms of w. For the lowest
order mode, the value of 3 is approximately equal to kny, while the highest
order mode will be approximately equal to kn,. Substituting the expression
B =nsk = nsw/cinto Eq. 6.29 yields

_dB _d(wng/c) mny dny
ow=390" " dw ¢ +ko dw (6.31)
Similarly
g dng
Thigh = c + ko dow (632)
The difference in arrival times of the two extreme modes is then
nf — Mg dng dns>
Arg= ———+k, | — - — 6.33
K c + o ( dw dw (6.33)

The first term in Eq. 6.33 is due to the different effective z-components of
the extreme modes’ k-vectors. The second term is due to dispersion effects
in the material that make up the waveguide. While the individual terms of
this difference can be significant, the difference in material dispersion of the
guiding and substrate layers is usually insignificant, i.e. dns/dw =~ dns/dw .
This assumption is reasonable when the materials that make up the waveguide
structure are nearly the same, such as fused silica guiding film surrounded by
doped fused silica. Then the differential modal group delay is

Ary = (12 (6.34)
The total pulse spreading due to modal dispersion is obtained from the group
delay dispersion

Ar:A@L=QE%£QL (6.35)
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The pulse spreading leads to a basic limitation on the information capacity of a
multimode waveguide. If a temporally short pulse is used to excite a waveguide
at t = 0, the energy in each mode will travel at a slightly different velocity. At
the end of the waveguide, the energy will arrive as a series of mini-pulses each
carried by an individual mode. This effectively temporally spreads the pulse.

Example 6.2 Modal dispersion in a planar waveguide

Consider an asymmetric planar waveguide where the guiding film index is
ny = 1.48, the substrate index is n; = 1.46, and the cover index is n. = 1 (air).
The guiding film is 50um thick, and the optical signal has a wavelength A\ =
1.3um, which corresponds to the zero dispersion wavelength of the material,
so material dispersion effects are negligible.

1. What is the modal dispersion for this waveguide?

2. If a 1 nanosecond pulse is launched onto the waveguide, determine its
temporal duration be after travelling 100 meters.

3. Ifthis waveguide connects two circuit boards that are separated by 1 meter,
what is the fastest digital data rate that can be sent across this waveguide
without pulses running into each other?

Solution First we should confirm that this is a multimode waveguide (after
all, if it is a single mode waveguide, there will be no mode dispersion). Using
Eq. 2.47, the number of guided TE modes is approximately

2 x 50umy/1.482 — 1.462
m ~

= 18.
1.3um 8.6

so this is certainly a multimode waveguide. In addition there are about the same
number of TM modes. Since all the modes are spread over the available range
of allowed values of 3, we can be confident that the extreme modes are near
the limiting values, kon s and kon,. The modal dispersion in this case is

_ 148-146
" 3 x 108m/sec

Note that the cover index (air in this example) has no effect on the modal
dispersion. The range and magnitude of 3 are determined by the film and
substrate indices. The cover index influences the exact value of each 3, but does
not influence the magnitude limits. Also notice the units of modal dispersion:
time/distance. For optical waveguides, convenient units are psec/m or psec/km
depending on the situation.

After travelling 100 meters, any launched pulse will spread by

ATy = 66 psec/meter

A7 = 66 x 10712 sec/m - 100m = 6.6 nsec



Dispersion in Waveguides 139

The launched pulse was only 1 nsec in duration, so this spread is significant.
The final pulsewidth is a quadratic sum of the initial width and the additional
width due to pulse spreading.

7 = /12 + 6.62nsec = 6.67nsec

You were not expected to know how to combine the pulse width and pulse
spreading. We will discuss how pulse spreading effects are combined in one of
the last sections of this chapter.

Finally, error-free transmission requires that adjacent pulses remain distinct
from one another after travelling through the waveguide. Adjacent pulses must
not spread into each other by the time they arrive at the output. For a 1 meter
path length, a pulse will spread by 66 picoseconds. Even if the launched pulse
is 1 psec in duration, it will be approximately 66 psec long by the time it travels
1 m (this neglects material dispersion, which may increase the spread even
further). Subsequent pulses should be delayed by at least 66 picoseconds in
order to avoid “collisions" of pulses.in the receiver. The maximum data rate
is then 1/66psec = 1.5 x 1019 pulses per second. If we chose to make the
waveguide longer, the maximum data rate would decrease proportionally.

There are several effective ways to counter modal dispersion. The obvious
solution is to use a waveguide that only supports one mode, a single mode wave-
guide. Most high speed, long distance optical fiber used throughout the world
today is single mode. The second solution is to use a graded-index waveguide,
which is described in Chapter 7. A graded index reduces the geometric path
difference between low order and high order modes.

In practice, the pulse spreading due to modal dispersion is not as great
as predicted by Eq. 6.35. There are two reasons. First, the calculated delay
is between the two extreme modes. If there are many modes, then each mode
carries only a small fraction of the total energy. The effect of the extreme modes
will be diluted. A second effect which reduces modal dispersion is due to mode
coupling. We have not yet discussed mode coupling, but in regions of small
dielectric perturbations, connections, etc., energy can be transferred from one
mode to another. The fastest modes can only couple, and hence transfer energy,
to modes which travel slower, Similarly, the slowest modes will have no choice
but to couple to faster modes. The net effect is that there is an averaging of
the modal velocities. This effect is difficult to quantify, because it depends on
the waveguide and its coupling characteristics. But since energy is effectively
diffusing among the modes, the length dependence of the pulse spreading goes
as the v/ L L, instead of directly on L . L. is the characteristic coupling length
that depends on the coupling strength in the waveguide. Measurements of
modal dispersion confirm this type of behavior.



140 INTEGRATED PHOTONICS

5. Waveguide Dispersion

Waveguide dispersion has generally the smallest magnitude of the three
dispersion mechanisms. Waveguide dispersion becomes significant in single
mode systems operating near A, the zero material dispersion point.

Consider light propagating in a single mode waveguide. Different wave-
lengths within this one mode will travel at slightly different velocities. The
eigenvalue equation that determines (3 depends on the specific value of &, which
is related to wavelength through |k| = 27 /A. For the TE mode in a slab wave-
guide the eigenvalue equation is

tan(hk) = % (6.36)

where v and x depend explicitly on the wavevector

Onf % and s = /8% — k3ns,. (6.37)

If the wavelength changes slightly, the value of 3 will also change slightly.
The mode will still have the same basic electric field distribution, e.g. a TE;
mode will still be a TE» mode after the slight change in wavelength, but it will
propagate with a slightly different speed.
The effective group delay (per unit length) of a mode is given by (see Eq.
6.30)
1dp
Tws = Lk
Using arguments similar to those used to derive the expression for material
dispersion, we can develop an expression for the dispersion. Consider a pulse
propagating on a single mode waveguide, with a finite spectral bandwidth ex-
pressed in terms of the wavevector, Ak. Each value of k will have a unique
value of 8. The temporal pulse spreading due to dispersion over a path length
L will be

(6.38)

wa dky  dkg
1d2ﬁ
> - deAk (6.39)

To convert this into wavelength units (consistent with how we defined material
dispersion), note that Ak = —(27/A2)A). Substituting this into Eq. 6.39
yields

k2 d%B
2nc dk?
Since 3 can only be found through numerical solution of a transcendental equa-
tion, it is impossible to write a general expression for Eq. 6.40. The waveguide

ATy = — A (6.40)
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dispersion of a system is usually evaluated numerically. This process is best
illustrated through example.

Consider a symmetric slab waveguide made with a guiding index, ncore =
1.50, and a surrounding index, n..q = 1.48. The guiding region of the wave-
guide is 2 pm thick. Since the waveguide is symmetric, it will always support
at least one mode. The effective phase velocity of this mode is determined by
Eq. 1.44, expressed in terms of the waveguide mode parameters

’Up = IE‘
Using the following set of commands with Mathematica, we were able to nu-
merically analyze this waveguide. The eigenvalue § was found using the char-
acteristic equation for a TE mode in a symmetric waveguide (Eq. 2.30)

K i

tan — = —

2 K
for values of k ranging from k£ = 500mr — 30,0007. The first and second
derivative were determined through simple differencing.

gamma [kappa.] :=Sqrt[(1.572 - 1.4872)(k 1)"2 - kappa~2];

k=500 Pi;

h=0.0002;

beta=Table[Re [N {Sqrt [1.5°2 (k i)"2 - (FindRoot[Tan[h kappa /2] ==
gamma [kappa] /kappa, {kappa,100}]1([1,2]11)"2 111, {i,1,60,1}];

ListPlot [beta]l

deltabeta=Table[ (betal[ill-betal[{i-1]1)/(500 Pi), {i,2,60,1}1;

ListPlot [deltabeta, PlotRange->{1.48, 1.505}]

doubledeltabeta=Table[-((k i)"2 /(6 Pi)) (deltabetal[[i]]-
deltabetal[[i-1]1)/(500 Pi), {i,2,59,1}1;

ListPlot [doubledeltabetal

Fig. 6.9 shows the calculated values of 3 as a function of k. The group
velocity of a mode is determined from the expression

_do
i

Relating this to the group index, N, and recalling that w = kc, we can find an
expression for N,

v, (6.41)

c dg
Ny=— =2 6.42
9w, dk (642)
Thus the effective group index can be derived from the first derivative of the
curve in Fig. 6.9. This is plotted in Fig. 6.10
Inspection of Fig.6.10 shows that the group index of the fundamental mode

of the waveguide depends strongly on the magnitude of the wavevector, k. For



142 INTEGRATED PHOTONICS

— — -
o N A
T T 1

R (1000 cm-1)

N A O ©
i

. 1 1 1 1 1 |
0 5 10 15 20 25 30
Vacuum k-vector (1000 )

Figure 6.9. The -k diagram for the TEo mode of a symmetric waveguide with a guiding film
index of 1.5, and a cladding index of 1.48.
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Figure 6.10. The group index experienced by a mode in the symmetric waveguide depends on
the magnitude of k. For small k, the group index is approximately equal to that of the cladding,
while for large k, N, approaches the value in the guiding layer.

small values of &, the mode is weakly confined in the core, so most of the mode
field travels in the lower index cladding region, and therefore sees an effective
group index as determined by the cladding. As the wavevector increases, more
of the mode is confined to the core. The effective group index increases from
the cladding value (slightly greater than 1.48) to the core value (slightly greater
than the core index, 1.5). The effective index is in fact the average index seen
by the mode, and can be calculated using the mode amplitude as the weighting
function. Fig. 6.11 shows the actual waveguide dispersion.
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Figure 6.11. The numerically-derived waveguide dispersion. Notice it is maximum when the
mode is converting from a weakly bound mode to a tightly bound mode.

The cause of waveguide dispersion is apparent from the spectral depen-
dence of the group index (Fig. 6.10). As k increases, the effective group index
of the mode increases. A pulse containing a superposition of k-vectors will
spread in time because each component travels at different velocities. The sec-
ond derivative of the S-k curve is proportional to the waveguide dispersion (see
Eq. 6.40). In the Mathematica program listed above, the second derivative was
calculated according the Eq. 6.40, and then multiplied by 10° to convert the
units (cm/sec?) into ps/(km nm).

This example illustrates the power of numeric solution to the eigenvalue
equation for a symmetric waveguide. By solving the equation repeatedly at
many different values of k, we were able to map out the functional form of
the dispersion. This technique forms a useful procedure for calculating such
effects in new or novel structures.

6. Simultaneous Effect of Material and Modal Dispersion

Since the material and waveguide dispersion both depend on wavelength,
they are highly correlated. Modal dispersion depends only on the mode struc-
ture of the waveguide, and is independent of material or waveguide dispersion.
Estimating the total effective pulse broadening due to all of these effects de-
pends in part on the pulse shape, and exact evaluation involves determining the
impulse response of the waveguide [8]. We can make a simplification if we
assume that the "not-unreasonable" spectral pulse shape is roughly Gaussian,
e=(A=20)?/AX% " We would expect an impulse to be broadened into a roughly
Gaussian pulse due to modal dispersion after propagation through a suitable
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Figure 6.12. Plot of material and waveguide dispersion, simultaneously present in a waveguide.
Their effects directly add.

length of fiber. We would expect similar Gaussian broadening due to material
dispersion. The combined effect of convolving two Gaussian events is simply
the quadratic sum of the pulse broadening

Ttotal = \/(Tmat + ng)2 + TT%wd,a,l (6.43)

Except near the \g point, the waveguide dispersion is usually negligible com-
pared to material dispersion. However, near )y, the waveguide dispersion can
play an important role in shifting the wavelength where the waveguide has zero
effective dispersion. Consider the dispersion plot shown in Fig. 6.12 for a glass
waveguide. Here the material dispersion is shown with it’s characteristic curve
increasing through zero near A = 1.3um, while the waveguide dispersion is a
small but decreasing value in the region of the glass zero dispersion point.

The net effect of the two dispersions is to shift the point where the wave-
guide dispersion equals zero. Such an effect is called dispersion shifting, and
is widely used in fiber optic waveguide design to optimize the performance of
long-haul optical fiber communication links. By adjusting the zero dispersion
point to match the wavelength of minimum attenuation, the maximum perfor-
mance can be extracted from a waveguide.

7. Summary

The focus of this chapter was to describe the major dispersion effects in
a waveguide. We began with the Lorentz model, and used it to develop an
analytical expression for the index of refraction for a given material. Examples
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were presented showing how the Selimeier equations could be used to determine
properties such as material dispersion.

We took a look at modal dispersion, and developed an approximate for-
mula which is adequate for extremely multimode waveguides. We mentioned
the influence of mode coupling, which reduces the magnitude of this form
of dispersion. Waveguide dispersion was described in general form, and il-
lustrated through numeric example. Waveguide dispersion is most important
in single-mode waveguides operating near )\g. However, since that is where
most single-mode optical communication links operate, obviously waveguide
dispersion is an important topic.

In the next chapter we will explore how a graded-index profile can reduce
the total modal dispersion in a multimode waveguide. Graded index waveguides
do not yet match the dispersion performance of single mode waveguides, but
they offer much larger areas for coupling light to and from the waveguide.
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Practice Problems

1. A planar waveguide is made with a guiding film index of 3.5, a substrate
index of 3.4, and a cover index of 3.4. The guiding film thickness is
2um. The wavelength of interest is 900 nm. The material dispersion
for this material is 400 ps/km-nm. Assume that waveguide dispersion is
negligible.

(a) Approximately how many modes exist in this structure (both TE and
TM modes)

(b) If the optical source has a 10 nm spectral width, what is the group
delay dispersion due to material dispersion?

(c) What is the modal dispersion for this waveguide?
(d) What is the total group delay dispersion for this waveguide?

(e) If a | nsec pulse is launched in one end of the waveguide, how far
must it travel before it is 2 nsec long?

2. A gaussian shaped pulse, F(t) = Eoe~t*/™ islaunched into a dispersive
waveguide. The wavelength of the pulse is chosen to be A\g = 1.3um, the
zero material dispersion wavelength. The waveguide is 10um thick, has
a guiding layer of index 1.55, and surrounding layers of index 1.52. The
characteristic time constant, 7, for the pulse is 0.5 nsec.

(a) What is the minimum possible frequency bandwidth of this pulse?

(b) What is the wavelength bandwidth that corresponds to your answer
to part (a).

(c) What is the group delay dispersion of this structure?

(d) What is the numerical aperture of this structure?

3. An asymmetric waveguide is 5um thick, and has guiding index of 1.5,
substrate index of 1.48, and cover index of 1.0.

(a) Determine the cutoff wavelength for the TEg and TMy modes.

(b) For the TEg mode, calculate 3 for 25 wavelengths spanning 1.3 um
to 1.55 pum. From these values, numerically calculate the waveguide
group delay, 74, and the waveguide dispersion, d7/dA.

(c) Repeat the above calculation for the highest order mode in the wave-
guide. Which mode has the largest waveguide dispersion?

4. An LED with a spectral bandwidth of 20 nm, and a central wavelength of
850 nm, is to be used to transmit digital pulses on an optical waveguide.
The symmetric waveguide is made of glass, with guiding index 1.5, and
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Table 6.2. Index and Dispersion for Fused Silica Glass

Mum)  n(A)  On(A)/OX  (pmTh)

0.509
1.014
1.529

1.4619  -5.626x1072
1.4502 -1.331x107?
1.4443  -1.178x1072

surrounding layers of 1.48 um. The material dispersion of glass at this
wavelength is approximately 300 ps/km-nm.

(a) What is the maximum bit rate for a transmission length of 2 km for
a single mode waveguide? (Assume that waveguide dispersion is
negligible).

(b) What is the maximum bit rate for a multimode waveguide of 2 km
length?

(c) What is the maximum thickness that the waveguide can be made
without it becoming a multimode waveguide for TE modes?

. The optical power that is incident on the earth’s upper atmosphere from

the sun is approximately 1 kW/m?. The amount that reached the earths
surface is about 30% of this value, due to scattering and absorption in the
atmosphere.

(a) If the optical field were all at one frequency, what would be the
magnitude of the electric field on the surface of the earth?

(b) The earth is approximately 150x10% km from the sun. If a satellite
were sent into orbit around the sun, with an orbital radius of 108 km
away from the sun, what would the optical field be on the satellite?
Would non-linear optical effects be a problem in this region?

Table 6. lists the index of refraction and the dispersion of the index for
fused silica glass at three wavelengths.

Determine the phase velocity and group velocity for light at these three
wavelengths in this material.

. From the Sellmeier coefficients for NaCl and SiO2, make plots of the

index of refraction, phase velocity, group velocity, and group velocity
dispersion for these materials over the 0.5 — 2.5um region. Determine
the zero dispersion wavelengths, Ag, for both materials (note: The zero
dispersion wavelength for NaCl lies slightly outside the specified region.).
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. Using the ground state configuration of a hydrogen atom, calculate the
binding energy, E, and the average electrostatic potential, (V'), between
the electron and proton in the atom. What is the optical intensity (W/cm?)
that creates an equivalent electric field?

. Near the band edge, the index of refraction of GaAs can be approximated
as n? = 8.950 + 2.054)2 /(A2 — 0.390) (D. Maple, J. Appl. Phys. 35, p.
1241, (1964)). Plot the index of refraction and Group Velocity Dispersion
for this material in the 1.0 - 2.0 um region.

Calculate the FWHM frequency bandwidth, Av, of

(a) a hyperbolic secant squared pulse, E(t) = 1/ cosh?(t/to)
(b) an exponential pulse, E(t) = e~ [t/to
(c) atriangular pulse, with a pulse width (FWHM) of 7y seconds.

By inspection of Fig. 6.11, what wavelength has the largest magnitude
of waveguide dispersion for the particular waveguide that is described in
the example? What is the value of the waveguide dispersion in units of
psec/km nm?

Using a computer, calculate the waveguide dispersion for the TEy mode
in an asymmetric waveguide with the following parameters: ny = 1.50,
ne = 1, and ny; = 1.49. The guiding film is 5 pm thick. Calculate the
dispersion of the waveguide over a range spanning from a wavelength
equal to 2/3 the cutoff wavelength to a wavelength equal to 1/3 the cutoff
wavelength.

As a slab waveguide is made thinner, the lowest order TEg mode will be-
come spatially smaller up to a certain dimension, and then will begin to
grow larger as the waveguide continues to grow thinner. Is there a similar
behavior in the waveguide dispersion for this mode? Is there a wave-
guide thickness at which the waveguide dispersion reaches a maximum
or minimum? If there is, is the waveguide still single mode at this point?
Assume the waveguide is comprised of two glasses with core index 1.5
and cladding index 1.495. Assume the guiding wavelength is 1 um.



Chapter 7

GRADED INDEX WAVEGUIDES

1. Introduction

There are two ways to significantly reduce modal dispersion in a waveguide:
use only single mode waveguides, or use a graded index waveguide. The first
choice appears to be the simplest, but it is not always a practical solution. Single
mode waveguides are much more difficult to couple light into than multimode
waveguides. To help see this, consider the two planar structures shown in
Fig.7.1. Both waveguides have the same indexes, but one of them has a larger
guiding layer. The number of guided TE modes can be approximated from

Eq.2.43,
m ~ (Rky/n3 —n2) /m (1.1)

Given identical indices of refraction, the only way to make a waveguide operate
in a single mode is to reduce the thickness, h, of the guiding film. The smaller
dimension of the single-mode guiding layer makes alignment between sources
and other guides much more critical than with a large (multimode) structure.
Connecting and aligning between multimode waveguides is easier due to the
large size.

The second method for reducing modal dispersion is to use graded index
waveguides. Graded index waveguides can be made with relatively large di-
mensions, easing the coupling and alignment problems common to single mode
devices, and they can dramatically reduce modal dispersion.

Being able to analyze graded structures is essential to modern integrated
optoelectronic design. Many fabrication processes such as dopant diffusion on
planar structures naturally lead to graded index profiles. In this chapter, we first
develop the ray picture of the graded index waveguide by using the Eikonal
equation. Next we will develop the modal solutions to such a waveguide.
Up until now, diligent application of Maxwell’s equation has produced field
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Figure 7.1. Two waveguides made with identical materials, but with different guiding film
thickness. The larger film is a multimode structure.

solutions to the wave equation in the waveguide. With graded indices the
equations become much more complicated. There are well known solutions to
the wave equation for only a few specific index profiles. For the general index
profile, one must resort to approximation or numeric techniques. Prior to the
availability of numerical differential equation solvers, approximation methods
such as the WKB approximation were applied to graded index problems. The
WKB approximation uses a series solution to solve the wave equation in the
graded index. The WKB technique is not widely used anymore, but it has
been used to establish important formulae such as the number of modes and
dispersion in a given waveguide. For an overview of the WKB techniques, refer
to references [1],[2].

Today, with the widespread availability of powerful computers and nu-
merical software, direct numeric solution of the wave equation is possible.
This “brute force" technique allows finding precise values of the longitudinal
wavevector, 3, and can provide a graphical picture of the mode profile. The
major limitation of direct solution is that it can not provide a general formula
describing phenomena such as dispersion, group delay, or number of modes.
However, due to it’s accuracy and simplicity in application, direct numeric
solution of the wave equation can accurately map out dispersion, power con-
finement, mode shape, and most other relevant issues of a waveguide. We will
provide a simple example of numeric techniques in this chapter.

In Chapter 9, we will describe two popular numerical simulation tech-
niques called the Beam Propagation Method and the Finite Difference Finite
Time technique which take a completely different numerical approach to find-
ing the modes in a waveguide.The methods described here will provide better
dispersion data, the later will prove useful in describing waveguide systems
which have longitudinal structure or dimensional change.

2. Ray Tracing Model in Graded Index Material

Consider the slab waveguide shown in Fig.7.2. The index of refraction of
the guiding layer is a function of position within the material. The index profile
is plotted to the right of the waveguide. In this specific case, a symmetric profile
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is shown, with the index chosen to be highest at z = 0, smoothly decreasing
with distance away from the central axis.

We want to examine how light propagates in such a structure. We will
begin with the ray picture using the Eikonal equation.

2.1  The Eikonal Equation

Ray propagation in a graded structure is described by the Eikonal Equation.
The term Eikonal comes from the Greek word for image[3]. The equation can
be developed using a simple construction based on Snell’s law.

Let’s consider what happens when a ray is launched in a graded index
material. The index gradient can be modelled as a series of microscopically
thin homogeneous layers, each with an index, n(x), where z is the distance
from the axis (z = 0) to the thin layer. Consider the ray incident upon the
interface between layers n(x) and n(x + Axz) at an angle 6, as shown in Fig.
7.3. This angle is the complement of the angle we normally use in applying
Snell’s Law.

The ray refracts at the interface between two layers. In terms of 6 as we
have defined it, Snell’s law is

n(z)cos8 = n(z + Az)cos(6 + Ah) (7.2)

| n(x)
— Xul) 0

-X

Figure 7.2.  The index profile of a graded index planar waveguide.

n(x + dx)
nx) \g 0+40 x
/

Figure 7.3. A graded index material can be modelled as a stack of thin layers, each with index
n(x). Refraction occurs at the interface between two adjacent layers.
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The change in direction, Ad, is very small. The termn(z+ Ax) can be rewritten
in terms of a Taylor series expansion of n(z) around z

n(z + Az) = n(z) + Z—:A:p (7.3)

The cos(f + A6) term can be expanded using the trigonometric identity

cos(f@ + Af) = cosfcos A —sinfsin Af
~ cosf —sinfAl (7.4)

where we have assumed that cos Af = 1 and sin A = A6. Plugging Egs. 7.3
and 7.4 into Eq. 7.2 we get
d

n(z)cosf = [n(z) + d—ZA:E] [cos 6 — sin6AF)

= n(z)cosd — n(z)sin§AH + gﬁ cos Az
T
dn .
-——d—m—Ax sin 0Af (7.5)

Cancelling common terms and rearranging yields
d
n(z)sin A = M o5 0T — @A:v sin A0 (7.6)
dz dz

The last term in Eq. 7.6, being a product of two infinitesimals, is negligible
compared to the other terms, so Eq. 7.6 can be written as

d Ad

. & n(z) tan 92&; X))
For most waveguide situations, the angle 8 is going to be small (on the order
of 10° or less), so small angle approximations can be used to simplify the
expression:

o Az
tonf = 0= E (78)

Substitute this into Eq. 7.7, along with Az = Az tan@

dx Az
dn i d(ds
Aligloﬂ - n(z)a(ﬁ)-—n(z)dz <dz>
2
= @) EE (1.9)

dz?
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Finally, solve for d?z/dz?

Pz 1 dn(z)
dz?  n(z) dr

(7.10)

This equation is called the Eikonal equation. The function z(z) describes the
exact ray path, and can be determined from Eq. 7.10 once n(z) is known.
As a practical matter, when the index of refraction is not a strong function of
position, the denominator term for n(z) in Eq. 7.10 is often replaced with n,
the index of refraction at z = 0.

5 1 i)

dz2  n(0) dz

(7.11)

This assumption can make an otherwise intractable differential equation man-
ageable, while introducing negligible error so long as n{x) does not change
considerably over the spatial extent of the mode.

How do we interpret the Eikonal equation, Eq. 7.11? It’s very simple:
the Eikonal equation states that the ray always bends toward the higher index
material.

Example 7.1 Ray path in a parabolic index profile

A common profile for gradient index devices is the parabolic index profile.
Consider a planar waveguide which has an index profile in the Z-direction
described by

0

n(z) = ng {1 - 2—2]

where x is a characteristic length for the gradient. Givenn(x), we can evaluate
dn/dzx:

dn . 2z
dz 'zl

Substitute this derivative expression into the Eikonal equation 7.10, and make
the approximation that the denominator term n(z) = ny, to get

d2x 2x

2 T2
dz x

This is a second order differential equation which has a general solution

x(2) = x; cos <@> + x} sin (-@)
o o

The ray path from this equation is plotted in Fig.7.4.
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Figure 7.4. The ray path in a parabolic profile graded index.

Notice that the ray is bound to the axis, and that it has a periodic motion.
The initial conditions, z; and z}, depend on the launch parameters for the ray.
The propagating rays always bend toward the region of higher index. Once the
ray crosses the axis of highest index, the curvature of its path changes sign in
such a way as to return the ray toward the axis.

2.2 Dispersion Reduction with a Graded Index Profile

How does this graded index reduce modal dispersion? Recall that in the
ray picture of the slab waveguide, modal dispersion arose due to the path differ-
ences between the high-order rays that followed a long zig-zag path down the
waveguide, and low-order rays that travelled straight. Fig. 7.5 illustrates this
case for two extreme modes. In the graded index structure a ray travelling near
the axis will spend more time in high index material, and will travel slower than
will a ray that is farther from the axis. However, rays far from the axis follow
a longer sinusoidal path. Through optimal adjustment of the index gradient,
it is possible to minimize the difference in group delay between the extreme
rays. This will reduce modal dispersion and effectively increase the informa-
tion capacity of the waveguide. The challenge in graded index waveguides is to
choose an index profile that guides the light and minimizes modal dispersion.

The ray picture provides a useful illustration of how light is guided in a
graded index structure. To actually perform the minimization requires use of
the wave equation.

3. Modal Picture of the Graded Index Waveguide

To evaluate the properties of a graded index waveguide, we need to deter-
mine the allowed propagating modes and their dispersion characteristics. To
find the modes, we must solve the wave equation for the graded index wave-
guide. This is usually a difficult task. Some profiles are analytically solvable,
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Figure 7.5. Modal dispersion arises in planar waveguides due to physical path differences
between the various modes. In the graded index, the optical path length for each mode can be
made the same.

however such profiles are rare and usually they do not have desirable dispersion
properties to warrant their use.

For non-analytic cases approximations such as the WKB method can be
used to find exact values of 3, however the WKB method’s real power is in
the ability to generalized characteristics such as the effect of waveguide profile
on dispersion. Using it to find exact values of 3 and the corresponding mode
profile is a cumbersome task, and we will not pursue it here.

With the availability of numerical differential equation solvers, direct nu-
meric solution of the wave equation is becoming the most widely used method
for finding [ in a graded index structure. Determining characteristics such as
dispersion requires evaluating many different specific points, and then extract-
ing information from the ensemble of data points. The later technique is well
suited to workstation and personal computer application.

31 Profiles with Analytic Solutions
We will seek a TE solution to the equation -

2
0°E,
dz?
in a planar waveguide structure. We assume that the index gradient extends only
in the z-direction, and the electric field is polarized in the y-direction. There

are a few graded profiles that have an exact analytic solution, one of which is
the parabolic profile, described as

+ (k3n*(z) — B*)E, =0 (7.12)

2
n?(z) = n? (1 - %) for z < xp. (7.13)
0

This profile is only valid where z < xp, because n(x) cannot be less than unity.
The plot of Fig. 7.6 shows how the actual index eventually departs from the
parabolic profile as the graded index meets the substrate index.
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> X

Figure 7.6. Plot of the actual index profile, compared to the plot of the model of the profile
used to solve equations. The model is only accurate near z = 0.

Substituting Eq. 7.13 into the wave equation we get

&’E, z?
672”+(k§n3 3n3 ﬂZ) = (7.14)

While perhaps not obvious by inspection, Eq. 7.14 has well known solu-
tions called the Hermite-Gaussian functions,

EY(z) = (\/'—) exp( x2> (7.15)

where ¢ is an integer that identifies the mode. H, is the appropriate Hermite
polynomial defined by

Hy(z) = (—-1)7 exp(xz)% exp(—z?) (7.16)

The first three Hermite polynomials in z are

Hg(x) = 1,
Hl(iL‘) = 21‘,
Hy(z) = 42?2 (7.17)

The term w is the “beam radius," in analogy to the description of the spatial
modes of a laser resonator. (The term “radius” is perhaps unfortunate in this
application, since we are dealing with a planar field, not a cylindrical one). In
the slab waveguide, w is defined through

2(130

w? = <%> (7.18)
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'}

Figure 7.7. The values of 3 for allowed modes of the waveguide are bounded by the substrate
index, kons, and the maximum index in the guide, kong.

The eigenvalues for the electric field propagation factor, 3, are found from
Eq. 7.14 to be

kono

B2 =kinf — (2¢+1) (7.19)

o

Theoretically, the parabolic profile has an infinite number of eigenvalues, 3,
given by Eq. 7.19. In practice, there are only a few bound modes, because
the actual index profile eventually deviates from the perfect parabolic shape,
as shown in Fig. 7.6. Fig. 7.7 shows two allowed values of 8 on the plot of
the index profile, n%(x). The limits on the allowed values of 3 can be seen
graphically. The upper limit is set by

B < kgnj (7.20)

which is the same condition as for the slab waveguide. Similar to the slab
waveguide, the lower cutoff condition requires that 3 remain larger than kgn;.
The solutions predicted by Eq. 7.15 begin to fail as 8 approaches kgns. This
arises because the spatial structure of the individual modes extend to larger
dimensions as the mode number ¢ increases. For large ¢ the modes get so
large that they sample regions of the profile that are not parabolic, making the
solutions inaccurate.

Nevertheless, the “exact” solution to a particular profile illustrates several
features of graded waveguides. First, individual modes exist, and each mode
has a unique field description. Second, the allowed values of the propagation
coefficient are limited between Gy, = kono, and Bpyin = kons. Finally, there
is a limit to the spatial range over which a “solution" is accurate. This limitation
is due to deviation of the mathematical description of the index profile at large
values of z. There are other profiles that lead to “exact" solutions to the wave
equation[4]. For most situations, however, exact solutions are not accessible,
and we must use approximation techniques to describe the fields.
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4. Direct Numerical Solution of the Wave Equation

The wave equation can be solved numerically using appropriate software.
The numeric solution is actually quite simple to create. Given a differential
equation and the necessary initial conditions, the entire solution can be gen-
erated using relatively simple recurrence relations[5] to plot the evolution of
each variable. Unfortunately such techniques are not adequate for satisfying
certain constraints, such as finding the eigenvalues for the equation. There are
sophisticated techniques which can address this problem [4], especially when
dealing with the Schrodinger equation. In this section, we want to illustrate
the power of a simple Mathematica routine for finding the solution to the wave
equation.

Let’s once again consider the parabolic profile graded index so we can
test any numerical solution we get against theory. To find a numeric solution,
the waveguide structure must be fully specified with numeric values for all
variables. As a specific example let the index of refraction be

n’(z) = nj [1 — (%) 2} = 1.5? [1 - (%)1 (7.21)

where ng = 1.5 and z¢p = 50um. Let the wavelength be 1 ym, so ky = 27
(um~1). We will keep all dimensions in microns in this example. Plugging
these values into the wave equation yields

9?E,(z) z? _
———3;’2 + <(37r)2(1 - m) - /32) Ey(z) =0 (7.22)

Notice that everything is defined except for 3. Before a computer can begin to
work on this problem, we must define a value of 3. Here is where this technique
becomes challenging. As we will see, the computer can find a solution, E(z),
for any value of 3 that we might suggest. But we know that only a few discrete
values really exist. The eigenmode solutions will be those which have a finite
energy (more precisely, we say that the solution is normalizable). Incorrect
solutions will have amplitudes that tend toward infinity as the magnitude of
z increases, and therefore can not represent real solutions. Thus, finding the
proper solution proceeds by guessing a value of 3, observing the numerically
generated solution to the wave equation and seeing if it diverges toward positive
or negative infinity, and then trying another value of 3. The eigenvalue of 3
for a given equation will occur at the point where the solution does not diverge.
The search for an eigenvalue is made easier by the fact that the sign of the
diverging component of the profile changes as one goes past the eigenvalue. If
for one trial value, 3, the solution diverges positively, and for a different value,
B;, the solution diverges negatively, then the true value of 3 will lie somewhere
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between those two values. A series of converging guesses can rapidly zero in

on the eigenvalue, 3, for that mode.
To evaluate the example described above, the following commands in
Mathematica were used.
n0=1.5;
x0=50;
nsquare=n0~2 (1-x"2/x072);
lambda=1;
k0=2 Pi/lambda;
beta=1.4920210 k0; (* trial guess*)
equation=e’’[x] + (k0"2 nsquare - beta"2)e[x] ==0;
sol=NDSolve[{equation, e[0]==1, e’[0]==0}, e[x], {x, -15,15}]
Plot[e[x] /. sol, {x, -15,15}, PlotRange->{-2,1}]

The key statements are the definition of the wave equation in terms of the
parabolic profile equation, and the command NDSolve[ ], which isa numer-
ical differential equation solver. The initial conditions( e [0]1==1, e’ [0]==0)
were chosen to give the field e [x] a unity amplitude and zero slope at z = 0.
This ensures that we will find an even mode. To find the odd modes, we would
set the amplitude to zero at z = 0, and defined a finite slope.

The trial value of 3 was manually entered each time, although it would
be a simple task to put this entire process into a loop which sought the desired
solution. We found very quickly that for a trial value § = 1.493 kg the plot
of the mode profile diverged toward negative infinity, but for § = 1.492 kg
the plot diverged toward positive infinity. Therefore there had to be a root
somewhere between these values. After about 10 iterations the process led to
a value of § accurate to 6 decimal places, which was decided to be accurate
enough. Fig. 7.8 shows the plots of mode profiles for the last two iterations,
taken at 3 = 1.4920210 kg and 8 = 1.4920211 kp. The eigenvalue clearly lies
somewhere between these two values. Notice that the mode profile is clearly
defined if we ignore the tails extending beyond |z| = 10um.

One solution diverges positively, while the other diverges negatively, indi-
cating that the eigenvalue of the wave equation lies somewhere between these
two values of 3.

We terminated the iterations at this point, noting that the precision was
probably exceeding any practical need. As a final test of this process, we can
compare the numerically generated value of 3 to the “exact" value derived from
Eq. 7.19. In this case, since there are two nodes in the waveform, this must
be the ¢ = 2 solution. Plugging numbers into Eq. 7.19 yields a value of 8 =
1.49202103 kg, which is consistent with our numeric result. Direct numeric
solution is an extremely powerful technique for finding allowed eigenvalues of
a waveguide with an arbitrary index profile. Due to this power and accuracy,
it is the commonly used method by waveguide manufacturers when they are
designing new optical waveguides. To develop dispersion relations, one would
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Figure 7.8. The “solution” to two trial values of 3 using the numerical differential equation
solving routine in Mathematica

have to calculate a series of values, 3()), from which the appropriate derivatives
could be found.

5. Summary

We developed two methods for looking at the propagation of light in a
graded index waveguide. The first, based on the ray model, required the devel-
opment of the Eikonal equation. Armed with the Eikonal equation, an equation
of motion for rays in a graded index medium, the path of any ray can be cal-
culated. The limitation of the ray picture is that it fails to provide information
on the modal characteristics of the waveguide, including the propagation co-
efficient, 3, the mode field size, or the dispersion properties. We then showed
that direct numeric solution using package software provided a faster method
for finding the eigenvalues of a graded index waveguide. In addition, a plot of
the mode profile was generated.



REFERENCES 161

References

[1] C.R.Pollock, Fundamentals of Optoelectronics, Irwin, USA, (1995)

[2] A.B.Sharma, S.J. Halme, and M. M Butusov, Optical fiber systems and their components,
Springer Series in Optical Sciences, vol. 24, Springer, Berlin (1981)

[3] The term Eikonal was introduced by H. Bruns (1895)

[4] H.Kogelnik, in Integrated Optics, Topics in Applied Physics Vol. 7, 2nd edition, T. Tamir,
ed.,Springer-Verlag, Germany, (1979)

[5] Richard Crandell, Pascal Applications for the Sciences, John Wiley and Sons, USA (1984)

[6] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes, The Art of
Scientific Computing, Cambridge University Press, USA (1986)

Practice Problems
1. Is it possible to define a Numerical Aperture (N.A.) for a graded index
waveguide? What would the NA of the waveguide described in Example
7.1 be?

2. Consider a graded index that forms a triangle profile

n(z) = n1—Anlz| for0<|z| <zo
ng for|z| > zg

where g is the width of the triangle profile at its base. Using the Eikonal
equation, develop an expression for the path of a ray through this wave-
guide. You will have to piece a number of solutions together, taking
advantage of the translational invariance of the waveguide along the z-
axis.

3. What is the modal dispersion for the parabolic index profile waveguide?
Use Eq. 7.19 to determine an exact expression.

4. Use a numeric differential equation solving routine to determine the first
two allowed values of 3 for the triangle index profile described in Problem
2. Assume that ny = 1.5, ng = 1.47, ko = 2rum—1, and g = 15um.
Plot the mode profiles.

5. A triangular index profile is described as
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n(z) = 1.50—(0.004/pm)|z| for |z| < 5um
148 for |z| > 5um

Use a numerical differential equation solving routine to find the three
allowed modes if the guided wavelength is 1 zm. Find the allowed values
of 3 to at least 5 decimals.

Determine the waveguide dispersion of the triangular index profile de-
scribed in Prob.5.. Using a numeric differential equation solving routine,
find the eigenvalue, 3, of the lowest order mode for wavelengths rang-
ing from 0.9 to 1.2 um. Based on this data, calculate the waveguide
dispersion.

Use a numeric differential equation solving routine to determine the first
two allowed values of 3 for the index profile, n2(z) = ng +0.05¢°/7%,
Assume that ng = 1.5, kg = 2mrum—1, and gy = 50um. Plot the mode
profiles.

Calculate the waveguide dispersion of the waveguide described in Prob.
8. over the range from A = 1.5 — 1.56pm. Use the same procedure as
outlined in Prob. 8..

Write a computer program using a suitable software package or language
that numerically solves the wave equation. Add statements to the software
to make it automatically iterate the trial values of 3 until the agreement
between subsequent trial values is better than 1 part in 108,

Numerically explore several different index profiles, such as a Gaussian
index, a triangle profile, a multiple step index, and an exponential profile.
Which profile has the best mode confinement (defined simply by which
mode is smallest between the half power points of the mode profile)?
Which waveguide has the least waveguide dispersion?

One method for creating a slab waveguide is to bombard the surface of a
substrate with high energy a-particles (ionized He accelerated to 1-2 MeV
of energy). The particles cause damage to the lattice which effectively
lowers the refractive index. The a-particle causes maximum damage
when it has lost a good fraction of its original energy. As a result, the
damage profile of irradiated glass will have a maximum a few pms below
the surface. In this fashion, a buried lower-index layer can be formed on a
substrate. The damage process is statistical. A simple approximation we
can make to describe the resulting index profile is described as an offset
Gaussian function,

n(z) =ng — Ane~(==m?/5
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Figure 7.9.  An approximation of the index profile generated by a-particle bombardment of a
crystal surface.

An example of such a profile is shown below, using an average depth of 3
pm, and a Gaussian width of 0.7 um. This approximation underestimates
the damage done at the surface as the c-particles penetrate into the lattice,
but it provides a first-order description of the situation. Using direct nu-
meric solution to the wave equation, determine the shape and eigenvalue
of the lowest order mode for the structure shown in Fig. 7.9 (ng = 1.5,
9 = 0.7um, and An = 0.01). Determine how much energy exists in the
region beyond the well. This energy will be radiated away, and represents
a significant loss to the mode. Energy in the guided portion of the mode
can tunnel across the well region and escape into the substrate. Since
the total An is fixed by the optical properties of the material, the only
parameter that can be varied easily is the width of the well. Explore how
the mode confinement is affected as the well width, zq, is varied.



Chapter 8

ATTENUATION AND NONLINEAR EFFECTS IN
WAVEGUIDES

1. Introduction

An optical signal will be degraded by attenuation and dispersion as it prop-
agates through a material. Dispersion can sometimes be compensated or elim-
inated through clever design, but attenuation simply leads to a loss of signal.
Eventually the energy in the signal becomes so weak that it cannot be distin-
guished with sufficient reliability from the noise always present in the system.
Attenuation therefore determines the maximum distance that optical links can
be operated without amplification. Attenuation arises from several different
physical effects. In an optical waveguide, one must consider i) intrinsic ma-
terial absorptions, ii) absorptions due to impurities, iii) Rayleigh scattering,
iv) surface scattering, v) bending and waveguide scattering losses, and vi) mi-
crobending loss. In terms of priority, intrinsic material absorption and Rayleigh
scattering are the most serious cause of power loss for long distance optical fiber
systems. Surface scattering dominates integrated waveguide losses. Impurity
absorption has become less of a problem as improved material processing tech-
niques have been developed over the years. In this chapter, we will establish
the fundamental limits of attenuation, and provide a basic understanding of the
attenuation processes that can be applied directly to materials such as glass or
semiconductor.

You might ask, “If the signal at the end of a long link is too weak to
observe, why not simply increase the input power?" We will show in this chapter
that nonlinear effects limit the peak power that can be sent into a waveguide.
Nonlinear effects play a major role in optical waveguides for two reasons.
First, the small core dimensions of a typical waveguide can lead to extremely
high optical intensities, even for small amounts of total power. Thus nonlinear
effects can arise unintentionally. Second, the long lengths involved in certain
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systems, especially optical fiber links, allow small nonlinearities to add up
and eventually become significant. These nonlinearities must be addressed by
a system designer in order to achieve an acceptable signal-to-noise ratio for
the received optical signal. There are many optical nonlinearities in optical
waveguides. We will discuss three types: Stimulated Raman Scattering (SRS),
Stimulated Brillioun Scattering (SBS), and Self Phase Modulation (SPM). As
with all natural effects, we can either be victimized by them (and thus do our
best to avoid them), or we can exploit them. Nonlinear effects can be exploited
to create fascinating new devices. In this chapter we will look at the optical
solitons.

2. Intrinsic Absorption Loss

In this section, we will describe attenuation due to absorption losses such as
electronic and vibrational transitions in the material. Total optical attenuation
is formally characterized by an expression known as Beer’s Law

Pt = Ijine"az (81)

where P,,; and P, are the output and input powers of the optical wave, re-
spectively, and « is the attenuation coefficient, with units of inverse length.
a depends strongly on the wavelength of the light and the material system
involved.

Fundamentally, absorption losses arise from the atomic or molecular res-
onances that we discussed in the Lorentz model of the atom in Chapter 6. An
atomic transition can absorb electromagnetic energy from the applied field and
store it in an excited state of the atom or solid. This energy eventually is dis-
sipated through emission of a photon or through creation of lattice vibrations,
and represents a loss to the electromagnetic field. In Chapter 6, we developed
an expression for the index of refraction based on the Lorentz model. It is
straightforward to show that the real (n') and imaginary (n"’) parts of the index
of refraction (Eq. 3.16) are:

2 2__.,2
n(w) = \/ 1+ (ﬂi—/—@)—g%

(wg—w?

(Ne? /mpyw (8.2)

W (@) (B~ 73]

n(w) =+

The imaginary part of n can lead to attenuation or gain, depending on its sign.
Unless special efforts are made, such as creating a population inversion, the
imaginary term leads to attenuation. Consider the electric field

Eoe—jkonz — Eoe—jko(n/_jn//)z _ Eoe“jkon/ze_kon//z (83)
where the sign of the imaginary term was chosen to yield a decaying amplitude.

Even far from resonances, Eq. 8.2 shows that there will always be a residual
absorption.
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Figure 8.1. The bandgap of fused silica is about 8.9 €V. A photon with energy > 8.9 eV is
required to excite an electron from the valence band to the conduction band.

2.1  Absorption Due to Electronic Transitions

In this section we will concentrate on the optical properties of fused silica
(i.e. glass), and mention analogous behavior in other systems such as semi-
conductors where appropriate. Fused silica has a “transmission window" in
the near infrared. This transmission window lies between absorptions due to
electronic transitions and Rayleigh scattering at the short wavelength side of
the spectrum, and vibrational transitions on the long wavelength side of the
spectrum.

Fig. 8.1 crudely illustrates the valence and conduction bands in fused silica
(SiOgq). The bandgap for this important optical material is approximately 8.9eV.
To optically raise an electron from the valence band to the conduction band
requires a photon of energy greater than or equal to 8.9 eV. This corresponds to
light with wavelength shorter than approximately 140 nm. Since the absorption
process involves elevating an electron to a new state, such transitions are called
electronic transitions, or interband transitions. In principle, photons with longer
wavelengths, such as visible light, cannot excite electrons across the bandgap,
so they are not absorbed by the material. This partially explains why glass is
transparent in the visible region.

