
EDA322ChAcc processor D&IT, Chalmers 2018

1

EDA322Digital DesignLab

ChAccProcessor
Designed by: Angelos Arelakis; Anurag Negi, Ioannis Sourdis

This document provides the specifications of the ChAcc (Chalmers Accumulator) processor that

will be implemented, evaluated in terms of performance, area and power dissipation and finally

downloaded on an FPGA during the 7 lab sessions of the course Digital Design(EDA322).

The ChAcc processor, which is based on the lab processor of HY-120 course in the institute of

Computer Science in FORTH, Greece, is a simple but slow processor and can run a variety of

programs. It is an 8-bit processor meaning that it executes operations on 8-bit data but using12-

bit wide instructions. ChAcc makes use of the accumulator architecture, which has only one

special register that is called Accumulator. The Accumulator keeps the result of the most recent

operation, while almost every operation works on the Accumulator and the content of a

memory location. The Accumulator is so named because in this kind of architectures, it is

possible to perform consecutive operations (e.g., additions) and accumulate the result to this

register.

This document describes the ChAcc processor and provides important details regarding the

Instruction Set Architecture (ISA) and the control signals. This document is organized in the

following manner. It first presents the processor’s datapath, where it briefly describes the

contained components. Then it continues with the presentation of the ISA, where it discusses

the syntax and the use of the instructions.At the end, the use of the controller is described

detailing the set of control signals and when they must be set/reset so that ChAcc can correctly

function.

Section 1 – Datapath

The ChAcc datapath is depicted in Figure 1. The datapath consists of many different units such

as an adder, an Arithmetic and Logic Unit (ALU), a bus, memories, muxes, registers and 7-

segment displays, while on the upper part of the figure we find the controller. The controller is

the brain of the processor since it orchestrates the different units based on the executed

instruction (see ISA section).Please refer to the last section for more details about the controller.

EDA322ChAcc processor D&IT, Chalmers 2018

2

The ChAcc processor, like any processor, runs a set of instructions or in other words a program.

The program is executed instruction-by-instruction. An instruction execution can be

summarized in the following steps:

1. The instruction is read from the instruction memory using the current program counter

(PC) as index address.

2. The instruction is split into opcode and instruction arguments and decoded by the

controller to figure out which processor’s units will be used and which control signals

must be set during the whole instruction’s execution.

3. Data are fetched using the address part of the instruction from the data memory (except

for the jump/branch instructions).

4. Finally, the instruction is executed using the Arithmetic-Logic Unit (ALU). The result is

saved into the Accumulator and may be also displayed onto a display.

The rest of this section focuses on particular components of the datapath.

0

1

FE

1

p
c
L

d

Instruction

Memory

p
c
S

e
l

FE/

DE

in
s
tr

L
d

o
p

c
o

d
e

4

im2bus

0

1

a
d

d
rM

d

Data

Memory

d
a

ta
In

DE/

EX

d
m

W
r

d
a

ta
L

d

A
L

U

dmRd

0

1

a
c
c
S

e
l

a
lu

M
d

a
c
c
L

d
A

C
C

acc2bus

fl
a

g
L

d

ext2bus

External

Bus

Internal Bus

Instruction

12

a
d

d
rF

ro
m

In
s
tr

u
c
ti
o

n

8

Addr.

pc

8

nxtpc

8

+

d
is

p
L

d

FE DE/DE* EX/ME

F
R

e
g

InstrMemOut

12

8

MemDataOut

8

8

M
e

m
D

a
ta

O
u

tR
e

g
e

d

8

OutFrom

Acc

8

B
u

s
O

u
t

B
u

s
O

u
t

BusOut

extIn

P
C

In
c
rO

u
t

8

8

8

in
s

tr
2

s
e

g

p
c
2

s
e

g

A
d

d
r2

s
e

g

d
M

e
m

O
u

t2
s

e
g

a
lu

O
u

t2
s

e
g

flag2seg

d
is

p
2

s
e

g

busOut2seg

e
rr

S
ig

2
s

e
g

a
c

c
2
s

e
g

A

B

FlagInp

8
8

8

D
is

p
la

y

Controller

N
E

Q

E
Q

CLK

ARESETN

Master_load_enable

Figure 1: ChAcc processor datapath

Memory

The program’s instructions and data are saved into the memory. ChAcc follows the Harvard

architecture where the memory is organized in two separate memories: an instruction memory

(IM) and a data memory (DM). Both instruction and data memories are accessed using an 8-bit

EDA322ChAcc processor D&IT, Chalmers 2018

3

address (implying both memories have 256 entries) and can be initialized using an initialization

file (memory initialization file – mif).