The absorption edges, Ay,in, Of several optical materials are tabulated be-
low. The semiconductor materials are useful for integrated optics applications
and detectors. From Table 8.1 we can see that Gallium Arsenide (GaAs) absorbs
light with wavelengths shorter than approximately 0.88 pum. These interband
transitions in semiconductors strongly influence the absorption and dispersion
characteristics of optical waveguides made from semiconducting material. The
semiconductor laser is a good example of such a waveguide system.

In practice, the sharp absorption edge predicted by the simple band model
of Fig. 8.1 is not observed. The transition from absorbing to transmitting
usually follows a soft curve as the wavelength changes. Fig. 8.2 shows the
optical absorption coefficient of GaAs as a function of wavelength.[2] Notice
that instead of changing abruptly as the photon energy drops below 1.42 eV, ,
the absorption decreases exponentially.
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Table 8.1. Energy Bandgaps, Absorption Edges, and Refractive Index of Various Materials[1]

Material E4(300K) Amin n

PbS 0.37eV 334 um 4.1
GaAs 1.42 0.87 334
Si 1.12 1.10 35
Ge 0.67 1.85 4.1
InAs 0.35 3.54 3.1
Diamond 5.5 0.23 241
Si02 8.9 0.14 1.45

Like the GaAs example shown in Fig. 8.2, the band gap of most materials
is not sharpely defined in energy. This is especially true in glass. The vari-
ety of molecular bonds and configurations in the amorphous material lead to
slightly different binding energies for individual electrons, so, unlike the ide-
alized energy picture presented in Fig.8.1, there is not a sharp edge in energy
that defines the conduction or valence bands. Furthermore, thermal vibrations
slightly alter the band structure of the material, further smearing out the energy
distributions. As a result, the onset of optical absorption is usually a smooth
function of wavelength. The empirical absorption coefficient, & from Beer’s
Law (Eq. 8.1, for band-edge absorptions has been found to follow a formula
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Figure 8.2. The optical absorption edge of GaAs at room temperature. Notice that the absorp-
tion does not sharply increase for photons above the bandgap energy. Rather, the absorption
edge shows an exponential increase with increasing energy.
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Figure 8.3. The three fundamental vibrational modes of the triatomic SiO2 molecule.

called Urbach’s Law
a = Cew/Eo 8.4)

where hw is the energy of a photon with with angular frequency w (% is Planck’s
constant) , and C and Ej are empirical constants for a given material. Using
Urbach’s Law in Beer’s law, we see that as wavelength increases, attenuation
becomes smaller, but never reaches zero — exponential functions just keep
getting smaller and smaller. So even at long wavelengths there will be some
residual absorption due to electronic transitions. The Urbach absorption arises
from numerous weak effects such as multi-photon absorptions and combined
photon-phonon interactions, as well as the Lorentzian absorption tails described
in Egs. 8.2 and 8.3.

Before we get much farther, we should note that due to the wide range of
values for the attenuation coefficient, plots of the attenuation of materials are
usually shown on a semilog axis. The common unit is the decibel, which is
defined in terms of the logarithm of a power or intensity ratio

dB = 10log I;;ut

m

(8.5)

For example, a 20 dB attenuation would represent a reduction of power by a
factor of 100, while 3 dB attenuation would represent a reduction by a factor of
2. The typical units of attenuation are in dB/km for low loss materials such as
silica optical fibers, or dB/cm for lossy materials such as GaAs waveguides.

2.2  Absorption due to Vibrational Transitions

In the infrared region, the photons have typically less than 1 eV of energy,
so there are few losses due to direct electronic transitions. However, another
absorption process begins to appears. This absorption is due to vibrational
transitions occurring in the SiO; structure of glass. Fig. 8.3 shows the possible
wvibrational modes of a SiO2 molecule. Because it has three atoms, the SiO,
molecule can vibrate in a bending mode, an asymmetric stretch, or a symmetric
stretch.

The fundamental vibrational transitions occurs at a frequency of approxi-
mately 40 THz. This frequency corresponds to light with a wavelength of about
9 um. The attenuation coefficient at 9um is quite large, being over 100 cm™!.
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Due to nonlinear interactions in the vibrational structure of glass, there are
absorptions at harmonics (technically called overtones) of the fundamental fre-
quency, in particular at 3.2psm, 3.8m, and 4.4um. The absorption coefficients
for these overtones tend to be several orders of magnitude weaker in strength
than the fundamental, but they are still large enough to be observed in small
thicknesses (millimeters) of glass. These absorptions have long tails, and their
presence is noticeable at wavelengths far from resonance. These tails lead to a
near infrared absorption that begins to become apparent around 1.5um.

2.3  Attenuation due to Impurities

The first proposals to use optical glass fibers for long distance communica-
tion were criticized on the basis of measured attenuation coefficients of glass.
Window glass had attenuations projected to be 1000 dB per kilometer, which
as we mentioned in Chapter 1, is so attenuative that if all the light emitted by
the sun were sent through one kilometer of such material, not a single photon
would make it out the other end.

Since the intrinsic attenuation of glass could not explain this high loss,
the problem of excess attenuation had to be rooted in impurities. Fused silica
often contains intentional dopants, such as sodium, which modify the melting
temperature or index of refraction of the glass. Glass also often contains trace
amounts of unintended impurities. Transition metal impurities, such as Cror Ti,
have low lying electronic states, which can dramatically increase the absorption
of visible and near infrared light in glass. At certain wavelengths, concentrations
as small as / part per billion of iron (Fe**) or chromium (C73%) can increase
absorption losses by 1 dB per kilometer. The pioneering work of Kapron, Keck,
and Mauer et al.[3] of Corning, Inc. in the early 1970’s demonstrated that the
high loss was in fact due to impurities. They introduced a novel method for
creating ultrapure glass fibers based on chemical vapor deposition (CVD). Based
on their work, various schemes have been developed and are commercially
employed in large scale operations to keep impurity concentration low.

Perhaps the most pernicious impurity is water. Water will react with many
materials and form the hydroxyl ion, OH~!. OH ™! has a vibrational stretch that
corresponds to a wavelength of 2.7 um, however important overtones occur at
1.39um, 1.25um, and 0.95 um. Because of its strong optical dipole moment,
only one part per million of OH™! in fused silica will increase absorption
losses by 30 dB per kilometer at 1.38 um. It is important to reduce water
content as much as possible during the manufacture and processing of optical
fiber. Current values of OH™! concentration in ultrapure glass are less than a
few parts per billion. At such levels, the impurity absorptions are less than the
intrinsic material losses, so there is no advantage in further reduction. However,
one of the biggest concerns in optical fiber packaging and installation is ensuring
that OH™ won’t find a way to diffuse into the fiber. For example consider a fiber
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that goes under the ocean to connect two continents. Installing such a fiber is
quite an expensive endeavor, so it is critical that the fiber retain its original low
loss characteristics for decades. Because of the long length of such fibers, even
a small additional absorption could lead to early (and expensive) failure of the
link.

3. Rayleigh Scattering

Rayleigh scattering is a fundamentally different attenuation mechanism.
Instead of light being absorbed and converted into stored energy within the
media, light is simply scattered away from its original direction. Rayleigh
scattering is responsible for giving the daytime sky its blue color, where more
blue light from the sun is scattered (some of it downward to Earth) compared to
the red wavelengths in the solar spectrum. We will consider the “classical" view
of Rayleigh scattering, relying on electromagnetic theory rather than quantum
theory to describe the physical process.

Rayleigh scattering is the scattering of light off random density fluctuations
that exist in a dielectric material. When the index fluctuations occur over
a dimension that is small compared to the wavelength of light, the density
fluctuation can be viewed as a small dielectric particle which is uniformly
excited by the field. The instantaneous dipole moment for such a particle is

Ap(t) = AeE(t) (8.6)

where Ae is the excess polarizability of the random fluctuation (excess in re-
lation to the homogeneous background). A dipole radiates power by the well
known expression [4]

w4p2 w4(Ae)2E2

Prad = 127c0c3  12mepc? ®.7)

If there are IV independent scattering particles in a unit volume, then the total
power scattered is simply IV times the result of Eq. 8.7. The dipole will radiate
in a plane orthogonal to the polarization of the driving field. A majority of the
power scattered by the particle will be directed away from the original direction
of the wave. This represents a loss to the wave. A key thing to note is that the
radiated power increases as the fourth power of frequency. This explains why
the sky is blue: statistical fluctuations in the density of air serve as the scattering
points for the Rayleigh process. Some of this scattered light comes down toward
the surface of the Earth, and since blue light scatters at a rate ten times that of red
light, the sky looks blue. At dusk or dawn, the blue light is strongly polarized
— can you explain why based on the discussion above?

So what does this have to do with waveguides? Rayleigh scattering in
dielectrics arises from small density fluctuations that are frozen into the dielec-
tric during manufacture. When an optical fiber is formed, the glass is pulled
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through an oven, where the molten material is stretched to become a thin fiber.
After leaving the oven the glass freezes back into an amorphous solid. There
is a high level of thermal agitation at the transition temperature (melting point)
of glass, and this thermodynamical disorder leads to compositional and density
fluctuations. These random variances are frozen in, and serve as the source for
subsequent Rayleigh scattering. This is a fundamental process: there is nothing
that can be done to eliminate the thermal agitation that accompanies melting
material for manufacture of waveguides. In terms of material parameters, the
scattering loss coefficient is [5]

2
on =" [(n2 _ DTS+ 2n <@-) Z‘c—zav] 8.38)

_ 8w
Y aC

where k is Boltzmann’s constant, 7' is the transition temperature, (3 is the isother-
mal compressibility, n is the index of refraction, On/JC is the change of index
with dopant concentration, and AC? is the mean square dopant concentration
fluctuation over volume 6V, which is smaller than, but on the order of, A3. The
design of long distance communication fibers, where attenuation is critical, is
influenced both by the temperature at which the fiber solidifies, and by the
dopants necessary to create the desired refractive index profile. Lowering the
melting point of the glass reduces subsequent Rayleigh scattering dramatically,
so additional dopants are sometimes added to intentionally reduce the temper-
ature of the melt as much as possible. Likewise, dopants having large index of
refraction changes with concentration are avoided if possible, because random
concentration gradients will lead to large index variations. Nevertheless, since
the source of the scattering is the random fluctuations, and since these fluc-
tuations arise from thermodynamical reasons, the losses are fundamental and
cannot be compensated or eliminated.

3.1 Minimum Attenuation in Fused Silica

Fig. 8.4 shows a logarithmic plot of the near-infrared attenuation rate in
a fused silica sample arising from the infrared vibrational absorption and from
Rayleigh scattering. At 1um, the intrinsic UV absorption described by Urbach’s
Law is insignificant compared to Rayleigh scattering. Due to its A\~ behavior,
Rayleigh scattering diminishes with increasing wavelength. However at about
1.6um, the Rayleigh scattering is overwhelmed by the increasing vibrational
absorption. The tails of the strong absorption at 9um begin to appear, so losses
increase dramatically as the wavelength extends above 1.6pm. The minimum
absorption occurs near 1.55 ym with a value of 0.2 dB/km. The small absorption
peak near 1.38 um is due to residual OH™! in the material.

The minimum attenuation value of 0.2 dB/km is a fundamental limit that
cannot be further reduced in fused silica. This barrier has led some people to
explore new materials. Since Rayleigh and Urbach losses decrease rapidly with
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Figure 8.4. The total attenuation that is found in fused silica. The minimum occurs near 1.55
pm. (Data courtesy Corning, Inc.

increasing wavelength, attention has been focussed on moving toward materials
with longer wavelength transmission windows. In SiOj the infrared absorption
at 9 um leads to the increase in attenuation beyond 1.6 ym. If the vibrational
infrared absorption features could be moved to longer wavelengths, say 40 um,
then it is possible that the minimum attenuation could be reduced below that of
Si0, by going toward longer wavelengths.

A simple way to reduce the frequency of the vibrational absorption (w =
Vk/m) is to use heavier atoms in the solid. Since the “spring constant", k,
derived in Eq. 6.7 that describes the bonding between atoms in solids is ap-
proximately the same magnitude for most dielectric materials, our only degree
of freedom for decreasing the vibrational frequency is to increase the mass. For
example, if Ag, with atomic weight of 107 AMU, were substituted for Si, with
atomic weight 14 AMU, we could expect to see the infrared absorption fre-
quency reduced by approximately a factor of three. This would allow low loss
operation at a longer wavelength, perhaps 2-3m, where both the Urbach ab-
sorption and Rayleigh scattering would be significantly lower. For these reasons
there has been substantial research into materials like AgCl, KRS-5, and other
“heavy metal" glasses. Because of the higher mass of the atoms, these materials
have potentially much lower attenuation coefficients than SiOs; unfortunately
they are difficult to manufacture. To date, they have displayed enormous losses
due to waveguide imperfections such as polycrystalline structure, rough side
walls, etc.. Nevertheless, there is continued research into longer wavelength
optical materials that will potentially have lower loss than presently available
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Figure 8.5. A preform is created by selectively depositing layers of doped glass powder on the
inside of a quartz tube. The torch moves back and forth along the tube, initiating the hydrolyzation
reaction that forms the soot of glass particles.

fused silica fibers. It should be noted, however, that the recent introduction of
low cost, high performance optical amplifiers that are compatible with fused
silica fiber systems have slowed the thrust into these new materials.

4. Optical Fiber Manufacture

To produce fibers with tight tolerances on dimensions and low loss, it is
necessary to pull fibers from a glass “preform". The manufacture of the preform
is the critical part of the process.

We will describe the basic process developed in the early 1970’s based
on Chemical Vapor Deposition (CVD). This technique relies on hydrolyzing a
mixture of SiCly and Oy with a mixture of an additive such as GeCly, BClg, or
POClj3 to produce a “soot" of doped SiO5. This soot looks like a fine snow, and
is deposited on the outside or inside of a glass tube to create an index profile.

Fig. 8.5 depicts a simple preform lathe that uses inside deposition. A
manifold connecting sources of ultrapure dopant gasses mixes the desired ratios
of SiCly, O, and the dopants, and feeds the gas into one end of the rotating tube.
The outside of the quartz tube is heated by a torch which moves back and forth
along the entire length of the tube. Once the gas mixture comes in contact with
the heated zone of the tube, a hydrolyzation reaction occurs, creating a fine
snowfall of doped glass particles. These fall to the wall of the tube, and are
fused into a layer on top of previous soot layers. The inside of the tube is built
up layer by layer. Once the soot is deposited in the desired profile, the tube is
heated and evacuated. This causes the tube to collapse on itself, forming a solid
cylinder of glass with the desired index profile. The size of this solid preform
can range from approximately 2-8 cm in diameter, depending on the process.



Attenuation and Nonlinear Effects 175

The index profile of the preform is controlled by adjusting the gas mixture
flowing into the tube. Table 8.2 lists the gas reactions and their effect on the
index of refraction of the soot.

Table 8.2. Glass mixtures for waveguide preform formation

Mixture Glass  Refractive index
SiCl4,02 SiOz no
GCC14, (0] GeO2 n > no
POCla, 02 P20s n>ng
BCls, O2 B2Os3 n < ng

Gasses are used as a source material for two reasons. First, it is easier to
chemically purify a gas than a solid or liquid. In this way, undesired impurities
can be eliminated from the source material before it is incorporated into the
preform. The second reason involves the use of chlorine to eliminate residual
OH™! from the hydrolyzing reactions. Chlorine is very effective in removing
OH~! from the soot. One characteristic of preform-making facilities is the
need for large scrubbers to remove the chlorine from the exhaust gas before
discharging it into the environment.

To form a fiber, the preform is lowered into a tube furnace which is operating
at a temperature sufficient to bring the tip of the preform temperature to the
melting point. The molten tip is pulled down and stretched into a thin glass
fiber. This thin fiber leaves the furnace and solidifies, then is fed through a
diameter measuring diagnostic, and across a mandrel that sets the pulling rate of
material from the molten preform. The rotation speed of the mandrel is adjusted
to maintain the diameter of the fiber at the desired value. Most commercial fiber
is pulled at a rate of several meters per second, and has an outside diameter of
125 um. A plastic coating is applied to the fiber add strength and protect the
glass from mechanical scratches which could lead to fractures. The fiber is then
wound on a spool. The ultimate length of a single fiber is limited on how long
the preform can be made. Typical values are in the 10 km range for a single
fiber. Longer fiber lengths are created by splicing shorter sections together.

The index profile in the preform is preserved in exact dimensional propor-
tion in the pulled fiber. The glass flows in a pattern exactly as it was formed,
making it possible to create the precise index profiles in the small fiber. For
example, if one wanted to create a step-index fiber with a core diameter of
12.5um, and a cladding layer extending to a diameter of 125um, one would
make a preform where the higher index core comprised the inner 10% of the
diameter, with the lower index cladding material surrounding it. The spatial
proportions are maintained when pulling the fiber down to its final dimension.



176 INTEGRATED PHOTONICS

—t

<+— Preform

7ll7
g 4_

[ : I ) Diameter
Collection Probe
Speed

Spool
Control <« Plastic

( Coating
O Mandrel

Figure 8.6. A fiber pulling station consists of a furnace to melt the tip of the preform, a diameter
probe to provide speed control information to the pulling mandrel, and a plastic coater to add a
protective outer jacket to the fiber.

5.  Losses in Rectangular Waveguides

As we noted above, the losses in optical fibers tend to be in the 0.2 dB/km
range, while for integrated waveguides in materials such as GaAs, the losses
tend to much higher, such as 5dB/cm. Why is there such a dramatic difference?
In this section we will describe how typical planar waveguide structures are
fabricated, and will show that most of the loss arises from scattering at the
sidewalls.

For highly integrated systems it is important to be able to guide light in
waveguides with cross sectional dimensions on the order of 1 micron, and even
sub-micron in some cases. This requires using waveguides with high index
of refraction contrast between the core and the cladding. In an optical fiber
the index difference of An = 0.002 was significant; in integrated structures
the index difference can be 1000 times larger. This dramatically increases the
sensitivity of the waveguide to scattering losses at the surface. Furthermore, if
a single mode waveguide is needed, as it often is for modulators, switches, and
couplers, a large index contrast between the core and cladding creates the need
for small core dimensions. This can be seen from Eq. 3.40 by considering a
slab waveguide. For a TE single mode, the waveguide thickness, h, must satisfy

T 2 ni/2 _ ST
5 < hk(n} —nl) 2 < 5 (8.9)
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Therefore for hk(nj’; —n2)1/2 x 7, the size of the waveguide will be given by:

7r 1
ha s (8.10)
k (n% —n2)1/2
High index of refraction contrast waveguides are usually buried waveguides that
use a semiconductor core (such as GaAs, InP or Si withn 2.5-3.5) and an oxide
cladding (AlO, InO and SiO withn 1.5). From Eq. 8.10 typical dimensions for
a single mode Si waveguide clad with SiO; operating at A = 1.5um are

b T 1 7 1
Tk (n2—n2)/2 " 2r/1.5 (3.52 — 1.52)12

=0.2um (8.11)

The manufacture of such waveguides takes advantage of the processing
technology developed for the semiconductor electronics industry. Most in-
tegrate photic devices are designed to operate on a semiconductor substrate,
which typically have large refractive indices. The waveguide must be isolated
from the high-index substrate, otherwise the optical energy would simple cou-
ple to the substrate and disperse. Isolation is accomplished by depositing a
lower refractive index cladding onto the substate, typically using a Chemical
Vapor Deposition scheme such as Plasma Enhanced Chemical Vapor Deposi-
tion (PECVD) or Organo-Metallic Vapor Phase Epitaxy (OMVPE). Fig. 8.7(a).
shows the result. A waveguide layer of high refractive index is then deposited
by sputtering. Sputtering is simply vaporizing a solid and directing the vapors
toward the substrate, where they deposit and coalesce back into a solid. The
net result is a high-index layer sitting atop a low index layer.

To make waveguides and devices from this layer, portions of the guiding
film must be physically removed from the substrate. This is done using pho-
tolithographic processes. First a photoresist is spun onto the coated substate.
The photoresist is a polymer material that can be cross-linked by exposure to
blue light. The desired pattern of the waveguides and devices in the guiding
layer is transferred by exposing the photoresist to blue light through a mask
which has the a two-dimensional pattern of the device. This is shown schemat-
ically in Fig 8.7c. The photoresist is then developed. Depending on whether it
is a positive resist or a negative resist, the developer will remove the resist from
the regions which were exposed, or which were left in the dark, respectively.
The developed photoresist acts as a barrier for the next step, which is the selec-
tive removal of the guiding layer. This step, called etching, can be done with
wet chemicals, such as hydrofluoric acid or KOH solution, or via a reactive ion
plasma (RIE- Reactive Ion Etching). After etching, only the waveguides and
devices are left in the guiding layer. A final overgrowth of lower index material
is deposited using PECVD.

Losses in these waveguides are usually on the order of 0.2-5dB/cm. These
losses are highly dependent on the fabrication process of such waveguides. The
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Figure 8.7. a. A low refractive index is deposited, b. a high index guiding layer is deposited,
c. a pattern is transferred to the photoresist, d. the exposed layer is developed and etched, e. an
overcoat is deposited over the patterned high-index layer

main source of the losses is the scattering off the sidewalls due to roughness. The
top and bottom of the waveguide tend to be very smooth. The deposition process
results in a even and uniform film. But the sidewalls of the waveguide are formed
by chemically etching through a mask that was photographically transferred
to the film. The dynamics of the etching always lead to small bumps and
ridges in the sidewall of the waveguide. These small bumps lead to significant
scattering. Physically the effect of small perturbations on the waveguide walls
can be viewed as being identical to the small random fluctuations which lead to
Rayleigh scattering in glass (refer to Eq. 8.8), except in the waveguide case the
index difference is large, so the resulting attenuation component is dramatically
larger. The power radiated due to scattering off a random fluctuation in the
interface between the high and low index is proportional to (ni —n2).

To compound the problem, because the typical waveguide has a small cross
sectional area to begin with, the sidewall roughness can represent a significant
percentage of the waveguide cross sectional area. Losses can be reduced using
geometries that minimize the mode overlaps with the rough surfaces. An exam-
ple of such tailoring is shown in Fig. 8.8, where a numerically simulated mode
is shown in two possible configurations of rectangular waveguide. The top and
bottom surfaces of the waveguide were defined by the deposition system and are
generally smooth, down to a few atomic layers. The vertical sides, however, of
the waveguides were defined by the etching and photolithography process and
are generally rough, with roughness on the order of a few nanometers. In Fig.
8.8a the horizontal geometry of the waveguide ensures that the mode overlap
with the rough sidewalls is minimal. Losses in such a waveguide are expected
to be low. In contrast, Fig. 8.8b shows a vertical geometry waveguide in which
the mode overlap with the rough sidewalls is high. In such a waveguide the
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Figure 8.8. a. Low loss waveguide where the mode overlap with the rough sidewalls has
been minimized. b. High loss waveguide where the mode overlap with the rough sidewalls is
maximum.

losses are expected to be high. Considering the high-index of most integrated
waveguide structures, until new processes are developed which provide atomi-
cally smooth sidewalls, designers will have to be very conscience to minimize
mode overlap with the etched surfaces.

6. Mechanical Losses

Optical power can be lost due to leakage due to bending, and from defects
at connections between waveguides. We will defer discussion of connection
loss until we discuss coupled modes, however in this section we will discuss
the effect of bends and packaging on the total attenuation. We will consider a
single mode fiber in these examples.

6.1 Bending Loss

Consider Fig. 8.9, showing the mode field distribution of the LPy; mode
in a fiber. The exponential tails of the field extend out away from the core, and
theoretically never reaches zero, although practically speaking there is virtually
no power in the tails beyond a few characteristic lengths (1/v) from the core. If
the fiber is bent, the spatial mode is not appreciably changed in shape compared
to the straight fiber. However, the plane wavefronts associated with the mode
are now pivoted about the center of curvature of the bend. To keep up with the
mode, the phase front on the outside of the bend must travel a little faster than
the phase front in the core. At some critical distance from the core of the fiber,
the phase front will have to travel faster than the local speed of light, ¢/njqq.
Since this is not possible, the field beyond this critical radius breaks away and
enters a radiating mode. The power that breaks away is a loss to the waveguide.
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Figure 8.9. The plane wavefront in a bent waveguide is pivoted about the center of radius of
curvature of the bend. At some critical radius, the phase velocity must exceed the velocity of
light, and breaks away.
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Figure 8.10. The effective index profile of a bent fiber (solid line) is distorted from that of the
straight fiber (dashed line). The guided mode at value 3 can tunnel across the small barrier and
couple to the radiation modes.

A more quantitative explanation of this effect can be derived modelling the
fiber as having a distorted refractive index profile[6], which we simply quote
here

n'(r) = n(r)(1 + £ cos @) (8.12)
where n(r) is the actual index profile, R is the radius of curvature of the bend,
and @ is the azimuthal angle about the fiber axis. This profile is plotted in Fig.
8.10

A guided mode is indicated by its value of 3/k. A weakly guided mode
will be near cutoff, and hence will lie at lower values of 3/kg. The tail of the
mode will extend into the region where 8/ky < n(r), and hence will radiate.
The lower the value of 3, the more radiation loss will occur for the bend. Modes
with relatively large values of 5 will have a further distance to tunnel, and will
not experience as much loss. The description here is exactly analogous to that
describing leaky modes. We see that modes near cut-off experience far greater
bending loss.
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Figure 8.11. Bending loss calculated from Eq. 8.13 for three different fibers. The cut-off
wavelength for the fiber is set at 1.2 um, and the operating wavelength is 1.5 um.

Quantitatively, the attenuation in a bend can be described as[7]

1/ 7 \Y2 ka 1%,
== _ k@ |" p-1/2,-UR
s (a1) [vaKl(va)] R e (8.13)
where
44 (ya)®
= 8.14
3aV 2ngeq ®.14)

and a is the core radius, and A is the normalized core-cladding index difference.
Some representative losses are plotted in Fig. 8.11 from this equation.

It is evident that the losses increase dramatically as the radius is reduced,
and as the core-cladding index difference, A, is reduced. Note that this is one
reason why integrated waveguides, which have to make small-radius turns on
substrates, tend to use high-index contrast for waveguiding. Bending loss is
reduced dramatically as An increases. Keep in mind that the bending losses
shown in Fig. 8.11 are per unit length, and that a single bend of short radius
will not have significant length. Bending losses become significant when the
bend is extended over a long distance. This effect is seen in microbending.

6.2 Microbending Loss

In the process of putting an optical fiber in a cable, many small bends
and curves are introduced. Cabling is necessary to protect the fiber and to
provide sufficient mechanical strength to aliow a fiber to be pulled through or
strung along existing electrical wiring. Typically, an optical fiber is loosely
wrapped around a strong cord made of nylon or steel, and the entire assembly
is then encased in a pliant plastic jacket. The jacket protects the fiber from
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abrasion, while the central cord picks up any tensile stress that might occur
during installation, leaving the optical fiber unstressed and hence unbroken.

Inevitably, there will be small bends in the optical fiber as it is wrapped
about the central cord. This introduces a systematic bending loss into the
fiber. Tests of fiber attenuation before and after cabling show that cabled fiber
attenuation is larger. The degree of attenuation depends on the specific cabling
geometry, because the loss depends critically on the bend radius. A typical
cable is designed to minimize the total bending that the fiber must do around the
tensile strength member. Nevertheless, microbending attenuation can become
significant because of the long length of the fiber; even small effects eventually
add up. Looking at the data in Fig. 8.11, one can see that increasing A reduces
the effect of bending loss. Therefore it is desirable to use a single mode fiber
with as large a numerical aperture as possible in order to minimize loss in
long-distance optical communication links.

7. Nonlinear Effects in Dielectrics

Up to now, we have assumed that the material constants € and p were inde-
pendent of the field strength. Linearity implies that the permittivity experienced
by a field with strength £ = 10 V/m would be the same as the permittivity ex-
perienced for a strong field with E = 10° V/m. In the case of most dielectrics,
for field strengths in this range the assumption is reasonably accurate; the value
of the permittivity changes only slightly over these huge ranges of applied field.
But the essential fact is that it often does change slightly, and this slight change
can lead to some spectacular effects. Among the notable nonlinear interactions
are the generation of second harmonic radiation of optical frequencies and fre-
quency mixing. Here we want to study the stimulated scattering that leads to
excess loss, and imposes power limitations on the optical waveguide.

On a fundamental level, nonlinearities arise from an anharmonic motion
of the electrons in response to an applied field. Consider the simple illustration
below of how a nonlinearity can lead to the generation of a second harmonic
field. A one-dimensional crystal is shown in Fig. 8.12. The crystal does not
display inversion symmetry.

The electron, as it is pushed right and left by an applied field, will see
different potential barriers restricting its motion. For example, the electron will
be strongly inhibited from moving to the right, but will see less inhibitive force
when going to the left. This leads to a nonlinear dipole moment in response to
the applied field.

If an electromagnetic wave is incident on the crystal, the electron will
respond by moving back and forth along the crystal in synchronicity with the
field. When the electron moves to the left, it will see the potential field of atom
a, and when it moves to the right it will see the potential of atom b. Since atoms
a and b are different, the potentials they generate will be different. From the
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Figure 8.12. A molecule with no inversion symmetry.

[AVATATS

Time

Amplitude

-10-4

Figure 8.13. The motion of the electron under the influence of a sinusoidal driving field in the
presence of a non-symmetric crystal.

electron’s point-of-view, it sees an asymmetric potential well, as shown in the
figure. In response to an applied field, the electron will move further to the
right than the left. The motion of the electron, as plotted in Fig. 8.13, follows a
distorted sinusoidal path. Using Fourier’s theorem, the electron’s motion in this
example could be described as a superposition of several sinusoidal motions.
This simple illustration relied on a system with no inversion symmetry. Try
to repeat the arguments made above with a system that is symmetric, and you
will see why non-inversion symmetry is a necessary condition for second har-
monic generation, although other (odd) harmonics can be generated. Whenever
the moving electrons fail to maintain a strictly linear relation between applied
E and position r, there will be a nonlinear term in the polarization. The field
strength must usually be significant for these effects to occur. The binding
potential of an electron to a nucieus or molecule is on the order of 101° V/cm,
so for applied fields that are orders of magnitude smaller than this value, the
electrons will not be significantly affected by distortions of the charge distribu-
tions. Once the field strength approaches 1% or more of the binding potential,
the nonlinearities begin to become significant. This is the reason why we do
not experience nonlinear optical effects in our everyday terrestrial experience.
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Nonlinear optics was not a widely investigated field prior to the development of
the laser. With lasers, field strengths exceeding 108 V/cm are easily generated.

On a more formal level, the induced polarization from the applied electric
field can be expressed in general form

Pleg = xV.E  Linear optics
+ X(Z) -EFE Sum Frequency Mixing, Pockels Effect
+x® . EEE Third Harmonic, Self Phase Modulation, . ..
+... (8.15)

where x(@ is the ith order susceptibility. To account for polarization effects, x@
is a tensor of rank 4 + 1. The linear susceptibility, (1), is the polarization term
we explored in Chapter 6 (see Eq. 6.14). The second order susceptibility x
is responsible for effects such as second-harmonic generation. As explained
above, it exists only in materials with noninversion symmetry.

There are many optical nonlinearities that can be studied in optical wave-
guides. We will focus on three topics: Stimulated Raman Scattering, Stimulated
Brillioun Scattering, and Self Phase Modulation. More detailed reviews can be
found in specialized texts [see for example refs. [8] and [9].

8. Stimulated Raman Scattering

When an optical wave travels through a material system, the wave can be
partially scattered by local imperfections. One example of such scattering is
Rayleigh scattering, which was described above. Raman scattering is a second
such mechanism. We will develop a classical picture of Raman scattering in
this section, although we will invoke quantum concepts such as the photon and
phonon. Only a qualitative description of the underlying physics of Raman
scattering will be presented. Interested readers should consult the excellent
texts listed in the references for more detail.[10-13]

A photon travelling through a material can excite a vibrational transition of
the material, creating an optical phonon, even if the frequency of the two quanta
are dissimilar. (A phonon is a quantum of vibrational energy in a lattice. It has
energy hw, where w is the vibrational frequency of the lattice.) This is a non-
resonant interaction. Fig. 8.14 shows an energy level diagram of the interaction.
The incident photon with energy fw; (w; is the optical frequency) has a small
but finite probability of exciting a single phonon of the molecular vibration,
depositing fiw, energy in the molecule. To satisfy energy conservation, the
photon will exit the system with a slightly reduced energy, fiws, where

Wy =w; —w (8.16)
p

The net effect of this interaction is that the molecule has been raised to a new
vibrational state, and the photon energy (and frequency) has been reduced. This
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Figure 8.14. Energy level diagram for Raman scattering. An incident photon with energy Aiw:
excites a phonon with energy fiwp, and is re-emitted with energy fiwo.

process is called Raman Scattering. Energy is strictly conserved. Usually the
photon and phonon frequencies are dramatically different, so the probability
that the photon actually excites the phonon is very small. One can rely on
everyday experience to notice that the wavelength of light does not noticeably
shift when passing through a plate of glass. In other words, most of the light
goes through a material without suffering Raman scattering. Only an extremely
small fraction of any incident optical field actually undergoes Raman scattering
in a material under low intensity conditions.

Example 8.1: Raman scattering from a variety of gasses

A laser beam with a well defined wavelength of A\ = 514.5 nm is sent
through a chamber of gas. Looking at the beam from the side, a monochrom-
eter collects scattered light and disperses it according to its wavelength. The
scattered light from the beam has two components: there is a lot of light at
A = 514.5 nm due to scattering from dust particles and Rayleigh scattering in
the gas, and there is a second wavelength at A = 584.6 nm. What is the gas in
the cell?

Solution: The vibrational frequencies of several gasses are listed in Table
8.3. The vibrational frequency is listed in units of wavenumber, which is the
number of wavelengths in a unit length, in this case 1 cm. Note that this
definition is similar to that for the wavevector, kg, except the wavevector is
defined as the number of radians per unit length, while wavenumbers are listed
in waves per unit length. Don’t get confused by the units!

The incident wavelength (514.5 nm) corresponds to 1/\ = 19436 cm™!,
The Raman scattered light at 584.6 nm corresponds to a wavenumber of 1/\ =
17105 cm™1. The difference in the incident and scattered light is 2331 cm™!.
Inspection of Table 8.3 indicates that the gas must be Ny. This illustrates the
diagnostic power of Raman scattering-—the composition of a material can be
determined by remote (non-contact) sensing.
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Table 8.3. Raman frequencies for several gasses

Gas Vibrational Frequency (cm™!)
N2 2331
02 1556
H, 4161
CO 2145
CO2 (11) 1388
CO- (I/z) 1286
N2 (0] (I/1 ) 1285
N0 (v2) 2224

8.1 Mechanism Behind Raman Scattering

Since the interaction responsible for Raman scattering is nonresonant, how
does Raman scattering occur? In the classical picture the interaction occurs
through a slight modulation of the index of refraction due to the molecular
vibrations of the material. Consider the schematic representation of a molecule
in Fig. 8.15, consisting of two atoms separated a distance x( by a spring. If an
electric field is applied to this molecule as shown, there will be a slight change
in the relative position, xg, of the two charges. The induced polarization for the
molecule is defined as

p=qz, (8.17)

where ¢ is the net charge that moves in response to the field, and z-is the
difference in distance between the charge centers under the influence of the
field and at equilibrium. Often the polarizability of a material is written in
terms of the applied electric field

p=akF, (8.18)

where ¢ is called the complex polarizability of the material. This is a micro-
scopic version of the bulk polarization expression,

P =exVE (8.19)

where the term x{1) is used to describe bulk polarizability, as opposed to the
microscopic polarizability, o.

If the molecular length increases, the charge separation increases, so the
polarizability, «, increases. In practice, molecules at finite temperature vibrate
due to thermal energy. It is this small vibration, and its effect on the polariz-
ability, that couples energy from the optical field to the vibrational field.
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Figure 8.15.  When a molecule is polarized by an external electric field, the two polar ends can
be further separated, leading to a change in diploe moment.

The molecular polarizability of an atom that is vibrating can be described
through a Taylor series expansion

0
alz) = ap + —6% xodx (8.20)

where dz is the displacement of the molecular length from its equilibrium value.
If the molecule is vibrating at its resonant frequency, wp, then the displacement
will be a periodic function

Sx(t) = Sz eFiwrt (8.21)

Combining all these terms, the polarization of the molecule becomes
p(t) = o()E()

e
@0 ox

= agEoej““t—l-Qgi o Egel@itwp)t (8.22)
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Notice that there are now two frequency components to the polarization: one
term oscillates synchronously with the electric field, and is responsible for the
dielectric constant of the material. The second term oscillates at a different
frequency, given by the sum or difference of the applied frequency and the
vibrational frequency, and acts as a source for the generation of radiation at the
new frequency.

Recall that polarization acts as a driving force for new electromagnetic
fields, according to Maxwell’s equations

608E + orP
ot ot

The polarization term at the frequency (w; & wp) acts as the driving source to
generate F and H fields at these shifted frequencies. Classically, the scattered

VxH=

(8.23)
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Figure 8.16. (a.) The incident photon excites a phonon from the ground state, and leaves with
less energy. (b.) The incident photon scatters off of a molecule in the first vibrational excited
state. The molecule drops back to the ground state, releasing one quanta of energy which appears
in the exiting photon. The photon leaves with higher energy.

field can be shifted to higher or lower frequencies than the driving field. In
practice the frequency depends on the vibrational state of the molecule. Fig.
8.16 shows an energy level diagram of both processes. A photon with energy
fiwy is incident on a molecule with vibrational frequency wp. If the molecule is
in the ground state initially (Fig. 8.16a), it can absorb energy from the applied
field, and the scattered light (wy) will be at a lower energy and frequency. This
photon is called a “Stokes" photon, indicating that it has a lower frequency than
the input photon.

If, on the other hand, the molecule is already in an excited vibrational
state, as in Fig.8.16b, then it can give up one phonon’s worth of energy to the
field, and drop to the next lower vibrational energy level. The optical photon
exits with higher energy and frequency, and is called an “anti-Stokes" photon.
Both processes can be observed in Raman scattering. Due to the Maxwell-
Boltzmann statistics which describe thermal distributions, there are usually
far more molecules in the ground state than in the excited state in thermal
equilibrium, so Stoke’s radiation usually dominates.

8.2  Amplification Using Stimulated Raman Scattering

Close examination of the second term of Eq. 8.22 gives some insight into
the nature of the Raman process. The induced asynchronous dipole moment is
given by

— 8_0! J(wrwp)t
P()wrtw, = 5 dzg Ep e (8.24)
This is a nonlinear term (the output frequency is different from the input fre-
quency), and it depends on the product of two coupled parameters: the applied
electric field amplitude, Ey, and the amplitude of the molecular vibration, dxg.
The overall size of this term is usually small compared to the linear polar-
ization. For this reason, we do not expect, nor in practice do we see, strong
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Stokes-shifted signals coming from optical materials using low intensity light
sources. Nevertheless, there is always some Raman scattered light produced
when light travels through a material.

The molecules which contribute to this Raman process are, for the most
part, independently vibrating. There is no coherence between the various
molecules, so the phase of the Stokes light that is generated by each molecule
is statistically distributed over 27 radians. The resulting light is therefore inco-
herent, and comes out in many possible directions. This is called spontaneous
Raman scattering. Under much stronger driving force (i.e. larger electric field
amplitudes), the interaction between the electromagnetic fields and the polar-
izability of the material can lead to the imposition of some order among the
oscillators, and a coherent wave at the Stokes frequency can be generated.

The polarization at the Stokes frequency is proportional to the product of
the applied electric field, Ep, and the amplitude of the molecular vibration,
dxzg. Each time the electric field scatters a photon off of a molecule, the vibra-
tional amplitude increases. From Eq. 8.22, we see that an increased amplitude
directly increases the polarization at the Stokes frequency. The process can
feed on itself — the creation of each Stokes photon makes dxg larger, making
it easier to generate even more Stokes photons. For very low intensities, the
thermal disorder of the system keeps the molecules out of phase, so there is no
coherent build-up of the Stokes wave. At high intensities, the vibration of each
molecule can fall in-phase with each other, leading to a large coherent array
of vibrating oscillators. This regime is called Stimulated Raman Scattering.
Once a stimulated field begins to form, it will exponentially grow until it has
saturated the pump field.

Stimulated Raman Scattering (SRS) can be viewed as a problem, or as an
effect to be exploited. SRS can be a serious problem for optical communica-
tion: if a sufficiently intense optical field is sent into a fiber, it can generate other
wavelengths, and eventually deplete the energy at the original input wavelength.
The creation of additional wavelengths in the communication link will, at the
least, add to more dispersive pulse spreading, and at the worst, cause the in-
formation to be lost altogether. Thus, Stimulated Raman Scattering establishes
an operational maximum limit on the amount of power that can be put into an
optical fiber.

In the stimulated Raman regime, the Stokes wave will be amplified as it
travels through the medium. As explained above, the polarization at the Stokes
frequency is proportional to the applied field amplitude and the amplitude of
the molecular vibration. Describing this mathematically in terms of intensities,
the process is characterized by a simple differential equation

dr.
d—; =G, LI (8.25)
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Table 8.4. Raman frequencies and gain coefficients[14] (A = 0.694m)

Material ~ Frequency Shift cm™) Raman Gain (m/W) Linewidth Av (cm™?)

LiNbO; 258 28.7 x 10713 7
Benzene 992 2.8x 10713 22
Si02 467 (peak) 0.9 x 10718 200

where I is the intensity of the Stokes-shifted light(ws = wp — waip), 11 is the
intensity of the pump light(w,,), and G/ is the Raman gain term, which includes
all the material terms such as da/Jz and frequency terms which arise in the
conversion from polarization (Eq. 8.24) to intensity (Eq. 8.25). The gain
coefficient, G, decreases proportional to 1/A2. The differential equation can
be solved in the case of weak Stokes intensity, Io < I, to be

I(z) = L(0)eC 1= (8.26)

We have assumed that the pump intensity is not significantly depleted through
SRS. Table 8.4 lists values of G and w, for various materials of interest in
optoelectronics. The gain values are specified for a pump wavelength of 0.694
pm, which corresponds to the ruby laser output wavelength. The key points to
understand are that the gain is proportional to the intensity of the pump light, and
that optical gain occurs at a frequency that is different from the pump frequency,
shifted by wy,.
Recall that 1 cm™! is equal to 30 GHz.

Example 8.2 Raman gain in a single mode fiber

Consider the Raman gain that is generated by sending light down a single
mode fiber made of fused silica. In this case, assume that the fiber has an
effective core area of 10~ 6cm? (this corresponds to a mode field diameter of
11pm, which is typical for a single mode fiber). A laser couples 100 mW of
light at A = 1um onto the fiber. Ifthe fiber is 1 km long, what is the magnitude
of the Raman gain, and at what wavelength does the gain appear?

Solution: From Table 8.4 we see that SiO- has a vibrational frequency of
467cm~!. (The spectrum is actually a broad distribution with a peak at 467
cm™!). To convert this into frequency, the wavenumber must be multiplied by
the speed of light, c.

v = 467cm™ ! 3 x 101%m/sec
= 14 x 10"?Hz

The vibrational frequency of SiOy is approximately 14 THz, so the Raman gain
will exist for light at a frequency that is 14 THz below the pump frequency. The



Attenuation and Nonlinear Effects 191
pump frequency is v = ¢/A = 300 THz.
Vgain = 300 x 10'? — 14 x 10'? = 286 x 10*2

This frequency corresponds to a wavelength of

¢ 3x101

A= R x 10

= 1.049pm (8.27)
The Raman gain will be maximum for light with wavelength 1.049um. The
magnitude of the gain depends on the intensity of the pump light in the core
of the fiber. The intensity is I = 0.1W/10~%cm? = 105 W/cm?. The Raman
gain is then

~

(=
(0)

~—

eGT-I-z

~

= exp(0.9 x 107Bm/W - 10°W/cm? - 10*cm? /m? - 1000m)
= ezp(0.09) = 1.094

A weak signal with wavelength A = 1.049um that enters the fiber with the
pump beam will see approximately 9% gain in one kilometer.

The 1 km optical fiber used in Example 8.2 is effectively an amplifier for
light at A = 1.049um, with a net gain of about 9%. In practice, the vibrational
spectrum of SiO; peaks at 467 cm™!, but is in fact rather broad, decreasing
approximately linearly with frequency toward lower frequency. Thus, there is
gain over a large frequency range in a SiO, Raman amplifier, although it is
maximum near 467 cm~ !, If the pump wave does not attenuate seriously after
travelling this distance, the amplification could easily be increased by extending
the length of the fiber. Such amplifiers are widely used in long distance optical
communication links, where they serve as a pre-amplifier at the receiving end
of the fiber to boost a weak optical signal. They also can provide gain over a
wide number of wavelengths, since only the frequency of the pump laser needs
be adjusted to change the center wavelength of the gain.

Because the pump power decreases along the fiber due to linear absorption
and scattering, the Raman gain is greater at the input end. To account for this,
the operator dz in Eq. 8.25 should be replaced by e®*dz. An effective gain
length, L.y, drops out of the integral solution to Eq. 8.25, defined as

1—- e—aé
Legp=—01— (8.28)

where £ is the actual fiber length, and « is the linear attenuation coefficient for
the fiber.
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8.3 System Limitation of Stimulated Raman Scattering

A concern in optical fiber communication links is the limitation imposed
by the presence of gain in the fiber created by the signal itself. This answers the
question we posed at the beginning of the chapter, “Why not increase the input
power of the signal to overcome fiber losses?" Consider the case where an optical
fiber is used to transmit a signal between two points. The mere presence of the
signal establishes gain at the Stokes shifted wavelength. Normally, there will be
no input at the Stokes wavelength, so there will be no build-up or amplification
of signal at this undesired wavelength. Unfortunately, spontaneous Raman
scattering occurs all the time, and it is possible for a spontaneous Stokes photons
to be launched in the guided mode of the fiber. These spontaneous photons will
see the optical gain caused by the signal light, and will be amplified. Essentially,
these spontaneous photons will rob power from the signal and convert it into
light at a shifted wavelength.

How much optical power is generated in the Stokes wave? This depends
on the loss of the fiber, the Raman gain, and the number of modes carried by
the fiber. Spontaneous Raman scattering can occur at any wavelength within
the bandwidth of the vibrational transition. Fused silica, for example, has a
bandwidth of about 6 THz, and a central vibration frequency of 14 THz, im-
plying that the scattered light will be frequency downshifted by approximately
14 £ 3 THz. As the bandwidth of the spontaneous scattering increases, the
number of modes that the Stokes light can couple to increases. Each Stokes
photon, no matter which mode it is in, will see gain. Thus, the output of the
fiber will contain a large number of Stokes photons spread over the bandwidth
of the medium. In practice, the spontaneous Stokes photons occur throughout
the fiber length, and see different total gains depending on location. It can be
rigorously shown that the net effect of this distributed noise source is equivalent
to injecting one fictitious photon per mode at the beginning of the fiber[15]. The
effective number of modes is given by

N = ﬁi”_}’_"_"_m‘l/f_Z (8.29)
2 [L,G/op]"

where I, is the intensity of the pump light, and o, is the loss coefficient for the
pump light.

An absolute upper limit for input power into a communication link can be
defined in terms of the point at which the Stokes power, F,, equals the signal
power, Pg;,. It can be shown that the limiting power is

B 167rw§

= 8.30
GrLeff ( )

where wy is the mode radius in the fiber.
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Consider for example a single mode fiber operating at A, = 1.55um. The
mode radius for a typical fiber is 5 um, yielding a mode area of approximately
80um?2. The loss coefficient for good fibers is approximately 0.2 dB/km, yield-
ing an effective length L.; ; = 20 km. Using the data from Table 8.4, the power
limit for a signal at A = 1.55um is approximately 700 mW. This is quite large
relative to the commonly used signal powers on the order of 1 mW.

9. Stimulated Brillouin Scattering

Brillouin scattering is similar to Raman scattering, except acoustic phonons
are involved instead of optical phonons. Acoustic phonons consist of collec-
tive vibrations of the atoms in a solid, while optical phonons tend to involve
vibrations only between a few individual atoms[10]. Acoustic vibrations occur
at a much lower frequency than optical phonons, being on the order of Iem™!
(=~ 30 GHz). Brillouin scattering occurs when optical waves interact with the
small periodic change in the index of refraction caused by these collective vi-
brations. The gain for Stimulated Brillouin Scattering in glass is about two
orders of magnitude greater than for SRS, but it occurs over a much narrower
frequency bandwidth. If the pump radiation has a linewidth larger than the
Brillouin linewidth, the gain is proportionally reduced. Brillouin linewidths
are oln the order of 60 MHz, compared to Raman gain bandwidths of 10’s of
cm ™.

Brillouin scattering is essentially caused by a reflection of the input light
from a moving index variation caused by an acoustic wave in the material. The
frequency of the scattered light is given by

v = 2V, /A (8.31)

where V is the velocity of sound waves in the material. This formula effectively
describes a Doppler shift of light bouncing off of a moving index variation in
the solid. For the case where the pump linewidth is much narrower than the
Brillouin linewidth, the gain coefficient is

27m7p%2

Gp = cA2pV;Avp

cm/W (8.32)
where p is the density, p; 2 is the elasto-optic coefficient, and Avp is the Brillouin
linewidth. For plane waves in fused silica in the visible region of the spectrum,
the frequency shift is approximately 35 GHz, and the gain coefficient is G =
4.5x 107° cm/W near A = 1um. The Brillouin linewidth, Avg, is on the order
of 135 MHz. If the pump linewidth, Av,, is larger than the gain linewidth, then

Gp =~ Gpo(Avp/Auvp) (8.33)
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The major problem a system designer faces with Stimulated Brillouin Scat-
tering (SBS) is the chance that input power will be reflected backward out of the
waveguide. The SBS gain can cause a large back reflection, effectively reducing
power transmission. SBS is usually observed with extremely narrowline pump
input power, so a common solution is to increase the bandwidth of the input
signal. Generally for temporally short pulses, the linewidth is much greater
than Avy, so the effective Brillouin gain is reduced. Similar to the case for
SRS, to avoid SBS, one must stay below a critical gain threshold. The critical
power for backward stimulated Brillouin scattering is given by [15]

214
p= el 8.34

SBS can be avoided if the input power has sufficient bandwidth to reduce
the power spectral density below that established by Eq. 8.34. For optical
communication systems with information bandwidths exceeding hundreds of
Megabits/second, this bandwidth restriction is almost trivial to meet, so SBS is
not generally a problem.

10.  Self-Phase Modulation

The last significant nonlinearity we will consider in amorphous solids is
due to x(®, which is responsible for phenomena such as third harmonic gen-
eration, four wave mixing, and self refraction. Unless special efforts are made
to match the phase velocities of the harmonic frequencies (e.g. for second har-
monic generation, phasematching requires that 2k,n,, = kg,n2y), harmonic
generation is not efficient. Due to the dispersive nature of glass, most harmonic
generation effects are negligible, leaving nonlinear refraction as the predomi-
nant nonlinearity. Consider the case of a wave, E(r) = Ege“@*%om) 4 cc.,
propagating in a fixed direction in glass. The polarization resulting from the
%) term is described by

P

- — X(I)Eoej(wt—kor) +ec + X(3) [Eoej(Wt"*ko?') + c.C.]3
0

= YWEyedWt=kor) L e + x(a)Eg[2(ej(“’t_k°T) + c.c)
+ (eSj(wt—kov‘) + c.c)] (8.35)
= [X(l) + QX(B)ES] Egel/@t=kor) 4 ¢ ¢+ 3rd harm. terms
The term in the brackets is the effective polarizability for the medium and as
you can see, it depends on the intensity of the applied field. Converting this

expression to intensity, and using the fact that x(3) is extremely small, the index
of refraction, n, of a material can accurately be written as

n(I)=ng+ng- I (8.36)
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where ng is the normal index of refraction, and n is the nonlinear refractive
component. For most materials ng is small: ng = 3.2x 10716 cm? /W for fused
silica, and 3.8 x 10716 cm? /W for sapphire. Clearly, n(I) is nearly equal to ng
under common terrestrial conditions (sunlight, etc.), and only deviates under
extreme high intensities. However, these are exactly the conditions that can be
easily achieved in an optical fiber: the small core size and long path length of
optical fiber systems allow even modest fields to create significant nonlinear
effects.

How does the () term lead to self-phase modulation? First, let’s define
phase modulation. The instantaneous phase of a wave is defined by the argument
of the exponent in the wave formulation. For example, a plane wave propagating
through a dielectric material is described by

E(z) = Epefwot=konz) — e3¢ (8.37)
Noting that ky = wp/c, the instantaneous phase, ¢, can be described as
¢ = wot — ?nz (8.38)

If the wave is a single frequency sine wave, the phase can be expected to
accumulate at a steady rate, defined by the angular frequency as w radians per
second. Phase modulation is the term describing any alteration of the phase from
its linear predicted pattern. This can be done intentionally for communication
purposes using a modulator, or the wave can modulate itself via a nonlinear
interaction. The latter effect is called self-phase modulation.

Substituting the expression for the intensity dependent index of refraction,
Eq. 8.36, into Eq. 8.38 yields

¢ = wot — %[no + ol (t)] (8.39)
The instantaneous frequency of the field is determined from
d
wl(t) = d‘f — wo {1 - —ng—I(t)] (8.40)

Inspection of this equation shows that when the intensity is increasing, the
instantaneous frequency of the wave is reduced (assuming that ny is positive),
and when the intensity decreases, the frequency of the wave is increased. The
time-dependent index of refraction acts like a phase modulator.

Consider the optical pulse in Fig. 8.17. The intensity is a function of time,
rapidly rising from zero intensity to a maximum value, and then returning to
zero. Due to self-phase modulation, the index of refraction at the peak of the
pulse will be slightly different than the value in the wings of the pulse. If ny
is positive, the index at the peak will be slightly larger than in the wings. The
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Figure 8.17. An optical pulse travelling along the z-axis will experience a time-dependent
increase and decrease in the index of refraction. The leading edge will see an increase in index,
while the trailing edge will see a decreasing index.

leading edge of the pulse will see a positive dn/dt, while the trailing edge will
see a negative dn/dt. The phase of the optical wave depends on the refractive
index , & = kn/, so the time-varying index of refraction will lead to a time-
dependent phase shift, d®/dt. This phase modulation leads to the creation of
additional frequency components.

A simple way to view this process is to look at the wavelength of the
fields on both sides of the pulse. Since the leading edge of the pulse has lower
intensity than the peak, the index of refraction will be lower, and therefore the
phase velocity, v = ¢/n, of the field will be slightly faster than at the peak.
Phase fronts on the leading edge will move away from the center of the pulse,
effectively stretching out the waves, and lowering the frequency of the light.
The leading edge of the pulse is frequency down-shifted.

Similarly the trailing edge of the pulse has a lower index than the peak,
so the trailing edge waves move slightly faster than those at the peak. As they
propagate, they catch up with the peak, or effectively compress their wavelength.
Compressed waves lead to shorter wavelengths, which is equivalent to a higher
frequency optical wave. The trailing edge of the pulse is frequency up-shifted.

The pulse frequency bandwidth increases due to self-phase modulation, and
the pulse develops a “chirp" where the frequency of the pulse monotonically
increases across the pulse. The magnitude of the frequency chirp experienced
by the pulse is

2w L dén
dw=AkL = —— 8.41
“ N dt (8.41)
where dn = ngl. The total accumulated phase for this pulse is
2
Ap = L5, (8.42)

A
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where dn is the maximum increase in index
on = nolmas (8.43)

This excess bandwidth generally has a detrimental effect on pulse propagation,
as it leads to increased dispersion effects. The pulses are no longer “transform
limited", meaning that the actual bandwidth of the pulse is larger than that
predicted by a Fourier transform of the temporal envelope.

The key problem with SPM is the increased dispersion that results when the
bandwidth is increased. We can derive a critical length, L;;, in which the high
frequency component of the pulse is retarded by one pulse length time from the
low frequency component. In other words, the effective temporal pulse width
doubles. As a rough estimate, let’s assume that the rate of change of intensity
for a pulse can be given as dI /dt = 2I /7, where 7 is the pulsewidth and [ is the
peak intensity. The increase in the pulse bandwidth (from Eq. 8.41) traveling
a distance L4t 1S

_ 27 Lcrit ’ngI

AUJ = '—T - (844)

Define the group velocities of the two different wavelength pulses as v; and vy,
respectively. In a time 7', each pulse travels a distance 23 = v1T and 29 = v T
The time T required for the pulses to separate a distance equal to their pulse
widths (given by T¢/n) is

Te/n

T= (8.45)

U2 — 01
Noting that the critical length is L..;; = T'c/n, this equation can be recast as

’T‘C2

—(Uz - (8.46)

Lcrit =

The difference term in the denominator can be replaced by vo — vy = dvy/dw -
Aw.

cno + wdn/dw] ™!

vy =

d’Ug —‘1 1 2d2n _1 1 2d2n
— = — N —— (8.47)

dw 2n ng +wdn/dw” dX2 T 2w ng dA2

Substituting this and Eq. 8.44 into the expression for L..;; yields

-1/2
d’n
_ 12

Lerit = [A W] er (8.48)
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Example 8.3: Critical length for a pulse

A SiOs fiber with a 10 pum diameter core is excited with a 10 psec pulse
at wavelength 1 um. The pulse has a peak power of 10 W. What is the critical
length of this pulse?

Solution: The peak change in index is obtained from Eq. 8.42, using
ng = 3.2 x 10716 cm?/W, and calculating the effective intensity in the core of
the fiber

on =3.2x10"%cm?/W - 10W/(n(5 x 107%)?) =4x107°

We must determine the dispersion term. By evaluation of the Sellmeier equa-
tion, or from Fig. 8.18 we can find that

Ad%n
D(lum) = ——C_Wlly‘m = —38ps/km/nm
To convert this to a numeric expression for \2d?n/d)?, we need to multiply by
Ac and convert units in the proper fashion. We leave it as an exercise to show

that the dimensionless quantity \2d?n/d\? is

o d%n

N Dz

=(.0114

Plugging these values into Eq. 8.48 yields

Lerit = (0.011 -4 x 10—9)"1/2 3 x 108m/s- 10-114
= 452m

The pulse will double in width due strictly to self-phase modulation in a distance
of 0.45 km.

11.  Optical Solitons

While Mother Nature sometimes makes our lives difficult with problems
such as self-phase modulation or stimulated Raman scattering, we can find
ways to exploit these “problems" to our advantage. The optical amplifier based
on the stimulated Raman effect is one example of such exploitation. Self-
phase modulation leads to another possible scheme which is rich with potential
application, namely optical solitons[16],[17]. A soliton, by definition, is a
solution to a wave equation that propagates without distortion. As we know,
when we launch a pulse in a real optical material, dispersion will lead to a
temporal broadening of the pulse. This broadening is a form of distortion.

To generate an optical soliton it is necessary to cancel out the effect of pulse
broadening due to dispersion. This can be done with very careful balancing
of self-phase modulation and negative dispersion. Recall in our discussion
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Figure 8.18. The dispersion in SiO2. The region above 1.3 um is called the negative dispersion
region.

of the optical properties of matter, that the material dispersion term, D =
—X ¢ d?n/d)?, went from a negative value for short wavelengths, through
zero near \g, and then became positive for wavelengths longer than A\g. The
negative sign in the expression for dispersion adds a misfortunate confusion to
the language. In the dispersion curve calculated for SiOy shown in Fig. 8.18,
the “positive dispersion" region occurs for wavelengths less than 1.3 um. The
“negative dispersion" region occurs for A > 1.3um. Another way of defining
negative dispersion is to note that material displays negative dispersion when
dvg/dX < 0. In normal dispersion, lower frequencies travel slightly faster than
higher frequencies. For example, red light travels faster than blue light in glass.
The fact that they travel at different velocities is dispersion, and the fact that
the low frequencies travel faster than the high frequencies is termed “positive
dispersion." For wavelengths longer than )y, lower frequencies travel slower
than the high frequency components.

For a transform-limited pulse with bandwidth Av, negative dispersion will
have the same type of effect as positive dispersion, namely it will cause the
pulse to temporally spread. However, if the pulse has a frequency chirp caused
by SPM, negative dispersion can actually compress the pulse. Consider the
effect of negative dispersion on a pulse that has been phase shifted by self-
phase modulation. Assume the central wavelength of the pulse is chosen to
operate in the negative dispersion regime of the material. The leading edge of
the pulse, which has lower frequency components, will travel slightly slower
than the rest of the pulse. Similarly, the trailing edge will advance with respect
to the pulse envelope. The pulse will tend to collapse upon itself as shown in
Fig. 8.20. Thus, provided that the frequency chirp is large enough, dispersion
— the former pulse broadener— now leads to pulse narrowing.
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Figure 8.19. A chirped pulse will be temporally compressed by negative dispersion.

The simple description above can explain pulse compression, it is not suf-
ficient to account for solitons. The correct description requires solution of the
wave equation. If the pulse is described as

E(z) = u(z, t)ed Wtk2) (8.49)

it can be shown[17] that the amplitude, u(z,t), satisfies the nonlinear wave
equation when SPM is included

1
+ ko 2 Julu (8.50)
2 ng

-[@Jr?k?ﬁ]_;lﬁz_’“@
T8z Towat] T 2 6w o2

The nonlinear interaction is contained in the last term of the equation.
The first step in solving a nonlinear differential equation is to reduce it to
dimensionless form. This can be done with the transformations

1[ Bk]
s = —|t——=z2

T Ow
_ 8%k 1
R W P
1/2
v = T[—————(’“O”fg!,ff no)} u (8.51)
o

where 7 is the pulse width. Substituting this into Eq. 8.50 yields



Attenuation and Nonlinear Effects 201

v 16% 9

o = =2 8.52
In general, this equation must be solved numerically. However, there are a
few solitary solutions based on pulses with specific amplitudes and hyperbolic
secant shape. For example, the fundamental soliton has a envelope described

by a “secant-squared” shape,

A

where A is a critical amplitude. Since the dispersion and self-phase modulation
must be carefully balanced, the peak intensity of the optical pulse must be
critically set to be

_ M|
 1.28872cr2n,

where 7 is the full width at half maximum for the pulse, and |D| is the mate-
rial dispersion. As the pulse gets shorter, the required peak intensity increases
quadratically. The absolute value of the dispersion, | D|, is specified only be-
cause of the inconsistent use of the sign of the dispersion in various references.
The absolute value has no physical implications.

Fig.8.20 shows graphically the evolution of the pulse intensity for several
solutions to Eq. 8.52. The fundamental soliton is a pulse that does not change
shape as it propagates. It represents a pulse with just the right amplitude so
that the pulse-spreading dispersion effects are exactly cancelled by the pulse
narrowing effects of the nonlinearity. For higher order solitons, the input pulse
amplitude must be related to the fundamental soliton amplitude by an integer
number, n. The peak intensity of the higher order solitons then have n? the
peak intensity of the fundamental soliton, given by Eq. 8.54. The higher order
solitons exhibit complex behavior, temporally reducing, sometimes breaking
into several peaks, and then expanding back to their original form after travelling
a distance, zp, called the soliton period

I (8.54)

. 0.3227%¢r2

Z0 — 'Dl)\2 (8.55)

The soliton period is independent of the order of the soliton.

Another fascinating property of solitons is their attraction and repulsion
to one another. Because of the intensity-induced increase in refractive index,
the soliton can be viewed as a wave trapped in its own “potential well" along
the z-axis of propagation. When two solitons get close enough to each other
so that their fields begin to overlap, they can attract or repel (depending on
relative phase) due to the potential wells. This interaction can introduce errors
in communications links if the pulses represent binary information that is placed
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Figure 8.20. The theoretical behavior of the n = 1 and n = 2 soliton as they propagate
down a fiber. I is the peak intensity required for the fundamental soliton, and zg is the soliton
period. The fundamental soliton never changes shape, while the higher order soliton exhibits a
compression and then restoration to its original size after one period.

in certain temporal windows. Generally, interaction is negligible if the solitons
are separated by approximately 107.

Example 8.4 Peak power for a soliton

Calculate the peak power needed to send a 10 psec and a 20 psec optical
soliton through a fused silica fiber with a mode field diameter of 5 um. The
wavelength is 1.5 um, and ny for fused silica is 3.2 x 10716 cm?/W.

Solution: From Fig. 8.18, we can estimate that the negative dispersion has
a magnitude of 20 ps/nm km. Using Eq. 8.54, we can calculate the necessary
intensity for each pulse. We must be careful to keep all units consistent, so we
will convert all units to cm or sec. The dispersion can be expressed as

D = 20 ps/km nm = 2 x 10~ sec/cm?
Plugging values into Eq. 8.54 for the 10 psec pulse yields

I, = (1.5x10-%)3.2x10~°
0 = T28872(3x1010)(10-1T)2.3.2x 1010

= 553kW/cm?
The peak power necessary to create this intensity in the optical fiber is
P =1T1-7r? =553 x 1037(5 x 1074)?
= 0.434W

Inspection of Eq. 8.54 tells us that the intensity, and thus power, scales as the
inverse square of the pulse length. Therefore a 20 psec soliton will require an
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intensity in the fiber of only 138 kW/cm?, which corresponds to a peak power
of 109 mW.

An alert reader will notice that the intensities in the optical fiber are suf-
ficient for Stimulated Raman Scattering to become significant. This is indeed
the case. Experiments have observed what is called the “Soliton self frequency
shift", where the pulse intensity creates Raman gain, and the pulse bandwidth
is large enough that the low frequency components of the pulse can experi-
ence gain from the high frequency components[17]. As the soliton travels, it
slower transfers energy from the high frequency components to lower frequency
components, leading to a steady shift toward longer wavelengths.

The soliton has tremendous potential application to communications and
optical switching. The ability to send a pulse a long distance without distortion
leads to the possibility of optical links that can span the oceans without regen-
eration. You might wonder how soliton propagation can exist in lossy fibers,
since the intensity is critical to the dispersion cancelling effect. For example,
even the best of fibers displays loss of 0.2 dB per kilometer, so after 30 km the
power will be down by 6 dB, i.e. having only 25% of the original power. It has
been experimentally observed, and theoretically confirmed, that the soliton adi-
abatically adjusts in temporal width as the amplitude decreases. As the power
decreases due to attenuation, the pulse duration increases in such a way as to
satisfy Eq. 8.54. The “soliton-like"” behavior of the pulse is maintained, even as
the power slowly decreases. The soliton is easily amplified using a distributed
amplifier such as the Raman amplifier or Er-doped amplifier. Amplified links
have experimentally demonstrated soliton propagation over distances exceeding
10,000 km.

12. Summary

In this chapter, we briefly touched on three important nonlinear effects
which play significant roles in optical fiber links. The discussion was moti-
vated by the question “Why not compensate for attenuation by coupling more
power initially into the fiber?" We have found that at sufficient intensities, non-
linear effects can appear, and can totally dominate the optical system. In the
case of Raman scattering, the nonlinearity will lead to the generation of new
wavelengths which will dramatically increase the spectral bandwidth of the sig-
nal, making dispersion a severe limitation. We found that Brillouin scattering
could effectively reflect the input power back out of the fiber, reducing the for-
ward wave. And we saw how self-phase modulation increases the bandwidth
of a pulse, again making pulse distortion due to dispersion a serious limitation.
The bottom line of these effects are that there are physical limitations on the
amount of power that can be coupled into a fiber if linear operation is desired.

We also tried to show that there is always a way to exploit such effects.
The problem of stimulated Raman scattering can be turned into an advantage
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if it is used to amplify weak signals. Self-phase modulation can be used to
make optical solitons, which propagate without distortion. Such nonlinear
systems are certainly more complicated than simple linear pulse propagation
along a fiber, but they offer many new advantages that may make the increased
complexity well worthwhile. It is important for students of optoelectronics to
be aware of these developments, as they are likely to become major tools of the
trade for tomorrow.
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Practice Problems

1. A single mode fiber with a mode field radius of 5um and a core of pure
GeO,, is to be used to make a Raman amplifier. GeOs has a characteristic
phonon frequency of 420 cm™!, and a Raman gain of 5 x 10713/ (m/W).
A signal with wavelength 1.55 um and input power of 10 nanowatts is to
be amplified.

(a) What wavelength should the pump light be?

(b) What intensity of pump light is required if the signal is to be boosted
to an exit power of 1 mW in a length of 500 meters?

(c) What should the power of the pump light be to satisfy part 57 Assume
the MFR is the same for the pump and signal beams.

(d) How many photons at 1.55 um are injected per second into the ampli-
fier? How many exit? Compare this to the number of pump photons
per second. Do we have to worry about pump depletion in this am-
plifier?

(e) Ifthebandwidth ofthe Raman gain is 6 THz, how many noise photons
due to Spontaneous Raman Scattering would vou expect to see at the
end of the amplifier?

2. Design an optical amplifier based on the Raman effect that will boost a
1.3 um signal by 20 dB. Assume the single mode fiber is identical to that
used in Prob. 1, but let the length be 1000 meters. Specify the pump
wavelength and power necessary to create such an amplifier. What are
the power limitations for the signal? In other words, if the amplifier can
boost a 1 nanowatt signal by 20 dB, can it boost a W input signal by 20
dB? When does gain saturation start to become important?

3. For the fiber described in Prob. 1, what is the maximum input signal
power at 1.55 um that can be coupled into the fiber before Stimulated
Raman Scattering begins to become a serious problem? Assume that the
fiber has 0.2 dB/km of attenuation at 1.55um.

4. A5 psec pulse at 1.55um is coupled onto a SiOs fiber with a 5um mode
field radius. The pulse has a Gaussian temporal profile. If the fiber is
10 meters long, what peak intensity will lead to the accumulation of 7
radians of additional phase between the leading edge and peak of the
pulse by the time the pulse leaves the fiber?

5. Nonlinear interactions between two fields are usually dramatically en-
hanced when the two fields travel at the same velocity in the medium. If
an intense pulse from a laser at 1.06 um is launched into fused silica, what
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other wavelength(s) will travel at the same group velocity in the material?
If the group velocities are identical, will the phase velocities be identical?

The complex dielectric constant of a certain material is given by €/eg =
2.5 — 70.010 at A = 1.5um. Find the attenuation coefficient for this
wavelength, and determine the phase velocity.

A transform-limited pulse of temporal duration 7 = 500 psec is launched
into an medium with material dispersion of D = -50 psec/nm-km. How
far must the pulse travel before the pulse envelope doubles in temporal
width? Note that you will have to convert the dispersion, I, into a numeric
value for A2d?n/d)\?. Is the pulse still transform limited at the end of this
distance? Justify your answer.

A certain material is made into an optical fiber, and this material has an
attenuation coefficient of 0.7 dB/km. If 1 mW of light is coupled into the
fiber, what is the power of the light after traveling 10 km?

What peak power is required to form a soliton with 5 psec duration on
a fiber with a MFR of 5um? Assume the fiber is made of fused silica,
and the operating wavelength is 1.5 um. What is the total energy in the
solitary pulse?

Using Eq. 8.8, calculate the expected attenuation coefficient for green
light, A = 0.5um, travelling through the atmosphere. Assume that the
density of air displays a Poisson distribution such that if a volume of
air contains N = nV molecules, there will be a statistical variance of
AN = +/nV , where n is the number density of molecules per unit
volume. Assume the index of refraction of air is 1.0003 at standard
pressure and temperature, and that is depends linearly on density.

It is desired to make a Raman amplifier for very short optical pulses
using a SiO, fiber as the gain medium. To maximize the interaction
between the pump pulse and the Stokes pulse, the two pulse must travel
at the same velocity. Using the data on SiOg from Table 3.1, determine
what the optimum pump and Raman wavelength will be. Note that the
two wavelengths must have the same group velocity, and they must be
separated by 467 cm L.

A 5 psec pulse at 1.55 um is coupled onto a SiO, fiber with a 5 ym
mode field radius. The peak power is SW. The pulse has a Gaussian
temporal profile. How far can the pulse travel before SPM has doubled the
pulsewidth? What intensity is required if this distance is to be doubled?



REFERENCES 207

13.

14.

15.

Estimate the effective focal length of a 2mm glass slide when it is illumi-
nated by a field
I(T) = Ioe_Tz/w2

where Iy = 10® W/cm?, and w = 1 mm. The lens is caused by the
nonlinear refractive index induced by the strong optical field. This effect
is called self focussing, and is responsible for creating lots of damage in
early solid state lasers.

A 10 psec pulse with A = lym is transmitted through 30 cm of single
mode fiber. The bandwidth of the pulse doubles. What is the intensity of
the pulse?

Design an optical fiber amplifier based on stimulated Raman scattering.
The desired gain of the amplifier is 20 dB, and the maximum power that
should be extracted is 10 mW. The signal wavelength is 1.53 um, and
the fiber displays a 0.3 dB loss/km at the signal and pump wavelengths.
Determine the optical pump power required, and the pump wavelength.
Make sure that the amplifier delivers not only the desired gain, but can
deliver it at the desired output power.



Chapter 9

NUMERICALMETHODS FORANALYZING OPTICAL
WAVEGUIDES

1. Introduction

Analytical solutions of the wave equation exist for only a few waveguide
structures. Direct numeric solution of the wave equation is possible for many
structures, although this usually involves iteration to find the approximate eigen-
value. In this chapter we will discuss two methods used to study modes of
structures which are not amenable to analytic or approximate solution. These
methods are the Beam Propagation Method (BPM) and the Finite-Difference
Time Domain method (FDTD). Numerical simulations are needed to evaluate
special structures such as waveguides with bends or reflective mirrors, split Y-
couplers, and coupled adjacent waveguides [1, 2, 3], or structures which have
reflections, such as a grating. A Y-coupler, shown in Fig. 9.1, is a simple device
that connects one waveguide to two waveguides. Since the mode dynamically
changes as it enters the structure, it is very difficult to calculate the answers
to questions such as “How much loss will the mode encounter?", “What is the
optimum angle to split the waveguide?", and so forth, The numerical simulation
methods allow us to determine these answers.

Both BPM and FDTD are numerical simulations of the field in a guide,
in contrast to the numerical solution of the exact wave equation that we did in
Chapter 6. Simulations are often the only way to determine the mode profile in

Figure 9.1. A Y-coupler is a simple device that couples one waveguide into two waveguides.
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an unusual waveguide, and to map out the behavior of amode as the index profile
changes along z. This latter effect is very common in practical devices, such
as waveguide tapers, or waveguides perturbed by a second nearby waveguide.

2. Beam Propagation Method

The Beam Propagation Method works by decomposing a spatial mode into
a superposition of plane waves, each travelling in a slightly different direction.
After advancing each wave a certain distance through the dielectric structure
of interest, the plane waves are added back together to reconstruct the spatial
mode. This process requires the use of Fourier transforms to convert from the
spatial mode into the superposition of plane waves, and back again. Therefore,
we will spend some time discussing the Fast Fourier Transform in the following
sections.

We will describe only the scaler BPM technique. Interested readers can use
this chapter as a springboard into the current literature which describes vector
beam propagation methods, and other advanced techniques. Before we begin,
let us apologize for the heavy use of acronyms in this chapter. Besides BPM
and FDTD, we will discuss FFTs, and several other nondescript symbols of
modern computing convenience. We will try to define acronyms several times
so that the reader can find the translation without too much searching.

2.1 A Note About Numeric Computations

We will develop numerical procedures for describing beam propagation
in this chapter. Problems at the end of the chapter illustrate the principles of
the techniques. Like many of the examples or problems developed in this text,
the exercises developed in this chapter were done with either Mathematica, or
Matlab on a personal computer. If you become a serious numerical simulator
of waveguides, you will probably want to develop or buy specialized software .
to increase the calculation speed. However, for initial exploration and learning
how BPM works, we recommend that you simulate simple structures using a
numerical package such as Matlab. You should first try the techniques described
in this chapter with simple, one-dimensional structures that will demonstrate
the algorithms without consuming a great deal of computation time.

3. Superposition of Waves

Consider the planar slab waveguide, where the index profile only varies
in the z direction (Fig. 9.2). Due to symmetry the spatial field is functionally
independent of the y-direction. A guided field in such a source-free dielectric
structure must be a solution to the (by now familiar) wave equation

V20 + k2n*(2)¥ =0 ©.1)
0
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Figure 9.2. An infinite slab dielectric waveguide. The wave is presumed to travel in the z-
direction.

where U(z, 2, t) is a vector function describing the amplitude, polarization, and
direction of field propagation. If the waveguide consists of isotropic regions,
i.e. the index does not have a gradient profile, the spatial solution to the scalar
wave equation in each region of space is simply a plane wave

Uz, 2,t) = Aje I katthaz) it 4 ¢ ¢ 9.2

where A; is the amplitude in the region 7, and the k-vector (described in terms
of its components) depends on the frequency of the wave and the local index
of refraction, and can be real or imaginary. Note that the k& vector components
are the generalized forms of 3, «, and . Boundary conditions connect the
solutions at the interfaces separating the different regions. Plane waves are the
natural solution to the wave equation.

Since the wave equation (Eq. 9.1) is linear, any linear superposition of
solutions will also constitute a valid solution. This important fact forms the
foundation of the technique used to numerically analyze the fields in a wave-
guide. We will use a superposition of plane waves, each with identical angular
frequency w but different values of k, to describe the general mode of a wave-
guide. The plane waves form a basis set for the mode description.

4. The Fourier Transform in Guided Wave Optics
Describing a spatial function, ¥(x), in terms of a superposition of plane
waves, exp(jkx),
U(z) =Y Agelh® (9.3)
should remind you of the Fourier Transform. To illustrate, consider a one-
dimensional electric field distribution with a Gaussian distribution.

U(z) = Ege @*/% (9.4)
Fig. 9.3 shows a Gaussian profile, where the characteristic width is chosen to
be o = 8um.

The Gaussian profile describes the lowest order mode in a parabolic index
profile waveguide (see Chap.2). Also, readers familiar with the modes of laser
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Figure 9.3. The amplitude distribution of a Gaussian mode.

beams in free space will recognize this profile as the fundamental TEMyo mode
of a Hermite-Gaussian beam.

To describe this transverse spatial mode in terms of a superposition of plane
waves, /%%, we employ the Fourier transform pair,

v 1 = Ak, )e*=® dk:
(5’7) o) o (m)e T

Alks) = /j:o\Il(x)e_jk”dx ©9.5)

where k., is the z-component of the wavevector, k. The transform of ¥(x)
yields A(kz), which is a complex number that contains information about the
amplitude and phase of each plane wave component. Eq. 9.5 can be readily
evaluated to give the amplitudes

Ay, = L a2 (9.6)
Tz

Recall that the magnitude of k is identical for all components in a mode; only
the &, and k, components vary. Simple trigonometry provides the value of the
z-component of the wavevector: k, = /k% — k2. The largest k-vector has
kz = 0, corresponding to a plane wave travelling along the z-axis. From Eq.
9.6, as the k, component increases, the amplitude of the plane wave decreases.
The amplitude and direction of the individual plane waves that comprise a spatial
amplitude distribution are shown schematically in Fig. 9.4. The length of each
arrow represents the plane wave amplitude, Ay, while the direction indicates
the orientation of the k-vector.

The Fourier transform pair in Eq. 9.5 allow us to readily convert a wave
described in the spatial domain (¥(x) to a wave described in phase space do-
main (¥ (k). In the Beam Propagation Method (BPM) propagation effects are
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Figure 9.4. A spatial amplitude distribution, ¥(z), is equivalent to a superposition of plane
waves, ¥ (k), each with a slightly different amplitude (indicated by length of arrow) and direction.

calculated using the phase space representation, and phase shifts caused by the
waveguide structure are introduced using the spatial representation of a mode.
We will use both of these transforms to alternately convert a spatial field into a
superposition of plane waves, and back again.

4.1 The Fast Fourier Transform (FFT)

To take advantage of numerical computers for calculating Fourier trans-
forms, we will use the discrete Fourier Transforms based on what are generically
called Fast Fourier Transforms (FFT). FFT algorithms are widely available in
literature[4], and are common features in engineering and mathematical numer-
ical software packages for workstations and personal computers. Application
of the FFT to optical propagation problems is discussed in ref. [S]. The Fast
Fourier Transform (FFT) is closer in operation to a Fourier series than to a
Fourier transform. Recall that a Fourier series is used to describe a periodic
function in terms of a discrete set of sinusoidal basis states. The FFT describes
a distribution in terms of a large but finite number of discrete sinusoidal waves
with appropriate amplitude. The effect of discrete sampling can lead to the
creation of aliases of the waveform. This fact will introduce a complication in
the BPM calculation.

To find the FFT of a spatial profile, the profile must first be represented
as a numeric array. The sampling resolution must be fine enough to resolve
all spatial features of the amplitude profile, yet at the same time be sparse
enough to allow reasonable processing speed on a computer. This trade-off
is obviously something each designer must address based on their personal
computing capabilities and patience. In the calculations that follow, an array
with 100 points proved adequate to see the desired behavior.

Let’s begin a demonstration of the BPM using the Gaussian mode profile
shown in Fig. 9.3. Since evanescent amplitudes follow an exponential decay,
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Figure 9.5. The sampled profile of a Gaussian mode, taken with 100 samples.

they never truly go to zero. Theoretically there will be some error introduced
when we restrict the spatial domain to something less than infinity. If we extend
the sampling domain out to three or four characteristic decay lengths (the decay
length is defined as 1/ for a slab waveguide), we will usually get satisfactory
results. In this example, we sampled the profile in Fig. 9.3 at 100 equally spaced
discrete points ranging from z = —25um to x = 24.5um. Since the profile is
assumed to be periodic in an FFT (this means that the algorithm assumes that if
it looked at points 101 to 200, it would find another gaussian wave of the same
shape and amplitude centered near point 150), the data point at x = —25um is
the same as at x = 25um, so it is important to not include this point twice in
the array. That is why the domain is selected as shown. Fig. 9.5 graphically
shows the resulting array. The abscissa is the array index, not the position.

Having established an array, we can compute the Discrete Fourier Trans-
form of'the spatial profile in order to determine the superposition of plane waves
that comprise the mode. As before, we will use Mathematica for calculations;
other packages such as Matlab, or Maple have equal abilities. To create the
data for the Gaussian profile with zy = 8um, to find the FFT, and to observe
the intermediate results, we used the following Mathematica commands

mode= Table[Exp[-x"2/64], {x, -25, 24.5, 0.5}1//N;
ListPlot [mode]

fftmode=Chop [Fourier[mode]];
ListPlot [Abs [fftmode], PlotRange-> All] (* magnitude of FFT *)

ListPlot [Arg[fftmode], PlotRange -> All] (* phase of FFT *)

Any good Mathematica reference[6] describes these commands. Briefly,
Table creates an array of 100 points which sample the Gaussian amplitude
profile over the range from -25um to +24.5um. The data in this table were
plotted in Fig. 9.5. Chop converts any number less than 10710 to zero, re-
ducing round-off noise. If we do not do this, the phase of the output, which is
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Figure 9.6. The FFT of'the Gaussian profile is plotted as a function of the array index. Note the
symmetry of the FFT; the magnitude of the value at s = 2 is identical to the value at s = 100,
etc.

determined by the ratio of the imaginary and real components, can show extreme
variations when, in fact, the magnitude of the actual amplitudes are negligible.
ListPlot plots the values of an array. Since the Fourier transform of an arbi-
trary input will in general be complex, we need to specify the magnitude (Abs)
or the phase ( Arg) when plotting the output of a FFT computation.

The FFT of the N-point array is itself an N-point array, found by approximat-
ing the integral in Eq. 9.4 with a discrete summation. The N complex numbers
which describe the spatial amplitude are converted into N complex numbers
which correspond to the amplitude and phase of each planewave component
with k; = 2m(s — 1)/ H, where H is the spatial size of the sample, and s runs
from O to N.

The magnitude of these amplitudes for the Gaussian profile are plotted in
Fig. 9.6, where the abscissa is the s index. There are in fact 100 points in the
FFT, exactly the same number as are in the amplitude array. The appearance of
the FFT is a little strange at first glance. Instead of producing a smooth peak
in k-space, we find a distribution with non-negligible values near s = 0 and
s = 100, but very little magnitude at mid-range values.

The strange structure of the FFT arises because the Fourier transform is
calculated on a discrete array of samples from the actual waveform. The value
of the FFT at s = 1 corresponds to the average value of the spatial profile,
the k; = 0 term of the expansion. The next few terms describes the &k, =
27(s—1)/H components of the transverse k-vector, where H is the domain of
the spatial wave. Each additional point corresponds to the next higher transverse
component. In this example we chose H = 50um. From the FFT, it is clear
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Figure 9.7. The phase of the DFT of the Gaussian wave shown in Fig. 9.5 is plotted as a
function of the array number. The phase is either 0 or 7, indicating that the wave is everywhere
real.

that there are not many high order transverse components needed to describe
this mode.

Now, what about those terms near s = 100? Due to the periodic sampling
of the mode profile, the terms with s = 99 corresponds to the s = —1 term,
or k, = —2r/H. Similarly, s = 98 corresponds to s = —2, and so forth.
Physically, these correspond to plane waves travelling with a slight downward
inclination, while the plane waves with values such as s = 2 correspond to
plane waves travelling with a slightly positive inclination.

Fig. 9.7 shows the plot of the phase of the FFT of the Gaussian beam.
Notice that in the region where there is significant amplitude for E, the phase
alternates between 0 and «. This is equivalent to multiplying every other term
in the series expansion of the mode profile by —1. The phase tells us what the
wavefront curvature of the beam is. In this case the field is everywhere real,
indicating that it represents a plane wave.

4.2  Wavefront Curvature and Complex Numbers

A wavefront is a locus of points where the phase is constant. Complex num-
bers convey phase information in a wave. Since the equation which describes
the Gaussian mode, Eq. 9.4, is purely real, the phase is constant as a function
of , so the mode has a planar wavefront. If the phasefront of the mode had
some curvature, the phase would change with distance from the axis, and the
proper description of this would involve using complex numbers. In general,
the arrays used to describe the spatial waves and the Fourier amplitudes will be
complex. To illustrate this, consider the mathematical description of a curved
wavefront shown in Example 9.1.
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Figure 9.8. A wave originating from z=0 has a spherical wavefront as it propagates away from
the origin. At a distance z1 = R along the z-axis, the wavefronts have a radius of curvature, R.

Example 9.1 Phase of a curved wave front

Consider the picture below of a spherical wave travelling in the z-direction.
How would you describe this wave at the z = 2; plane in terms of complex

numbers?
Solution: The amplitude of a spherical wave is described by

E(T) — %e—j(kr—wt)

where R is the absolute distance from the origin, and Ej is an arbitrary ampli-
tude. Ignoring the time dependence, and using the small angle approximation,
we can expand this expression near the z-axis.

E(z,z) = %O—G_jk(vz +a%)
_ %e—jkz(g/H-xz/ﬁ)

@e—jkz(uz?/zz) _ _@emjkze—jkzz/%
R

Q

Along a plane z = z;, there will be a propagation phase term, e~7%21 and
a term which changes quadratically as the position increases from the z-axis,
e~7ke? /221 This represents the curvature of a spherical wave.

5. Beam Diffraction

So why are we belaboring Fourier transforms? By describing a real beam
as a superposition of plane waves, we can develop an accurate method for
simulating beam propagation which includes effects such as diffraction. In this
section, we will show how the previous analysis of plane wave superposition can
numerically determine the beam diffraction of a propagating field. This step,
incidentally, is the first step in understanding the Beam Propagation Method.
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Figure 9.9. Geometrical picture of path a plane must follow to move a distance L along the
z-axis.

Let’s propagate a wave a distance L in the z-direction using the plane wave
method. We first decompose the spatial profile into a superposition of plane
waves, and then advance each plane wave component forward to the plane
z = L. Once there, we will superimpose these plane waves back together
to form the new spatial mode. Since each plane wave travels in a different
direction, each will accumulate a different amount of phase due to the path
length difference incurred travelling to the plane at z = L. How much phase is
accumulated? Fig. 9.9 shows a geometric argument for the phase shift.

Every plane wave component of the expansion has a wavevector with mag-
nitude £, that travels in a unique direction. A component travelling at an angle
6 (0 = sin~1(k,/|k|))with respect to the z-axis will travel a slightly longer
distance, L’ = L/ cos#, to get to plane at Z = L than would a wave travelling
parallel to the z-axis. Using the small angle approximation for 6, and the fact
that in the FFT, k; = (s — 1)2w/H, and |k| = 27/}, the phase accumulated
by each ray is given by

kL k2 A2
s = = —_—z | = (s ~1)2 ,
bs = —==kL [1 + 2n2k3] kL [1 + 55— 1) ] 9.7)

where H is the size of the spatial domain of the amplitude profile. The term,
s, refers to the index of the (s — 1)th spatial frequency component of the plane
wave superposition. For example, the s = 1 term corresponds to the k, = 0
term of the Fourier expansion. Each Fourier component will accumulate a
different amount of phase after travelling along the z-axis becasue they each
traverse a slightly different path length.

We are now ready to propagate the optical mode a distance through space.
We do this in two steps. First, we must determine the plane wave superposition
that comprises the initial spatial field. This was described above using the
FFT of the spatial function, E(x). Next, we let each component of the wave
propagate up to the plane at z = L. Since nothing alters the magnitude of the
individual plane waves as they propagate, the amplitude of each component
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remains the same. However, since they accumulate different amounts of phase
based on the difference in path length, we must add the proper amount of phase
to each component. The example below illustrates the procedure.

Diffraction of a spatial mode in free space

Consider the Gaussian mode shown in Fig.9.5. We will assume that it rep-
resents a TEM laser beam with wavelength 0.8 pm, and furthermore we will
assume that the profile represents the beam at a focus, so the wavefront is planar.
We will use the BPM to calculate how the beam spreads and develops wave-
front curvature as it travels through free space. Since diffraction theory has well
established analytic expressions for describing Gaussian beam diffraction, we
can use these to confirm the operation of the BPM technique.

We start with an expression for the beam at z = 0. The beam is a simple
Gaussian profile with characteristic length of 8um.

E(z,0) = Ae~=/# 9.8)

where all dimensions are in yum, and A is an arbitrary amplitude which we will
set to unity. Notice that the wave is everywhere real, showing that the field is
a plane wave at z = 0.

‘We must determine the FFT of this mode by first creating an array of equally
spaced samples of the amplitude. By inspection of Fig. 9.10, we can see that the
mode has negligible amplitude beyond +20 um from the core axis. Therefore
we could probably set a spatial domain, H, equal to 40 pum, and not introduce
significant clipping. However, since the beam will be expanding in the spatial
dimension, we will choose a larger domain. We chose H = 120 um after some
iteration. The Mathematica file used to generate this array and calculate the
DFT is listed below.

x0=8; h=120; del=h/100; wave=Exp[-x~2/x0"2];
discretewave=Table[wave, x,-h/2, h/2-del,del]//N;
fftwave= Chop[Fourier([discretewave]]

Fig. 9.10 shows a plot of the sampled mode profile. The last line of the
code calculates the FFT of the spatial mode, and creates a complex array called
fftwave. The magnitude (Abs [df twave]) and phase ( Axrg[dftwave] )of the
components of the FFT array are shown in Fig. 9.11 and Fig. 9.12.

Now we can simulate the effect of propagating a distance L. Eq. 9.7 describes
the phase shift each plane wave will accumulate. In this example, where the
wavelength of the light is 0.8 pm, let’s first travel 500 um in vacuum (the index
of refraction, n, equals unity) and k = 27/A = 27/0.8um.

The phase shift accumulated for the s = 1 component (k; = 0) is simply
koL. Due to the symmetry of the mode and the nature of the FFT, the phase
shift s = 2 term (k; = 2m/L) is the same as the s = 100 term. Similarly
the components labelled 1 < s < 50 are the mirror image of the upper terms,
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Figure 9.10. The waveform described in Eq. 9.8 is sampled at 100 discrete points, and the data
is plotted to confirm the accuracy of the sampling. The horizontal axis corresponds to positions

ranging from —60 pm to 60 pum.
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Figure 9.11. The magnitude of the FFT of array dftwave is shown as a function of the array
index. In this case, the array index corresponds to transverse momentum of k. = 2w (s—1)/120
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Figure 9.12. The phases of the Fourier components of the DFT of the spatial mode are shown
as a function of array index. There is little to glean from this other than to note that all phases are
either 0 or 180°, implying that the wave has no curvature, and is therefore a plane wave. This is

a good test of our calculations.
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51 < s < 100, because the mode is perfectly symmetric. Recall the Fourier
components labelled by s > 50 correspond to transverse components travelling
in the negative z-direction. Once again being careful about the array indices,
we calculate the additional phase that each wave will accumulate, as a function
of its index. The Mathematica code is

k=2 Pi / 0.8;

1=500;

phasel[s.]:= Table[k 1 ( 1+0.5 (0.8 /h)"2 (s-1)"2), {s,1,50}];

phase2(s_]:= Table(k 1 ( 1+0.5 (0.8 /h)"2 (101-s)"2), {s,51,100}];

phaseshift=Join[phasel[s], phase2(s]];

This set of commands creates an array of 100 points, each with a phase shift
corresponding to that required by Eq. 9.8. The phase corrections are calculated
in two 50 element arrays that are then concatenated to form a 100 element array
called phaseshift.

Once the phase shifts are computed for each spatial frequency term, they must
be added to each appropriate plane wave. The Mathematica statement below
describes the transfer into a new wave called newfft, where the magnitude
of the plane wave has not been affected, so the magnitude of the old wave
components and new wave components are identical, but the phases are updated.

newfft = Abs[fftwave] Exp[I (Argl[fftwave] + phaseshift)]//N;

Note that fftwave and newfft are arrays, and that the operation listed
above is implicitly an array operation. The //N at the end of the statement
forces Mathematica to convert all symbolic values, such as =, into numeric
values. Note also that the only difference between fftwave and newdft is
that each component has accumulated additional phase due to propagation. To
determine the spatial mode at plane z = L, we simply inverse Fourier transform
the phase space superposition and plot the result.

newwave= Chop[InverseFourier [newdft]]
ListPlot [Abs[newwave], PlotRange->A11]

ListPlot [Arg[newmode], PlotRange->A11]

The output is shown below in Fig.9.13. As the mode propagates along
the z-axis, it spreads out in the transverse dimension, as we would expect for
diffraction. We can compute the mode shape further along the z-axis, and
compare the relative magnitudes. Fig. 9.15 shows the calculated amplitude at
z = 0, z = 500, and z = 1000um. The amplitude decreases as the width
increases, conserving total power.

The amplitude ripple apparent in Fig. 9.15 for the profile at z = 1000um is
an artifact of the FFT, and is not a true representation of the profile. Due to the
periodic nature of the FFT, high spatial frequency components that travel out of
the field on the right side of the spatial domain reappear on the left hand side,
and vice-versa. These spatial frequency components interfere coherently with
the same frequency components in the original wave and form small standing
waves. One way to avoid this is to increase the domain size, H, but this just
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Figure 9.13. The amplitude of the Gaussian field after travelling 500 ym. The peak amplitude is
decreased, but the width of the mode has increased. The horizontal axis corresponds to +60 pm.
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Figure 9.14. 'The phase of the mode after travelling 500 um has picked up considerable cur-
vature. The plot shows the phase shift modulo 2. The phase shift increases quadratically with
distance from the axis, however the amplitude rapidly decreases, so the phase information is
only significant near the axis.

delays the onset of the problem. A second method is to apodize the domain,
effectively adding an attenuation near the edge of the spatial domain. In the
beam propagation method, we will introduce the latter method to dissipate these
waves before they reappear on the other side.

6. The Beam Propagation Method

We can apply the principles of beam propagation to a guided wave problem.
The beam propagation method is motivated by two physical properties of elec-
tromagnetic waves. First, as we have just seen, a wave travelling through any
region of space will diffract. Second, the phase shift accumulated by the wave
as it propagates in the forward direction depends on the local index of refrac-
tion. In an inhomogeneous medium, a wave will accumulate phase depending
on the distance travelled and on the local index of refraction.
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Figure 9.15. The amplitude profile of the mode at z = 0, z = 500um, and z = 1000m.
Notice that the overall amplitude maintains the same area, but decreases in peak amplitude and
increases in width.

The effects of propagation and local index act continuously on the phase as
the wave travels, but we numerically simulate this process in a series of small
steps. The local index is modelled as a sequence of “lenses", separated by
short regions of homogeneous space with index 7, which is the average of the
refractive index that the beam travels through between adjacent lenses.

The Beam Propagation Method uses a “split-step" process. In the first step,
the transverse electric field at position z, ¥(z,y, 2) is decomposed into a su-
perposition of plane waves, U;(k) = A;e/*" via the Fast Fourier Transform,
and propagated a distance Az as if it were travelling through an index 7. We
have already discussed how to perform this first step. Following the propaga-
tion step, an inverse FFT converts the superposition of plane waves back into a
spatial field.

The second step adds the phase correction needed to account for the spatial
structure of the index profile. As the wave propagates from z to z + Az,
different parts of the phase front will experience different amounts of phase
shift depending on the local index of refraction, n(z,y, z). We adjust the step
size so that the accumulated phase corrections are small following each step.
Typical step sizes are on the order of a um. The spatial phase correction is
added to the spatial wave. The resulting field is a reasonable representation of
the actual field distribution at location z + Az. Fig. 9.16 shows this process
schematically, where index inhomogeneity is lumped into a “lens" at the end
of each discrete step. These lenses are not like conventional lenses, but are
generalized to incorporate all the local index properties between adjacent planes
of the medium. The new field serves as the source field for the next propagation
step. The BPM repeats this two-step process until the wave has travelled the
desired distance.
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Figure 9.16. The optical path is broken into a sequence of finite steps through an average index,
71, and generalized lenses that incorporate phase shifts due to index inhomogeneities.

Introducing the lens step is surprisingly easy. For a field travelling along the
z-axis a distance Az, the phase can be approximately described as

<I)(:E, Y, 2:) = ejkon(:c,y,z)Az ©9)

The total phase accumulated in propagating from z; to 2o depends on the index
of the media along the path. Since the free space propagation step already
includes a phase shift exp(—jk,mAz2), the amount of phase shift due to the
inhomogeneity is simply added to this

AdD(z,y,2) = eiko(n(z.y,2)-m)Az (9.10)

The influence of the local index distribution on the propagation of the wave is
included by multiplying the spatial wave, ¥(z, y, Az) by the phase correction
A®(z,y, z)after each free space propagation step. This process is then repeated
using ®(z, y, z + Az) as the source field for the next propagation step.

Let’s look at some examples of implementation. As before, we have chosen
a one-dimensional example to allow reasonable speed on a small computer. We
will describe the steps involved in setting up a simple BPM program using Mat-
lab, a commercially available package that is excellent at performing numeric
matrix calculations. (We depart from using Mathematica here, as Matlab was
found to be much faster in dealing with FFTs.) This discussion is based on a
more complete description found in reference [6].

The first step is to propagate the spatial mode a distance Az. This requires
using a FFT to determine the plane wave expansion, ®(k;), then advancing each
plane wave a distance Az, and then reconverting the phase space superposition
into a spatial field using an inverse FFT. Formally, using continuous variables
to describe the step, the field at position z + Az is

1 o )
\I/(I, Y, Az) = 2_7; / q)(kg;)e—szZ+szzdkm (91 1)
-0

where k, is the z-component of the k-vector for each ray. Each ray has a unique

value of k,, given by
ky = \/M2kg — k2 9.12)
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Evaluating the integral in Eq. 9.11 using an FFT is straightforward, however,
the large magnitude of k, makes the phase vary rapidly with Az. Since the
fast phase variation is of no interest to us, we usually separate it from the slow
variation. This can be accomplished by writing &, as

2
k, =nkg — kg (9.13)

nkg + /n2kg — k2

Note that this is a more exact version of Eq. 9.8. In this form, the fast term
(mko) is distinct from the slow terms. The wave, after propagating a distance
Az in the homogeneous region, can then be expressed as

—jk3
nko + /n2k3 — k2
(9.14)

We changed the limits of integration to restrict the argument of the exponent to
purely imaginary values, ensuring that no evanescent waves become included
in the description of the wave propagation. Physically speaking, a complete
description of a plane wave expansion requires evanescent waves, as they rep-
resent the loss mechanism to radiation modes. However, the lens step of the
BPM technique assumes that the rays are travelling essentially parallel to the
z-axis. For this reason, the expansion is limited to rays that make small angles
to the z-axis. Evanescent waves are explicitly excluded from the expansion by
restricting the possible values of k, to real values only. The beam propagation
method does not provide for energy loss due to radiation, so artificial means
must be added to dissipate such modes. Restricting the plane wave expansion
to beams with large area and to waveguides which are weakly guiding helps
insure that the &k vectors will be nearly parallel to the z-axis.

Finally, we add the contribution from the lens by multiplying the propagated
spatial field, ¥(z,y, Az) by A®(z,y, z). The process repeats by advancing
the field forward by one more Az.

e—j-ﬁkoAZ
U(z,y,Az) = 5 / O (k) exp
£>0

Az dk,

7. A MATLAB program for one-dimensional BPM

To help drive home these points, there is nothing like actually doing some
examples. You are strongly encouraged to write a simple BPM program using
a suitable computer programming language. In this section, we describe such a
program based on the numerical program, Matlab[8]. There is nothing exclusive
to Matlab which is required for BPM programming, so do not be discouraged
if it is not available on your system. For our purposes, Matlab was found
to calculate DFT’s and multiply arrays much faster than most other numeric
software packages.
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We start with a very simple example that starts with a trial mode profile, and
launches it down a waveguide. By iteration, eventually the true eigenmode of the
waveguide emerges, while the rest of the energy is dissipated away. The Matlab
program is described here in functional blocks. We wrote the program in block
form, calling subroutines to do different functions. The program Waveguide
is a short program of setup commands and subroutine calls:

[Waveguide]
format compact
format long e
hold off
units_stuff
wg-_params
wg-setup
vg-iterate

The first three commands modify the output and can be adjusted to the users
preference. The core of the program occurs in the next four statements. The
routine units_stuff defines dimensional MKS units in their mathematical
form:

[units_stuff]
cm=le-2;
mm=1e-3;
um=1e-6;
nm=1e-9;

The routine wg_params defines the waveguide structure. In this example,
we described a simple triangular-profile waveguide. We chose an array size of
512 data points to describe the index profile, the spatial mode, and the phase
correction. A smaller array would be proportionally faster in calculation speed,
but we found that this size provided tolerable throughput speed. We arbitrarily
chose a index profile 150 ym wide, with a guiding region 10um wide. The
term sig is the 1/e length for the initial Gaussian mode profile. The step size
in the calculation is 4 pm. Most other parameters are self-evident. The index
difference is small, and 77 (nave) is set to the average value of the two indices.

[wg_params]
ns=1.499;

nf=1.5;
nave=(ns+nf)/2;
cladwidth=200%um;
wgwidth=10%um;
sig=3%um
dz=4*um;
atten=1500;
aper=40;
loopnum=250;
maxiterations=4000;
for j=1:512;
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temp=(j-256)*cladwidth/512;

triangle(j)=ns+(nf-ns)*(abs (temp*2)<=wgwidth)*(1-abs (temp*2/wgwidth));
end

n=triangle;

The functions aper and atten apodize the beam. As we saw in the
first part of this chapter, when an amplitude component moves off one side in
the spatial FFT, it reappears on the other side of the spatial domain. This is in
contrast to a real waveguide, where we expect energy to continue travelling away
from the core once it has been shed. There are several methods of apodizing.
Signal processing algorithms often use triangular filters or Hamming filters to
proportionally attenuate the extreme spatial components. For BPM we require
a flat transmission for the central portion of the waveguide, but wish to add
attenuation in the cladding region to simulate radiation mode losses, and to
prevent energy from wrapping around and re-entering the waveguide structure
from the other side of the data array.

The exact form of the apodizer is up to the user. In this example, we chose
to add a small attenuation to the cladding far from the region of the guided mode.
The parameter aper defines the percentage of the aperture where the core and
cladding are lossless. Here, we defined the clear aperture to be 40% of the total
aperture. The aperture must be larger than the final spatial extent of the guided
mode to prevent adding unrealistic loss to the simulation. The magnitude of
the attenuation is set through trial and error: setting it too small obviously does
not accomplish the desired results, but making it too large leads to a reflection
at the transition from the lossless to lossy region. Such a reflection will return
unwanted energy back to the guiding region, degrading the quality of the sim-
ulation. In the region of loss, the amplitude is attenuated by ezp(—atten Az)
each step. Since in this simulation, Az = 4um per step, and atten = 1500
m™!, the effective attenuation leads to a decrease of roughly 0.6% of the am-
plitude outside the aperture per step. This will add up to significant loss after
hundreds of steps, but does not act as a major perturbation to a field upon in-
cidence to the loss region. You will have to explore different values to find a
suitable value for new parameters. We found this value after trying several runs
— in our experience the simulations were not strongly affected by the choice
of the attenuation. You may wish to explore other types of apodizing function.

Choosing the step length, Az, depends on the guiding structure and wave-
length. To stay within the region of validity for the BPM, Az should satisfy
[

Az K 6ko(ke + k)72 (9.15)

where k. is the largest transverse component of the wavevector describing the
guided electric field, and k,, is the largest spatial frequency required to describe
the index profile, if it were described as a Fourier superposition. To first order,
the maximum spatial frequencies needed to describe both the electric field and
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the index profile can be approximated as

kgmz—w knzgz (9.16)
o w

where g is the characteristic half width of the mode, and w is the half width of
the waveguide. If we apply this criterion to the waveguide in this example, where
xg is approximately 10 um for the eigenmode, and w is approximately 5 um,
we find that Az < 12um. Our choice of Az = 4um satisfies this requirement.
The advantage of a larger step size is that the calculations run faster. If Az is
chosen to be too large, the simulation might provide an unreliable result. A
good test is to repeat a calculation with a smaller Az to see if the final solution

changes.
The next subroutine is wg_setup, which defines most of the parameters
used in the other subroutines, and defines the phaseshifts according to Eq. 9.14.

[wg.setup]

aper=round (512*aper/100) ;

iterations=0;

lambda=1*um; J%define a wavelength

k0=2%pi/lambda;

od=atten* [ones(1,256-fix(aper/2)),zeros(1,aper),ones(1,256-fix((aper+1
a=cladwidth/2/pi;

i=sqrt(-1);

k=[0:255 -256:-1]/a; Y%define the transverse wavevectors
x=cladwidth*(-0.5+(0:511)/512);
phasel=exp(i*dz*(k.2) ./ (navexkO+sqrt (max(0,nave2*k02-k.2))));
phase2=exp(-(od+i*(n-nave) *k0) *dz) ;
phase2=fftshift(phase2);

axis([-cladwidth/2 cladwidth/2 0 2]);

plot(x, (n-ns)/(nf-ns)/10+1,’-g’ ,x,od/atten, ’~b’);
disp(’Press a key...’); pause;

v=exp(-(x/sig).2); %this is the initial amplitude profile
initialpower=sum(v.*conj(v));

ov=v;

plot(x,ov);

hold on;

The transverse wavevector, k, is an array of 512 points, ranging from
ky = —256 X 27/ cladwidth, to k; = 4255 X 2m/ cladwidth. We chose
a Gaussian amplitude profile for convenience, and because it can be adjusted to
provide a close approximation to most waveguide modes through the parameter
sig. The array v is our initial guess at what the mode profile will be.

The phase terms are calculated as described in the text above. Note that
the attenuation is included in the “lens" term of the phase corrections. We also
calculate the total power residing in the mode by computing the integral of the
square of the amplitude. This is done in the variable initialpower, and serves
as a normalization point for future calculations.
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Finally, we get to the main computational part of the BPM program in
the final subroutine,wg_iterate. This takes the trial amplitude distribution,
labelled as v, and performs an £ftshift on the data in the array. This simply
switches the first half of the array with the second half, putting the ends of the
data array in the middle. This counters the effect we observed earlier where the
FFT of an array ends up with the Fourier components at the two extremes of the
array. The heart of the BPM program resides in the single loop, where the trial
amplitude distribution is repeatedly propagated (£t (v) . *phase1), multiplied
with a phase correction (xphase2) and then inverse FFTed. The results are
plotted on the computer screen after a reasonable number of iterations, so that
the user can watch the evolution of the amplitude profile.

[wg_iterate]

v=fftshift(v);

while iterations<maxiterations;
for loop=1:loopnum,
v=ifft(fft(v).*phasel) .*phase2;
iterations=iterations+1;

end

clg

plot(x,abs (fftshift(v)));

end

v=fftshift(v);

We will use two examples to demonstrate the utility of the BPM. First we
will use BPM to find the amplitude distribution in a graded index slab waveguide
with a triangular profile. Then we will simulate a mode propagating through a
coupled waveguide.

Let’s first find the shape of the eigenmode for a triangular waveguide. We
will use the profile triangle described in wg_params, and set the trial mode
characteristic width to 3um. We intentionally made the mode narrower than
reasonably expected so the dynamics of the BPM process will be illustrated.
Fig. 9.17 shows a sample of the output as a function of the distance the simulated
mode has travelled down the waveguide. The initial field distribution is a narrow
Gaussian spike located at z = 0. This initial spatial mode can be described as
a superposition of guided and radiation modes of this waveguide. As the initial
amplitude distribution propagates forward, the non-guided components begin
to travel away from the guiding layer. The eigenmode becomes distinguished
after travelling about one millimeter. The broad pedestal that the eigenmode
sits on represents unguided energy that is radiating away from the waveguide.
The unguided energy extends beyond the clear aperture, and suffers attenuation
with each step of the calculation. Eventually the non-guided energy is totally
dissipated.

We can see an artifact of the calculation in the ripples that form on the
pedestal for the plots between z = 1 and z = 2 mm. These ripples arise from
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Figure 9.17. Results of a BPM run on a triangular index slab waveguide. A trial mode with a
Gaussian profile is launched at z = 0. As it travels down the guide, the unguided energy radiates
away, while a guided mode emerges after suitable distance.

interference between the outward bound waves and those that have wrapped
around from the other side that were not totally attenuated before reaching
the boundary of the domain. After sufficient propagation, these interference
features are damped out.

The BPM successfully determined the shape of the mode for the triangular
waveguide. The waveguide acted as a spatial filter to the input field distribution,
eliminating all energy except that in the waveguides fundamental mode. We
could substitute any reasonable index profile into the program, and use the same
technique to find the eigenmode.

8.  Waveguide Coupler

The beam propagation method is often used to evaluate the performance
of either a coupled waveguide, a Y-junction, or some other complex structure.
We know that the field of a confined mode extends out beyond the core region.
These evanescent tails can transfer energy from one waveguide to another if the
dielectric structure is suitable. We will explore the theory of energy transfer and
mode coupling in the next chapter. Here, we want to use BPM to “experiment”
with a coupled waveguide structure. As an example, we will examine the
propagation of a mode on a waveguide which is located adjacent to an identical
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Figure 9.18. Index profile of two slab waveguides separated by only 4 pm.

guide. The index profile for this structure is plotted in Fig. 9.18. The coupler
consists of two identical step-index waveguides with core thickness of 10 um
situated approximately 4 um from each other. The evanescent field of either
guide extends into the other guide.

To begin the analysis, we launch a mode which is close to being an eigen-
mode of one of the individual waveguides. We found by simple trial and error
that a Gaussian profile with a 1/e length (sig) = 7 um gave an excellent ap-
proximation to the actual mode of the waveguide for 1 pm wavelength light.
We wrote the program to launch the initial mode into the right hand waveguide
at z = 0. Fig. 9.19 shows the evolution of the mode profile as it propagates
down the waveguides. Each snapshot of the mode is taken after the field has
propagated 1 mm down the waveguide. We see an evolution of the mode energy
as it propagates along the coupled waveguide structure. After travelling approx-
imately 4 mm down the waveguide, the energy has completely transferred over
to the left hand guide. As the beam continues to propagate, the energy transfers
back to the original guide. This process will continue indefinitely so long as
the waveguides do not change their relative position or dimension. This is an
extremely useful effect which can be exploited to make many practical devices
such as couplers, taps, interferometers, and wavelength selective filters. For ex-
ample, if the waveguides were brought together for only 1 mm, approximately
10% of the power from the first waveguide could be tapped, while the remaining
90% of the energy would continue along the main channel. The BPM method
can be used to explore the effect of waveguide separation or mismatch on the
coupling rate and efficiency. We will explore the theoretical basis for this be-
havior in the next chapter. We leave it as an exercise to show that the transfer
rate of energy decreases as the waveguide separation is increased.

The relevant Matlab code for the index profile and initial amplitude dis-
tribution are listed below.
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Figure 9.19. The power in a coupled waveguide transfers back and forth as it propagates along
the guide. The index profile is shown below the mode profiles.

wgsep=14*micron;

for j=1:512;
coupledindex(j)=ns+(nf-ns)*(abs(abs(j-256)-wgsep*
256/cladwidth) <wgwidth*256/cladwidth) ;

end;

v=2xexp(-((x-wgsep/2)/sig) ."2) ; where wgsep is the distance between
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the centers of the coupled waveguides (in gms), and the initial amplitude profile
is offset to overlap the right hand waveguide.

9,  The Finite-Difference Time-Domain ethod

The BPM technique provides an excellent way to evaluate the spatial struc-
ture of a mode as it propagates through a waveguide. But if the waveguide
has sharp changes in index that could result in a reflection, the BPM fails to
account for the reflected wave, or for possible interference effects between
the forward and backward wave. Since many optical devices rely on interfer-
ence based on reflections to function. Other techniques are needed to simulate
such structures. The Finite-Difference Time Domain (FDTD) technique is a
powerful method for such simulations. FDTD basically calculates a numeric
solution to Maxwell’s equations, therefore so long as errors due to round-off
do not arise, the simulations are exact. We will outline the basic steps of the
FDTD method,and develop a simple code to demonstrate how it operates on
time domain problems. The purpose is not to develop a program that competes
with commercial code, but simply to provide the user with an operating insight
into how the program works. We will follow the development by Sullivan in
reference [10]

The time dependent Maxwell curl equations in free space are

O
E =-9B __ 9
v x k2 Ko
OE
VxH =9 - 0% (9.17)

We will consider the simplest, one dimensional case, where the wave is propa-
gating in the 2 direction, and the fields are E; and H,. In this one-dimensional
system the curl equations dramatically simplify to

OE, _ _10H,
8t e O
8H, 1 9E,
Bt ot ©-18)

These are exact equations. We now want to put them in discrete form so that
a computer can evaluate them. From basic calculus we know the derivatives
come from the limiting values of finite differences. Using this concept we can
express the curl equations as

Ex(t+ At 2) — Eg(t — At,2) 1 Hy(t, 2+ Az) — Hy(t, 2 — Az)
At T e Az
Hy(t + At 2) — Hy(t = At,z) 1 Eg(t, 2+ Az) = Eg(t, 2 — Az)
- ©

At o Az

19)
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To implement this on a computer, the fields E,(z) and Hy(z) will be stored
as an array of points which represent the spatial distribution of the fields at a
given point in time. To describe the temporal evolution of the fields,the data in
each array must be updated according to Eq. 9.19. Using the superscript n to
denote the time step (real time is ¢ = n - At), and an array index & to represent
position (z = k - Az), Eq. 9.19 can be rearranged into an iterative algorithm

EEF(k) = B2(06) ~ (3 0) ~ Hy(k— 1)

. At
Hy (k) = H} (k) — ;O—A—Z[E;”(k +1) — E}k)] (9.20)
The two arrays are interleaved in space and time. Notice that the next value for
E, is found from the present value and the most recent values of Hy,. Similarly,
H, is determined by its present value and the most recent values of E;.

The equations for F and H are very similar, but the magnitudes of F and
H will differ by several orders of magnitudes, because the impedance of the
medium, 7, is typically 100—3372. If we make a change of variables using
the impedance to normalize the fields

E=,/2E 9.21)
o

we can form a normalized set of equations

on _ mn 1 At n n
Ez+1(k) - Ez (k) - \/ME[H:U (k) - Hy (k - 1)]
HH ) = () = e o B4 ) = B2R) 022

The relation between Az and At is fixed by the speed of light in free space,
¢. In a one-dimensional case the time step is usually set to

Az
T 2
The factor of two arises because it requires two cycles of iteration in the algo-

rithm above before a field point can actually be updated. The normalizing term
then simplifies to

At (9.23)

1 At 1

=z 9.24
Jeolto Az 2 (9-24)
Rewriting Eqs.9.20 in Mathematica code yields

Dol
Dol
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Figure 9.20. The gaussian pulse propagates in both directions. The electric field positive in
both directions, but the magnetic field is negative in the negative propagating direction.

ex[[k]] = ex[[k]] - 0.5x(hy([k]] - hyllk - 111D, {k, 2, kmax - 2}
1;

Dol

hy[(k]] = hy[(k]] - 0.5(ex[[k + 111 - ex[[k]1),{k, 1, kmax - 1}
1,

50]

There are three Do loops. The first loop advances the "time" by one step each
time it runs, so n this case we are advancing the field 50 steps. The number of
steps can be adjusted as desired. The second Do loop updates the value of the
electric field, which is in array ex. The third loop updates the magnetic field,
hy, using the new values of ex.

The array has to be initialized with an electric field distribution before it can
propagate a wave. As a first example, consider a gaussian shaped pulse. This
can be created as shown in the next lines

kmax = 512;
ex = Table{ Exp[-(k - kmax/2.)3/200], {k, 1, kmax}];
hy = Table[0., {k, 1, kmax}];

The gaussian electric field after 200 “steps" is shown in Fig. 9.20. Notice the
pulses propagates in both directions. E is positive in both directions, but H, is
negative for the negative propagating pulse. Had we set up an initial distribution
for the magnetic field that was self-consistent with a pulse travelling in one
direction, the pulse would not have divided. Because we set H,, = 0 initially,
the first magnetic field was derived from the initial electric field distribution, so
two directions emerged.

The FDTD techniques gets much more interesting when we add some struc-
ture to the propagation path. We can introduce material parameters via the
permittivity, €. Since the time step is defined in terms of ey, we can introduce
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the effect of different refractive indices by redefining the timing step as

1 At 1
Vello Az Ver 2

where €, = ¢/¢y. Before we add that feature to the code, we need to take
care of another detail. Normally to calculate the E, field, we need to know
the surrounding H,, fields. This is the fundamental assumption of the FDTD
process. But, at the end of the array we will not have the value on one side, and
areflection results. To eliminate the reflection we need a boundary condition at
the ends. Because the current value of E(k) is determined by a previous version
of H(k), which itself was determined by an even earlier version of E(k), an
acceptable boundary condition to prevent reflection is to set E*(1) = E"~2(2)
for the £ = 1 end of the array, and a similar condition for the k., end. This
provides the "look-ahead" that the fields are expecting as they propagate. The
code below contains the addition of the boundary condition and the inclusion
of an array that describes a step increase of the index of refraction at & = 250
to a value of n = /&, = 3.

(9.25)

kmax = 512;

cb = Table[If[k >250,0.33,1], k,1,kmax];
Dol

Dol

ex[[k]] = ex[[k]]-0.5%cb[[k]]*(hy[(k]]-hy[[k~111),{k,2,kmax~2}
1;
ex[[1]] = exm?2;

exm2 = exml;

exmi ex[[2]1];

Dol

hy([k]] = hy[(k]]1-0.5Cex[[k+1]1]-ex[(k]1),{k,1, kmax-1}
]l

{200}]

ListPlot [ex, PlotRange -> {—1,1}, PlotJoined -> True]

To illustate the impact of the index change, we launched a two-cycle sinu-
soidal electric field at the interface. Fig. 9.21 shows the wave this example we
included a portion of a sine wave (defined in the original array for ex), and had it
propagate into a dielectric interface. You can see the reflection that results, the
relative changes in amplitude as the wave enters a higher index medium (note
especially the magnetic field increases in the dielectric), and the shortening of
the wavelength in the dielectric.

The FDTD technique provides a powerful and accurate method for determin-
ing the fields of a waveguide structure, and is especially useful for situations
where there are reflections. This one-dimensional example is trivial, but the
technique can be extended to two-dimensional structures without much com-
plication.
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Figure 9.21. A sinusoidal wave is propagated across a dielectric boundary at k& = 250.

10. Summary

In this section we introduced the use of numeric techniques to evaluate dif-
ficult index profiles, and to simulate the behavior of modes in a coupled wave-
guide. We began with a description of the Fast Fourier Transform, which is the
standard tool available for performing Fourier Transforms on a computer. Us-
ing the FFT, we showed that a spatial wave can be described as a superposition
of plane waves. Once we have a plane wave expansion, we can predict how
a wave will propagate. We applied this knowledge to free-space propagation,
and demonstrated how a wave with finite transverse dimension will diffract as
it propagates.

We then added one more piece of information to our propagation model.
We allowed the local index of refraction to modify the cumulative phase of a
propagating wave. By adding a phase correction to the spatial waveform, the
combined effect of diffraction and guiding was described.

We listed a simple one-dimensional BPM program written for Matlab, and
demonstrated the program by finding the mode profile of a triangular waveguide,
and by demonstrating the mode coupling that occurs between two identical
waveguides. These are very trivial examples which demonstrate the operation
of the BPM technique. More sophisticated models, such as 2-dimensional
analysis, and including vector analysis, have been developed and are described
in current literature.
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Practice problems

1.

Using a personal computer, explore the appropriate commands for evalu-
ating the FFT of a smooth spatial profile. Consider the gaussian function

2
T(z) = ¢ Torem?

(a) Plot this function over the range from x = —20um to x = +20um.

(b) Create an array containing 50 points that are uniformly sampled over
the range from —25um to 24.5um.

(c) Calculate the FFT of this array. Observe the amplitude and phase of
the FFT.

(d) Explore the effect of altering the domain of the function. For example,
decrease the domain of the array from —10um to +10um, and repeat
part c. Does the change in the FFT make sense?

(e) Explore the effect of shifting the array index on the resulting phase
of the FFT. Moditfy the array in part b to include 51 points, including
the point at +25um. What happens to the phase of the DFT? Can
you explain this?

. Repeat the BPM calculations for the triangular waveguide using a mode

profile that is exponential in shape (as might arise from a weakly bound
mode in a symmetric waveguide. Specifically, let

E(z) = Ae7lel/=o

where o = 8um.
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3.

Explore the effect of beam size on diffraction. Modify the gaussian pro-
file in Fig.9.10 to effectively double its spatial domain. Follow through
with the calculation of the beam diffraction based on a FFT analysis as
described in Sect. 9.4.4. Does the larger beam diffract differently than
the smaller beam? Is the difference consistent with the diffraction of a
Gaussian mode?

Explore the effect of wavelength on the diffraction of a beam. Modify
the mode in Fig.9.10 so that it has a wavelength of 1.5 um, but still has
the original characteristic width (8 um) at z = 0. How does increasing
wavelength affect diffraction? Is your simulated result consistent with
diffraction theory for a gaussian mode?

. The cause of the ripples in Fig. 9.15 was attributed to the finite size of
the domain. Try increasing the initial value of H, and see if this in fact

the case.

. What happens if the distance separating the waveguides described in Fig.

9.18 is changed? Repeat the simulation using a separation of 16 um and
12 pm.

The total energy exchange demonstrated in the coupled waveguides in
Fig. 9.17 is a result of their being identical in structure. What happens if
the waveguides are not identical? Reduce the dimension of the left hand
waveguide by 2 pm, and then run a similar BPM analysis, observing the
coupling of energy between the waveguides. Comment on the period of
the exchange, and on the completeness of the exchange.

Use the BPM to find the mode shape of a step index profile with a total
width of 6um, and a symmetric index profile defined as ny = 1.5 and
ns = 1.498. Compare your result with the exact mode shape determined
from direct solution of the wave equation.

. Extend the FDTD technique to evaluate the propagation of a sine wave

through a dielectric slab. Try to observe the resonance condition, where
there is perfect transmission and no reflection.



Chapter 10

COUPLED MODE THEORY AND APPLICATION

1. Introduction

Mutual coupling between optical modes is essential in the design of in-
tegrated optic devices. In this chapter we will describe how optical energy
couples between modes within and between optical waveguides. Up to now,
we have treated the waveguide as an ideal optical wire, which conveys light
from one point to another in the form of a “mode". We have implicitly assumed
that these modes, once formed, are unchanging except perhaps through atten-
uation due to absorption. In reality, simple mechanisms can lead to significant
energy exchange among the various modes of a structure. Coupled mode theory
describes this energy exchange, and serves as the primary tool for designing
optical couplers, switches, and filters.

We will explore a coupling technique that describes the scalar electromag-
netic field of a perturbed waveguide in terms of a superposition of modes of
the ideal waveguide. More advanced coupled theories are being developed
everyday, based on vector equations and other considerations. The theory we
present here will serve as a basic step in understanding these advanced theories.
Interested readers should explore the references cited.

2.  Derivation of the Coupling Equation Using Ideal Modes

Consider two proximate single mode optical waveguides, as shown in Fig.
10.1. In each waveguide there are two waves: one propagates in the forward
direction, and one in the backward direction. Energy transfer, i.e. coupling,
can occur if the evanescent field from one waveguide extends into the core of
the neighboring waveguide

The degree to which two modes exchange energy depends on the design
of the coupler, and the mode structure of the two waveguides. For example, it
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2 x 2 Optical Coupler

At A
—_— > L

B* B-

Figure 10.1. Two waveguides in proximity can couple energy. This device is sometimes called
a 2x2 coupler. There are four fields that must be considered in the analysis.

seems plausible in the structure shown in Fig. 10.1 that the forward wave in one
waveguide (say A™) will primarily couple to the forward wave in the adjacent
waveguide (B™). The coupling from the forward wave (A™) to the backward
travelling wave of the other waveguide (B™) will be insignificant unless the
coupling incorporates some means of reflection.

Using the principles of superposition and completeness, we can describe any
waveguide amplitude distribution in terms of a superposition of ideal wave-
guide modes. By “ideal," we mean a waveguide with no perturbations. The
amplitudes of the modes in the superposition will change only when a pertur-
bation is present. As we have often done with new topics, we will restrict our
discussion to planar or rectangular waveguides in the discussion below. Stay-
ing in the rectilinear coordinate system makes it much easier to calculate node
coupling, and is conceptually easier to understand and follow. We will follow
the development of the coupled mode theory as described by Yariv[1].

Consider the planar step-index waveguide structure shown in Fig. 10.2 with
film index ny of thickness h, and substrate and cover indices, ns and 7., re-
spectively. The waveguide can support a finite number of guided modes and
an infinite number of radiation modes. For this example, assume that only TE
modes are carried. The electric field of the eigenmodes of this structure satisfy
the wave equation,

32Ey(x, 2,t)
ot2

If € and p are a time-invariant quantities, each mode solution to Eq. 10.1 will
have the familiar form

V2E,(z,2,t) = e (10.1)

Ey(z,2,t) = -;—Aigyi(:v)e“j(ﬂ"z“‘”t) +c.c. (10.2)

i

where A; is the amplitude for mode i, and £y, () is the normalized amplitude
distribution for mode i, given by Eq. 3.20 for the asymmetric slab waveguide.
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Figure 10.2. A waveguide can support both guided and unguided modes. These are nominally
independent of one another in the absence of any coupling.

If there are no perturbations in the waveguide, (e.g., if the dimensions of the
waveguide do not change with position, and there are no changes in the dielec-
tric constant of the three films) the modes will be completely independent from
one another. However, any deviation from this well defined waveguide structure
perturbs the modes and couples energy between them. In the analysis which fol-
lows, we describe the perturbation in terms of a distributed polarization source,
Pyert, which accounts for the deviation of the dielectric polarization from that
which accompanies an unperturbed mode. Perturbations can arise through two
mechanisms: either the dielectric constant of the structure is modified (Ae)
from what the mode expects to see, or an electric field from a second source
appears in the waveguide, and excites a mode of the structure.

Why is polarization the preferred method for solving these problems? Recall
the constitutive relation for electric flux

D=¢E=¢FE+ P (10.3)

The effect of the media is to increase the local displacement flux by a value of P.
Any deviation from the normal dielectric constant of a guided wave structure
leads to a perturbation in the polarization, Pper¢, defined through the expression

D = €E + Pyery (10.4)

Substituting Eq. 10.4 into the wave equation yields

O2E,  02Pper,
=Hegp thT e

V?E, (10.5)
where the polarization perturbation clearly stands out as a driving force in the
equation.

To solve this equation, we use standard perturbation theory techniques. First,
the term P, is set equal to 0, and the eigenmodes of the unperturbed structure
are found. The eigenmodes are symbolized by the notation, £. Then we seek
a solution to the perturbed wave equation in terms of a superposition of the or-
thogonal eigenmodes. Since the eigenmodes of the waveguide form a complete
set, any continuous electric field distribution, E(z), can be described in terms
of the modes of the system
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E(@) = §%;Af (2)E(a)e w0 + L3, A7 (2)Ei(w)edBimted)
41 fko”fA )5ﬁ(x)e—j(ﬂz*°“t)dﬂ+c_c (10.6)

kons

where &;(z) are the spatial amplitude distributions for each mode, and A* are
the amplitudes of the forward or backward travelling wave, respectively. The
terms [3; represent the mode propagation coefficients for individual modes. The
factors 1/2 in front of the amplitude terms arise from describing the real elec-
tric fields in terms of their complex exponential form and complex conjugate.
The complex conjugate terms are implicit in these calculations. Note that the
superposition includes a sum over modes travelling to the right (A1), as well
as the left (A™). Each pair of oppositely directed modes has the same spatial
distribution, &; (), and the same magnitude propagation coefficient, 3, but they
differ in the direction of propagation. The superposition also includes the so-
called “radiation modes." These modes are essential to describe any arbitrary
electric field as a superposition of eigenmodes of the system. All examples
considered in this chapter concern coupling between discrete guided modes, so
we will neglect radiation fields. However, radiation modes are important when
dealing with grating or prism couplers.

Our goal is to develop an expression for the coupling between the amplitudes
of the individual modes of the waveguide. If there is no coupling between the
modes, the individual amplitudes, A;, will be constant in time and position. If
coupling exists, the amplitudes will vary with position. To derive an equation
of motion for the amplitudes, we plug the general solution, Eq.10.6, into the
perturbed wave equation, Eq. 10.6. The eigenmodes, &; (), satisfy the unper-
turbed equation, so many terms drop out. The details of the algebra are left as
an exercise. The perturbed wave equation reduces to

+%Z [_f‘+2j,31 } i(@)ed Bt +cc.

= s Prert (10.7)

The effect of the perturbation is to change the amplitudes of the modes in the
superposition. If we assume that the perturbation causes “slow variations" in
the amplitude, then the second derivative terms are negligible ( 8%4;/92% <
B0A;/0z). The final equation of motion for the amplitude is given by

2 A+ +
[8 A &t } E(x)e I Bz—wt) 4 cc.

+

1 . O0A
52; [—21@ 3
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+3% {WLQJﬂi%éL] E(x)edBeztwt) 4 e,
= 12 Prert (10.8)

This is a complicated equation: it involves the sum over a large number of
modes. We can simplify the equation using mode orthogonality. The normal-
ized eigensolutions to the wave equation satisfy

1
5 / €i(z) x H;(2)dA = 6 (10.9)

where H is the normalized magnetic field eigenmode. The term d;; is the
Kroenecker delta function which is unity if ¢ = j. If the fields can be described
by a scalar equation (i.e. there is no coupling between the z, y, and z fields
in this structure), Eq. 10.9 can be cast into simpler form requiring only a
spatial description of the electric field. Assuming that we are using a TE mode,
Maxwell’s equations can be used to express H; in terms of £, for normalized
fields

/ " 61(2)€;(x)dz = ggffaij (10.10)

with units of W per unit length (time average power). A similar condition can
be derived for TM modes.
Using mode orthogonality, we can simplify the series terms in Eq. 10.8 by
multiplying both sides by £;(z), and integrating over .
04; eI (Brtwt) _ 047 e~iBz—wt) 4 o I o
0z 0z 2w Ot2

o0
| Ptz &)

* (10.11)
This is the primary equation for determining mode coupling. Notice that the
degree to which the amplitude of mode j changes is directly proportional to the
overlap of the perturbation (FPp.rt) and the modal distribution of mode j (£;).
The more complete the overlap, the stronger is the coupling. Also note that if
the perturbation is null, the mode amplitudes will remain constant.

In spite of the simplifications, Eq. 10.11 is still a difficult differential equation
to solve. The right hand side of the equation is the driving force for changing
the amplitude of the forward and backward waves. The differential equation
is solved by integration over z, keeping in mind a few tricks. If the driving
term and guided mode have different temporal frequencies, the interaction will
average out to zero over a time long compared to their difference in frequencies.
Therefore, only terms of similar frequency need be retained in the equation.
Second, the driving term and guided mode should have nearly the same spatial
phase dependence so that the interaction does not average out to zero over
distance. Terms which do not satisfy this condition have negligible impact on
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Figure 10.3. A dielectric waveguide with a notch defect in it acts as a perturbation to the guided
modes. The notch extends a distance 2a, and is h/10 deep.

the solution. Based on these considerations, we can usually disregard one of
the terms on the left hand side of Eq. 10.11.

Finally, there are two regimes of coupled mode theory: weakly coupled, and
strongly coupled. In a weakly coupled system, we can to first order ignore
changes in the amplitude of the driving field. The amplitude of the driving
field will only change in second order. In strongly coupled situations, the mode
amplitudes will oscillate, sometimes exchanging all of their energy between
each other. These cases require exact solution of the coupling equations. We
will examine examples of both.

3. Nondegenerate Coupling Between Modes in a
Waveguide

When two orthonormal modes have identical values of 3, we must use degen-
erate perturbation methods for solving the equation of motion. Such examples
arise in circular fibers where one spatial mode can have two orthogonal polariza-
tions, or in codirectional couplers was shown in Fig. 10.1. “Non-degenerate"
coupled mode theory applies when two modes with different Js are coupled.
Non-degenerate modes generally display weak coupling. We will explore non-
degenerate coupling in this section.

3.1 Coupling Due to a Dielectric Perturbation.

We begin with the simple case of a perturbed single mode waveguide, and see
how a dielectric defect can couple a mode’s forward wave to its backward wave.
Consider the symmetric slab waveguide shown in Fig. 10.3. The waveguide
consists of a guiding film, n, of thickness h, surrounded by a cladding index, ns.
A small dielectric notch of depth k/10 and length 2a in the core region perturbs
the waveguide structure. Assume that the waveguide is a single mode structure,
and that for z > a there is no backward travelling wave, A~ (z > a) = 0.

The mode expects to see an index of n; when it gets to the notch region, but
instead finds the index is nqe. This is a perturbation. To begin our analysis, we
must determine the unperturbed modes of the waveguide. In the case of the
symmetric waveguide, we have already calculated the exact form of the ampli-
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tude distribution (Eq. 3.26). We can use Eq. 3.29 to describe the eigenmode
of the waveguide

g = Ce MY forg > h/2
& = Ccoskz/coskh/2 for—h/2<z<h/2
g = COEMD  forg < —h/)2 (10.12)

where the coefficient, C, is chosen to normalize the power in the waveguide
to a value of 1 W per unit length (in agreement with Eq. 10.9). The specific
values of «, 7, and § are determined from the eigenvalue equation (Eq. 3.30
or 3.31) for this structure once h, n1, and ng are specified. We assume this has
been done, and ail eigenvalues are known.

To determine the coupling, we must describe the perturbation term. In this
example, the polarization perturbation, Ppm(z), is the product of the change
in dielectric constant, eo(n3 — n?), and the electric field of the forward wave,

Ppert(il)) = AeEl
1 ,
= ¢(ni—nd) {§A+5(x)e—’(ﬂz_“’t) +c.c.
for 0.4h <z < 0.5h,—a < z< a (10.13)

= (0 elsewhere.

Notice that the perturbation term exists only in the noich region. Everywhere
else in the waveguide the mode sees an index distribution that it would normally
see without the perturbation. The amplitude equation of motion becomes

OA™ igaywry OAY

—e e IBawt) 4 e

Oz 0z
0.5k
= - Pperi€y(z) dz (10.14)
0.5h
—j 9? coskz \2[1 (g
= E@ / 60(77/:‘2)——’I’L%)[C"2 (W) [§A+6 ]('BZ Wt)dllf+C.C.:|
0.4h
jweg(n3 — nf) [1 +_—j(Bz—wt ] 0.5k coskz \?
= LZON2 U4y i(Bz—wt) g c / 2 _FBhs
5 5 e T+ c.c " |C| p—— dx

= jK(Ate Bzwt) 4 cc)

where K is the coupling constant defined as
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weo(nk — n?) o coskr \?
K = —/—2_ 1 / |C]2<-——> dz for —a<z<a
4 coskh/2
0.4h
= 0 elsewhere. (10.15)

Notice that the coupling constant is determined by the overlap of the coupled
modes in the perturbation region. In this one dimensional problem, we only
integrate over the z coordinate to determine the coupling coefficient. Multiply-
ing both sides of Eq. 10.14 by e/(f#=“%) yields an equation of motion for the
amplitudes
0A™ o dA*
——ePr _ — tcc = jKAT 10.16
5z ¢ 0z tee=y ( )
To solve Eq. 10.16, we must integrate both sides. The first term average to a
small value when integrated over a distance large compared to (23) . Thus to
first order we can drop the A~ term, leaving the simplified equation of motion
dA*

——— =jkA* (10.17)

which, when integrated over z, and applying the initial condition that Ay =
A(—a), has solution

At (2) = AT (—a)e %> (10.18)
Thus we see that the amplitude of the field does not change (to first order), but
the perturbation ( a small region of lower index material) alters the phase of the
wave. The forward wave in the region of the perturbation will be (note K is
negative)

+(_— .
Bz =2 (2 D i+ for —a<z<a (10.19)

You should see an analogy between this solution and that obtained when we
used perturbation theory to clean-up the solutions to rectangular waveguide
structures in Chapter 5, Section 5.3.

What about the reflected component, A~ ? To find a first order solution
for A~, we must assume that the forward wave, AT, does not change, so
OA*/0z = 0. Except for a slight phase change, this is true. The coupling
equation becomes

04" _ KAt e 2Pz ~a<z<a (10.20)
0z
This can be directly integrated, noting that A~ (a) = 0, to yield
—iKCAT
A (=a) = KA Gn08a) (10.21)

B
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Figure 10.4. A dielectric perturbation can couple one mode to another within the waveguide.

To first order, the coupling of the forward wave to the backward wave is maxi-
mized when 28a = (¢ + 1/2), where q is an integer. In terms of a, maximum
reflection occurs when

_(qg+1/2)n

26
The behavior of this structure is similar to that of a half-wave dielectric stack
used to make mirrors. Similarly, choosing a quarter-wave length for a will min-
imize the reflected term. The maximum amplitude of the reflection depends on
the ratio XC/3, which is usually small. Generally speaking, maximum coupling
will occur between a forward and backward wave when the spatial frequency
of the perturbation is approximately 203.

(10.22)

3.2 Intermode Coupling

Consider the same structure as in Fig. 10.3, but let it now be a multimode
waveguide. Assume that mode A consists of a forward wave, and it strikes the
defect at z = —a. How much power does this defect couple from the first mode
into a second mode?

As before, we first solve the unperturbed wave equation to determine the
eigenmodes of the waveguide. These modes will be of the same form as in Eq.
2.29, but each mode will have a distinct value of 5. The specific form for the
two spatial modes is:

Eu(z,t) = [(A/2)ga(x)e—f<ﬂaz-wt> + c.c.]
Ey(z,t) = [(B/2)£b(x)e~i(ﬂbz—wt) + c.c.] (10.23)

We assume that for z < —a, all the optical energy is in mode A. The coupled
mode equation for the amplitude of mode B is then

OBt _. OB~ . o2
—3(Bpz—wt) J(Bpz-twt) — J
9z ¢ + 9z ¢ tec. 2w o

/ Pperi&y(z) dz

(10.24)
In this case, the perturbation term arises from the presence of electric field from
mode A in the dielectric notch, Ppeyt = eo(n% — n%)Ea(m, t). The constants
and integral are combined in the coupling constant C,
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Figure 10.5. Power in mode B as a function of the perturbation length.

wep(n3 — n?) o
K = O—Z—l— / Ea(2)Ep(x)dz  for—a<z<a
0.4k
=0 elsewhere. (10.25)

Substituting the coupling coefficient into the equation, and multiplying both
sides with e7(B+z=w) yields

lei _8_?___ 2jPpz
Bz + 9z ©

We solve this equation by direct integration over z, from —a to a. Ifthe perturba-
tion length, a, is long enough to satisfy Bya > m, then the term (9B~ /0z)e%Pv?
will average to zero due to the rapid oscillation of the phase term. The term is
relatively small anyway. The term e/(%—55)2 on the right hand side oscillates
at a slower rate because it depends on the difference between the two values of
8, not the sum. Solving the integral, assuming that B{—a) = 0, yields

— jch+e—j(ﬁa_ﬂb)z (1026)

B+(a) _ —j’CA+ /a e—j(ﬂa—ﬁb)zdz
_ _KAY o iseBa _ i(BaBr)a
(Ba = o) K ¢ )
_ —ZJICA B
= G- sin[(Ba — Bp)a)] (10.27)

The coupled power periodically goes from zero to maximum over the length
of the interaction region. Fig. 10.5 illustrates the power (proportional to | B|?)
in the second mode at position z = a as a function of the perturbation region
length.

The above formula illustrate several important characteristics of mode cou-
pling. First, if the two modes have dramatically different values of 3, the overall
power coupling will be weak due to the inverse square dependence on the dif-
ference in the propagation constants. Only modes that are closely related in 3



Coupled Mode Theory 251

1um
n=3.498 r
n=3.5 20 ym
IR
| |
z=-a z=a

Figure 10.6. A symmetric waveguide is perturbed by a dielectric notch on the top and bottom
of the guiding film. The film is 20 um thick, and the notches are each 1 pm deep.

will couple significantly; modes with large differences in 8 do not couple ef-
fectively, unless the spatial structure of the perturbation somehow makes up the
difference, as in a diffraction grating. Second, the coupling depends directly on
the value of the coupling constant, K. Third, as before, the coupling is periodic.
Energy flows back and forth between the two modes in the perturbation region,
and the ultimate coupling depends on the termination point of the perturbation.
Coupling is maximum when

Bo =B+ qw/2a (g 0dd) (10.28)

When the spatial period of the perturbation makes up the difference between
the two propagation constants, there will be enhanced coupling. We will see
an example of this with the diffraction grating coupler.

Note what happens when the two modes become degenerate: as the value
of 3, approaches (3, the coupled mode amplitude approaches infinity, which is
unphysical. Clearly, perturbation theory as we have applied it to this problem
fails for degenerate modes. To solve problems involving degeneracy, we must
find exact solutions to the perturbed equations.

Example 10.1 Coupling due to a symmetric notch in a slab waveguide

Consider the symmetric slab waveguide shown in Fig.10.6. A notch is sym-
metrically located about z = 0. In this waveguide, we will determine the
normalized modes of the structure, and calculate the coupling between the fun-
damental TE mode and the other TE modes of the structure. Assume that
A= 1.3um, ny = 3.5, and ny = 3.498.

Solution: The first step is to determine the normalized modes of the ideal
waveguide. We find the eigenvalues « and - using Eq. 3.28

tankh/2 = % for even modes

—TK for odd modes
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There are two even modes and two odd modes supported by this structure.
Numerically evaluated values for x and 3 for each of mode are listed below in
Table 10.1.

The electric field distributions for the modes are given by Eq. 3.27

& = Ce™(==h/2) forz > h/2
COS KT or sin Kz
coskh/2 sinkh/2

g = +CeCHMD  forg < —h/2

for —h/2 <z < h/2

We know every variable in these equations except the normalization coeffi-
cient, C. To normalize, we must adjust the amplitude, C, to satisfy

/ E(2)Em(z)de = 25,

S ﬂn

The necessary values of C are listed in Table 10.1. (Note: to use consistent units
in the calculation, the value for o had units of Henry/cm, not Henry/meter.)
These mode amplitudes will produce a normalized power of 1 W per cm of
width in the slab waveguide. Fig. 10.7 shows the four normalized modes taken
from this data shows the calculated mode distributions.

Having found the modes of the ideal waveguide, we can now calculate the
coupling constant for each pair of modes. The polarization perturbation in this
example is generated by the electric field of the TEy mode in the dielectric
notches. Explicitly, the perturbation is (for 9um < |z| < 10um, and —a <
z < a)

Ppert = eo(n% — n?)Eo(x, 2,t)
+
= eo(ng —_ n%) COS(KO:E) éo_e“j<ﬂ02_“’t) + c.c.

cos(koh/2) | 2

Table 10.1. Propagation coefficients for the four allowed modes.

Mode Designation « B8 Normalization Amplitude
TEo 1335.12cm™! 169157 cm™!  99.7 V/em

TE; 2658.1cm™! 169142 cm™!  197.2 V/em

TE; 39498 cm™!  169117cm™! 287.7 V/iem

TE3 515845cm™! 169084 cm™'  353.3 V/cm
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Figure 10.7. The four mode amplitudes are plotted on the same scale. The horizontal axis is
in units of cm.

Ad
= —2.647 x 10713 cos(1335.12z) TOe—J(ﬁoz—“t) tee

Knowing P,ert, We can next calculate the coupling coefficients between the
modes. Plugging the result into Eq. 10.11, the formula for the general coupling
coefficient between the TE( and TE; mode is

w 0.5h 13
Ko = 5[/ —2.647 x 107"’ cos(1335.12z) &;dx
J0.45h
—0.45h
+ —2.65 x 10713 cos(1335.122)&;dx
—0.5h

There are two integrals because there are two dielectric regions in the per-
turbation. By symmetry, we can see that modes TE; and TE3 will not couple
to mode TEp. The product of an even and odd function in a symmetric integral
always yields a null result. Therefore two of the coupling coefficients equal
zero. The only mode that the TE( mode can couple to is the even symmetry
TE2 mode. The coupling coefficient will be

0.5h
w _ c0s(3949.8z)
= 2= [ —2.647 x 10713 cos(1335.1 e N
Koz 204/h 647 x 107" cos(1335.12x) 287 7cos(3949.8h/2)dx
45

= -3912cm™!
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Figure 10.8. The power transfer from mode TEg to mode TE; as a function of the notch length
in Fig.10.6. The coupling varies periodically with notch length.

The coupled mode equation relating the TEo mode to the TEy mode is then

04; ; ztw 8A+ —7(B2z—w . —7(Boz—w
—ézie](ﬁz twt) _ —(_,9z—2€ 1Brz=wt) 4 c.e. = jKop Afe I Foz=et)

Multiplying both sides by e7(%22=%%) converts the equation to

- +
04, e2iB2z _ 04, +ce = jK;OZAg'e—]'(ﬁo—ﬁﬁz
0z 0z

Integrating over z from —a to a, the first term on the left hand side averages to
zero to first order. The amplitude of mode TE; at the end of the perturbation,
assuming that AJ (—a) = 0, is

Af(a) = (2Ko2/(Bo — B2))A{ sin(Bo — B2)a
§(7.83/40) Af sin(Bo — f2)a

Squaring this amplitude gives the actual power in the mode. The power in
mode TE; as a function of perturbation length a is shown in Fig. 10.8. The
coupling length ranges from 0 to 0.1 cm in the plot.

We can see that a small fraction (< 4%) of the mode energy transfers into
mode TEy at the optimum interaction length. One of the assumptions we made
in solving for A7 is that the amplitude of mode TEj stays constant. While this
is not rigorously true, the amplitude, AaL , is reduced by less than 1% at the peak
of the transfer, so this is an excellent assumption.

It is hoped that this example, with all its brutal detail, shows you how to
normalize a mode, how to systematically apply the perturbation equations, and
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how to deal with the units. Also note the difference in magnitude between the
phase constants in the terms of Eq. 10.28. One term oscillates at a rate of
approximately 300,000 rads per cm, and the other oscillates at approximately
40 rads per cm. Our assumption that only one of the terms is significant is valid.

3.3  Reciprocity

It can be shown [2] that if energy is conserved the coupling will be recipro-
cal. This means that if mode ¢ couples to mode j, then mode j couples with
equal strength to mode . Because of this reciprocity, the equations governing
coupling between modes A and B can be written in the general form

dA .
= jK p Be~1(Ba—Bs)z
7 jKqpBe
dgz— = j}CZaAej(ﬂa_ﬂb)z (1029)

where A and B are the amplitudes of two modes, and K is a coupling constant.
We will develop an expression for the coupling constant in the next section.
The conservation of energy is expressed as

%(m[? +|B|?) =0 (10.30)

4.  Degenerate Mode Coupling

There are many examples of structures where two modes with identical prop-
agation constants are coupled. This leads to degenerate coupling, and a different
approach is required to solve the problem. Consider the structure involving two
coupled waveguides shown in Fig. 10.9. This device is a coupler, where two
waveguides are brought into proximity to each other for a short length a. The
evanescent field of one guide extends out and partially overlaps the adjacent
guide. Energy can tunnel from one guide to the other through the interac-
tion of the evanescent tail. Being symmetric, energy can flow either way in
this structure. Structures of this type serve as mode combiners for heterodyne
receivers,and optical taps. In this example, we will calculate the amount of
coupling between the two guides. We will assume that initially only one of
the waveguides carries energy. At the conclusion of this section we will com-
pare the coupling predicted by the Beam Propagation Method for a coupled
waveguide in Chapter 9.8 with the coupling predicted by coupled mode theory.

In this device, the polarization perturbation arises from the presence of an
external electric field in the waveguide, rather than from a dielectric defect. We
assume that the waveguides are single mode structures. Fig. 10.10 shows the
geometry of the structure.
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Figure 10.9. A directional coupler can be made by placing two waveguides in close proximity
to one another for a finite distance. The evanescent field from one waveguide overlaps the core
of the second waveguide, leading to coupling.
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Figure 10.10. The coupled waveguides are separated in the y-direction by a distance of 2a,
and are 2b wide. The origin is on the surface between the two waveguides.

The fields in the cores of the ideal (uncoupled) waveguides will be of the
form

BA(z,9,7) = Acos(at + ) cos(my(y + (a + ))e 75
Ep(z,y,2) = Bcos(keT + ¢5) cos(ky(y — (a +b))e™7P%  (10.31)

where both waveguides have the same transverse and longitudinal wavevectors,
Kz, Ky, and B, respectively, and the center for each waveguide is a distance a+b
from the origin of the coordinate system. Outside the core, the fields decay
exponentially.

The polarization perturbation in waveguide B arises from the presence of the
evanescent tail of mode A. The perturbation is actually due to the difference in
index the evanescent field sees when it is in the core of waveguide B, compared
to the normal cladding index. The polarization induced by mode A acts as a
source to excite mode B. From mode B’s perspective, the perturbation is

PpETt(z’ Y, Z) = fo(n%(.’t, y) - n%)EA(x, y)
= e(n¥(z,y) —nd) {gEA(y)e“j(ﬂ"“’t) + c.c.} (10.32)
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The device shown in Fig. 10.9 operates with codirectional coupling, so we
need not include the backward waves in the amplitude equation of motion. In
fact, due to phase matching, it is impossible to couple energy into the backward
wave of mode B. The general equation of motion (Eq. 10.11) for the structure
will then be

0B j
e—3(Bz—wt)
“82¢ Fee="5 aﬂ/ £8(2,9) Fpered$
12‘5 eo(n*(,y) — n3)ER(, ) [EEA(y)e‘J‘ﬂz‘“” +ec.|dzdy
= jKAe IFz—wt) (10.33)

where the coupling constant K in the last equation represents the integral and
all the fixed terms. By symmetry, the coupling between waveguide A and B
will be identical to the coupling between B and A. (See prob.10.1). We can
therefore write down an equivalent coupling equation for amplitude flowing
from waveguide B to waveguide A.

_ %/Zj e~ iBz=wt) _ ) Bemi(Ba—wi) (10.34)

Eqgs. 10.33 and 10.34 are strongly coupled, and must be solved simultane-

ously. Since the propagation constants are identical for each waveguide, the
formulae reduce to

0A

_8—2— ='—j’CB
%g = —jKA (10.35)

Taking the derivative of the first equation, and plugging it into the second equa-
tion reduces these two first order differential equations into a single (uncoupled)
second order equation

0?4

— =~-K*A 10.36

322 (10.36)
which can be directly solved. If we assume the initial conditions for the problem

are A(0) = 1, and B(0) = 0, then the solutions become

A(z) = cos(Kz)
B(z) = —jsin(Kz) (10.37)
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Figure 10.11. The power in waveguide B varies sinusoidally as a function of coupling length,
a.

Note that the power can travel back and forth between the waveguides with
100% transfer efficiency. Fig. 10.11 plots the power in mode B as a function
of coupling length, a. Also note there is a distinct phase difference between
the driving and driven field. The phase in the driven field always lags by 90°.
This phase relationship results from the basic mechanism of coherent energy
transfer: when polarization leads the field, the polarization does work on the
field, and effectively increases the amplitude of the field. Likewise, when the
material polarization lags the field, the field does work on the material, and
dissipation of the field occurs. Thus we expect to have a leading polarization
in the driven waveguide.

The energy transfer from one waveguide to the other will continue until
the driving waveguide is totally depleted of energy. At that point, the driven
waveguide suddenly becomes the source which perturbs the original waveguide,
and the energy flows in the opposite direction. Also, because of this phase
relation, no energy transfers into the backward wave direction. For this reason,
such couplers are often called directional couplers.

The length of the interaction region determines the exact value of coupling.
If coupling distance z is set to be

T oqm .
= 3K + e (q integer) (10.38)
then complete energy transfer will occur. Other lengths produce values between
0 and 100%. This freedom allows the designer to make couplers of any desired
strength. For example, to tap a broadcast signal, a coupler might extract only 1%
of'the signal, (-20dB coupling), passing the rest on. There are other applications,
such as heterodyne detection, where a 50% (3dB) coupler would be desired.
The freedom to choose the coupling strength comes with a price. Since the
coupling constant depends on 3, a change in wavelength can lead to a change
in the coupling ratio. Thus, a 3dB coupler at 1.3 um might not be a 3 dB
coupler at 1.5 yum. And since the coupling constant depends critically on §,

20
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Figure 10.12. Two identical slab waveguides are separated by 4 um. The eigenmode for one
of the slabs is superimposed on the right waveguide.

multimode waveguides will not display the strong power contrast that a single
mode coupler will.

The wavelength dependence allows new opportunities as well. It is possible
to make couplers which couple strongly at one wavelength while letting another
wavelength pass freely with no coupling. Such devices are used commonly to
couple pump energy into fiber amplifiers, allowing the signal to be amplified
remain on the amplifier waveguide.

What happens if the two waveguides have slightly different values of 3?7 This
is a realistic question, and it has practical implications. It turns out that it is
difficult to fabricate waveguides which are exactly matched in characteristics.
Power transfer will still occur, but it will not be complete[3]. The actual behavior
[8] will fall between the 100% transfer predicted for the degenerate case, and
the non-degenerate case graphically depicted in Fig. 10.5.

Example 10.2 Analysis of a co-directional waveguide coupler

In Chapter 9, we examined the operation of a coupled waveguide using the
Beam Propagation Method. In this example, we will use coupled mode theory
to calculate the performance, and compare theory to simulation. To review, the
coupled slab waveguide structure is shown in Fig. 10.12. Plotted on top of one
waveguide is the amplitude eigenmode solution for one of the uncoupled slabs.

To calculate the coupling between the waveguides, we must first determine
the eigenmodes of the uncoupled waveguides. Using techniques that are by now
familiar, 8 was found to be 3 = 94227 cm™! (A = 1um), and the normalized
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mode for the right-hand waveguide is

Ea(z) = Cexp[—2840(z —0.0012)] (z > 0.0012cm)
cos[1942(z — 0.0007)]

cos[1942 % 0.0005]
= Cexp[+2840(z — 0.0002)] (z < 0.0002cm)

(0.0002 < z < 0.0012cm)

The amplitude distribution for the left-hand mode is identical in form, requiring
only appropriate offset of the coordinates. The modes are normalized according
to Eq. 10.10. Two identical slab waveguides are separated by 4 um. The
eigenmode for one of the slabs is superimposed on the right waveguide.

2w
B

where w = 27300 x 10'2 sec™!, and p = 47 x 10~° Henry/cm. Note that
all units describing the amplitude distribution and physical constants are in
centimeters. Eq. 10.10 was numerically evaluated using Mathematica, yielding
C = 433.56.

The coupling coefficient, I, is found using Eq. 10.21. In this example, we
assume that initially the mode energy is completely contained in the right hand
waveguide. The perturbation therefore only exists in the core of waveguide B,
equaling

/Oo Ei(z)€j(z)dx =

Ppert = Sa(m)fﬂ(n% - Tl%) [gewj(ﬁz-wt) + c.c.

for(—0.0012 < z < —0.0002)
= 0 elsewhere

Noting the the permittivity, €, has units ¢y = 8.85 x 107! Farad/cm, the
coupling coefficient is found from

cow [~00002 )

K = — (1.5° — 1.499°)&y(z) Ea () d
4 J_o0.0012
= 3.6217cm™!

So how does this result compare to the BPM simulation shown of Chapter
9?7 Since this is a degenerate coupled system, there will be strong coupling.
The amplitude will couple periodically back and forth between the waveguides
according to Eq. 10.29

A(z) = Apcos(Kz)
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Figure 10.13. The power in the original waveguide couples back and forth between the two
waveguides. The coupling period for the power is approximately 0.4 cm.

The power is proportional to the square of the amplitude. Therefore we would
predict the power will couple back and forth as

A(2)? = AZcos(Kz)?

Fig. 10.13 shows how the power couples back and forth between the wave-
guides. By inspection, we see that the spatial coupling period is approximately
0.4 cm, which is exactly what we observed in the BPM example.

5.  Coupling by a Periodic Perturbation: Bragg Gratings

As a last example of mode coupling based on the scalar theory of ideal
modes, we will consider a very practical problem used in many semiconductor
laser diodes and more recently in fiber Bragg gratings. Placing a corrugated
index structure in a waveguide can provide strong coupling between forward
and backward waves for selected wavelengths. Such wavelength dependence
is used to advantage in lasers to control the output wavelength, or in Bragg
gratings to make selective filters. The so-called DFB (Distributed FeedBack)
laser utilizes a periodic structure on top of the waveguide to couple forward and
backward waves of a specific wavelength, thereby restricting laser operation to a
narrow and well-defined wavelength. Narrowline operation is a requirement for
long-distance, low dispersion optical communication in fibers. In this section
we will explore the operation of a similar example of periodic perturbation,
the Bragg grating in an optical fiber. The example also serves to illustrate the
concept of phase matching between the perturbation and coupled modes.

The fiber Bragg grating is widely used in optical fibers to create spectrally-
defined reflectors in the optical fiber. Based on the length of the grating and
the strength of the modulation, it is possible to create extremely narrow-band
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Figure 10.14. Two UV laser beams are crossed to form an interference pattern in the core of a
single mode optical fiber. The period of the modulation is controlled by the angle of the crossed
beams.

spectral reflections, or broad spectral reflections, or even periodic series of
spectral reflections. Coupled mode theory allows the analysis and design of
such structures.

The basic Bragg grating is made by exposing a single mode optical fiber to
ultraviolet light with a wavelength of 248 nm. This wavelength causes defects in
the Ge-doped core of the fused silica fiber to coalesce, effectively densifying the
glass and hence increasing the index of refraction. This effect only occurs where
there is Ge-doping, and hence only the core experiences this index modulation.
The index change is essentially permanent, so it is possible to "write" index
modulations into the core of a fiber with an external laser. To make a grating,
it is necessary to establish an interference pattern of the UV light in the core.
A simple way to create such a standing wave of UV light in a single mode
fiber is shown in Fig. 10.14, where two beams from a UV laser (typically a
KrF excimer laser) are crossed at an angle 4 as they travel through the core.
By adjusting @ it is possible to adjust the period of the index grating. Other
techniques can be used, the most common being the use of a phase mask to
create the two crossed beams.

Since the interference pattern of two crossed beams has a sinusoidal pat-
tern, the index modulation in the core of the fiber has a sinusoidal modulation.
Further, because the UV light can only increase the index, the core index will
described as

n(r,z) = ncore + An[1/2 + cos(2rz/A)/2] forr <a
n(r,z) = ngad for r>a (10.39)

where An is the peak change in index following the exposure to UV light, and
A is the spatial period of the modulation. Typical index values used in practice
range from An = 0.001 to An = 0.005. The period A is chosen to provide
reflectivity at a specified wavelength, as described below.

We will assume that the waveguide carries a single HE;; mode. Since this
mode is degenerate in polarization we need only consider the scalar equations.
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To make the calculations straightforward, we will assume the guided mode has
a gaussian shape, and the forward travelling wave can be described by

E(r) = (1/2)A* (2)€oe " /W =305t 4 o (10.40)

where AT is the amplitude of the unperturbed waveguide, & is the normalized
amplitude of the mode, and w is the mode radius. We want to calculate the
coupling between the forward wave and the backward wave of the same spatial
mode. The perturbation can be described as

Poert(r, 2,t) = eoAn®(r, 2) [(1/2)A+806_T2/w2e_j(ﬂz_“’t) + c.c.] (10.41)

where An?(r, z) contains all the spatial structure of the modulated region, and
the perturbation only exists in the region between z = 0 and z = L. Substituting
this into Eq. 10.10, the coupling between the forward and backward wave is
described by

O0A~ B OAt
Oz 0z

e~ %Pz = %@A+e_2jﬂz /oo An’(r, z)gge_zrz/w227rrdr
° (10.42)
where the integral is over the cross-section of the fiber.

As we observed in the previous examples, there will be negligible coupling
between the forward (A*) and backward (A ™) wave unless the index modula-
tion An(r, z) contains a periodic term with a spatial frequency of approximately
2. It turns out that this is easy to arrange if we choose the period of the cor-
rugated index modulation properly. The perturbation term can be expanded

An?(r, z) = (An2(r) /4)[1 + 2cos(2nz/A) + cos?(2mz/A)]  (10.43)

If we set
2n /A =20 (10.44)

one of the phase terms in Eq. 10.42 will equal unity, and a reflection will
form. Note that the condition on A is equivalent to saying the period of the
index modulation should be one-half that of the incident wavelength, forming
effectively what is known as a "half-wave" stack of reflectors. The reflection at
each period is small because the perturbation is small (An ~ 0.001), butin a
long grating, many small reflections add up in phase to build a significant value
if the number of cycles, N is sufficiently large.

The forward and backward wave are coupled when this condition is satisfied.
If we define § = 23 — 27/ A, and extract the middle term from Eq.10.43 which
satisfies Eq. 10.44, the coupled mode equation becomes

0A~

. X o0
B g [ i e a0t
Oz 4 0 2



264 INTEGRATED PHOTONICS

The r integral is straightforward to evaluate. In this case, the perturbation, n(r)
is constant and lies inside the core, so only the field in the region r < a couples
to the perturbation. The spatial integral evaluates to

/0 An2(r)£g(%)e”2r2/w227rrdr - An2eg[i-(1 22wty (10.46)

The final coupled mode equation is thus

o4~
0z

[%(1 _ e—2a2/w2)7rw2]

= KAte 747 (10.47)

JWE .
I pt+emidz pp262

We cannot directly solve Eq. 10.47 for A~(z) until we have an expression for
A*(2). Fortunately, using reciprocity, we know that the backward wave will
act as a source for the forward wave in exactly the same manner as we have just
calculated for the forward to backward coupling. After some straightforward
calculations, the coupled equation is derived

OA*
Oz

_ %@A_e+jAzAnzgg[%(l - e~2a2/“’2)7rw2]

Under conditions of phasematching (A = 0), we can solve these equations
simultaneously to get

A7) = A O gy
At(2) = A*(0)=es) (10.49)

These functions are plotted in Fig. 10.15. Here, by appropriate choice of length,
L, we can adjust the reflectivity of the mirror in a corrugated waveguide. This
is very useful for laser design. When the phasematching condition is not met,
there can still be reflection, however there will be reduced efficiency over a
limited bandwidth. Details of non-phasematched operation is described in Ref.
[11.

Because the Bragg grating in an optical fiber has become a commodity item,
numerous ways have been developed to calculate the transmission and reflection
of fiber Bragg gratings. Recognizing that the reflection occurs from a periodic
series of half-wave layers, matrix techniques developed for the design of thin-
film coatings can be applied to the design of gratings, and are typically used
instead of the technique shown above. Nevertheless, the coupling parametes
needed for matrix techniques ultimately depends on a couped mode analysis as
shown here.
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Figure 10.15. The forward and backward amplitudes of an H Ey1 mode in a fiber. Note that
amplitudes, not power, are plotted.

6. Summary

The theory we have just developed works well on ideal waveguides with
small localized perturbations. Some waveguide defects cannot be localized to
a finite region, however. For example, a tapered waveguide has a perturbation
which changes along the z-direction. The propagation along such waveguides
can be described if the variations occur slowly. The description uses the concept
of local modes. We will leave exploration of such techniques to more advanced
texts, such as Snyder and Love[5], or Marcuse[6].

In this chapter we explored some examples of amplitude coupling between
two waveguides based on a simple scalar theory. We found that coupling is
maximized when the propagation coefficient, G, for the two modes is equal.
We also found that coupling between dissimilar waveguides is enhanced by
adding periodic structures such as gratings which alter the effective 8 of a
waveguide. The coupling of radiation from a waveguide into free space is
an important problem in optoelectronics. The calculation is difficult because
the guided modes couple to free space modes, which are not normalizable.
The design of such couplers is as much art as engineering. As more advance
optoelectronic circuits are devised, coupled mode theory will become one of
the key tools in the designers toolchest.

The theory developed here is based on a scalar analysis. More advanced
theories are being developed to address modern problems such as coupled semi-
conductor lasers. References [7],[8],and [9] introduce the recent vector mode
coupling theory of three research groups.
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Practice Problems

1.

Conservation of total power in a waveguide is expressed as
B+ 1) = 0
dz

for codirectional coupling between two modes. Show that this can only
be satisfied when
K12 = —K3)

Confirm that the normalization constant used in Eq. 10.10 for the TE
orthogonal modes of a waveguide is in fact equal to 2wu/G;.

. Show that the proper normalization coefficient for TM modes is

2we

[ HyHydo = =

. Complete the missing steps in the derivation of Eq. 10.7.

. Assume that two infinite slab waveguides are build on top of each other,

separated by 4 um. Each slab waveguide is 2 um thick, and has an index
of refraction of 1.52. The cladding indices of refraction are 1.5. The
wavelength is 1 um.
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Figure 10.16. Notch coupled structure for Problem 6.

(a) Write down the perturbation polarization in waveguide 2 caused by
the field in waveguide 1.

(b) Calculate the coupling coefficient, , for these two waveguides.

(c) Determine the length of the interaction region required to make the
energy in one waveguide completely couple over to the other wave-
guide.

(d) Imagine that the interaction length is made to be infinite. Note that
if one waveguide is initially excited, the energy will transfer back
and forth between the two waveguides forever. It is possible to cre-
ate "Supermodes" that consists of a superposition of two individual
modes that will propagate down the system without any change in
energy distribution. Find the two lowest order supermodes. This is
a classic eigenvalue problem - you want to find an eigenmode of the
total system.

6. Consider a symmetric planar waveguide as shown in Fig.10.16. The
waveguide has a symmetric notch of length 2a in the cladding index
surrounding the guiding layer. The waveguide is designed to only carry
the two lowest order modes, which will have even (cosine) and odd (sine)
symmetry. Assume the cladding is infinitely thick except in the region of
the notch, and the core has thickness h.

(a) Derive an expression for the phase shift observed for the lowest order
forward waves as they propagate past the defect.

(b) Will there any coupling between mode 1 and mode 2 due to the notch
in the cladding? Justify your answer.

7. Consider the planar waveguide shown in Fig. 10.17 with a notch on one
side. Assume A = lpum.

ny = 1.5, ng = 1.48, and ng = 1. The guiding film is 5x4m thick.

(a) Determine the exact electric field amplitude distributions, for the first
two lowest order TE modes for this structure.
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Figure 10.17.  Notch coupled structure for Prob.6.b
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Figure 10.18.  Semiconductor laser with a grating for Prob. 8.

(b) Calculate the coupling coefficient, 12 that couples the forward wave
of mode 1 to the forward wave of mode 2.

(c) What is the coupling coefficient that couples the forward and back-
ward waves of mode 1?

(d) Develop an expression for the amplitude of the electric field for the
second mode, A5(2), at the end of the notch (i. e., find A(z = a).

A semiconductor laser is designed with a grating section on the top surface
to act as a wavelength selective mirror. Fig. 10.18 shows the index profile
of the waveguide. Assume the guiding layer has index ny = 3.5, the
substrate has index n3 = 3.49, the cladding layer has index n; = 1.5,
and the thickness of the guiding layer is 1 pum.

(a) What is the period, A, necessary to make the waveguide reflect light
with vacuum wavelength A = 0.8um?

(b) If a is set to a height of 0.1m, what is the effective coupling coeffi-
cient for connecting the forward wave to the backward wave?

(c) How long, L, should the grating structure be in order to reflect 90%
of the power incident in the forward wave?

. Design a tunable filter by putting a periodic step structure on top of a

semiconductor waveguide. Design your waveguide to carry a single mode
at 1.3 um. Design the grating to selectively reflect signals at 1.31 um
(with 20 dB reflectivity) , but pass (with less than 3 dB loss) signals 50
nm away from this central wavelength. Using the fact that the index
of refraction can be varied by injecting charge into the semiconductor,
calculate the effect on the wavelength selectivity of this filter as the index
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Figure 10.19. Waveguide structure for Prob. 10..

of refraction of the waveguide material decreases. How much should the
index be changed to change the wavelength of the reflected signal by 50
nm?

Design a 2 x 2 coupler based on two single mode waveguides in close prox-
imity to each other. Let the waveguides have rectangular cross section,
5um by 10um, with core index n = 1.5, and cladding index n = 1.499.
Let the wavelength of operation be A = 1.55um.

(a) Determine the distance between the two waveguides, a, such that
100% of the power in one waveguide is coupled to the other in a
length of 500 pm.

(b) Foryourdesign inpart a, what is the effective couplingat A = 1.3um?



Chapter 11

COUPLING BETWEEN OPTICAL SOURCES AND
WAVEGUIDES

1. Introduction

There can be significant loss in optical connections due to misalignment or
mismatch of the modes between the two devices. Misalignment between a
source and a single mode waveguide by dimensions of less than 1 um can cause
coupling loss exceeding 1 dB. Coupling problems are exaggerated by the small
dimensions of typical optical waveguides and sources, which makes alignment
a critical and challenging task. In this chapter, we will establish the fundamental
rules for coupling optical power between two waveguides and between a source
and waveguide. The coupling techniques are based on the concepts developed
in previous discussion on coupled mode theory.

2.  Coupling of Modes Between Waveguides

Calculating the coupling between two optical waveguides is based on a modal
description of the waveguides, and depends on alignment, dimensional differ-
ences, and geometric shape. Following this section, you should be able to
calculate the coupling efficiency between any two waveguides. Large core
waveguides which have many modes are not well served by this theory, and
require a different approach. Multimode coupling is discussed in the next sec-
tion.

Consider the problem of coupling two single mode slab waveguides. Fig.
11.1 below shows the electric field distributions of the source and input wave-
guides. To efficiently excite the TEq mode of the input waveguide, the incident
field should spatially overlap the mode profile in the waveguide as closely as
possible. Any deviation between the input field and the guided mode shape will
simply excite other waveguide and radiation modes.



272 INTEGRATED PHOTONICS

Incident Mode\ Allowed Mode

' Coreq — Corep

-
\

P
[

Figure 11.1.  An incident mode can have a different spatial profile than the field in the input
waveguide. The overlap of the two modes determines the degree of coupling between the input
and guided mode.

To formally calculate the coupling efficiency between waveguides, we apply
the requirement for continuity of the transverse electric and magnetic fields at
a dielectric interface. There are several fields involved in the coupling: the
forward waves of the waveguide; the reflected wave of the incident field; and
radiation modes for both the reflected and transmitted field due to unguided
propagation. If we define the normalized input spatial mode as &;(x), the nor-
malized transmitted mode as &;(x), and radiation modes as £g(x) the fields
must satisfy the equation

&i(z) +r& z)+77‘ = t&(z) + 7 t(B8)Ea(z)dA11.1)
0
Hi(x) — rH;i(z O/T = tH(z) + O/t BYHp(x

where r and ¢ are the amplitude reflection and transmission coefficients for the
guided modes, and () and ¢(3) are the reflection and transmission coefficients
for the radiation modes, respectively. If the phase of the mode is described by
exp(—j(Bz — wt)), then the guided power per unit length flowing in the z-
direction is

Wit
: / £0(e)En(@)de = 5 bum (11.2)
This follows from the relation
_j 38@/ ﬂ
= ——— = — 11.
wy 0z wp Y (11.3)

It is impossible to obtain exact solutions to the expressions in Eq. 11.1,
because there are an infinite number of radiation modes. We can make an
approximate solution by assuming that the amount of energy scattering into
radiation modes is negligible, which will be true when the incident field and
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waveguide mode are not too dissimilar. Thus, we drop the integral terms from
Eq. 11.1. We can isolate the transmission terms, ¢, by taking advantage of
the orthonormality of the modes. We multiply both sides of the electric field
equation by &/, and integrate over all space. We get

.- %(1 i) [ Z £:(2)E; (v)da (114)

We can repeat the process for the magnetic field equation, using Eq. 11.3,
to get

t= 2i—’u(l —r) /_o:o E(x)El (x)dx (11.5)

Now we have two equations and two unknowns. Solving fort and r respectively
yields

2/BT'/Bt 1 e ., *
b= 2@-%%/@ Li(@)é (z)dz
BB
r=57a (11.6)

It is important to realize that |t|? 4 |r|? # 1 for most situations, because the
incident power can couple into modes other than &; and £;. From Eq. 11.6 we
see an overlap integral is used to determine the coupling between the incident
mode and exiting mode. Based on the coupled mode theory that was discussed
in the last chapter, this should seem reasonable to you. The overlap integral
simply calculates the fraction of the incident field that “looks like" the desired
mode. Also note that the reflection coefficient, r, is very similar to the Fresnel
reflection formula derived in Chapter 2 when the wave is incident normal to the
surface. Replacing 3 by konys in 7 in fact produces the Fresnel expression.
The power coupling efficiency is equal to the square of the amplitude cou-
pling,
n =t (11.7)

Often, mode amplitudes will not be formally normalized. In such a case, a
working formula for coupling efficiency can be derived from Eq. 11.6 to be

, :[ 46:, } [ Ei(r, ¢)E; (r, ¢) dr dg]’
G+ BF | TEC OB 0) v do S E GBS ) v
where F;(r, ¢) is the input field amplitude, and E(r, §) is the transmitted ﬁéld
amplitude.
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Example 11.1 Power coupling between two fibers with different MFDs

Let’s calculate the coupling between two single mode fibers as a function
of their relative mode field diameters (MFD). To simplify the calculation, we
assume that the spatial HE;; modes can' be approximated by Gaussian profiles.
Define one fiber as having a beam radius w; and amplitude A, and the second
fiber has beam radius wy and amplitude A;. We will assume that these fibers
have nearly identical propagation coefficients, so we will neglect the effect of
( mismatch.

The power coupling efficiency is given by Eq.11.7

2
[ 27 e/t A=/t dr ]
o J§T A2 v dr g [§° J3T AZem2r /Yy dr dop
[or iy fi2 e Ot ) g ]

(2m)2A2A2 [ re~ 2 widr [0 re= 2 Widr

This integral can be evaluated in closed form

wiw}

7Tl ug)

Note that the amplitudes of the modes drop out of the equation.

The coupling efficiency is plotted in Fig. 11.2 below as a ratio of w; /ws.
Coupling is maximized when the fibers have identical mode field diameters,
and decrease for all other ratios. It is especially interesting to note that the
coupling is reciprocal, meaning that it does not matter which fiber has the larger
mode. Geometrically, one might expect that a smaller mode would couple more
efficiently into a large mode, while it seems intuitively obvious that a large mode
will not couple as well to a small mode. Physically, the coupling symmetry
arises because we are discussing coupling between two modes, not waveguides.
A small mode may couple very efficiently into a large core fiber, but it does

Figure 11.2 Coupling effi-
ciency between two fibers.
B Notice that the horizontal axis
- isthe log of the ratio of w1 /ws.

Coupling Efficiency
o
(4]
I

0.01 0.1 1.0 10 100

w1lwo
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so by exciting a superposition of modes in the larger core fiber. The coupling
between the two fundamental HE;; modes is reciprocal in this and every case.
It makes no difference which way the energy flows. If the mode field diameters
are not identical, there will be a reduced overlap integral.

Example 11.2 Coupling a single mode fiber to a Gaussian beam

The 1.52 pm output from a HeNe laser is to be coupled onto a commercial
fused silica single mode optical fiber. The laser beam has a Gaussian amplitude
profile, with a characteristic beam radius, wy = 0.70 mm. The fiber has a mode
field diameter of 10 um. What focal length lens should be used to focus the
beam onto the fiber to maximize coupling efficiency? What is the maximum
possible coupling efficiency?

To answer this, we must know some features of Gaussian optics[1]. When
a Gaussian beam is focussed using a high quality lens with focal length f, the
focal spot size is approximately described by the formula
2
= T 2w
Plugging in numbers, we find a relation between the spot size at the focal point

of the lens
w; =6.9x1074f

To maximize the coupling between the laser and the fiber, the spot size of the
focussed beam should exactly match the mode field radius of the fiber.

(6.9 x 1074f) =5 x 1074 cm

Solve for f
f=0.723 cm

This is a moderately short focal length lens, and is difficult to achieve with a
simple lens. Examination of several optics catalogs reveals that a 10x micro-
scope objective has an effective focal length of 1.48 cm, a 20x objective has
a 0.83 cm focal length, and a 40x objective has a 0.43 cm focal length. The
20x objective would be the best choice for this fiber. Using the results of the
last section, the power coupling efficiency, 7 would equal 0.98. The Fresnel
reflection at the input surface will further reduce the coupling efficiency. In this
case the reflection coefficient will be given by

2 2

R (ﬁl—ﬁz>2: koress —ko\ _ [7esr —1

B1+ B2 koness + ko Neff+ 1
Since neyy is not exactly defined, we cannot proceed. But note that this is in
fact the Fresnel reflection that would be expected when crossing a dielectric
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interface, and n.rs ~ ngi0, ~ 1.5. For fused silica with index n = 1.5,
the power reflection is on the order of 4%, so the maximum coupling will be
approximately 0.96 x 0.98 = 0.94. Practically speaking, this limit is rarely
reached. Achieving 80% coupling efficiency between a laser and a single mode
fiber is considered excellent by most practitioners.

3.  Coupling From an Optical Fiber to an Integrated
Waveguide

The previous examples illustrate the difficulty in connecting two different
waveguides efficiently. For this reason industry has standardized to a few mode
sizes in order to allow fiber-based instruments and generic devices to be added
to a network without a great concern over coupling loss. But coupling a fiber
to a chip is still a challenge. In this section we will describe how a knowledge
of mode profiles can be used to enhance coupling between different types of
single mode waveguide.

Silica optical fibers are the de facto standard for transmitting light over any
significant distance (anything greater than a few centimeters). Many integrated
photonic devices are constructed using thin films of high-index material, so a
problem arises when coupling from a fiber to an integrated device due to the
dramatic difference in mode size between the two waveguide systems. Silica
optical fibers rely on a very small An to provide waveguiding, and so the mode
size can be relatively large (on the order of 10 um diameter). In contrast,
integrated waveguides are typically made from high index materials such as
Si. The high index material provides strong confinement of the mode, allowing
tight bends on the chip which conserves space, but the strong confinement also
requires that the waveguides have very small dimensions (on the order of 1xm)
to sustain single mode operation. This leads to a serious interconnect problem at
the chip-fiber interface. We are left with the problem of coupling dramatically
different modes (1 m mode versus a 10 ym mode) and dramatically different
effective indices. :

In microwave electronics, such mis-matches can be corrected by creating an
impedance matching circuit between the two waveguides. A similar solution
can be applied to optical waveguides, as is shown in the next example.

Example 11.3 Coupling between a fiber and a high confinement
waveguide

Consider the coupling of a fiber with a 10 yum mode field diameter to a
square waveguide, 0.5u4m x 0.5um, composed of a Si core and a SiO; cladding.
Because of the high index contrast between the core and cladding of the Si
waveguide, we can safely assume the mode is tightly confined within the Si,
and the approximate mode field diameter of the mode must be 0.5um. To
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Figure 11.3. Top view of different schemes for fiber-to-waveguide coupling. (a) simple butt
coupling, (b) using a horn taper, and (c) using an inverse taper.

expedite a calculation of the coupling, we will assume both guided modes are
gaussian, If we simply butt-couple the two waveguides, the coupling efficiency
can be estimated ssing Eqs.11.7 and 11.8 and the results from Example 11.2

n=2 [ MegsTess | dwiud
ngsp+ niff (w? + w$)?

Taking w1 ~ 0.25um and n} 7 ~ 3.5 for the integrated waveguide, and wy ~
5um and n} sp = Lb5um for the fiber, the coupling efficiency turns out to
be approximately 1072, or 1%. Clearly simple butt-coupling is not a viable
scheme.

Inverse taper coupling

Fig.11.3 shows some examples fiber-to-waveguide coupling schemes. Sim-
ple butt-coupling 11.3(a) leads to poor coupling as we just calculated. Horn-
type tapers as shown in 11.3(b) improve coupling efficiency, however in order
to avoid excessive coupling to radiation modes in the taper, the required taper
length must be on the order of millimeters. This is usually impractical, and it
would also require the manufacture and packaging of special tapers for each
connection. Ideally one would like to simply attach a commercial fiber to the
chip and make the connection without a great deal of fuss. Consider the struc-
ture in 11.3(c), which is an inverse taper. To see how this might work, consider
a mode on the waveguide travelling toward the fiber. Recall that coupling is
maximized when the overlap between the two waveguide modes is maximized,
so we want to transform the mode in one of the waveguides so to look similar
to the other. The inverse taper provides this mode transformation.

Consider a mode in the Si waveguide heading toward the taper. As the Si
waveguide becomes smaller, the mode will become less well confined within the
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Figure 11.4. Schematic of a waveguide with a nano-taper coupler.

Si, and will actually start to grow in size and become more and more decoupled
from the Si core. At some point the size of the decoupled mode will increase
to match that of the fibers mode. Placing the fiber at that spot will maximize
the overlap and ensure strong coupling. Example 11.4 shows how this occurs.

Example 11.4 Mode size as a function of waveguide dimension

A simple way to see that the mode enlarges as it leaves the inverse taper is
to calculate the size of the mode as a function of waveguide dimension. We
can do this simply using the normalized parameters developed in Chapter 3.
Consider a Si/SiO; waveguide operating at 1.5 um. What is the mode size if
the waveguide has a thickness of 0.15 ym? and with 0.02pm?

Solution: We can quickly estimate the size of the mode by estimating the
penetration depth, 1/+, in the cladding using Eq. 3.6 and noting that § =

kores s
1 A 1

Y P S
WnZ, —kgn2 27\ [(n? —nd) 1)

From Eq. 3.42 the normalized frequency is

2m, o av1/2 _ 27 2 211/2
V = S-h(n} —n) 2 = TEh(3:5° - 15%) /2 = 20.77h
From Fig. 3.14 for h = 0.15m the normalized effective index for the TEg
mode is b; = 0.64, and for d = 0.02um it is by ~ 0.02. Using these values in
the expression for 1/~ we get

_ _ (L5 1 _
For h=0.15um 1/y=(5) GeiTe 0.11pym
_ _ (15 1 —
For h=0.02um 1/y= (2”)\/m 3.7um
It is easy to see how reducing the size of the guiding layer causes the mode to
expand. Simulations based on FDTD and BPM methods show that the coupling
efficiency can reach 95% for properly tapered waveguides.
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4.  Coupling to an Optical Source

None of the information we have discussed in this text so far would be very
interesting if it were not possible to somehow couple light onto the waveguide
in the first place. In this section we will describe the relative parameters that
are essential for estimating coupling efficiency. The discussion in this section
is primarily directed at multimode structures, where exact modal calculations
are impractical.

A useful measure of an optical source is its brightness, B. Brightness is
defined as the optical power radiated into a unit solid angle per unit surface
area. Brightness is specified in terms of watts per square centimeter per stera-
dian. Brightness is the critical parameter for determining source-to-waveguide
coupling for multimode waveguides.

Consider the case shown in Fig.11.5, showing an optical source end-fire
coupling onto the end of a waveguide. The source emits light into a cone, or
solid angle, that partially overlaps the numerical aperture of the waveguide. Any
light falling outside either the numerical aperture or the physical core dimension
obviously will not couple to the waveguide. The total power coupled to the
waveguide will be given by [2]

P = / dAs/ Q2 B(As, )
Af Q

Tmin 2r 27 Omaz
- / / [ / / B(6, $) sin 0d0ds | do,rdr (11.9)
0 0 0 0

where the subscript f refers to the fiber or waveguide, subscript s refers to
the source, and 7,,,;,, is the smaller radius of either the fiber or the source. In
this expression, the Brightness, B(f, ¢), is integrated over the acceptance solid
angle of the fiber. The maximum acceptance angle, 0,4, is defined through the
numerical aperture, sin 0,05 = (12, —Nciaa) /2. We have implicitly assumed
circular symmetry for the waveguide, but this is not essential to the arguments.
You should use common sense when choosing the spatial and angular limits for
the integral in Eq. 11.9.

Source Radiation
Pattern

Optical Source W Fi
rave =y iber
\__.

D< ) Core Acceptance
e Angle

Lost Power

Figure 11.5. An optical source couples light to a multimode waveguide by launching light
within the numerical aperture of the guide.
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4.1 Optical Source Characterization

It is clear from the coupling equation (Eq. 11.9) that the brightness of the
source is critical to coupling, and must be known. The radiation pattern from
a source can be fairly complex. There are two extremes of source character-
ization: Lambertian, and spatial single mode. Most sources fall somewhere
in-between these extremes.

A Lambertian source has emission which is uniform across the surface area.
A sheet of paper is a good example of a Lambertian source: the light falling
on it from a light source is uniformly scattered away in all directions. For a
Lambertian source of fixed area, the power delivered from the source measured
relative to the normal decreases as cos 6 because the projected area of the source
decreases as cos §. The brightness is therefore

B(6,$) = Bypcosb (11.10)

where By is the brightness normal to the surface. The other extreme source, the
single spatial mode, is best illustrated by lasers, especially gas lasers such as
the HeNe laser. Lasers can emit power into a single spatial mode, and can have
extremely narrow beams with angular divergence on the order of a milliradian.
These sources are extremely bright, even when the total power is only a few
milliwatts.

A surface-emitting LED is a Lambertian source, while edge-emitting LEDs
and laser diodes have more complicated angular structure. In general, one must
refer to the manufacturer’s data sheet accompanying such devices in order to
describe the brightness. For example, a typical commercial semiconductor laser
is specified to have radiation angle of 11° parallel to the junction, but a radiation
angle of 33° perpendicular to the junction. This difference in divergence angle
arises because the spatial mode of the laser is smaller in the perpendicular
direction than in the vertical direction. Such sources can be approximated by
the generalized formula[3]

1 sin? ¢ n cos? ¢
B(#,¢) BgcosT@ = Bycosl 6

(11.11)

The integers T and L are the transverse and lateral power distribution coef-
ficients, respectively. A Lambertian source has T = L = 1, while a laser
might have values in the hundreds. Fig. 11.4 shows the radiation pattern for
a Lambertian (cos §) and a laser (cos!?? ). The distance from the origin to
the particular solid curve represents the magnitude of the power emitted in that
direction.

The values of several types of light source are listed in Table 11.1. Commonly
available sources include the tungsten filament bulb, an LED, a semiconductor
laser, and a gas laser. A filament bulb will radiate according to blackbody
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Table 11.1. Brightness of common optical sources

Source Power A Area I Sterads  Brightness
(nm) (W/m?) (W/cm?/sr)

Filament 144W 20 1 cm? 144 27 2.3

LED 20mW 20 (50 pm)® 800 o 125

Diode Laser 10mW 10 Sby 10pm 2 x10* 0.1 2 x 10°

HeNelaser 1mW 0.1  1mm? 0.1 1077 1x108

radiation laws over a large spectral bandwidth. For the purposes of this table,
we restricted the source bandwidth to be 20 nm or less, centered at 1 pm.

Inspection of the data in Table 11.1 shows the reason why lasers and LEDS
are the preferred sources for optical waveguide communication. The com-
mon filament light source, calculated in this case for a filament temperature of
2700°K, is relatively low in brightness compared to the other sources. That,
along with the poor overall optical conversion efficiency and relatively slow
modulation rate, effectively rules out the use of blackbody sources for efficient
waveguide excitation.

The semiconductor LED is also a Lambertian source which radiates over 27
sterads, but due to its small size, and relatively narrow spectral emission band-
width, its brightness is sufficient for many purposes, especially in low frequency
(less than 100 MHz) communication links. The semiconductor laser, due to its
much smaller area, and smaller solid angle of emission, has a brightness sev-
eral orders of magnitude greater than the LED. This is the reason single mode
waveguides are almost exclusively excited by laser sources rather than LEDs.
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Finally, a low power gas laser is included for comparison. The HeNe laser has
relatively low power and intensity, but the extremely clean spatial mode of the
gas laser allows for extremely well collimated beams which have a small solid
angle. Due to this, the HeNe laser is the brightest source listed in the table.
Due to its bulky size, and the need for high voltage discharges, gas lasers are
not preferred sources for most waveguide applications. It is clear from Table
11.1 that the semiconductor LED and semiconductor laser are well suited for
waveguide excitation. It is truly fortunate that the emission spectrum of the
semiconductor devices can be made to coincide with the minimum dispersion
and minimum attenuation wavelengths (1.3 ym and 1.55 um, respectively) of
fused silica fibers. This overall compatibility has been one of the key reasons
for the dramatic success of optical fiber communications in the last 20 years.

4.2  Coupling an LED to a Step-Index Waveguide

The most efficient coupling between a waveguide and an LED occurs when
the LED is butted up against the cleaved end face of the waveguide. This is
called “butt coupling”, or “end-fire coupling." Since the surface emitting LED
is a Lambertian source, we can apply Eq. 11.9 directly to the problem of
calculating the power coupled onto a waveguide. In this case, lets assume the
waveguide is a circular step-index fiber with core radius a. Eq. 11.9 becomes

T3 2 emaz
/ / 27 By / cos 0sin 8d6 | dfsrdr
o Jo 0

Ts 2T
= 7By / / sin? Oynagdfsrdr
o Jo

P

Ts L2
— 7B, / / (NA)2d6,rdr (11.12)
0 0

Notice that the numerical aperture of the waveguide is the critical parameter in
the coupling. If the optical source is smaller than the core of the fiber, then the

power coupled becomes
P = 722 By(NA)? (11.13)

The total power emitted by an LED, P, is simply

2 pw/2
P, = A, / / B(6, ¢) sin dd¢
0 0
= 7m*r?By (11.14)

Combining the results of Eq. 11.13 and 11.14, we get a simple formula for
calculating the power coupled to a step-index multimode fiber

P = P,(NA)? (11.15)
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Ifthe source radius is larger than the core, then Eq. 11.15 can be easily modified

to become
a

P= <—>2PS(NA)2 (11.16)

Ts

4.3  Coupling an LED to a Graded Index Waveguide

The coupling models we have been using are based on ray tracing. For a
step-index waveguide, it is simple to characterize an acceptance angle based on
the maximum angle that will support total internal reflection inside the core.
What do we do if the core is graded? In such a case, the numerical aperture
becomes a local function of the distance from the axis of the waveguide. For a
circular core graded index fiber with cladding index 7, the numerical aperture
is defined as

NA(r) = 1/n2(r) — n2 (11.17)

Since the maximum acceptance angle is defined as 0y e = sin"INA, the
acceptance angle depends on radius. The coupled power is simply derived by
modifying Eq. 11.12 for the step-index fiber, using the fact that sin 0 ;e =NA

Pyraded = 27 By / [n?(r) — n3lrdr (11.18)
0

This integral cannot be evaluated until the index profile is defined. The inte-
gration limit is the smaller of the core or source radius.

Example 11.5 Coupling power to a step-index fiber

Consider coupling a large area surface emitting LED to a step-index fiber
with core diameter of 50 um. If the brightness of the LED is 125 W/cm?/sr,
how much power is coupled onto the fiber if the LED is butt-coupled to the end
of the fiber? The fiber has an NA = 0.12,

Solution: Since the core is smaller than the LED, we simply need to let
r = 25umin Eq. 11.13.

P=7%(25x107%%125(0.12)2 = 1.1 x 107 W

4.4  Using a Lens to Improve Coupling

Lenses can be used in certain circumstances to improve coupling between a
waveguide and a source. A lens can be thought of as an optical transformer: it
trades off divergence angle forarea. A large collimated beam can be transformed
into a tightly focussed, but strongly diverging beam by passing through a lens.
The brightness of the source is not changed by the lens.
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If the emitting area of the source is smaller than the guiding core of the
waveguide, then a lens can improve the coupling efficiency compared to simple
butt-coupling. The function of the lens is to magnify the image of the source
by a factor M to match exactly the core area of the waveguide. In the process,
the solid angle in which the source emits is reduced by the magnification factor,
M, so that more of the emitted light falls in the NA of the waveguide.

If the Lambertian source area is larger than the core, then the lens will not
help improve the coupling. In the case of a single spatial mode beam, such
as a laser beam, where the solid angle of the beam is much smaller than the
NA of the waveguide, a lens may be useful for converting the large collimated
beam into a small focal point that matches the core dimension and NA of the
waveguide. Optimum coupling of a source to a waveguide requires matching
the dimension of the optical beam, and its numerical aperture, to that of the
waveguide.

5.  Surface Coupling a Beam to a Slab Waveguide

There are two basic methods for coupling an external beam to a slab or surface
waveguide. The most direct is to “end-fire" couple, where the beam is focussed
onto the end of the waveguide. This method works well if a clean edge of the
waveguide is optically accessible, and if one has the ability to tightly focus and
position the external beam. Unfortunately this is often not the case. The second
method relies on surface coupling of a beam to one of the waveguide modes.
Since an unguided beam (effectively, a radiation mode) cannot directly couple
to a guided mode of a waveguide, some coupling mechanism must be invoked
to transfer energy between the field and the mode. The most common ways are
to 1) use a prism to evanescently couple the optical fields, or to 2) use a grating
on the waveguide to couple radiation and guided modes. Both surface methods
are examined in this section.

5.1  Prism coupling

The prism coupler is widely used for characterizing thin films on substrates.
The process is totally non-intrusive, and requires no clean, exposed edges of the
waveguide for end-fire coupling. Large planar substrates can be characterized
quickly and nondestructively for their mode structure.

Consider the problem of coupling a radiation mode to a guided mode inside
a waveguide. Fig. 11.7 illustrates a radiation mode travelling parallel to a
guided mode in a waveguide. Both fields have the same frequency (and vacuum
wavevector, ko). The external field will extend into the waveguide, either as an
evanescent field, or as a travelling wave passing through the structure, and it
will induce a polarization perturbation within the waveguide. So why doesn’t
this external field couple energy into the guided mode? The reason is due to
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the lack of “phase matching," i.e. the phase velocities of the two waves are
different. The field in the waveguide propagates with a spatial wavevector 3,
which is nearly equal to 8 = kgn,. The radiation field propagates with spatial
wavevector kg. The polarization perturbation created by the radiation field
within the waveguide does in fact excite the guided field. However, due to the
phase velocity difference between the induced guided wave and the radiation
field, they rapidly get out of phase. In a distance, L, such that

(B—ko)L = (11.19)

the field induced at z = 0 will be exactly out of phase with the field being
induced at z = L. For fused silica, this distance is about one wavelength. The
net effect is that no energy is transferred to the guided mode.

Effective coupling between two fields requires that they be phase matched,
i.e. the two waves travel at the same phase velocity in the waveguide. One
method of accomplishing this is to use a prism to effectively slow down the
radiation field. Consider the optical structure in Fig. 11.8, where a prism is
located a distance h from the surface of a waveguide. The prism has an index of
refraction np, while the waveguide on the surface has guiding film index 72, on
a substrate with index ns. The cover index, n, is assumed to be unity, although
it is only critical that it’s value be less than that of the waveguide or the prism.

The incident beam is directed into the prism at an angle such that total
internal reflection occurs at the n,—n, interface. This is satisfied if the angle of
incidence, 0 as defined in Fig. 11.9, is greater than the critical angle

0 > 0, = sin"!(ny/ny) (11.20)

Satisfying this condition requires that the prism have a higher index of refraction
than the substrate. Inside the prism, the incident and reflected waves form a
standing wave pattern. The k-vector for the field in the prism can be described

Radiation Field ——

Guided Field /] 3

Figure 11.7. 'The lines of constant phase for a radiation mode propagating parallel to a guided
mode are shown. Because of the difference in propagation coefficients, the radiation mode
accumulates phase at a slower rate than does the guided mode, and therefore rapidly becomes
out of phase with the guided field.

N\
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Figure 11.8. The prism with index ny is located a small distance above the guiding film, ny.
A beam is incident in the prism, and under proper conditions can couple into the waveguide.

in terms of its components

konp = mnp(tksZ + k,%)
= np(Lkocos O + kosinbz) (11.21)

Below the prism—air interface, the field decays exponentially with increasing
distance. The z-component of the propagation coefficient is imaginary in this
region, but the z-component remains the same as inside the prism. Since the
z-component of k£ depends on the angle of incidence, it is possible to adjust the
angle so that the waves travel at the same velocity as those in the waveguide.
When this happens, strong coupling occurs. Specifically, to maximize the
interaction between the fields in the prism and the waveguide, the angle of
incidence of the beam with respect to the bottom surface should be

konysin @ = By (11.22)

This is called the phasematching condition. Note that this angle is measured
inside the prism. The external angle at which the beam enters the prism must
be adjusted to account for refraction at the prism-air interface to satisfy this
equation. The utility of prism coupling is that the angle of incidence can be
adjusted to satisfy Eq. 11.22 for each and every mode in the waveguide (not si-
multaneously, however), allowing the selective coupling of energy to individual
modes, and allowing the experimental determination of mode structure.

5.2 The Coupling Constant for Prism Coupling

We cannot easily use coupled mode theory to describe the interaction of
between the prism and the waveguide, because the radiation field is difficult to
normalize. In view of this, one usually resorts to a full-field description of the
interaction. Such an analysis is not conceptually difficult, but it is beyond the
scope of this book, especially in view of the limited application prism couplers
have to current devices.
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Figure 11.9. A side-view of the prism coupler. The evanescent wave from a wave that is total
internal reflected by the glass-air interface couples to the guided mode in the slab waveguide.
The coupling depends strongly on the distance, h, separating the prism and substrate.

Coupling depends critically on the separation between the prism and guiding
film. As the gap decreases, weak fields from each region can extend across the
gap and couple to the opposite region. This evanescent overlap is the source of
the weak coupling that occurs between the prism and waveguide. The energy
exchange can be considered a tunneling event. It should be intuitively obvious
based on the discussion above that the coupling will become stronger as the
distance between the prism and waveguide decreases. Exact analysis of the full
wave problem is required to find a coupling coefficient for the structure. The
interested reader is referred to the literature for a full wave description of the
coupling[6, 7, 8]. Typical separations are less than one-half wavelength, which
in practice is difficult to achieve over a broad area. Generally one must resort
to clamps which press the prism onto the surface. The clamping pressure is
experimentally adjusted to give the desired coupling.

Example 11.6 Mode analysis using a prism coupler

A step index thin film waveguide is constructed on a glass substrate. The
guiding film has an index of 1.53, and the guiding film has an index of 1.6,
with thickness 2 ym. The waveguide is excited by a HeNe laser operating at
A = 0.63284m. We can assume that all possible spatial modes in the waveguide
have been excited by the source. If a 45-45-90° prism made from SF-14 glass
with an index 1.73 is placed on the surface of the waveguide, at what angle will
each mode couple out of the prism?

Selution: The waveguide and prism are shown in Fig. 11.10. We can assume
that the prism is gently pushed into the surface and that optical coupling between
the guide and prism occurs.

The first step is to calculate the values of 8 for the allowed modes in the
waveguide. Using a numerical routine, we find that there are three allowed T'E
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Figure 11.10. A prism coupler is used to couple radiation from a waveguide.

modes, with 8y = 15.826um™1, 8; = 15.651um™!, and B = 15.369um™".
There are also three T'M modes, but we will assume that the excitation source
was polarized to only excite the 7'E modes.

Using Eq. 11.22, we can calculate the angle of each coupled mode within
the prism, using kg = 9.93um™!.

— gjpn~1 Bo _ 15826 __ o
90 = Sin m = {73993 — 67.13

—gip~! B — 15651 _ °
f1 =sin Fons = 173003 = 65.65

—ain—l B2 __ 15369 __ o
0y =sin Fony = 1.730.03 = 63.46

Straightforward geometry allows us to determine the angle of incidence of each
ray with respect to the hypotenuse of the prism. Referto Fig. 11.11 The incident
angle on the interface is given by

ginc = 91' - 450
Using Snell’s law, we can solve for the exit angles of the beams from the prism.
Bezit = sin~*(1.73 sin 6;)

For the three angles determined above, the exit angles with respect to the prism
hypotenuse are 40.67°,37.64°, and 33.25° for By, B1, and Ba, respectively.
Since the hypotenuse makes a 45° angle with respect to the substrate, we should
subtract these angles from 45° to find the angle,  as indicated in the figure for
each of the modes. In this case we find that the lowest order modes travels at
an angle of 4.33° from the substrate, while the other modes travel at 7.36° and
11.75° from the substrate. These modes can be easily distinguished from each
other on a card placed a small distance from the prism coupler.
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Figure 11.11. Determining the final exit angle of a ray involves evaluating the refraction of the
beam at several surfaces.

5.3 Disadvantages of Prism Coupling

Prism coupling is useful for characterizing large thin film structures, but it
has several disadvantages that have limited its application in integrated optics.
First, prism coupling is inconvenient. It requires precision location of a rela-
tively large bulk optic over a waveguide. This effectively precludes the use of
prism coupling in any sort of integrated structure due to manufacturing diffi-
culties. Second, the air gap adjustment is critical for controlled coupling. This
can be circumvented to some extent by putting down a low index cover over
the waveguide, to which the prism can be directly glued with index matching
cement. Nevertheless, there is little room for error, and no simple adjustment
is possible to accommodate tolerances. Finally, the index of the prism must
be larger than that of the waveguide. For fused silica waveguides, this is not
a major problem. But for waveguides made on Si or GaAs substrates with in-
dices on the order of 3.5, or even on a material like Lithium Niobate with index
on the order of 1.8, it is very difficult to find optically transparent material of
sufficiently large index. Such prisms, if they do exist, are extremely expensive
and not particularly rugged.

6.  Grating Couplers

A second technique for coupling an optical beam onto a thin film waveguide
is to use corrugations in the waveguide. We examined one example of this in
Chap.10, where a corrugation was used. as a wavelength-dependent reflector,
coupling forward waves to backward waves in a waveguide. In the case of a
surface coupler, we want to couple a guided wave into a radiation mode of
the field. While we used coupled mode theory in the last chapter to describe
the effect of a waveguide corrugation, we do not have the luxury of having
normalized modes when dealing with radiation modes, so other techniques
must be used to determine the effective coupling. As with the prism coupler,
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Figure 11.12. A grating coupler illuminated with an incident beam. The incident beam is
broken into a transmitted, reflected, and diffracted beams. Under proper conditions, power can
also be coupled into the guided mode of the waveguide.

such analysis is beyond the scope of this book. In this section we will describe
qualitatively the operation of the coupler, and refer interested readers to selected
papers.

The grating coupler is shown in Fig. 11.12. An incident beam strikes the
grating on the waveguide. This grating can be created through lithography,
holographic development, or volume index variations through ion implanta-
tion, to mention only a few techniques. Here, we are only concerned with the
fact that there will be a grating. The incident wave strikes the grating, and is
broken into several other beams. There is usually reflected wave, and if the
substrate is transparent, there will be a transmitted beam. The directions of
these beams follow Snell’s law. There can also be several diffracted waves,
where the direction of the beam is dramatically altered from what would be
expected through reflection or refraction. If conditions are correct, a portion
of the wave can couple into the guided mode of the waveguide. We will show
that the effect of the grating is to modify the longitudinal component of the k&
vector of the wave.

6.1 Basic Grating Physics

If the grating structure is oriented along the z-direction, then it can modify
the z (longitudinal) component of the incident wavevector. Specifically, if the
grating has a period A, the vector relation between incident and diffracted light
is
2q7r

n

where ¢ is an integer, subject to the condition that the magnitude of the wavevec-
tor does not change

kout = kin £ =~ (11.23)

kil = |kout| (11.24)
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Figure 11.13.  k-space diagram of a wave diffracting off of a grating. The grating subtracts a
value K from the z component of the input wavevector, resulting in a backward directed wave.
Note the backward wave has the same magnitude, |k|

when the diffracted wave stays in the same index medium. This is most easily
viewed graphically. Fig. 11.13 shows the input, reflected, and diffracted wave
from a surface grating. The period of the waveguide satisfies K’ = 27 /A. The
incident wave has a wavevector kgn, where n, is the index of the medium
above the grating. Upon striking the grating, a reflected and diffracted wave
are generated. The reflected wave has the same longitudinal wavevector, k, =
kong sin 8 as the input wave, but the transverse (z-directed) component of the
wavevector is reversed. The magnitude of the reflected wavevector is identical
to the input. The grating can add or subtract integer units of K to the z-
component of the incident wave. The radius kgn, shows the locus of allowed
wavevector values based on Eq. 11.24. Any diffracted wavevector must fall on
this radius. Graphically, we add or subtract the vector K from the z-component
of the incident wave, and see where it intersects the radius. In this case, it is
impossible to add a vector K and remain on the proscribed radius. Only when
K is subtracted from the incident wave is there an allowed solution. This is
shown by the shaded arrow.

Now consider what would happen if the beam is incident on a grating placed
in a thin film waveguide structure, sitting on a transparent substrate. The same
type of k-space diagram can be drawn, as shown in Fig. 11.14. In this case,
the magnitude of the transmitted wave is larger due to the increased index.
The lower radius in the figure represents the allowed values of the diffracted or
transmitted wavevectors in the substrate. The allowed k values of the waveguide
are represented by the small section of a radius horizontally located at kon .
In this case we can see that there can be one diffracted beam backward into the
substrate, and one beam diffracted forward into the waveguide.

The horizontal diffracted beam corresponds to the grating scattering a wave
into the waveguide, which has an effective wavevector, kons. If the incident
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Figure 11.14. k-space diagram of a grating on a high index thin film, placed on a moderate
index substrate. In this special case, the angle of incidence is exactly right for the grating to
couple light into the waveguide.

angle is 6, then by geometry, the guided wave propagation coefficient is
B = kongsinf + K (11.25)

From these diagrams, we can see how the longitudinal value of the wavevector
is converted by the grating into new values. The value kg stays the same in
all media, but the influence of the dielectric constant, n;, is seen to scale the
wavevector in each media. However, the effective wavenumber of the grating,
K, is independent of the index, and simply adds or subtracts to the longitudinal
component. If total wavenumber can be preserved after adding in the effect of
the grating, then a diffracted order can occur.

6.2  Output Coupling with a Grating Coupler

The waveguide grating is advantageous over prism coupling because it can
be manufactured using lithographic techniques that are standard in the semi-
conductor industry. This means that it is possible to mass-produce integrated
optical devices with waveguide couplers. In this section we want to consider
some of the details of such a coupler. Consider the case where a guided mode
in a waveguide is incident upon a section of waveguide with a grating. The
grating will act as a coupler, and coherently scatter some of the light out of the
waveguide. This technique is becoming popular for semiconductor laser output
coupling, because it is not necessary to cleave the substrate in order to create
an output mirror. An example of such a structure is shown in Fig.11.15. The
top figure shows the waveguide configuration, with the incident and transmitted
wave, and the diffracted waves going into the substrate and the air.
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Figure 11.15. A guided wave incident upon a grating will couple some energy into a diffracted
waves. The angle at which the diffracted beams leaves is determined by the phase matching
conditions shown in the lower diagram.

The incident wave is a guided mode with propagation coefficient 3, which
by definition is the z-component of the wavevector. The grating can add or
subtract to this z-component. By inspection of Fig. 11.15, we can see that it
is impossible for a photon to scatter off the grating in a forward direction and
have k, = § + K. We must consider only cases where the z-component is
reduced. For the case shown, we see that there are four cases where

konisinf = § — gK (11.26)

can be satisfied. These are represented by two rays going into the substrate,
and two into the air. This illustrates one difficulty with grating couplers: they
tend to couple light in both directions out of the waveguide. If we were trying
to efficiently couple light from a waveguide for an application, we might try
to adjust the grating period so that only one beam was coupled into the air.
But there would still be a beam coupled into the substrate, which represents
a potential power loss of 50 %. This can be combatted by placing a reflector
under the active waveguide, reflecting the power back out of the structure,
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Figure 11.16. A single beam coupler can be built by making the grating wavenumber so large
that the phase matching condition cannot be met in the cover region. The only coupled power
radiates into the substrate.

although one has to be very careful about interference effects between the two
coherent waves combining above the waveguide. A second method is to design
the grating such that only one beam can couple out of it. If the index of the
substrate is greater that the cover index, it is possible to make it impossible for
the phase matching conditions to bé realized in the cover region. Fig. 11.16
shows the phase diagram of such a structure.

In this case the grating wavenumber is chosen to almost retroreflect the beam
back down the grating. Graphically, we can see that this condition will be met
if

B+ kons > K > B+ kone (11.27)

Unfortunately, there are several problems with this scheme. First, the exiting
beam will strike the lower substrate-air interface above the critical angle, and
will not couple into free space. To get light out, it is necessary to deform the
lower substrate surface by adding a prism or another grating. This defeats many
of the reasons for using gratings in the first place. However, there are situations
where it could useful to couple light out of the waveguide and into other regions
of the substrate, such as into a detector. The second problem has to do with
the fact that most semiconductors operate in a standing wave. The laser light
travels back and forth along the waveguide axis. Using a coupler as shown in
Fig. 11.16, two light beams would be coupled out, in nearly opposite directions.
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This is essentially the same problem as in the air coupling, when the power was
divided between two beams.

Another approach to the multiple beam problem is to use a blazed grating,
where the dielectric grating has an asymmetric profile[7]. The effect of the
blaze (i.e. the asymmetry) is to cause certain diffraction orders to preferen-
tially receive more of the power. This technique has been used for years in
the manufacture of diffraction gratings for scientific instruments such as spec-
trophotometers and laser tuners.

6.3  The Coupling Coefficient

As noted above, we cannot directly use coupled mode theory to derive the
coupling coefficient for a diffraction grating. There have been many calcula-
tions of these structures, using Green’s functions, Bloch waves, and variational
techniques. There is currently a great deal of research being done on gratings
couplers for semiconductor lasers. The grating can serve as both an output
coupler and as a combination mirror-tuned filter for providing the necessary
optical feedback to sustain laser operation. The interested reader is directed
at much of the current literature to see the latest in design methodology[8].
The overview presented here is intended only to show the qualitative aspects of
grating coupling.

7. Summary

In this chapter, we introduced a set of very important rules for calculating
coupling efficiency between waveguides and free space optical beams. Cal-
culations can be done for determining the coupling efficiency between two
waveguides that are slightly tilted with respect to each other, or slightly offset
to each other. As problem 11.5 will show, misalignment of less than 1um can
result in 1 dB of loss. This is a major problem for the manufacturers of single
mode fiber connectors. It is very difficult to mass produce connector ferrules to
tolerances of less than 1 um. Even if it can be done, thermal expansion caused
by everyday temperature variation can easily introduce creep and distortion of
noticeable magnitude.

Multimode waveguides are much more tolerant of misalignment, because
there are more guided modes available to create the necessary superposition.

We found that most coupling problems can be described by an overlap integral
between the incident and exiting field. Maximum coupling arises when the
spatial fields are similar. We explored two examples of coupling for which
coupled mode theory was not applicable, namely prism and grating coupling.
Coupled mode theory does not work in these cases because it is difficult to
normalize the radiation modes. We described qualitatively how these couplers
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worked, hoping that the reader can explore more involved solutions with greater
insight and understanding.
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Practice Problems

1.

Consider coupling a laser beam into the slab waveguide described in
Example 11.1. Use the data in Table 11.1 to calculate the exact wave-
functions for the first three TE modes of the unperturbed structure. A
laser beam is focussed in one direction using cylinder lens so that the y-
component of the beam remains wide (several mm’s), but the x-dimension
of the beam is focussed down to a Gaussian profile with characteristic ra-
dius w, = 10um. (The characteristic radius is the distance from the
beam center at which the amplitude is reduced to e~! of the peak value.)
Assume the wavelength of the incident radiation is 1.3 ym, as in the
example.

(a) Ifthe z-axis of the beam is perfectly centered on the waveguide, how
much power is coupled to the TEy mode? The TE; mode? the TE,
mode?

(b) Ifthe beam is lowered so that the center of the optical beam strikes 5

um below the center of the waveguide axis, determine the coupling
to the TEy and TE; modes.
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Figure 11.17. Two identical fibers are angularly misaligned by an angle 6.

2. Extend the derivation of Eq. 11.6 to derive Eq.11.8 for unnormalized
modes.

3. AnLED with circular radius of 40 ym and a Lambertian emission pattern
of 125 W/cm?/sr is used to excite two optical fibers. The first has a core
radius of 25 um, and an NA=0.15. The second fiber has a core radius of
31 pym and an NA=0.12. How much optical power is coupled into both
fibers if the LED is butted against the end of the cleaved fiber. You may
neglect Fresnel loss.

4. Consider the problem of coupling two single mode step—index fibers to-
gether as a function of bending angle between the two fibers. Assume
that the fibers are identical, with electric field amplitude described by a
Gaussian function

E(r) = Aexp(~r*/wj)
where wp = bpm is the Gaussian beam radius. The wavelength is 1.3um.
Fig. 11.17 illustrates the geometry of the problem.

5. If the two fibers have the same beam radius, numerically calculate the
effect of relative tilt between the core axis on the coupling efficiency.
Calculate and plot the coupling efficiency between the two fibers as the
tilt angle between the fibers increases from 0 to 10° in steps of 2 °.

6. For the same fiber as described in Problem 11.4, calculate the coupling
efficiency as a function of translational offset, 47, between the two fibers.
See Fig. 11.16. Assume that fibers are parallel to one another, but that the
core axes are separated radially by a distance r. Calculate the coupling
efficiency as a function of r for r = 0 — 2uwy.

7. A major problem in optical fiber systems is the reflection that can couple
back into a waveguide from the end of the fiber. The dielectric surface
will display a Fresnel reflection unless it is carefully index-matched with
the outside world.

8. One way to fix this problem is to polish the end of the fiber at a slight
angle with respect to the fiber axis. If the core index is 1.45, the cladding



298

INTEGRATED PHOTONICS

I AT

Figure 11.18. Two identical fibers translationally offset.
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Figure 11.19. A fiber is cut and polished at an angle @ with respect to the plane perpendicular
to the core axis.

10.

11.

12.

13.

index is 1.44, the core diameter is 10um, and the outside index is unity,
at what angle should the end of the fiber be polished in order to reduce
the coupling of back-reflected light to less than 20 dB? (Hint: you don’t
need all of these parameters.)

Another way to fix this problem is to “index-match" the end of the fiber
with its mate, and leave the angle of the fiber perpendicular to the axis.
What is the maximum allowable difference index of refraction between
the core and interface that can be tolerated if reflections are to be kept
below 30 dB?

Calculate the coupling efficiency of a Gaussian beam to a symmetric
slab waveguide. Assume the waveguide is 3 p m thick, has a core index
Neore = 1.5, and a cladding index njqq = 1.485. Assume the incident
Gaussian beam has a characteristic radius, wg = 3um.

Determine the accuracy of the Gaussian approximation for the HE;; mode
by calculating the coupling of a Gaussian beam to a single mode fiber with
core radius @ = 5um, A = 1.3um, and normalized frequency V = 1.8.
Use Eq. 5.53 to determine the input Gaussian beam size. Calculate the
coupling efficiency by numerically evaluating the overlap integral of the
true mode of the fiber.

Prove that if Eq. 11.38 is satisfied, the beam coupled from the diffrac-
tion grating into the substrate will be totally internally reflected by the
substrate-air interface on the bottom of the substrate.

A diffraction grating is designed for operation in the head of a CD player
for coupling light from a laser onto the probe head. Assume the head is
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14,

made from a polymer waveguide on glass, with substrate indexn; = 1.45,
waveguide index ny = 1,5, and cover index n, = 1. The laser has a
design wavelength of 750 nm.

(a) What grating period, A, should be chosen if the laser is to be coupled
into the waveguide from directly above, so the angle of incidence is
90°?

(b) Assume the laser beam has a diffraction angle of 2°. Over what range
of wavelengths will the waveguide still couple light from the laser,
assuming that all light enters within +2° of normal?

(c) If the grating has a spectral acceptance width of 5 nm, meaning that
it will couple light at normal incidence over a spectral range of 5 nm,
what is the maximum angular mis-alignment that the laser can be
mounted at, and still couple light to the waveguide?

A prism is to be used to couple light onto a waveguide with thickness Spum,
ng = 1.65, ny = 1.65, and n. = 1. If the prism has index n, = 1.7,
what angle(s) should the light be sent into the prism in order to couple to
the TE mode(s)?



Chapter 12

WAVEGUIDE MODULATORS

1. Introduction

There are two common methods for encoding a signal onto an optical beam:
either directly modulate the optical source, or externally modulate a continuous
wave optical source. Direct modulation is the most widespread method of
modulation today, but it introduces demanding constraints on the semiconductor
lasers. For example, it is difficult to directly modulate a semiconductor laser
at frequencies above a few GHz. Furthermore, it is difficult to maintain single
mode operation of these pulsed lasers. Non-single-mode lasers have a larger
spectral bandwidth which leads to increased pulse spreading due to dispersion.
External modulators offer several advantages over direct modulation. First, one
can use arelatively simple and inexpensive continuous wave laser as the primary
optical source. Second, since a modulator can encode information based on a
number of externally controlled effects, it is not compromised by the need to
maintain a population inversion or single mode control. Finally, direct phase
modulation (for FM or PM systems) is possible in external modulators, but is
nearly impossible to achieve in a laser.

Fig. 12.1 shows a modulator in an optical system . A continuous wave laser
couples through the modulator onto an optical fiber. The laser can be a simple
and inexpensive source, since the burden of information encoding is placed on
the modulator. Separating the generation and the modulation functions between
two devices often makes the system work better, although it adds to the system
complexity.

In this chapter, we will examine two methods for modulation. For commu-
nications and high speed links, electro-optic thin-film modulators are today’s
choice. For signal processing and detection, acousto-optic modulation is used.
Most physical processes that can be exploited to modulate light require a sig-
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Figure 12.1.  An intensity modulator installed between a continuous wave laser and an optical
fiber.
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Figure 12.2. The transmission of a modulator can be described in terms of the minimum
and maximum intensity transmitted through the device. The transmission of an electro-optic
modulator is a function of applied field.

nificant power per unit volume. By miniaturizing the interaction volume using
thin films and guided wave optics, the required modulation power can be sig-
nificantly reduced. Integration often also leads to increased speed.

2.  Figures-of-Merit For a Modulator

There are five basic parameters used to characterize a modulator: modu-
lation efficiency, bandwidth, insertion loss, power consumption, and isolation
between different channels.

The Modulation Efficiency, n, depends on the form of modulation. For
intensity modulation, 7 is defined as

_ Imaz = Imin (x 100%) (12.1)

Imaa:

where 4, is the maximum transmitted light, and I,,,;,, is the intensity trans-
mitted when the modulator is adjusted for minimum transmission. An example
is shown in Figl12.2.
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Figure 12.3. The modulator will introduce some passive losses between the optical source and
the end user of the light. This is due to reflections, absorption and scattering in the modulator,
and mode mismatch between the source, modulator, and waveguide, if used.

Often the modulation depth is described in decibels, using the term Contrast
Ratio

Contrast Ratio = 101og Imaa (12.2)
Imin :
Electro-optic modulators can be configured for either intensity or phase modu-
lation. Eq. 12.1 is relevant to intensity modulation. For phase modulators, the
modulation index is 7 = sin®(A$/2) , where A¢ is the extreme value of the
phase modulation. This form of 7 describes the intensity contrast derived from
an interferometric measurement of the phase shift.

Modulation bandwidth, Av, is defined by the 3 dB points of the frequency
transfer function for the modulator (i.e. the frequencies where the modulation
index is reduced to 50% of its maximum value). Bandwidth establishes the
maximum information transfer rate for a modulator. If the switching time, 7,
is defined instead of a frequency bandwidth, then the equivalent bandwidth is

_ 03

T

Av Hz (12.3)

where 7 1s the 10-to 90-percent rise time.

Insertion loss, L, describes the fraction of power lost when the modulator
is placed in the system. The insertion loss does not include the additional
modulation losses induced by the modulator. The definition is

P, out
B
where P,,; is the transmitted power of the system when the modulator is not
in the beam, and P, is the transmitted power when the modulator is placed in
the beam and adjusted to provide maximum transmission.

Do not confuse insertion loss with modulation index. The insertion loss is a
passive loss, arising from reflections, absorption, and imperfect mode coupling
between the modulator and source. Insertion loss must be compensated with
either a higher power optical source, a more sensitive detector, or an optical
amplifier. All these schemes are less than optimum, so insertion loss should
be minimized. Insertion loss does provide a crude isolation between the opti-
cal source and any reflections coming back from the destination of the light,
however there are better ways to eliminate this coupling.

L =10log (12.4)
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Figure 12.4. An optical switch can connect one of several ports. Isolation is the degree to
which unconnected ports are coupled.

Power consumption is determined by the power per unit bandwidth required
for intensity modulation, or in the case of phase modulators, the power per unit
bandwidth per unit radian of modulation. This value depends on the electro-
optic or acoustooptic properties of the material, but is most affected by the
volume of the modulator. Waveguide modulators with small effective volumes
have better power consumption performance than butk modulators. Total power
consumption determines how many devices can be put on a single substrate
before thermal loading or power supply loading becomes a serious problem.

The final issue, isolation, describes how effectively a signal is isolated be-
tween two unconnected channels. Fig. 12.4 shows a switch with one input and
two outputs. The signal from the Input connects to Channel 1 of the output.
Isolation in this case describes how much of the Input signal appears on Chan-
nel 2. Ideally there would be no feedthrough from the input to the unselected
channel. Unfortunately, there is always some coupling due to evanescent fields,
scattering, or unwanted reflections. Isolation is specified in decibels,

I
Isolation [dB] = 10log 72_ (12.5)
1

where I is the intensity in the driven channel, and I, is the intensity in the
unselected, or off channel. A switch which coupled 0.1% energy between the
two channels would have an isolation of 30 dB. The degree to which isolation is
required depends on the application. Local Area Networks (LANs) sometimes
specify isolation in excess of 40 dB.

3.  Electrooptic Modulators and the Electrooptic Effect

In 1875, Kerr discovered that amorphous, optically isotropic material became
birefringent in a strong electric field, with the optic axis parallel to the applied
field [1]. You may recall the optical Kerr effect that we discussed in Chapter 7
concerning self phase modulation in optical fibers. About 20 years later, Pockel
discovered a similar but much weaker effect in certain crystals[2]. Isotropic
crystals became uniaxial in the presence of electric fields. Uniaxial crystals
become biaxial. In the Kerr effect, the polarization depends quadratically on
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E. The Pockel’s effect is linear in E, and is therefore better suited for making
modulators. Symmetry arguments can be applied to show that the crystal must
not possess inversion symmetry in order to display a Pockel’s effect.

3.1 The Propagation of Electromagnetic Waves in an
Anisotropic Medium

Before we describe the Pockel’s effect, and how it is used in modulators, it is
necessary to understand how light travels through an anisotropic crystal. This
all depends on the index of refraction, and the key point we will make is that
the index of refraction is a function of both the propagation direction and the
wave polarization.

In an anisotropic crystal, the electric displacement vector, D, is related to the
electric field by a dielectric tensor,

D; = ¢;E; (12.6)

where the subscripts represent cartesian coordinates. It can be shown through
energy conservation arguments[3] that

€ij = €j; (12.7)

so there are only six possible values of ¢;;. Unlike the isotropic media, the
electric field, E, and displacement vector, D, are not necessarily parallel.

This difference in direction between the electric field and displacement vector
has a major effect in the propagation of a wave through a crystal. The power in
a beam follows the Poynting vector

S=ExH (12.8)

and keep in mind that the Poynting vector, S, travels perpendicular to both E
and H. Maxwell’s equations for a single frequency plane wave can be written
as

kxE =wyuH
kxH =-wD (12.9)

Eliminating H from the equations yields
pow?D = k%E — (k- E)k (12.10)

where the term (k - E) does not necessarily equal zero. Therefore, since the
power flows perpendicular to E, the power does not travel in the same direction
as k. The angle between k and S is a complicated function of the susceptibilities.
This effect leads to “walk-off” of the power from the phasefront direction, and
is responsible for the distortion seen in double-refracting crystals.
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To describe electro-optic modulation we want to develop a general formalism
for describing plane wave propagation through an anisotropic crystal. It is our
goal to describe the effective index of refraction that an arbitrary plane will “see”
inside a crystal. The next few paragraphs will derive the expression for the Index
Ellipsoid which is the essential tool for wave calculations. The dis-interested
reader can jump ahead to the gist of the discussion, Eq. 12.16.

The stored electric energy in the medium is

1 1
w = §E'D = §Ei€ijEj (1211)
where ¢;; is the dielectric tensor for the medium. Using cartesian coordinates,
and expanding the stored energy term yields

2w = €oo B2 +eyyEr+ €2 B2+ 26y, By By +2€2, B B, + 260y Eo By (12.12)

This expression can be simplified if we use the principal dielectric axes, which
depend on the crystal structure. For many crystals these axes lie along the fa-
miliar x, y, and z axes, while others lie in non-orthogonal directions. Examples
that follow will illustrate some of these orientations. The principal axes are the
orientations where an applied electric field, F, produces a parallel displace-
ment, D. The principal axes are found by diagonalizing the dielectric tensor.
In terms of the principle axes, z’,y/, and 2/, the energy is defined as

2w = ey El + ey B2 + ¢y E2 (12.13)
Recasting this in terms of the displacement vector,

D? D% D,

2weg = —& 12.14
0 €x/€0  €y/€0  €x/€ ( )
Using the little-known identity, D/1/2wey = r, Eq. 12.14 becomes
2 2 12
L (12.15)
ngy o My N

This expression describes the Index Ellipsoid. The index ellipsoid is a locus
of points which form a 3-dimensional ellipse. The distance from the origin to
the surface of the ellipse is equal to the index of refraction for an electric field
polarized along that direction.

To find the effective indices of refraction for a beam we follow this recipe:
draw a line parallel to the k vector through the origin of the index ellipsoid. A
plane wave travelling along this direction will have an electric field polarized
perpendicular to the k vector, so it will lie somewhere in the plane perpendicular
to k, as shown in Fig. 17.6. The index of refraction experienced by the wave
depends on the orientation of the polarization.
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Figure 12.5. The index ellipsoid is a three dimension ellipse. A wave propagating in the yz
plane makes an angle @ to the z-axis. A plane perpendicular to the ray intersects the walls of the
ellipse.

A special case occurs if the field is polarized along one of the principle axes.
Consider the case of a wave polarized in the z-direction, travelling in the yz
plane. As the angle € varies, the width in the z-direction remains constant,
indicating that the index, n,, is independent of angle 6. This is called the
ordinary wave. If the polarization lies in the yz plane, then the index depends
on the angle §, ranging from n, when § = 0, to n, when 6 = 90°. This is the
extraordinary wave. The extraordinary index that such a wave will experience
is given by

1 20 sin%6
= COS2 Sln2 (12.16)
Text ny ng

For the ellipse shown, the ellipse major and minor axes lie along the z,y,
and z directions. The most common example of an anisotropic medium is
called a uniaxial crystal, where the index of refraction is identical along two
axes. This is called the ordinary index, n,. The index of refraction along
the third axis is called the extraordinary index, n.. Common examples of
uniaxial crystals include quartz and sapphire. Biaxial crystals have three unique
indices of refraction. Examples include minerals such as calcite, tourmaline,
and forsterite.

So what does all of this have to do with wave propagation? A plane wave
in a crystal has two polarization eigenstates. An eigen-polarization is one that
does not change as it propagates. In this case, if the field is linearly polarized
along either axis of the ellipse, it will remain linearly polarized. Fields with
polarizations that do not lie along the major or minor axis will not remain linear
polarized. The electric field will be decomposed into two linear polarized
components oriented along each axis. These components will travel separately,
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Figure 12.6. The cross-section depicted in Fig. 12.5 is plotted in 2-dimensions. The two
directions correspond to eigenstates for the polarization: a wave polarized along either axis will
remain in that axis. Polarizations that are not parallel to the major or minor axis will change as
they propagate through the crystal.

accumulating phase according to the index of the axis. The general field will
be elliptically polarized as it propagates through the crystal.

3.2  The Pockel’s Effect

The linear electro-optic effect, or Pockel’s effect, is the change in the index
of refraction that occurs when an external electric field is applied to a crystal.
The magnitude of the change is critically dependent on the orientation of the
electric field and crystal. Since we are interested in how the Pockel’s effect
will alter the propagation through a crystal, it is most convenient to describe
the effect in terms of the general modified index ellipsoid

1 9 1 2 <1) 9 (1)
— — — — 1] 2
(n2>1$ +(n2>2y * n? 32 * n? 4 ve

1 1
+ <E2—>52xz + (B—Q—>62xy =1 (12.17)

where (1/n?); represents the appropriate dielectric tensor terms along the reg-
ular cartesian coordinates. If 2/, ¢/, and 2’ are chosen to be the principle axis,
the terms of Eq.12.17 reduce (for E = 0) to those of Eq.12.15, so

() =L (Z) =L (L)-14
n2/); n?2’ n?/y nl2’ n2)s n2
1 1 1
— = [ — = | — = 12.
(n2>4 (Tl2)s (nz)s 0 (215
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Since the applied electric field modifies the index of refraction, we define
the change of the index ellipsoid in terms of electro-optic coefficients, r,

_ N
A(a),
A(Rg) Tl Ti2 T13
A(1)2 ra T 7| g
nZ T T r
nt/3 ) 31 32 33 E2 (1219)
A (7—}‘,) T4l T42  T43 s
Ne 4 sl Ts2 T3
(n—’)s Tél Té2 T63
1
A (), ]

The matrix, r;5, is called the electro-optic tensor. Unlike the dielectric tensor,
even if the axes are aligned along the principle axes, the cross terms (elements
4, 5, and 6) are not necessarily zero. Crystals with an inversion symmetry will
have all r coefficients identical to zero. In fact, due to the high symmetry of
most crystals, most values of the electro-optic tensor will be equal to zero. For
example, GaAs, which is a cubic crystal with 43m symmetry, has an electro-
optic tensor in the form

0 0 O
0 0 O
0 0 O
Tij = a1 0 0 (12.20)
0 T41 0
0 0 T41

We will illustrate how to use these in the following example. The form of
the electro-optic tensor can be determined strictly from a knowledge of the
crystal symmetry. The magnitudes of the coefficients are determined through
molecular polarizability calculations or experimental measurement. Table 17.1
lists the non-zero electro-optic coefficients for some relevant materials. Note
that the values depend on wavelength. More extensive tables are available in
the references [5, 6].

Example 12.2 The electro-optic effect in GaAs

GaAs is a popular substrate for active and passive optical devices. Con-
sider the effect of an electric field oriented along the propagation direction of a
waveguide oriented along the [001] axis (z-axis) of the crystal. Let’s determine
how the electric field will affect the propagation of light being carried by the
waveguide.
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Table 12.1. Linear Electro-optic Coefficients for Some Relevant Crystals

Material Symmetry Wavelength  Electro-optic coefficient  Index of Refraction

(um) (1072 m/V)
LiNbO3 3m 0.632 r13 = 9.6 ng = 1.8830
T22 = 6.8 Ne — 1.7367
733 = 30.9
51 = 32.6
LilOs 6 0.633 riz =4.1 no = 1.8830
raa =14 ne = 1.7376
GaAs 43m 0.9 rq =11 n = 3.60
1.15 ra1 = 1.43
KDP 42m 0.633 63 = 11 no = 1.5074
T4 =8 ne = 1.4669
ADP i2m 0.633 re3 = 8.5 no = 1.52
r41 = 28 ne = 1.48
Quartz 32 =~ 0.632 rq = 0.2 ng = 1.54
763 = 0.93 ne = 1.55
BaTiO3 4mm =~ 0.632 r3z = 23 ng = 2.437
T13 = 8 TNe = 2.180
T42 = 820
LiTaO3 3m =~ 0.632 r33 = 30.3 no = 2.175
ri3 = 5.7 ne = 2.365
A
‘// Lt s
E z

Figure 12.7. GaAs waveguide, where the modulating electric field is parallel to the axis of the
waveguide.

Using Eqgs. 12.17 and 12.19, and the information in Eq. 12.20, the index
ellipsoid from GaAs can be written as

1'2 y2 22
~n—2- + Ei + m +2rg Epyz + 2T41nyz +2ryFExy=1

where the first three terms are independent of the applied field. For a z-directed
field, the expression reduces to
22 4?4 22

o +2rgFxy=1
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Figure 12.8. The index ellipsoid with zero field is simply a circle in the x-y plane. When a
field is added in the z-direction, the ellipsoid constricts along the zy axis, and expands along the
Ty axis.

The effective index ellipsoid has a mixed term. This means that in the presence
of a z-directed electric field, the cartesian x, y, and 2z coordinates are no longer
the principle axes of the system (in fact, they never were, but because GaAs is
isotropic with zero field, it is a matter of convenience to define the coordinate
axes to lie parallel to the crystal axes). The coupled term can be removed (diag-
onalized) by finding a new coordinate system that lies parallel to the principle
axes, T, 3/, and 2’. The index ellipsoid in the presence of a field is shown in
Fig. 12.8. We see that the ellipsoid changes from a circle when no field is
present, to an ellipse rotated 45° from the x and y axes when the z-directed
field is applied.

By inspection, we can identify the principal axes from Fig. 12.7, to be
45° rotated from the original axes. Remember that when the principal axes
are properly chosen, there will be no terms in the ellipsoid which couple two
directions. You can verify by substitution that the proper transformation to form
the principle axes is

z = 2’ cosd5° +y sin45°
y = -—x'sin45° 4y cos45°

The transformed equation becomes
1 1 2
(ﬁ - 7"14Ez> 7%+ (m + 7'14Ez> y? + 3= 1

Since there are no cross terms, the principle axes of the perturbed system are
indeed 2’ and /. The propagating field will see the index structure as shown in
Fig. 12.9.

The length of the index ellipsoid along the two axes yields the effective
indices of refraction:

1

1
3 = 3 Tuk



312 INTEGRATED PHOTONICS

%/' :
- X
-« =

Figure 12.9. The principle axes of the perturbed waveguide are the x’ and y’ directions, which
are rotated by 45° from the crystal axes.

1
= — t+ruk;
n

!r:\:toi Lol

If the magnitude of 714 F, is small compared to n?, which is usually the case,
the expression can be inverted and simplified using a simple binomial expansion
of the quadratic terms to yield

3

n
Ny = N+ —2—T14Ez
n3
Ny = n— —5—7'14Ez
ny, = n

We see that the principle indices are linearly modified by the applied field. We
will examine how this index change affects propagation in the next section.

4.  Phase Modulators

The Pockel effect makes it possible for an electric field to alter the index of
refraction of a material. It is possible to construct devices which use this index
change to directly modulate the phase, the intensity, or the polarization of the
light. All of these effects rely on optical retardation. We will consider phase
modulation first.

Consider the case of a TE wave in a GaAs waveguide. As we saw in Example
12.2, the application of an electric field in the z-direction will alter the index
of refraction along the z’ and /' axes. These axes lie along the [110] and [101]
directions in the crystal. Because the r-coefficients in GaAs are identical,
applying an electric field along any single axis will alter the indices along
the remaining axes. Keeping this in mind, let’s try to make a GaAs based
phase modulator. To make an efficient phase modulator, we will orient the
waveguide along the z’-axis, or in the [101] direction (Fig. 12.10), and place an
electrode over the waveguide so that the applied electric field is oriented along
the y-axis. The conductive substrate act as a ground plane. The applied field
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Figure 12.10. An electro-optic modulator based on GaAs. The waveguide on the doped sub-
strate is made of low conductivity material, so essentially all of the applied field appears across
the thickness t,. The substrate is moderately doped so that it has a high conductivity. A metal
electrode is applied over the waveguide for a distance, L, to create the modulator zone.

will cause the index to change in the 2’- and z’ directions. The index change
in the 2’-direction has no effect on the phase of the guided wave, because
the electric field polarization does not lie in the 2’-direction. However, any
changes in n/, will be felt by the TE mode. The TM mode, with its electric field
predominantly polarized in the y-direction (there is a small component along
the 2'-direction, but in the weakly guided mode approximation, this component
is almost negligible) will not be effectively modulated by the applied field.
A TE wave will experience a phase shift approximately as

AB = Anlkg (12.21)

The total phase shift due to the interaction of an applied field, Ey, over a length
L in this GaAs structure will be (using the results from Ex. 12.2)

A¢=ABL = koLAn,
gﬁ Ln3r14Ey
A 2

The electric field required to achieve a phase modulation of /2 can be directly
solved from Eq. 12.22 to be

(12.22)

é 1
2 Ln3r14

This can also be written in terms of the applied voltage to the electrode, using
E = V/t,. The half-wave voltage is then
At
Vejg = = ——1
™2 O T ndra
The longer the modulation length, the lower the required voltage. We have
implicitly assumed that the guided mode is entirely confined within the modu-
lated thin film. In fact, some of the mode will exist as an evanescent wave in the

Epjy = (12.23)

(12.24)
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substrate, and will not experience phase modulation. The effective modulation
will be reduced proportional to the confinement factor, I, of the mode.

What are the limitations of such a phase modulator? There are two major
problems. First, the bandwidth is limited by the capacitance of the electrode
on the waveguide. GaAs has a large DC dielectric constant, so this capacitance
can be significant. Second, the modulation only works for the TE mode. If the
modulator were connected to a circular fiber, where polarization is uncontrolled,
both TE and TM modes would be excited in the modulator. The absence of
modulation on the TM mode would reduce the total modulation efficiency of
the device. Finally, whenever the index of refraction of a material is modified,
the imaginary component of the index also changes. This is a statement of the
Kramers-Kronig relations[4]. The change of the imaginary component causes
a change in the intrinsic attenuation of the waveguide. An applied electric
field will in practice modulate both the phase and intensity of the transmitted
light. Ideally, a phase modulator would not modulate the amplitude of the carrier
wave. The coupling between phase and intensity must be treated as an additional
source of noise on the signal. Fortunately the magnitude of the change in the
imaginary component of n is small, and decreases as the wavelength gets further
from the absorption edge of the material, so proper selection of materials and
operating wavelengths can reduce the magnitude of this problem (see Section
12.8 on electro-absorption).

5. Power Required to Drive a Phase Modulator

The power required to drive a phase modulator can be directly calculated with
some simple approximations. Assume that a digital signal is being transmitted.
Modulation of the signal to send one bit requires an amount of energy, W, which
is stored in the capacitor formed by the electrode and substrate. The power
required to send a signal will depend on the fraction of marks and spaces, but
is approximately

P=W-.Af (12.25)

where Af is the data rate, or bandwidth of the signal. If the electro-optic
modulator is ideal (no ohmic losses), the energy will be stored in the electrostatic
field

W = 5/ EZdv (12.26)
2Jy

where V is the volume of the device. For simple structures, Eq will be constant
over the volume of the modulator. The integral is then simple to evaluate

W = —;—HLtg E? (12.27)
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Figure 12.11. A simple phase modulator made by placing an electrode over a 3 by 10 um
waveguide.

where H, L, and ¢4 are the height, length, and thickness of the active region of
the modulator. The required power is then

P= %HLthgA f (12.28)

To illustrate in a GaAs modulator, if we assume that sending a mark or space
requires changing the phase by /2, then in terms of the /2 field of Eq.12.24,
the power per unit bandwidth is

P _thg 2

AFT8 L (12.29)

Example 12.3 Electro-optic phase modulator: veltage and power
considerations

To illustrate the power required to operate a modulator, let’s reexamine the
TE rectangular waveguide described above, oriented along the [110] axis on
a GaAs substrate. Fig. 12.11 shows the structure. The waveguide has the
following characteristics:

n = 365 =12

€0
rg = 11x1072m/v
H = 10pum
tg = 3um
L = 0.5cm
A = 0.9um
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The half-wave voltage required to achieve a 7r /2 phase-shift in this modulator
is given by Eq.12.24

_ A
Vw/2 §L TL3T14
_09x107%m 3x107%m
- 2 (5 x 1073m) (3.6)3 (1.1 x 10~ 12m/V))
= 526V

The applied field would need a peak amplitude of 5.26 V to delay or advance
the phase of the TE carrier wave by 7 /2 radians. This corresponds to an electric
field of E = 1.73 x 10% V/m across the 3 pum film. The power required to
create this modulation is given by Eq. 12.28

P eHt, N

Af ~ 8 L nbr2,
_12-885x1071210x107%- (3 x 1075) (0.9 x 1076)?
B 8 5x 103 3.66(1.1 x 10-12)2

= 245 x 107 W/Hz = 24.5 uW/MHz

This value should be compared to that required to drive a bulk (non-waveguide)
modulator. We keep the modulator length the same as in the example (L = 0.5
cm). To minimize the size of the bulk modulator, the optical beam should
be focussed through the crystal. The smallest that the beam can be made,
and still get through the crystal without excessive losses due to vignetting, is
determined by the confocal parameter, 2zy of the beam.(The confocal parameter
is the distance over which an optical beam doubles its area due to diffraction
from a focal spot. It represents the region where the optical beam is the most
collimated.) The beam radius, wy, at the focus is determined directly from the
confocal parameter:

2mnwd

A

Setting this equal to 0.5 cm, and solving for wy yields wy = 14um. At the face
of the crystal, the beam will have it’s largest radius, w = Vowy = 20um. To
avoid serious aperture loss, the crystal should have a lateral dimension at least
twice the diameter of the beam at the input/output faces, or 80 um. Let’s set the
dimensions of the bulk modulator as being 80 x 80 x 5000um?>. Using these
dimensions we find a modulation voltage (Eq. 12.24) to be

229 =

0.9 x 106 80 x 1076
/2 2 (5x1079) (3.6)3 (1.1 x 10-12) o
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The applied electric field is still the same, namely 140/80 x 1075 ~ 1.73 x
108V /m. The power per unit bandwidth to drive the bulk modulator is then

P 12-885x107!1280x 1076 (80 x 1075) (0.9 x 1076)?
Af 8 5x 10-3 3.65(1.1 x 10-12)2
= 5.22 x 1079 W/Hz = 5.2 mW/MHz

which is approximately 200 times greater than the power required for an inte-
grated modulator. This contrast illustrates perhaps the greatest virtue of inte-
grated modulators.

6. Electro-optic Intensity Modulators

The phase modulation introduced by the electro-optic effect can be used to
create an intensity modulation via changes in polarization, and through inter-
ferometric effects.

6.1  Polarization Modulation

Polarization modulation can be achieved using the differential retardation
between two orthogonal polarizations of the optical wave. Fig.12.12 illustrates
a wave linearly polarized at 45° to the x-axis propagating into a birefringent
crystal. The crystal has two indices of refraction, the ordinary index, n,, and
the extraordinary index, n., oriented along the = and y axis, respectively. The
incident wave is broken into an ordinary and extraordinary component, each of
which travels with a different phase velocity. As they propagate a distance L,
the waves will accumulate a relative phase difference,

A¢ = koL(ng — ny) (12.30)

The superposition of the two waves will in general describe an elliptically
polarized wave. When the phase difference is A¢ = 7, 3«, 5, . . ., the super-
position will result in a linear polarization that is rotated by 90° relative to the
input polarization. Thisisillustrated in Fig. 12.12, where the two waves emerge
with the proper delay such that the superposition of the two waves produces
a polarization that is orthogonal to the input polarization. A relative delay of
A¢ = 27, 4m,6m, . .. will restore the wave to its original state of polarization.
If the crystal is electro-optic, then application of an electric field along one
axis of the crystal can lead to an electronically-controlled relative phase shift
between the ordinary and extraordinary waves. This effect can be used to control
(modulate) the polarization through the Pockel’s effect. The crystal need not
be birefringent to begin with (for example, GaAs), but the applied field must
introduce a relative retardation between two components of the field. Note that
it is essential that the input light excite both the ordinary and extraordinary



318 INTEGRATED PHOTONICS

0]

Figure 12.12. A linearly polarized wave at 45° to the polarization axes of the crystal will travel
as two waves, an ordinary wave, and an extraordinary wave. They travel with different phase
velocities. At certain lengths, a half-wave retardation exists where the two fields add to form a
linear polarized wave rotated by 90 ° from the input.

Polarization Polarizer Intensity
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Figure 12.13. A polarization-modulated input beam is split into vertically and horizontally
polarized components by passing through a linear polarizer.

fields. If only one of these is excited, there will be a phase delay introduced by
the external field, but there will be no polarization rotation.

To convert this polarization rotation into an intensity modulation, it is nec-
essary to run the output through a linear polarizer, also known as an analyzer.
The analyzer transmits only one polarization component, either ejecting the
other component into another direction or attenuating it. As the polarization is
electro-optically rotated over 90°, the transmitted intensity will continuously
vary from maximum to zero. Fig. 12.13 illustrates an optical system that
converts polarization modulation into intensity modulation.

Polarization modulation has not been widely adopted in optical communica-
tion systems for a variety of reasons. A major problem is that most materials that
are electro-optic are also naturally birefringent (n; # n,). This natural birefrin-
gence usually overwhelms the induced birefringence of the electro-optic effect
(Anpockels is on the order of 1075 for reasonable fields, while Ang;y. fringence
is typically 10~2), and this makes choosing the absolute length of the modulator
extremely critical. Second, the indices of these crystals are temperature depen-
dent, and in general do not track each other. Any small change in temperature
can lead to a polarization drift. Third, there are not many integrable polarizers
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Figure 12.14. A solid Fabry-Perot etalon is made by putting a reflective coating on the facets
of the substrate. At resonance, the wave intensity builds inside the mirrors.

yet available. Certain types of polarization maintaining fiber can now be used
in fiber optic systems, but for pure integrated optics applications, the lack of a
simple polarizer remains a problem.

7. Interferometric Modulators

Phase modulation can be converted into an intensity modulation through
constructive interference between two waves. The Fabry-Perot interferometer
and the Mach-Zender interferometer represent two examples for converting
phase modulation into intensity modulation.

7.1  Fabry-Perot Modulators

The Fabry-Perot interferometer is commonly used in high resolution spec-
troscopy and for tuning of lasers. Fig. 12.14 shows the construction of a typical
Fabry-Perot interferometer, also known as an etalon. Two partially transmitting
mirrors are aligned parallel to one another, separated by a distance L. An etalon
is constructed using either two mirrors separated by an air gap, or by coating
reflective coatings on the parallel faces of a dielectric. Fig. 12.14 shows the
latter case. The material has an index of refraction n. Transmission through the
Fabry-Perot is maximum when the optical path length between the two mirrors
is equal to an integer number of half-wavelengths, L = mM\/2n, where m is an
integer, and the effective wavelength in the material is A/n.

For non-integer wavelength separations, the transmission is given by

1
T= 4R ;2 (4
1+msln (j\’inL)

(12.31)

A plot of the transmission function for several reflectivities is shown in Fig.
12.15. The selectivity of the Fabry-Perot increases with reflectivity, R. For a
reflection equivalent to the Fresnel reflection from fused silica (approximately
4% per surface) the modulation depth is approximately 8% between the min-
imum and maximum transmission points. For reflectivity of 30% (equivalent
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Figure 12.15. Transmission peaks for R=0.04, 0.3, and 0.9. The horizontal axis is the phase
shift in radians that a wave accumulates per round trip.

to the Fresnel reflection from GaAs), the modulation depth is close to 80%.
Generally, the reflectivity is adjusted using dielectric coatings to achieve the
desired contrast ratio. As the reflectivity increases, the contrast between maxi-
mum and minimum transmission increases, while the width of the transmission
peak becomes narrower.

This interferometer can operate as an intensity modulator by making the ma-
terial between the mirrors electro-optic. When an electric field is applied to the
material, the index is modified, which changes the effective optical path length
between the mirrors. The goal in making a modulator is to switch the device
from sitting at Tpy, 45 to iy, by application of an external field. Fig.12.16 shows
a schematic of one such device. The Fabry-Perot is made of a semiconductor
material (GaAs) that is electro-optic. The entire structure is made through epi-
taxial growth of semiconducting material. First, a stack of alternating high/low
index layers of A\/4 thickness is grown on the substrate. A bulk layer of GaAs
is then grown on top of the dielectric stack to the desired thickness to achieve
the proper spacing between transmission maxima. A second dielectric stack is
grown on top of the bulk layer to form the final reflector. The entire structure
can be fabricated in a epitaxial growth facility.

If an electric field is applied across the bulk layer, the index of the material
changes, which shifts the transmission peak to a different wavelength. The
spectral distance between two adjacent transmission maxima is called the Free
Spectral Range, (FSR). A properly designed modulator must have a FSR that
is larger than the bandwidth of the modulated signal. Equally important, the
spectral transmission at resonance must be broad enough to transmit the entire
signal, and not reject a significant portion of it due to the spectral filtering prop-
erties of the Fabry-Perot. The FSR of a Fabry-Perot etalon is straightforward to



Waveguide Modulators 321

In Out

\/

Dielectric Stack

Fabry-Perot

|«— ——+]

Dielectric Stack

Substrate

Figure 12.16. A Fabry-Perot modulator.

derive based on the requirement that the optical path length between the mirrors
be an integer number of half-wavelengths. The FSR is defined as
c
FSR = — 12.32

2nL ( )
The spectral bandwidth of an etalon depends on the FSR and on the reflectivity
of the mirrors, as is apparent from Fig. 12.15. The resolution is often defined
in terms of finesse, which is

(1/4)
F= PSR r(AaRy) (12.33)
Full width at Half Maximum 1 — (RyR)'/2

To reduce the insertion loss for this type of modulator, the output from this device
is usually taken from the reflection off the front surface. In anti-resonance, the
reflection is nearly 100%, while at resonance the reflection is minimum. Devices
to date have demonstrated contrast ratios up to 10 dB, at frequencies exceeding
10 GHz.

7.2 Mach-Zender Modulators

In a waveguide structure, the Mach-Zender interferometer can use interfer-
ence between two waves to convert phase modulation into intensity variation.
Fig. 12.17 shows a schematic Mach-Zender interferometer. The single mode
waveguide input is split into two single mode waveguides by a 3 dB Y-junction.
The split beams travel different paths of length [; and I, and then recombine
at another Y-junction. If the optical path lengths of the two arms have an inte-
ger number of optical wavelengths, the two waves will arrive at the Y-junction
in-phase, and constructively interfere. They will combine into a guided mode
which then propagates down the remaining waveguide. If the optical path
lengths are unequal, and the relative phase difference between the two combin-
ing beams is /2, the two beams will destructively interfere and not couple into
the following single mode waveguide.
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Figure 12.17. The Mach-Zender interferometer is made with two 3 dB couplers which split
and recombine the beam, and two arms which can be modulated by application of an electric
field.

3dB Coupler

The relative phase difference of the two beams can be electro-optically con-
trolled by applying a voltage to the center electrode in the structure shown in
Fig. 12.17. Because the change in index, An, depends on the direction of the
crystal and the applied electric field, appropriate choice of the crystal axes will
cause the applied field to increase the index in one arm, and decrease it in the
other arm. This differential change in index is used to alter the relative phase
of the recombining fields.

Results with Mach-Zender interferometers made from Lithium Niobate have
demonstrated contrast ratios exceeding 20 dB with bandwidths exceding 5 GHz.
Much of the challenge in getting good contrast rations is caused by non-ideal
3 dB couplers. If the intensities of the two beams are not exactly balanced,
the interference will not cancel entirely. Since there is only one output beam,
isolation and contrast ratio are the same parameter for these devices.

8.  Electro-Absorption Modulators

Another way to modulate an optical field with an electric field is through
electro-absorption. This type of modulator is based on the Franz-Keldysh effect,
in which the absorption edge of a semiconductor shifts in the presence of an
electric field. Applying a large field to a semiconductor shifts the absorption
profile toward the long wavelength direction. Fig. 12.18 shows the absorption
spectrum for a GaAs sample with an applied field and with no field. With no
field, the absorption coefficient shows the typical increase for optical energies
that equal or exceed the bandgap energy of the material. Over a range of about
50 nm, the absorption coefficient, ¢, increases from 20 cm~! to over 103 cm™1.

An optical signal at wavelength Ao = 0.9um will experience an absorption
coefficient of approximately 10 cm~! absorption with no electric field on the
sample. If an electric field of 10° V/m is applied, the absorption coefficient will
increase to approximately 600 cm 1. The total change in intensity will depend
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Figure 12.18. The Franz-Keldysh effect leads to a shift in the absorption bandedge for semi-
conductors. GaAs is shown in this example, with an applied field of 10° V/m,

on the path length through the modulator. Since the transmitted signal goes as

I{z) = I(0)e™* (12.34)

the contrast ratio will be
Imas _ € 12.35
Imin N e~ x2% ( ) )

Devices to date have demonstrates modulation depths of up to 20 dB using this
effect.

The Franz-Keldysh effect arises due to band-bending near the surface of the
semiconductor. Fig. 12.19 shows the energy band diagram of a semiconductor
exhibiting the Franz-Keldysh effect. The left-hand side of the diagram corre-
sponds to the Schottky barrier contact on the surface. Application of a reverse
bias causes a charge depletion layer to form. A non-uniform field is formed as
the charge depletion decays away from the surface, ending in flat bands well
within the material. In the flat band region, a photon can only be absorbed if its
energy exceeds the bandgap potential. In the band bending region, absorption
can occur for a lower energy photon. The photon lifts an electron far enough
into the bandgap that it can horizontally tunnel into the conduction band. Hor-
izontal movement in this figure requires no energy, so energy conservation is
not violated. The effective change in the bandgap energy is

AE = g(m*)_1/3(qh5)2/3 (12.36)

where E is the applied field strength, and m* is the effective mass of the electron
in the semiconductor.

A basic electro-absorption modulator is shown in Fig. 17.23. A lightly
doped waveguide layer is grown on a conductive substrate, and a Schottky
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Figure 12.19. The band structure of the semiconductor becomes bent near the surface. This
bandbending allows electrons to tunnel into the conduction band.
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Figure 12.20. A simple electro-absorption modulator. The optical signal passes through the
surface waveguide. The applied field is developed across the lightly doped waveguide.

barrier is placed on the top surface of the waveguide. Light which is slightly
sub-bandgap in energy propagates down the waveguide. The length of the
electrode is chosen to maximize the contrast experienced by the guided light
when the field is applied. Because the absorption tails of the semiconductor die
off slowly, these modulators have moderate insertion loss. 3 dB is not unusual,
however when active, the attenuation can increase by 20 dB.

9. Acousto-optic Modulators

Like electro-optic modulators, acousto-optic modulators control the trans-
mission of light by local changes in the index of refraction of the transmission
medium. However, acousto-optic modulators differ from electro-optic devices
in three important respects. First, the modulation occurs by means of a travel-
ling sound wave which induces a stress-related modification of the local index.
The sound wave can be transverse, longitudinal, or a combination of both, as
in the case of a surface acoustic wave (SAW). The second difference is that
acoustic interactions travel at the speed of sound in the material, while electro-
optic interactions can occur at nearly the speed of light (actually they are limited
by RC circuit time constants). Finally, while electro-optic interactions can be
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established with DC fields, acousto-optic modulation, being based on sound
waves, always involves interacting with a travelling or standing wave in the
solid. Good reviews of acousto-optic interaction and devices can be found in
references [6, 8, 10, 11, 12].

9.1 The Photoelastic Effect

The photoelastic effect involves reflecting light off of the change of the index
of refraction in a dielectric due to strain. Formally, the effect is characterized
by a fourth rank tensor, p;;x;, called the photoelastic tensor, via

1
A <~5> = PijktSki (12.37)
n ij

where 1/ nfj is the term in the index ellipsoid, and Sk; is the strain, defined as

Ski(r) = 5 + = (12.38)

axl 8.’1)k
The photoelastic effect is nonlinear, as it depends on the product of two interact-
ing fields. Being nonlinear, we expect that the frequency of the scattered light
can be different from either the frequency of the strain field or of the incident
optical field. The frequency shift is usually attributed to a Doppler shift of the
scattered light from a traveling acoustic wave. For a thorough discussion on
the fourth rank photoelastic tensor, see Nye[9].

The acousto-optic strain interacts with an electric field component E; to
generate a polarization A P;. The strain therefore causes a change in the index
of refraction [10]. The change in index of refraction, An, is related to the
acoustic power, P,, through the relation

An = 4/nSp?P, /2pv3 A (12.39)

where 7. is the index of refraction in the unstrained medium, p is the appropriate
element of the photoelastic tensor, P, is the acoustic power (in Watts), p is the
mass density, v, is the acoustic velocity, and A is the cross-sectional area that
the acoustic wave travels through. This expression is somewhat unwieldy, so it
is often rewritten in terms of a figure of merit, M, defined as

1 {auk(r) Ouy(r)

M = n®p%/pv} (12.40)

An = +/MP,/24 (12.41)

The value of M depends on the material and, in the case of crystals, on the
orientation. Table 12.2 lists some values of M for common acousto-optic
materials

in the simplified form
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Table 12.2. Materials commonly used in Acousto-optic Modulators [10]

Materials A(pm) n plg/em®) v (10°m/s M

Fused Quartz  0.63 146 22 5.95 1.51 x 1071%
GaAs 1.15 337 5.34 5.15 104 x 10718
LiNbO3 0.63 220 47 6.57 6.99 x 107%°
YAG 0.63 183 4.2 8.53 0.012 x 10™1%
AszSs 1.15 246 320 26 433 x 10718
PbMO4 0:63 24 3.75 73 x 10718

Acousto-optic modulators used in integrated optics generally use travelling
wave acoustic fields. The acoustic field creates a grating structure which can
diffract the incident optical field. Light reflected from the moving grating is
Doppler shifted in frequency by an amount equal to +mfy where fy is the
acoustic frequency, and m is the order of the reflection. Plugging numbers
into the expression for An, using fused quartz as an example and an acoustic
intensity of 100 W/cm?, the magnitude of An is on the order of 10™4, which
is not a very large change. However, the interaction of an optical field with the
strain field can be significant because the acoustic field has many periods of
oscillation, so the small reflections at each crest can accumulate constructively
(or destructively) if proper phase matching is arranged. Reflections approaching
100% can be generated from the grating.

Optical wave interaction can be produced by either bulk acoustic waves
travelling in the volume of the material, or by surface acoustic waves (SAW)
which propagates on the surface within approximately one acoustic wavelength
of the surface. SAW devices are well suited to integrated optics applications,
because the energy of the acoustic field is concentrated in the region of the
optical waveguide.[11]

There are two basic configurations used in acousto-optic modulation. If the
optical field propagates transverse to the acoustic beam, and the interaction
length of the two beams is relatively short so that multiple diffraction does not
occur, then Raman-Nath type diffraction occurs. If the acoustic field is large
so that multiple refraction can occur, the interaction is called Bragg modula-
tion. Bragg modulation tends to provide larger modulation depth, and is more
commonly implemented in integrated optic devices.

9.2 Raman-Nath modulators

The basic structure of a Raman-Nath modulator is shown in Fig. 12.21.
An optical field travels through a thin region of acoustic waves with spatial
wavelength A. The phase that the optical beam accumulates on passing through
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Figure 12.21. A Raman-Nath type interaction. Incident light travels through a thin region of
acoustic energy, and is diffracted into a number of different orders.

the acoustic beam is

An2rl
=
Notice that this has a spatial component (sin 27y /A) which adds a corrugated
structure to the phase front of the transmitted light.

There are two ways to view the scattering process. If the index structure
created by the acoustic wave is considered to be a diffraction grating, the trans-
mitted light reflects off the grating into many orders. In such a case, the grating
analysis shows that the orders will leave the crystal at angles

AD sin 2ry/A (12.42)

mT/\, m=0,£1,%2,... (12.43)
The second point of view is to consider the modulated wavefront that emerges
from the modulator as being a superposition of several plane waves, each di-
rected in a different direction.

The Raman-Nath condition will hold so long as the interaction length is short
enough to ensure that multiple refractions do not occur. This is the case when
the interaction length, [, satisfies

sinf =

2

I« (_/\/—n~) (12.44)

The intensity of the diffracted orders are described by Bessel functions[12]

I
= = [Jn(A®mag)?/2, MmO

Iy
= [Jo(A®pmaz]?, m=0) (12.45)



328 INTEGRATED PHOTONICS

where ®,,,,, is the peak amplitude of the index change, given in Eq. 12.42.
For use as a modulator, the output is usually taken as the zeroth order beam.
The modulation index is then

Iy—I(m=0
NRN = L—g_-o————l =1— [Jo(A®,raz)? (12.46)

A problem with the Raman-Nath modulator is that due to the short interaction
length, the modulation depth is not as great as can be obtained from the Bragg
modulator. So it is not typically used as a modulator in information systems.
Also, since the output is spread out over several orders, it is not useful as a
switch. In contrast, the Bragg modulator has been widely used as a modulator,
beam deflector, and as a switch.

9.3 -Bragg Modulators

The Bragg condition for scattering is satisfied when the interaction length of
the acoustically-generated diffraction grating is large enough to allow multiple
diffractions. Quantitatively

2
> AT (12.47)

For optimum performance, the input angle of the optical beam should satisfy

the Bragg condition
A
infg = — 12.48
sinfp = o (12.48)
as illustrated in Fig. 12.21. For modulators, the output of the zeroth order beam

is generally taken as the output. The modulation depth is then [12]

-1 . 5, (AD
To = sin ( 5 ) (12.49)

Devices demonstrating modulation depths exceeding 95% have been demon-
strated.

Waveguide acousto-optic devices have been developed for applications in-
cluding switching, modulation, and spectrum analysis. The complication of
non-uniform optical and acoustic fields in thin film structures modifies the
analysis presented here slightly. To accurately determine phase shift of an op-
tical beam, an overlap integral between the optical and acoustic fields must be
calculated. Details can be found in ref. [13].

10.  Applications of Acousto-Optic Waveguide Devices

One of the most significant applications of acousto-optic modulation in in-
tegrated optics is in spectral analysis of radio frequency signals. The direct
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application of this device is to allow a pilot to obtain an instantaneous spectrum
analysis of a radar signal, in order to determine if his plane is being tracked by
a ground-based station, air-to-air missile, or other vehicle. The signature of the
radar signal can be deciphered to extract this information.

Fig. 12.22 shows a schematic representation of a hybrid integrated optical
spectrum analyzer. A laser is butt-coupled into a planar slab waveguide, and
the beam is expanded and collimated by a pair of integrated lenses on the
waveguide. These lenses can take the form of simple domes on top of the
waveguide, or can look like cross-sections of conventional lenses placed on top
of the guiding layer. The collimated beam then passes through a region where
a surface acoustic wave (SAW) is established.

The SAW is generated by the incoming electrical signal. An antenna collects
the RF signal, and sends it to an amplifier. The amplified signal is applied to
an interdigitated array of electrodes on the surface of the planar waveguide.
If the waveguide is constructed using a piezo-electric material, such as X-cut
LiNbQg, the electric field established between the fingers of the electrode will
periodically constrict and expand the surface material, establishing an acoustic
wave that propagates across the waveguide. The spatial period of the acoustic
wave depends on the frequency of the applied RF signal.

The collimated optical beam is Bragg scattered off of this SAW structure. The
angles of the scattered beams are described by Eq. 12.48, so each RF frequency
will scatter the optical beam in a different direction. The scattering efficiency
can approach 50%/W of applied electrical signal. The scattered beams are again
passed through a lens to focus them on a detector array. Here, the fact that the
lens acts as a Fourier transformer is exploited. The optical beam leaving the
SAW region contains several distinct beams travelling in different directions,
depending on the spectral content of the applied electrical signal. But the beams
are essentially fully spatially overlapped. To separate the beams would require
propagation over a long distance. A lens solves this problem by converting
the angular variation of the incoming rays (k-space description) into a spatial
variation (z-space) at the focus of the output beam. This is what is meant when
we say a lens performs a Fourier transform. The focussed output of this lens
is directed onto an array of detectors. Each pixel of the array corresponds to a
specific frequency of the incoming electrical signal. All frequencies present on
the incoming signal are simulataneously detected at the array, so the signature
of an incoming signal can be readily determined. Performance of such devices
have shown 5 MHz resolution over a bandwidth of 400 MHz. [14]

11. Summary

We reviewed the two major methods used for modulating light. Electro-
optic effects are currently being explored for high speed, high performance
modulators that will be suitable for the communication industry. These devices
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Figure 12.22. Anintegrated optic spectrum analyzer consists of a cw laser source, a collimating
lens, a SW region, a transform lens, and a detector array.

are built using either semiconductor materials, or nonlinear dielectrics such as
LiNbO3. Only a fool would make a prediction about the future in this field, but
it appears that there will be more interest in integrated sources and modulators,
which can be made using semiconductors, than there will be for hybrid systems
consisting of semiconductor lasers, optical interfaces, and dielectric modula-
tors. However, the hybrid devices at present provide many of the best results.
Manufacturing cost is the pressure pushing toward integrated systems.
Acousto-optic modulators, because of their inherently slow modulation speed,
will probably never be serious competitors for communication modulation.
However, acousto-optic devices are playing critical roles in optical computers,
where convolutions, beam switching, and frequency shifting are used to per-
form various signal processing functions. We have discussed only a few of the
possible implementations of electro-optic and acousto-optic modulators in this
chapter. There are many other possible schemes. Interested readers should con-
sult many of the references for overviews of some of these techniques. Entire
texts have been devoted to single aspects of the discussion presented here.
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Practice Problems

1. Confirm the expression of Maxwell’s equations as listed in Eq. 12.8 by
deriving them from the general form of Maxwells Equations listed in
Chap.2, using a single frequency plane wave with phase exp(—j(wt —
kz)).

2. Consider the waveguide phase modulator shown in Figure 12.23.

(a) Assume that only the TE wave is to be modulated. What is the correct
orientation for the GaAs crystal if the applied field is as shown? Make
a sketch of the modulator, and identify the x, y, and z-axes.
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Figure 12.24.  Intensity modulator for problem 3.

(b) Assume that the electric field strength in the waveguide is equal to
V/20pm. What length should the electrodes be if a 10 V input is to
produce a 7 phase shift?

(c) If you only had this device in your lab, and you wanted to make a
polarization rotator using it, how would you do it?

. An intensity modulator is built based on the concept of turning a single

mode waveguide on and off via the electro-optic effect. Consider the
semiconductor structure shown in Fig. 12.24. The top layer of GaAs
is lightly doped, and is 5 um thick. The substrate is heavily doped. A
Schottky barrier is placed on the surface for a distance L. Due to the light
doping of the top layer, a reverse biased field will develop most of the
field in the thin layer.

(a) What orientation should the crystal be if a positive voltage is to in-
crease the index of the top layer?

{b) How much voltage is required to increase the index sufficiently to
cause the top layer to become a waveguide for the lowest order mode
of an asymmetric waveguide?

(c) How would you determine the length of the electrodes?

. Find the effective index of refraction, n.y¢ for an extraordinary wave

travelling at an angle of 50° with respect to the c-axis in a crystal of
LiNbO3. Use the data in Table 12.1 for refractive indices of the ordinary
and extraordinary directions.

. Consider the problem described in Example 12.2. How large an electric

field, E, is required to change the index of refraction by 0.0001? What
voltage would be required to achieve this field across a waveguide 10 um
thick?

. What is the index of refraction in a crystal of GaAs if an electric field

is applied along the z direction of the crystal? Describe the index of
refraction for GaAs when the applied field is directed along the zy axis.
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7.

10.

The LiNbOj3 cystal has a crystal symmetry of 3m. The electroptic tensor
for this crystal is given by

0 -—ri2 713
0 Tz  Ti3
0 0 713
0 51 0
T51 0 0
—7'99 0 0

Show that if an electric field is applied along the z axis, the index of
refraction becomes

1
Ng = n0—5n3T13E
1
3
ny = n0—§n0T13E
1
3
n, = ne—5n6r33E

. Develop an expression for the half-wave voltage similar to Eq. 12.23 for

a LiNbO3 modulator cut so that light propagates along the z-axis, and the
modulating electric field is applied along the z-axis. Use the electrooptic
tensor in Prob. 7. and data from Table 12.1 for this problem.

. Design a TE to TM converted based on the electro-optic effect in GaAs.

Assume the waveguide is 3 um thick, has a core index ny = 3.6, a
substrate index ns = 3.59, and a cover index of n = 1. Assume that
electrodes are placed on both sides of the guiding dielectric, so that a
planar electric field is established in the guide. Choose the correct orien-
tation of the GaAs crstal so that an applied field will rotate the polarization
of the field.

A Fabry-Perot modulator is made as shown in Fig. 12.25.
(a) Plot the reflectivity of this device as a function of )\ over two free
spectral ranges (FSR) of the device.

(b) How much does the index of the Fabry-Perot have to change to shift
the transmission peak by 1/2 FSR?

(c) What E-field is necessary to create the shift decribed in part b?

(d) Will this modulator work as well with with unpolarized light as with
polarized light? If not, which polarization is preferred?

(e) What is the spectral bandwidth of this device?



334

11.

12.

13.

14.

INTEGRATED PHOTONICS

R=96 %

R=100 %

Figure 12.25.  Fabry-Perot structure for problem 10.
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Figure 12.26. Mach-Zender structure for problem 11.

The Mach-Zender interferometer shown in Fig. 12.26 is made of GaAs.
What E-field is required to make the device switch from “on" to “off"?

A Franz-Keldysh modulator is built using GaAs. If the contrast ratio
between “on" and “off” is to be 10 dB, and the operating wavelength is
900 nm, how thick should the GaAs device be made? Use the data in Fig.
12.18. What is the minimum insertion loss for this device?

How much acoustic power is required to change the index of refraction
in a GaAs layer 2 ym thick and 100 ym wide by 0.0001?

An acousto-optic modulator is built using PbMOy. If an RF signal at 100
MHz drives the acoustic wave in this crystal, and an optical wave with
A = 0.6328 nm is Bragg reflected of the acoustic wave, what is the angle
between the incident and reflected optical beam?



Chapter 13

PHOTONIC CRYSTALS

1. Introduction

In the previous chapters of this text we have explored how light can be guided
by high index regions of a dielectric. Many types of waveguide were examined,
including graded index slabs, circular step-index fibers, and rectangular ridge
structures. In all of these cases we found that light can be guided by high index
regions and as a result can go around bends, couple to other waveguides, and
be manipulated to perform certain functions. The guiding mechanism in all
cases arose from the “attraction" light has toward higher index regions. We
described this attraction in a variety of terms, including total internal reflection,
the eikonal equation, or spatial resonances forming from reflections on index
changes, but in all cases the basic mechanism is the same: higher index regions
of a dielectric act like a “potential well" for light, and so long as things change
slowly (bends are gentle, or dimensions vary slowly), light tends to remain
trapped in that potential well.

In this chapter we explore a dramatically different method for guiding light.
Instead of using materials with high refractive indices to attract and trap light,
we will consider materials called photonic crystals that actually repel light. Op-
tical waveguides are made in photonic crystals by removing material, creating
channels through which light can propagate. Without sounding too anthropo-
morphic, this is similar to the difference between doing something because you
want to do it and doing something because its the only thing that you possi-
bly can do. The difference may sound subtle, but we will see that by using
photonic crystals it is possible to guide light through low index materials (even
vacuum), and to make light turn extremely sharp corners. Because photonic
crystals operate by a different mechanism than index-guided structures, they
offer new opportunities for devices and systems.

335
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Figure 13.1. Cross-section of a one dimensional photonic crystal, with alternating high and
low index dielectric layers.

2.  Basic Physics of the Photonic Crystal

In the broadest sense photonic crystals are periodic dielectric structures com-
posed of alternating high and low index of refraction dielectric materials, with
periodicity on the order of the wavelength of light. In principle the periodicity
can be in one-, two-, or three-dimensions, so they resemble large-scale ver-
sions of the crystalline structure of many solid state materials. This periodic
structure is one reason they are called “crystals". We will discuss one- and two-
dimensional photonic crystals in this chapter. Using conventional lithographic
processes developed originally for the semiconductor electronics industry, it
is possible to fabricate planar two-dimensional structures today, but extending
this technology to the third dimension is still a challenge.

Because light experiences a small reflection each time it crosses a dielec-
tric boundary (recall the discussion on Fresnel reflections in Chapter 2), light
travelling through a periodic structure will experience multiple reflections that
constructively and destructively interfere with one another. As we will see,
when the period of the structure is comparable to A/2 of the incident light,
these reflections dominate the optical behaviour of the material. In order to de-
velop the principle of operation for a photonic crystal we will first analyze the
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Figure 13.2.  Field amplitudes at the interface between layer s and s — 1

one-dimension (1-D) case as shown in Fig. 13.1. This is a stack of alternating
layers of high and low index material. If the indices and layer thicknesses are
chosen properly, the multilayer film will reflect light from all directions, not
just along the single axis that forms the stack.

Each layer of the stack is characterized by refractive index n, and thickness
d,, where s indicates a the st* layer. We will first consider light incident on the
multilayer stack perpendicular to the layer’s surface plane, along the z-axis. In
each layer there will be two waves propagating in the forward and backward
direction with complex amplitudes E and E; . As a wave propagates across
a layer, it accumulates a phase equal to k,nds. As shown in Fig. 13.2, if Ef
and E7 are the amplitudes on right side of layer s, the amplitudes at the left
side are given by E exp(jkonsds) and E; exp(—jkonsds).

The electric field is continuous at the interface between layer s and layer
s—1

E} |+ E | = Efeffonsds | premikonads (13.1)

The magnetic field amplitudes in the forward and backward direction can
be found using the impedance of the medium, yielding H = EJ /ns and
H; = —E; /ns. The tangential magnetic field also must be continuous at the
interface, so

HY |+ H,_, = Hfel*onsds 4 e ikonsds (13.2)

If we define the total field at each plane H = H} + H; and E = E} + E,
Egs. 13.1 and 13.2 can be combined using some trigonometric identities to
yield

1

E,, = Escos(konsdo)+jn—Hssinkonsds (13.3)
S

H, 1 = jnsEssin(konsdg) + Hs cos konsds
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To simplify the evaluation of many multilayers, we can put this in matrix form

{Es_l ] _ [ cos(konsdo)  Ja- sin(konsds)] [E ] M {Es ]
He_ 1] | jnssin(konsdy)  cos(konsds) Hs|  7°|H;s

(13.4)
The incident field amplitudes are related to the field amplitudes at layer n by
multiplication of a series of matrices where each matrix contains the thickness
ds and the index n; of each layer in the film

[ } H1M[ } (13.5)

The total reflection and transmission of a general multilayer film with a total of
N layers can now be calculated. [2]

Example 13.1 Reflectivity of a 10 layer stack

Most dielectric mirrors are made by depositing a stack of alternating high and
low index layers onto a substrate such as glass. Let’s calculate the reflectivity
and transmissivity of a film consisting of 5 alternating quarter wavelength thick
layers of Si and SiOs.

Since this stack repeats a sequence of low-index/high-index layers, let’s first
calculate the transmission and reflection of a pair of quarter wavelength thick
layers of high and low index of refraction using Eq. 13.5. The matrix describing
one period consisting of a pair of high and low index layers is given by:

M [ cos(konpdy) jﬁlg sinkoanH]

Jnm sin(kongdgr) cos kongdy
X[ cos(kondy,) j#;sinkonLdL]

13.6
Jnr sin(konpdr) cos konrdy, (13.6)

For quarter wavelength thick layer, k,ngdy = konpdy = 7/2, and the matrix

is equal to
0 S0
[J'le 6H} [J'T)L SL} N { | %] (3

From Eq. 13.5, the reflectivity and transmissivity of a multilayer stack with ¢
periods, surrounded by air (n, = ny = 1), are then given by

—nL o 19
HEKE @39

nL

We can directly calculate the power transmitted and reflected by this stack
using Fg =1 — R, Hy =1+ R, and E; = H; = T, where R and T are the
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Figure 13.3. Reflectivity of the dielectric stack with quarter wave layers

transmission and reflection amplitudes. The reflectivity, R? = 1 — T2 is given

by )
(—nL)e — (_n_H)q}
R = | —& A 139

[(—z—;,)w(—z—f;)q (52
For ¢ = 5 periods with ng = 3.5 (Si layer) and n;, = 1.5 (SiO; layer), the
reflectivity and transmissivity are equal to R? =0.999 and T2 = 0.001. Such
multilayer films with high reflectivity are called Distributed Bragg Reflectors
(DBR).

This is a very high reflectivity, far exceeding what can be achieved with a
simple metal film. For example, a silvered mirror used commonly in residences
has a reflectivity of approximately R? = 0.92, or effectively an 8% power loss
for each reflection. So the multilayer mirror is desired when low absorption is
needed. The comparative disadvantage of the multistack mirror is that it has a
limited spectral bandwidth, because the layers are only quarter-wave thickness
for one particular wavelength. However, the spectral width can be controlled
by choosing the index difference, and by adjusting the layer thicknesses in the
stack.

3.  The Photonic Band Gap

Using Eq. 13.5 we can calculate numerically the reflection and transmis-
sion coefficient as a function of frequency. In Fig. 13.3 we have plotted the
reflectivity of the multilayer film from Example 13.1 with optical thickness
anH = >\/4 and nLdL = )\/4.

One can see that over a frequency range centered at v = ¢/ there is a
spectral range in which light is totally reflected and cannot propagate through
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the crystal. This spectral range is called the Photonic Band Gap. Points A
and B in Fig. 13.3 correspond to the upper and lower frequency limits of the
reflectivity. The bandwidth of the reflectivity (Av = vp — v4) depends on the
index difference between the layers and on the relative thicknesses of the high
and low index layers. A similar system, with total periodicity ngdy +nrdy =
A/2, but with thicknesses of the layers differing from \g/4ng and Ao /4ng,
will form a photonic band gap, but its bandwidth will be reduced compared to
the quarter wavelength layer system.

Intuitive picture of the photonic band gap

Since only one wavelength will match the period of the lattice, why does a
band gap occur? Why isn’t the reflection only at one wavelenth?

There is a simple reason why a broad range of wavelengths are reflected by
the structure. From the previous section we saw that a photonic band gap occurs
when the wavelength corresponds to twice the periodicity of the structure, A =
2a, where a = nydy + npdy, is the period. In a periodic structure the field
distribution will be periodic relative to the structure, i.e., at any point z the field
must be the same as at the points x 4+ ma, where m is an integer number and a
being the periodicity of the structure. There are many ways to position a wave
inside the grating, but we gain insight by looking at the two extreme cases. In
one case (see Fig. 13.4a) the nodes of the field will be in the high index of
refraction layers and the antinodes in the minima , and in the other case (see
13.4b) the nodes of the field will be in the low index of refraction layers and
the antinodes in the high index of refraction layers (Fig 13.4b)

In Fig. 13.4a the wave’s energy (proportional to E2) is concentrated in the
low index layers, while in Fig. 13.4b the energy is concentrated in the high index
layers. Because the wavelength is shorter in the high index material, when the
wave energy is concentrated in the high index layer it corresponds to a longer
Ao (recall, Ag is the wavelength of the wave in vacuum) When the energy is
concentrated in the lower index layer, the vacuum wavelength )\ will be shorter.
Using the relation between frequency and wavelength, w = (¢/ko)/+/€/ o, the
wave in case (a), corresponds to a field with lower frequency (point A in Fig.
13.3) and the wave in case (b) corresponds to a field with a higher frequency
(point B in Fig. 13.3). For all frequencies in-between these values, the nodes
will lie somewhere between the two extreme points and will still find themselves
in-phase with the lattice. The difference between these two extreme frequencies,
Av, corresponds to the photonic band gap. This is why the spectral width of
the quarter-wave stack depends on the index difference between the layers, and
on the asymmetry of the layers.
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Figure 13.4.  Field distribution inside a periodic structure. (a) the antinodes are in the low index
region, (b) the antinodes are in the high index region

4. Photonic States of a 1D Photonic Crystal

So far all calculations have been done for normal incidence (§ = 0°). Does
the photonic gap exists for all angles incident on the multilayer film? Using
Snell’s law one can rigorously derive Eq. 13.5 for oblique angles. In practice,
the frequencies for which light can propagate through the crystal are found using
numerical calculations that solve the eigenvalues of the wave equations, in the
same way that it is done for semiconductors. For greater angles the spectrum of
the crystal shifts to higher frequencies. The blue shift of the spectrum is due to
the fact that the effective k;-vector in the direction perpendicular to the surface
plane becomes smaller than k, given by

™
k (danm + ding) (13.10)
If k, < k, for the same dimensions of the structure dy and df,, the condition of
half-wave is satisfied at higher frequencies than ck, . Fig.13.5 showsa calculated
spectrum of a Distributed Bragg Reflector at several different angles.

To determine the angular reflectivity of the multilayer stack, let us now
plot the dispersion of the multilayer stack, i.e., the lower and higher limiting
frequencies of the photonic band gap, as a function of the ky-vector in the
direction parallel to the layers plane. ky is given by

2
ky = ksinf = ;Sine (13.11)
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Figure 13.5. Reflectivity of a Distributed Bragg reflector calculated for different incident an-
gles. The polarization difference is negligible for small angles.

The results of the calculation are shown in Fig. 13.6. The vertical line at
ky = 0 indicates an angle of 0° . At this angle, the reflectivity of the structure
is shown in Fig 13.5. Points A and B of Fig. 13.5 are shown on the dispersion
diagram. One can see that due to the curved nature of the dispersion, for both
polarizations, the band gap between w4 and wg des not occur at all values of
ky (i.e. all angles). For example, for TM polarization, one can see that at a
frequency of wi light is reflected at angles ranging from 0 to 6 = sin~!(k, /k) =
sin"1 0.8 = 53° At a frequency wo light is reflected at a maximum angle of
6 = sin~!(k,/k) =sin"10.3 = 17.4°.

Fig. 13.7 shows that for a 1-D photonic structure the photonic band gap does
not necessarily exist for all angles. In the next sections we will see however that
if the photonic states of the surrounding medium are taken into account, light
can be made to totally reflect in all directions, despite the fact that the periodicity
is only in one direction. This is called an omni-directional reflector. A truly
omni-directional reflector would be useful for applications such as coating the
inside of a tube to make a waveguide in which light propagates in a low-index
core such as air or vacuum.

5. Photonic States of a Continuous Medium

Let us analyze the dispersion of light in a continuous medium. For light
travelling at an angle § with respect to the z axis as shown in Fig.13.7, the
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Figure 13.6. Dispersion diagram for a multilayer. Both the TM (solid) and TE (dashed) cases
are plotted.

frequency of light in such a medium is given by:

k
= k) = Y
w=e sin 6,

(13.12)

The relationship in Eq.13.12 is called the light line. Consider light incident from
a medium with a high index of refraction onto an interface with a surrounding
medium of lower index. All states with 8 < .., are states that propagate
in the high index medium and are transmitted to the surrounding medium. All
states with angle above the critical angle, 0 > 0., do not couple to the
surrounding medium. From Eq. 13.12 all states with 6 > 6,..;; obey

ky
Sin Oqri

(13.13)

Therefore all states below the light line (Eq. 13.13) remain in the high
index medium due to total internal reflection. Similarly, light incident from the
surrounding medium with frequency obeying Eq. 13.13 does not couple to the
high index medium and remains in the surrounding medium.

Fig. 13.8 plots the light line for light propagating in a high index media
surrounded by air and by oxide. The photonic states of the surrounding medium
that do not couple to the high index medium are shown by the shaded areas.
For convenience we again use the normalized axis. Here the periodicity a is
defined artificially for a continuous medium.

6. Onmnidirectional Photonic Band Gap of a Crystal in a
Continuous Medium

In order to ensure that a photonic crystal reflects in all directions it is sufficient
to ensure that only those states above the light line are indeed reflected. This
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Figure 13.8. Dispersion diagram for a semiconductor based medium surrounded by a contin-
uous medium of air and of oxide. The shaded areas show the photonic states of the surrounded
medium

is because, as we saw in the last section, light travelling below the light line
cannot couple to the surrounding medium and is totally reflected back into the
high index medium due to total internal reflection.

Fig. 13.9 shows the dispersion diagram of multilayer film with indices n; =
3.4 and ny = 1.46 as a function of the incident k-vector parallel to the film
plane. This dispersion diagram was calculated using the MIT Photonic-Bands
software package [1]. The wave vector k and frequency are normalized in terms
of a, where a is the thickness of one period in the DBR.

The white space between the two dark gray areas is the photonic band gap.
All the modes in dark gray areas between the light lines cA/a < 27ky/a
(note the left and the right sides of the plot are for TM and TE polarization,
respectively) can propagate in the multilayer film.
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Figure 13.9. Normalized Frequency (a is the period of the Bragg reflector) versus the parallel
wave vector for a distributed Bragg reflector. The light gray region is the omnidirectional band.

The light solid lines are for light incident from air corresponding to an angle
of 90, or, equivalently, light incident from the photonic crystal with a critical
angle. The photonic band gap between the light lines shown in the light gray
area is a range of frequencies where light at any incident angle is perfectly
reflected. In this frequency range there are no allowed DBR modes in this
region, regardless of angle or polarization. In this case the photonic band gap
is called omnidirectional band, or complete band gap. Such thin films have
very unusual applications. For example, imagine putting such a structure on
the inside of a tube, as shown in Fig. 13.10. Light propagating down the tube
would be totally confined to the center region due to the photonic crystal nature
of the multilayer. Hollow guides such as this have been constructed, and display
very unusual properties. The usual problems of material dispersion and optical
nonlinearities are removed, creating the ability to make new types of optical
device. Such fibers can be fabricated, for example, coating a glass rod followed
by chemical removal of the supporting rod [3].

For a surrounding medium with a higher index of refraction than air, the light
lines fall at a greater angle, as indicated by the dotted lines in Fig.13.9. Such
structure is important for application such as waveguiding in photonic crystals,
where the waveguide is composed by dielectric material with index higher than
air. One can see in Fig. 13.9 that in this case, for TM polarization, there are
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Figure 13.10. An omnidirectional reflector is placed on the inside of a hollow tube to create a
waveguide that operates in air.

Figure 13.11. Photonic crystal designed as a periodic array of holes in Silicon on insulator

allowed modes at higher angles of approximately 80°, and therefore the gap is
incomplete.

7.  Two-Dimensional Photonic Band Gap Structures

To ensure that a complete omnidirectional photonic band gap can be created
for light incident from high index of refraction materials, a photonic crystal
with a periodicity in more than one direction is required. Planar slabs of 2-D
photonic crystal waveguides have been fabricated using standard semiconductor
lithographic techniques, however a true 2-D photonic crystal would have infinite
extension along one axis. Planar two dimensional periodic structures typically
are constructed as array of posts or holes in a semiconductor (see Fig. 13.11).

The applications for an omni-directional mirror are limited, but there is great
interest in creating channels in such structures which would act as optical wave-
guides. Since any light travelling down such a channel would be completely
reflected by the surrounding region of space, the light could be guided in man un-
conventional ways, including sharp bends as schematically shown in Fig.13.12.
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Figure 13.12. A schematic representation of a two-dimensional photonic crystal waveguide.

8. Summary

In this chapter we reviewed the basic physics of the photonic crystal. We
emphasized the calculation of the reflectivity of the crystal as a function of angle,
with the goal of identifying structures in which certain spectral wavelengths
of light would not exist in any polarization or propagation direction. Such
omnidirectional reflectors can be used to create impenetrable barriers to light.
By using an omnireflector on the inside of a tube, an optical waveguide can
be made where light propagates through vacuum or air, not through a high
index material. By making two-dimensional slab photonic crystals, it should
be possible to create waveguides on substrates which can be forced around sharp
corners.

The key issues to be resolved concerning photonic crystals are primarily
related to the fabrication of the crystals. It is difficult, if not impossible today,
to lithographically create true 3-dimensional structures with the feature sizes
needed to act as photonic crystals for visible and near infrared light. Also,
because the light is constantly refiecting off of the crystal, scattering losses
in photonic crystal devices has proven to be a significant issue. Nevertheless
if there is progress on these issues, it is likely that photonic crystals will find
unique applications in integrated photonics.
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Practice Problems

1. Design a multilayer that has a reflectivity of more than 99% at a wave-
length of 1.5 microns using SiO—2 (n=1.5) and SiON(n=1.6) . You will
need to use Matlab, Matchcad or a similar numerical tool.

(a) What are the layer thicknesses and the number of layers required for
such high reflectivity?

(b) Plotthereflectivity as a function of wavelength. Estimate the photonic
bandgap range (Av) in which the reflectivity is high.

(c) Now vary the composition of the SiON, fromn = 1.6 — 2 in steps of
én = 0.1. Plot the photonic band gap as a function of index contrast.
d. For a composition of n=1.5/n=1.6, vary the thickness of layers
to decrease the photonic band gap range. Plot the reflectivity and
compare it with the one in part (b).

2. Complete the calculation showing that Eq.13.5 follos from Eq. 13.4



Chapter 14

INTEGRATED RESONATORS AND FILTERS

1. Introduction

In optical telecommunication of today, wavelength division multiplexing and
demultiplexing (WDM) is extensively used for increasing the accessible band-
width in a single fiber. In WDM, a series of discrete wavelengths are transmitted
through the same fiber (the bus), each one them encoded individually. Adjacent
channels are separated from one another by 200 GHz, and typically are mod-
ulated to carry signals with 10 or 40 GB/s of information. Over one hundred
separate wavelengths (or channels) can be carried on a fiber simultaneously,
which means that terabytes of data can be carried on a single fiber. The key
issue in WDM systems is finding ways to add and drop individual wavelengths
from the fiber while letting the rest pass on to their ultimate destination. This
add/drop process requires optical multiplexers and demultiplexers. Fig. 14.1
shows a schematic representation of an optical add/drop multiplexer. A single
waveguide carrying a number of discrete wavelengths enters the multiplexor. It
is desired that one channel be extracted (“dropped") while the rest pass through
without loss. Conversely, it is necessary that information at one particular
wavelength be able to be put onto the waveguide without interfering with the
other channels. This is called an “add". Finding an effective and inexpensive
way to create ad/drop filters for WDM applications is a major issue today. In
this chapter we will look at some of the key technologies involved in this prob-
lem, including the fiber Bragg grating, Mach-Zender interferometers, and Hi-Q
resonators made from integrated waveguide structures.

2.  Fiber Bragg Gratings

The fiber Bragg grating has probably pushed the telecommunication industry
toward wavelength division multiplexing more than any other development in

349
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Figure 14.1. A multiplexer on a WDM system has to add or drop one specific wavelength
channel on the waveguide, and let the rest of the channels proceed unattenuated

the last decade. Ten years ago it was an open question time division multiplex-
ing or wavelength division multiplexing would be the best choice for the future.
The biggest problem facing WDM systems was the need for stable wavelength
sources and references that could be installed in many situations, and still op-
erate within a certain bandwidth. The fiber grating, when properly packaged,
can provide an absolute wavelength stability to better than a nanometer, which
is sufficient for the WDM standards today.

In Chapter 10.5 we discussed how coupled mode theory can be applied to the
analysis of the Bragg grating. While rigorous, the analysis is cumbersome. To-
day most Bragg grating design is performed using matrix methods as developed
in Chapter 12 for the photonic crystal. The fiber Bragg grating can be formed
in fibers either by UV exposure, by ion implantation, or by photolithography.
Most commercial processes use UV exposure through a phase mask to create a
spatially modulated index within the core. The UV light slightly increases the
local index of the fiber’s core. The index modulation must have a period equal
to one half the wavelength they are intended to reflect.

Waveguide gratings are generally formed lithographically by etching into
the cladding near the core. The period of the grating has to be at one-half the
wavelength of interest, however this is not the vacuum wavelength, it is the
wavelength inside the waveguide given by A = Ao/n.rs where ness is the
effective index of the mode in the waveguide. For glass substrates operating at
telecommunication wavelengths (= 1.5um), the wavelength in the waveguide
will be ~ 1pm, and thus the period of the grating will be on the order of 0.5um.
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Figure 14.2. A waveguide Bragg grating with an etched core has an index modulation with

a period of A, /2 to reflect a desired wavelength A,. Non-resonant waves travel through the
grating without reflection

This dimension is right at the limit of what conventional optical lithography
can provide, so most waveguide gratings are written with e-beam lithography.
In high confinement systems such as Si/SiOj this is even more of an issue. A
cross section of a planar waveguide with a Bragg grating is shown in Fig.14.2

There are several ways to analyze this grating, including coupled mode the-
ory. We would like to apply the powerful matrix multilayer analysis to this
structure, but in order to do that we would need to know the effective index of
each region in the spatially modulated grating. Let us consider two slab wave-
guides with thickness d4 and dg. We will consider here a single polarization
and assume that both thicknesses are such that the slabs are single mode. For
each slab waveguide, the modes are slightly different, with different effective
indices ng = Ba/ko and ng = Bp/ko. The fiber grating can be viewed as
being equivalent to a multilayer dielectric stack as discussed previously in Sec-
tion 13.2, with periodicity of half a wavelength and layers of indices n4 and
npg. We already saw in Section 13.2 that the reflectivity and bandwidth of a
multilayer structure is a function of the index difference and of the number of
periods. The reflectivity increases with both index contrast and the number of
layers, while the spectral bandwidth narrows (which is to say, becomes more
selective) as the index difference decreases. In fiber Bragg gratings, the ef-
fective index difference is usually on the order of 1073, so the bandwidth can
be made to be narrow. The small index difference leads to small reflections
at each stack, so many “stacks" are needed to get a substantial reflection. In
fibers, a typical grating will be two millimeters long, which means there will be
approximately 2000 quarter-wave stacks in the waveguide. The combination of
a small An and a long interaction region provide the narrow, highly selective,
spectral bandwidth that is necessary for WDM systems.

Waveguide gratings have many applications other than spectral filters. It is
possible to write a grating that has a period that slowly increases with position.
This is called a “chirped" grating, and provides a spatially modulated spectral
response. Chirped gratings are often used in telecommunication links to equal-
ize a dispersive medium. A pulse which has become spectrally dispersed due
to waveguide and material dispersion effects can be almost restored back to its
original shape by reflecting off of a chirped grating.
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Figure 14.3. A cross-section of a spatially modulated waveguide.

3. Resonators

In this section we will describe a general resonator and its quality factor. The
analysis follows the development of Haus [1]. The most general and familiar
resonance phenomena is the one of circuit theory, namely the LC circuit. The
basic characteristic of a resonator is that it will build up energy at a specific
frequency (or wavelength. The dissipation of this power occurs due to losses,
or through coupling to the outside world. In the case of integrated optics,
the resonator is usually a reflective cavity where light is confined, and power
dissipation occurs through coupling to nearby waveguides or layers, and losses
due to scattering and absorption.

The field in the cavity oscillates in time with a frequency wy and decays
exponentially in time with a lifetime of 7. The basic equation for the time
dependence of the amplitude of the field inside the cavity resonator is given by:

da 1
Z = (jwg — = 14.1
o = Uwo—~)a (14.1)
The total energy in the cavity is proportional to |a|?. The rate at which power
dissipates from the cavity is given by the rate of change of this energy

= 2|af

dlal? dla] 2, .
== 142
2o (142)

dt dt
The last step in Eq. 14.2 is derived from Eq. 14.1
The quality factor Q of a resonator is given by the ratio of the total energy

stored in the cavity divided by the total power dissipated in one cycle of the
oscillation

(14.3)

We can also define the quality factor in terms of its spectral properties. The
lifetime 7 can be defined as the time that it takes for the amplitude to decay to
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Figure 14.4. Schematic of a 1-D cavity, formed by surrounding a thin layer of material by two
Distributed Bragg Gratings.

its half value. In the frequency domain, Eq. 14.1 becomes

Amax
= e 14.4
a4 Jlw=—wo)+1/7 (14.4)

From Eq. 14.4,Aw,/y = 2/7, where Aw; /5 = |w — wy| is the spectral full
width at half maximum. Therefore Eq.14.3 in the spectral domain is given by:

Wo

= (14.5)
A¢411/2

In the next sections we will consider two examples of cavity resonators: i)a
one-dimensional multilayer stack that forms a standing wave, and 2) a ring
resonator, which is a two dimensional, travelling wave device. Both devices
are used for Wavelength division multiplexing applications.

4. 1-D Cavity Resonator

An example of an integrated 1-D resonator is the interference filter formed
by embedding a “defect" layer (the cavity) between two distributed Bragg re-
flectors discussed in Section 12.3. The cavity layer has a thickness equal to the
periodicity of the multilayer.

The multilayer in Fig.14.4 can de described symbolically as (H L)2 H H(LH)?,
in which the two consecutive H layers make the half-wave layer. The trans-
mission and reflection of such a multilayer can be derived using the matrix
formalism discussed in Section 12.3. The calculated reflection of such a multi-
layer is shown in Fig. 14.5. One can see that the reflection is very similar to a
plain DBR, but with a deep notch in the reflectivity at the center of the band at
a frequency wy = ¢/A\¢ where )\ is equal to twice the thickness of the cavity.
This frequency is called a "cavity mode" frequency. At the cavity mode the
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Figure 14.5. Numerically calculated reflection of a multilayer described in Fig.14.4

transmission through the entire structure is equal to one, and the field inside the
cavity layer is built up. In order to estimate the lifetime of this resonator, let us
consider only the spectral region around the cavity mode, shown in dashed line.
In this region, the transmission can be derived analytically if we assume that
the mirror reflectivity is Rppr =~ 1 and if we recognize the structure is exactly
like a Fabry-Perot interferometer with mirror reflectivity Rppr separated by
the cavity thickness d.4,. The transmission is then given by [2]:

1
T\ = 14.6
( ) 1 + 4R} B Sin2 |7rancav _ ™gdeav | ( )
(1-RppR) A Ao
The transmission decreases to half of its value when
4R? TNHegn AN
DBR__gin? | 107121 _ g 14.7)
(1-Rppg)? Ao
. Around the cavity mode, AA = A — Ag = 0 s0
wo Ao 4R w(ngl —n3h)

B = = = 14.8
Q Aw1/2 A)\1/2 1-— R2 ni‘;n%q ( )

The last step in Eq. 14.8 is obtained from Eq. 13.9 for the reflectivity of
a DBR. One can see that the when the reflectivity of the mirrors increases the
quality factor of the cavity increases. This is because the cavity becomes more
isolated from the outside world and the coupling to the continuum modes of the
surrounding medium decreases.
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Figure14.6. Schematics of a 2D resonator coupled to a bus waveguide and areceiver waveguide.

5.  2-D Cavity Resonators

In this session we will expand the concepts discussed previously for 1D
cavity to 2D cavities using the coupled mode theory. Examples of 2D resonators
are rings, racetracks , and disk-shaped waveguiding structures. Here we will
consider a general resonator with any geometry and analyze its transmission
properties as a function of frequency. The exact geometry of the resonator is
accounted for only by the coupling coefficients between the resonator and the
adjacent waveguides.

Consider the configuration shown in Fig. 14.6 of a resonator coupled to two
waveguides. Light carrying information is coupled to the top waveguide, called
the bus. The information is then either transmitted or coupled to the bottom
waveguide through the resonator. The bottom waveguide is called the receiver.

Consider light incident from the left side of the waveguide with amplitude
54+1. The incoming and outgoing fields from the bus waveguide are denoted as
s4+1and s_1 at z = z4 and s49 and s_ at z = zpg. Similarly the fields at the
receiver waveguide are denoted as s;3 and s_3 at z = z4 and s;4 and s_4 at
z = zp. Here we will assume that the waveguides are single mode.

Using the coupled mode theory formalism, the outgoing amplitudes s_1,5_2,5_3
and s_4 are given by

s_1 = e IPBl(s,y —k3a)
s = e IPBl(s,1 —kia)
s.3 = e PRl (s, 4 —kla)
sy = e IPRl(5 5 k3a) (14.9)

Where k1, (k2),k3 and (k4) are the coupling coefficients of the waveguide to
the resonator in the forward (and backward) direction.
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Let us assume that the only incoming field is the sy1, i.e., (S42= S43=
5+4=0). One can see from Eq.14.9 that in the absence of the resonator, the
waveguide mode in the bus propagates undisturbed with a wavector Sp and the
phase delay between the two points 1 and 2 separated by | = (24 — zp) is
simply Bgl. Similarly to the analysis in Section 10.3, the coupling coefficients
are given by the overlap of the modes of the waveguides with the modes of the
resonator

Ky = JWGO/ dz//dwdy(nQ_nz)ngfe—jﬁB(zl—ﬁ)

Ky = ]weo/ dz//da:dy(n2 —nﬁ)gré'?e_jﬁ’?(zl_“)

Ky = jweo/Z dz//dxdy n? — n2)&, ER ~iBr(z1-22)
1

Ks = ]weo/z dz//dxdy n? - n2)E.ERe ~iBr(z1-22)14.10)
1

where &, £B, and EF are the mode profiles of the resonator and the bus and
receiver waveguides. Here for simplicity we are dropping the indices for the
different resonator modes. The evolution of the resonator in time is given by
a modified Eq. 14.1, including the coupling of the resonator to the incoming
waveguide modes s;

da . 1 1 1
P (jwo — e ;)a +k1sy1 + kosyo + k3sys + kasyq (14.11)
o [

where 1/7y is the decay rate due to loss, 1/7,, 1/7 are the decay rates due to

the coupling to the bus and the receiver. The change in energy in the resonator
mode is equal to the difference between the incoming and outgoing powers.

d|a|2 2 2 2 2
y = lsulP = Is_f* - L (14.12)

i=1 i=1

Where L is the power lost due to loss. Substituting Eq.14.9 into Eq.14.12, we
have

d|a|2 21 12 *

s =Y klal?* + k1sy1a* + kyspa— L (14.13)

The change in energy can also be derived from Eq.14.11

d 2laf*  2a? 2|al?
|a| 2al” |a| + kysy1a* + kysyia — 2al” (14.14)
0

dlal* _
Te
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Comparing Eq.14.13 and Eq.14.14 we have

2 2
E24+k2=" and K24+kI== (14.15)
Te Tf
The quality factor of the resonator is given by Eq.14.3
Q= % (14.16)

where 1/7 = (1/7.)+ (1/7f) +(1/70) From Eq. 14.17 and Eq. 14.15 one can
see that the higher the overlap between the resonator and the waveguide modes,
i.e. the smaller the gap between the resonator and waveguides, the smaller the
quality factor of the cavity.

Now we need to determine the amplitudes a , s_; and s_». From Eq.14.4

we have

— k151+
T @ —we) + (1/7e) + (/) + (1/70) (14.17)

Therefore Eq. 14.9 becomes:

S_1 = —e~IBl Faky S+1
Jw —wo) + (1/7e) +(1/75) + (1/70)
) ki k3
— Bl _ 1~
52 ¢ (1 Jlw=wo) + (L/7e) + (1/75) + (1/To)> o
. ki kX
— sl 1hvyg
58 © T w—wo) + () + () + ()
5.4 = e A Faks (14.18)

3@ —wo) + (1/7e) + (1) + (1/m0) "

6. 2D Resonator Coupled to a Single Waveguide

Let us consider the configuration in Fig 14.6, with a negligible coupling of
the bus to the resonator 1/7¢ = k4 = k3 = 0. For a travelling wave, coupling
to the backward direction is zero, therefore ks = 0. From Eq. 14.18, the
transmission response at resonance wy = w is given by

2
|1 )?

T ls_o)*
j(w _WO) + 1/To+ l/Te

B |S+1|2 B

(14.19)

Off resonance, |w — w,| >> 1/7p the transmission is equal to 1. At the
resonance wavelength the transmission from Eq.14.15 is equal to:

1—7e/7o
147 /m0

i

2 2
sl _I k1] (14.20)

Csplr U+ 1/
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Figure 14.7. SEM photo showing the topview of a ring resonator coupled to a single waveguide.
Inset shows the whole ring structure.

Therefore the effect of the loss on the transmission response is strongly depen-
dent on the cavity geometry. Let us consider high losses. For a cavity with high
Q, or 7, & T, the loss affects strongly the transmission response: 1" = 0. For a
cavity withlow Q, orry > 7., then the effect of the lossis small,i.e.,T” = 1. This
explains why cavities with high Q’s are so difficult to fabricate. If Q increases,
the effect of the losses becomes stronger. This is precisely why achieving high
Q resonators in practice is challenging: once the Q is increased, any small loss
becomes very significant and decreases the transmission response.

An example of a 2-D cavity is a ring resonator. In such a ring resonator, the
resonance wavelengths satisfy the condition:

Rness(Mo)l - L
Ao

where n r is the complex effective index of the eigenmode inside the resonator,
Ao is the free-space wavelength, L = 27 is the ring resonator perimeter, and m
is an integer. Figure 14.7 shows an example of a fabricated ring resonator with
Sicore and SiO2 cladding and a diameter of 10i: m. Fig 14.8. shows the spectral
response of the ring resonator. One can see that, as predicted from Eq.14.20,
the transmission is close to 1 except for the wavelengths that correspond to the
resonances. At these resonances, light is scattered off the sidewall roughness
of the waveguides and the transmission decreases.

=m (14.21)

7.  Ring Resonator as an Add/Drop Filter

Ring resonators coupled to two waveguides can be used an add/drop filter
for WDM. In such filter, light is coupled in to the bus waveguide with several
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Figure 14.8. ' TM spectral response of a ring resonator coupled to a single mode waveguide.

wavelength. A small spectral range of those wavelengths coupled to the struc-
ture are coupled to the resonator and "dropped" into the receiver waveguide.
Similarly, light coupled into the Bus can be added to the Bus waveguide (see
Fig. 14.9). By cascading several of these resonators, one can demultiplex or
multiplex signals for WDM applications. In order to understand the principle
of operation of the add/drop filter, we will first analyze the ring resonator as
a demultiplexer with an incoming traveling wave as an input as described in
Fig. 14.9(a). In this case, the waves propagating backward in the bus and the
waves propagating forward in the receiver can be neglected. Therefore, from
Eq.14.9 ke = k3 = 0. From Eq.14.14,5_4 = s41 = 0. The coupling rate of
the resonator mode to the bus and receiver waveguides is then

2
k%:i and k2 = — (14.22)
Te Tf

The light intensity I transmitted through the bus waveguide and the light
intensity Ip exiting the receiver waveguide in the “drop” channel, are given by:

2/7e
Jw—wo)+1/10+ 1/7e +1/7¢

(14.23)
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2
/I
==l = TeTs (14.24)
b S41 Jw—wo)+1/10+1/7e+ 1/7¢ )

Off resonance, It = 1 and Ip = 0. If a maximum power-transfer condition
hold,

1 1 1
—=— - — (14.25)
T Te Tf
then at resonance Eqs.14.23 and 14.24 become:
Ir =0
Te
Ip = 1--= (14.26)
70

Therefore, if loss can be neglected, the channel coupled into the ring resonator
with a wavelength corresponding to the resonance frequency of the ring is
coupled to the bottom channel. All the other channels with wavelength that do
not correspond to the resonance frequency of the ring are transmitted through the
bus waveguide. The net result is a drop of a channel from the bus waveguide.
From symmetry consideration, the response of the multiplexer shown in Fig
14.8 can be understood from eq. (23) as well. Light traveling in the bus with
wavelength that do not correspond to the resonance frequency of the ring are
transmitted through the bus waveguide. Light coupled to the add channel in
the bottom waveguide, with a frequency corresponding to the one of the rings
resonances, will couple to top waveguide and will be transmitted through the
bus in addition to the off-resonance signals propagating through the same bus.
The net result is an addition of a channel to the bus waveguide.

8.  Sharp Bends Using Resonators

Waveguide bends are basic structures for optical interconnects, and are there-
fore very important photonic integrated circuits. For highly dense photonic
circuits, these bends are required to be extremely sharp in order to minimize
real estate and maximize integration. However, as we saw in Section 8.6, any
abrupt directional change in the dielectric waveguide cause mode conversion
into radiation losses. Here we will show how resonators can be used for sharp
waveguide bends with low loss.

The transmission of the resonator given by Eq. 14.19 is solely governed by
the resonator properties and the coupling of the waveguides to the resonator.
The relative configuration of the bus and receiver waveguides is not included
in the expression. For example, one could envision two waveguides in a sharp
angle, connected by a resonator (see Fig. 14.10). If the resonator is lossless,
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Figure 14.9. A ring resonator can serve as drop ((a), or as an add (b).
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Figure 14.10. 'Two possible configurations for a waveguide bend. A) a harsh 90° bend that will
suffer tremendous radiation losses, and b) a bend with an impedance matching resonator which
couples one waveguide to the other.

at the resonance wavelength the transmission is equal to one). Therefore a
resonator can "bridge" between the incoming field and the outgoing field in
a configuration of the waveguides that would otherwise induce high losses.
Figure 14.10 shows an example of a 90° bend (a) and a 90° bend modified
into a cavity (b). In case (a) most of the light at the bend will be coupled into
radiation modes. In case (a) light will be totally coupled to the neighboring
waveguide through the resonator involving only loss of the resonator.
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d=0.7 um

d=0.2 um

Figure 14.11. A further modification on the resonator idea.

In practice, the resonator has losses, both due to radiation and due to fabrica-
tion losses. In this case, from Eq.14.26 one can see that in order to minimize the
effect of the losses, the coupling of the waveguide to the resonator 1/7, must
be increased relative to radiation losses 1/7p, so that the transmission of the
bend is equal to T, = 1 — 7. /7, = 1. A better coupling between the incoming
waveguide to resonator can be obtained by pushing the mode of the resonator
inward. The structure shown in Fig. 14.11 is a square resonator, with a "cut" in
the corner of the bend for better resonator-waveguide matching. The structure
is designed for Si (n=3.2) surrounded by air. The waveguide widths are 0.2 um
and the dimension of the resonator d shown in the figure is equal to 0.7 pum.
Using such structures, the authors in [1] have shown a 90° bed with submicron
dimensions and with losses less than 1% per bend.

9. Summary

The use of high index waveguides provides the ability to make very small
optical structures, but the issues of bending the light around corners without
suffering excess loss has always been a limitation. We tried to show here that
by taking advantage of resonant structures one could dramatically enhance the
usefulness of integrated optical structures. The ability to couple between wave-
guides, and to make resonant structures which show high wavelength selectivity
is a critical step in eventually making complex optical circuits completely based
on couplers and filters.
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Appendix A
The Goos-Hinchen Shift

When describing total internal reflection of a plane wave, we developed expressions for
the phase shift that occurs between the incident and reflected waves as a function of angle of
incidence. We explained the phase shift as being due to the fact that some energy is stored in
the evanescent field of the interface before returning to the reflected wave. This relative storage
delay introduced a phase shift.

A second way to look at this problem is using rays, and to describe the phase shift as being
due to the ray actually travelling a small distance into the lower index medium before being
reflected [?]. Figure ?? shows a ray incident on an interface at an angle greater than the critical
angle. An incident ray behaves as if it were laterally displaced upon reflection.

If we examined this problem with a plane wave, we would see no shift simply because there
is no lateral variance or structure in a plane wave. We will study the reflection using a packet
of plane waves that form a beam of light. The incident beam is labelled A. A simple way to
describe a spatial beam is to superimpose two plane waves with slightly different angles. If the
z-component of the corresponding wave vectors are § = A, then the incident wave can be
described (at z = 0) as

Il

A(z) [eJ'Aﬂz + e—jAﬁZ]e—jﬂz

= 2cos(ABz)e 7P* (A1)

"%

AN
/ L. \nf
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Figure A.1. A ray that undergoes total internal reflection is laterally shifted a distance 2z,.
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The phase shift that occurs upon reflection is a function of § and 3. For small AfZ we can use
the expansion

B(6+ AB) = B(B) + A® = B(B) + %Aﬁ (A2)

Applying the appropriate phase shift to each component of the superposition, the reflected wave
atz =0is

B(z) = [eJ'(Aﬁz—2A‘1’) + e—j(AﬂZ~2A¢)]e*j(ﬁ2~2¢)
= 2cos AB(z — 2z,) e P* (A.3)
where
2o = dd/dB (A4)

Thus, the phase shifts accumulated by the various components of the wave packet have the net
effect of displacing the beam along the z axis a distance of 2z,. The spatial shift is largest where
the derivative of the phase shift with respect to incident angle is largest. Inspection of Fig. 2.18
in Chapter 2 shows that this shift is largest near the critical angle. In terms of wave parameters,
we can evaluate the derivative in Eq. ?? using Eq. 2.108 to get

kozs = —200 (A.5)

VB2 —n2

for the TE modes. The TM modes are described by

tan 6 1
kozs = B —n2 (ﬁ2/n§ YA =1) (A.6)

This lateral shift is called the Goos-Hanchen shift. Notice that the ray picture can be used to
describe how far the field penetrates into the low index medium. From Fig. ??, this distance is

$:Zs/tan9:lg2+ng:$ (A7)

The depth described by the Goos-Hénchen shift is exactly the same as the characteristic length
described by the decaying evanescent field using the wave picture.

All of this may seem like a needlessly complicated way to look at phase shifts. But there is
a practical application. The phase shifts that occur on reflection really do lead to an effective
displacement of the beam. This is critical in optical waveguides which use reflecting bends.
Consider the waveguide structure shown in Fig. ??. A rectangular waveguide is bent by using
TIR to redirect the guided light around a corner. Such a structure saves a great deal of area on
an integrated optical circuit.

We know that coupling efficiency depends on having the input mode profile match the output
mode profile. To take account of the Goos-Hénchen shift, the reflecting facet must be moved
toward the inside corner of the bend. Calculations and measurements have shown losses on the
order of 1 dB due to this shift [?]. These losses are critical in photonic integrated circuits, and in
laser designs. In practice the position of the reflecting facet is adjusted based on Goos-Hanchen
calculations to maximize the overlap of the reflected and guided mode.

The “impedance matched" bends described in Chapter 13 alleviate some of the issues pre-
sented here.
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Appendix B
Bessel Functions

1. Bessel Functions of the First Kind

Bessel Functions are the solution to the differential equation (in real variables)

d?
221% +a: +(a: —Ay=0 (B.1)

where v is called the order. When v is not an integer, there are two independent solutions to the
equation, J,, (z) and J_, (),

( 1)’: v+2k
Z PR ( ) (B2

For the cases examined in this book, v is always an integer, so the I' function, I'(v + k + 1),
can be replaced by a simple factorial, (v + k)!. In such a case, the solutions have the form

Ju(@) = 2v 2! [1” P 2 0w+ D2 “] (B3)

The integer v can be positive or negative, and the relevant solutions are related through

Jou(@) = (~1)* . (2) (B.4)

Using the recurrence relations, it is possible to relate various solutions. Some of the relations
we found useful in deriving certain formula in this text are

@)+ @) = 2

Jo-1(z) = Josa(z) = 2J,(z)
vl(z) +zJ,(z) = xJ,-1(x)
vlu(z) —zJ,(z) = zoi1(z)

J@) = - (B.5)
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Explicit differential forms of the Bessel functions are derivable from the above equations:
J(@) = Jia -2 L()
J(@) = —dtZd(@) (B.6)

2. Modified Bessel Functions

The modified Bessel functions of the second kind that are used to describe evanescent waves
can be derived from the integral representation

K. (z) = F\gﬁ/l—?/)m /0 e~ G2 ¢ gy (B.7)

For integer values of v, the following recurrence identities can be used to convert from one
order to another:

(1) Ko@)~ () Kona(e) = (1)K (2)
(-1)Ki(@) = (-1 Kuma(@) = Z(-1)" Ko (@)
(1" Ku1(@) + ()" Kun(z) = 2(-1)"Ki(z) (B.8)
(-1)Ki(@) = ()" Ken(@) + 2(-1)"Ke(2)
(B.9)
3. Asymptotic Expansions
For fixed order v (v # —1,-2,-3,...),and z — 0,
~ (=/2)"
T@) ~ g (B.10)
For fixed order v and |z| — oo,
1/2
Ju(z) =~ (W_Zx) cos (z — V—;— - %) (B.11)

For fixed v and large |z,

. 1/2 2 _ I/2—- 2 _
Ko@)~ () e [1— poi ¢ 2!1(23(;)’; %) +] (B.12)




Appendix C
Optical Power Limit of a Waveguide due to
Stimulated Raman Scattering

Consider an optical fiber with area A and length L. Let a pump wave with frequency wp be
injected at z = 0 with power Pp. The pump intensity in the waveguide is therefore I, = P,/A.
In the absence of any nonlinear interaction, the pump propagates as

Pp(2) = Pp(0)e™ 7" €N
The Stokes wave is described by the following differential equation
[d/dz + as)Ps(2) = GrIp(2) Ps(2) (C2)

where G, is the Raman gain coefficient for the medium and wavelength. If we make the
simplifying assumption that the pump power is not depleted by nonlinear processes (this will
give us an upper limit), the Stokes wave then follows

[d/dz + 5] Ps(2) = GrPs(2)I,(0)e” *?* (C3)
The solution to this is
Py(2) = P;(0) exp(—asz + g—r—iﬂ[l —e %)) (C4)
Y

If we assume that the fiber is very long, so that ap L >> 1, then Eq. ?? becomes

Py(L) = P,(0) exp[—asL + Gr_ip(O_)] (C5)
P
The gain term in Eq. ?? is equivalent to saying the gain is produced by the incident pump power
over an effective length, Lefr = 1/ 0.

If no Stokes wave is injected at z = 0, then all output appearing at z = L will be due to
amplified spontaneous Raman scattering. The summation over the length of the fiber for all the
spontaneous emission weighted by its net gain is equivalent to assuming an input flux of 1 photon
per mode of the fiber. Ref. [?] shows that this is equivalent to defining the input power as

P;(0)ess = (hvs)(Begs)(number of transverse modes) (C.6)
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where v A
U Vfiwhm
Befj = - C.7
=2 [0GH oyl (€5
Now, to ensure that nonlinear conversion of pump power into Stokes power is not a problem, we
demand that the Stokes power at z = L is less than the signal power at z = L

200} < by 0) expl-an ] (C8)

Py(0)ess exp[~asL +
The absolute upper limit to the pump power will be Eq.?? is satisfied with an equality. This
power is defined as P..;;. For a single mode fiber, and assuming s = oy, the relation becomes

GrPcri 8/ GrPcri
\/_(hl/s) ( ) Al/f,,,hm = (Tpt) exp (—'—A&—;—t) (C9)

This is a fairly complex equation. It turns out that the critical power is only weakly dependent
on the choice of Avfyhnm, but is critically dependent on &, G — r, and A. For the range of
parameters used for fused silica (Avfyhm ~ 6THz, a & 1075 (which corresponds to about 4
dB/km), and G in the range of 10~*2 W/m, the critical power can be described to a very good

approximation as [?]
Periy = 16(Aap/Gr) (CIO)
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Appendix D
Useful Data

Table D.1. Physical Constants

Name Symbol  Value

Velocity of light in vacuum ¢ 2.99792 x 108 m/sec
Permittivity of vacuum €0 8.8542 x 107 Farad/m
Permeability of vacuum Lo 47 x 1077 Henry/m
Electron charge e 1.60219 x 1071° C
Electron mass Me 9.1095 x 107! kg
Planck’s constant h 6.6262 x 1073 J-sec
Proton mass mp 1.67265 x 107" kg
Bohr radius ag 0.5284

Avogadro’s number Na 6.023 x 1023
Boltzmann’s constant k 1.380 x 1072 J/K

Table D.2. Energy Conversion factors

leVv =1602x1071°J
leV =242 x 10" Hz
lev =8.07 x 10%cm ™t

300K =259x107%eVa kev

Table D.3. The Electromagnetic Spectrum

Typical Wavelength  Frequency  Photon Energy

(cm) (Hz)
sphline AM radio 3 x 10*
FM radio 3 x 10?
Radar 3
Infrared 3x 1074
Visible 6 x 1075
Ultraviolet 1x 1075

X-rays 3x 1078

(eV)

108 4%107°
108 4 %1077
10%° 4%x107°
101 0.4

5x 10 2
3x10% 12

108 4000




Index

(transverse electric mode
slab waveguide
characteristic equation for, 50

E%¥ mode, 101

absorption loss, 166
acoustooptic modulators, 324
ad/drop filters, 358

analytic profiles, 155
anti-reflection coating, 29
apodizer, 227

attenuation, 166

attenuation coefficient, vy, 34, 46

band gap
photonic, 340
Beer’s Law, 166
bending loss, 179
Bessel functions, 76
boundary condition
FDTD method, 236
boundary conditions
cylindrical fiber, 78
rectangular waveguide, 102
BPM, Beam Propagation Method,numerical
techniques
FDTD, 209
Bragg grating, 350
Bragg gratings, 261, 290
Bragg modulators, 328
brightness, B, 280
Brillouin scattering, 193

cavity Q, 357
characteristic coupling length, L., 139
characteristic equation, 50
step-index fiber, 80
graphical solution to, 50
rectangular waveguide, 105

characteristic impedance,n, 19
codirectional coupler, 246
confocal parameter, 316
constitutive relations, 12
coupled mode theory, 241
coupled waveguides, 230
coupling .
fiber to slab waveguide, 276
graded index waveguide, 283
surface, coupling
grating, grating coupler, prism coupler,
284
coupling constant, K, 247
coupling efficiency, 273
critical angle, 61, 30
cut off conditions
step index fiber, 90
cut-off
conditions, 61

datacom, 6
degenerate mode coupling, mode copling
degenerate, 255
dielectric constant, 21, 130
dielectric interfaces
boundary conditions in, 23
diffraction, 217
dispersion, 125
modal, modal dispersion, 126
photonic crystal, 343
waveguide, 126

effective index, 62
cffective index method, 113
eigenvalue

equation, 50

slab waveguide, 48
Eikonal equation, 151
electric field
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transverse, 24
transverse electric, 44
transverse magnetic, 44
electric field, E, 11
electric flux, 12
electric permittivity,e, 12
electro-absorption, 323
clectro-optic tensor, 309
electromagnetic waves
transverse, 18
clectronic transitions, 167
cmbedded waveguide, 107
evanescent field, 34

Fabry-Perot interferometer, 319, 354
FDTD, 233

FDTD, Finite-Difference Time Domain, numer-

ical techniques
FDTD, 209
Fermat’s principle, 24
FFT, 213
fiber nonlinearities, nonlinear fiber optics, 182
fields
step index cylinder, 77
filament bulb, 280
flux
electric, 12
electric, D, 11
magnetic, B, 11
Fourier transforms, 212
frec spectral range, 321
frequency
normalized, 61
Fresnel
formulae, 27
reflection, 28

gaussian profile, 213
glass
ultrapure, 5
glass fiber, 4
Goos-Hinchen shift, 35
group delay, 132, 140
group index, 133
group velocity, 22
group velocity dispersion, GVD, dispersion
group velocity, 133
group velocity, vg, 21
guassian mode profile, 235

HE;; mode, 91
Hybrid modes, HE modes, EH modes, 83

impurity absorption, 170

index of refraction, 130
extraordinary, 13
ordinary, 13

index of refraction, n, 20
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integrated spectrum analyzer, 329
inverse taper, 277

Kerr efect, 304

Lambertian source, 280
Laplacian
scalar, 15, 16
vector, 15
law of reflection, 29
LC circuit resonance, 352
lens coupling, 283
light line, 343
longitudinal fields
E., 75
Lorentz model, 128
LP modes, 86

Mach-Zender interferometer, 321
magnetic field, H, 11
magnetic permeability, mu, 12
Manufacture
circular fibers, 174
manufacture
planar waveguides, 177
material dispersion, dispersion
material, 127
Maxwell’s equations, 1, 10, 18
microbending, 182
MKS units, 11
modal dispersion, 154
modal dispersion, dispersion
modal, 136
mode
completeness, 60
degenerate, 59
intuitive picture, 56
properties of, 58
superposition, 60
mode coupling, 271
mode coupling equation, 245
mode designation, 54
mode number
angular, 80
radial, 80
modes
guided
number of, 60
number of nodes, 54
symmetry, 54
modlators
figures of merit, 302
modulation efficiency, 302
modulator
bandwidth, 302
phase, phase modulator, 312
power, 314
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modulators

polarization, 317
multilayer film, 337
multimode waveguides, 149
multiplexer, 349

normalized
index, b, 62
values, 62
normalized frequency
rectangular waveguide, 106
step-index fiber, 90
normalized modes, 245, 252
notch perturbation, 249
numeric aperture, NA, 67
numerical aperture, 65
numerical solutions, 158

omnidirectional reflector, photonic crystal
omnidirectional reflector, 345
optical fiber
waveguide, 4
optical source coupling, coupling
optical source, 279
optics
geometric, 9
physical, 9
quantum, 10
wave, 10
oscillator strength, 131

parabolic index profile, 153
permitivity, 127
permittivity tensor, 12
perturbation theory, 110, 243
phase fronts, 216
phase shift

reflection, 35
phase shift calculations, 221
phase space, 212
phase velocity, 19
photoelastic effect, 325
photonic crystal, 336

1-D, 342

2-D, 346
Pockel’s effect, 304, 308
polarization, 243
polarization modulation, modulators

polarization, 318
Poynting vector, 19
preform, 175
principal axes, 306
propagation coefficient, 3, 34

Q, Quality Factor, 352
quantum optics, 10
quarter-wave stack, 338

375

Raman scattering, 184
Raman-Nath acousto-optic modulation, 326
Rayleigh scattering, 171
reciprocity, 255
rectangular waveguides

losses, 176
resonator

2-D, 354

1-D, 353
resonators, 361
ridge waveguide, 99, 115
ring resonators, 358

sapphire refractive index, 134
self phase modulation, 195
Sellmeier coefficients, 132
Sellmeier equation, 131
Si-Ge waveguides, 115
slab waveguide

characteristic equation, 50

graphical solution to, 50

Snell’s Law, 26, 29
soliton, 2
solitons

optical, 6
solitons, optical solitons, 198
spatial frequency, 17, 249
speed of light

c 16
split step process, 223
Stimulated Raman scattering, 189
Stokes Theorem, 11
symmetric waveguide, 55

TE modes
step-index fiber, 82
telecom, 5
TM modes
step index fiber, 82
Total Internal Reflection
ray tracing, 29
wave description, 31
Total Internal Reflection, TIR, 29
transmission window, 172
transverse electric field
amplitude transmission, 27
reflection, 27
transverse electric field, TE, 24
transverse magnetic wave, 27

veetor

Poynting, 19
velocity

phase, 19
vibrational transitions, 169

wave
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transverse magnetic (TM), 27
wave equation, 14
cylindrical coordinates, 74
rectangular waveguides, 101
solutions, 16
wave optics, 10
Waveguide
development
optical, 3
waveguide
effective index, 62
glass, 4
lens, 4
continuous, 4
modes
number, 60
multimode
numerical aperture, 67
normalized index, 62
numerical aperture, 65
optical, 2
Total Internal Reflection, 31
optical fiber, 4
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planar, 43
slab, 43
eigenvalues, 48
normalized propagation parameters in,
62

symmetric, 55
waveguide dispersion, dispersion

waveguide, 140
waveguides

photonic crystal, 346
wavelength

optical fields, 18
wavelength division multiplexing, 6
wavevector

longitudinal, 3, 46
wavevector, k, 17
wavevector, transverse, K, 46
WDM, Wavelength Division Multiplexing (WDM),

349

WKB aproximation, 150

zcro dispersion point, 136