The instruction memory stores the program instructions containing opcode and data memory

address (12 bits) while the data memory stores the data (8 bits). Hence the instruction memory

has a size of 384B while the data memory has a size of 256B. Finally, the instruction memory is a

Read Only Memory (ROM), meaning that cannot be written at run-time, while the data memory

can be both read and written at run-time. The memory write is synchronous. On the other hand,

the read is implemented in an asynchronous way, but the memory read’s output is eventually

connected to a register. For example, observe that the “MemDataOut” and “InstrMemOut”,

which are the outputs of the Data Memory and Instruction Memory, respectively, are connected

to the registers “FE/DE” and “DE/EX”, respectively, as depicted in Figure 1.

Registers

The registers of the ChAcc processor are the following:

1. Accumulator (ACC): It is the main register of the ChAcc processor.

2. “FE”, “FE/DE”, “DE/EX”:The datapath is divided in several stages1, thus registers are

needed to separate the various stages. “FE/DE” and “DE/EX” registers are named

based on which datapath stages they separate. For example, the register between the

Fetch and Decode stage is named “FE/DE”. On the other hand, “FE” is placed before the

Fetch stage.

3. Flag Register (FReg): It keeps the following4 flags inmost significant bit(MSB) toleast

significant bit(LSB) order:

a. Ovf2: It indicates overflow in the ALU operation.

b. NEQ3: Indicates that the two ALU input operands are not equal.

c. EQ3: Indicates that the two ALU input operands are equal.

d. Zero2: Indicates that the ALU data output is zero.

4. Display: The Display register saves the content of the Accumulator if we decide to show

its value onthe FPGA’s display, using the respective instruction DS.

Looking at Figure 1, we notice that all registers take an input signal from the controller. Based

on this signal, the register either maintains the current value, or it updates it with a new one.

Thus, the register is implemented as a mux connected to a flip-flop, as is depicted in Figure 2.

1An instruction execution is divided in phases. Each phase is executed in one processor’s stage (one clock cycle).
2“Ovf“ and“Zero“ are connected to two FPGA leds (Not shown in Figure 1).
3“NEQ“ and“EQ“ are used by the controller in certain situations. Please refer to Section “Controller” for more details.

EDA322ChAcc processor D&IT, Chalmers 2018

4

0

1

loadEnable

CLKARESETN

in
res

Figure 2: Register –D flip-flop with load enable

Arithmetic and Logic Unit (ALU)

The datapath contains an Arithmetic and Logic Unit (ALU) that can perform all the necessary

arithmetic and logic operations. In most modern processors, the ALU can perform addition,

multiplication, division between integer and floating point operands, and all logic operations.

However, the ALU of theChAcc processor is rather simple and only performs addition as well

as few logic operations (and, not, and compare), as depicted in Figure 3.

adder and not

00 01 10 1100 01 10 11

cmp

ALU_inBALU_inA

NotEqALU_outCarry EqisOutZero

88 88

88 88 88
SUMCOUT

andOut
notOut EQ NEQ

operation

2

==0
8

88

?

?

CIN

Logic

needed

for sub

A B

A B
A B A

adder and not

00 01 10 11

cmp

ALU_inBALU_inA

NotEqALU_outCarry EqisOutZero

8 8

8 8 8
SUMCOUT

andOut
notOut EQ NEQ

operation

2

==0
8

8

?

?

CIN

Logic

needed

for sub

A B

A B
A B A

Figure 3: Block diagram of the ALU

The ALU has three inputs and two outputs:

1. Two inputs named as“ALU_inA” and “ALU_inB”,for the data operands (8 bits).

2. One input named as“operation”,for the control signal(2 bits) that determines the ALU

operation.

3. One output (8 bits) named as “ALU_out” and connected to the ACC register,for the

result of the operation.

4. Four 1-bit outputs that are connected to the respective flags of the Flag Register (FReg)

in the following MSB to LSB bit order:

o Carry: The carry-out (COUT) of the adder.

o NotEq: Output of the comparator unit (cmp). Set when the input data operands

are not equal.

o Eq: Output of the comparator unit. Set when the input data operands are equal.

EDA322ChAcc processor D&IT, Chalmers 2018

5

o isOutZero: Set when the ALU data output is zero.

Bus

On the bottom of Figure 1, we can see the bus implemented with tri-states buffers.Each tri-state

buffer is driven by a control signal. However,this bus implementation with tri-state buffers is

not preferred because if more than one tri-state buffers are on, the bus will take an undefined

value. In the lab3 assignment, an alternative bus implementation is presented using

multiplexors instead.

The bus has 8 inputs (4 data inputs and 4 control inputs) and 2 outputs:

1. addrFromInstruction: The source of this data input is the 8 LSB of the instruction as it is

output by the “FE/DE” register.

2. MemDataOutReged: The source of this data input is the output of “DE/EX”.

3. OutFromAcc: The source of this data input is the output of the ACC register.

4. extIn: The source of this data input is the output of the external bus.

5. im2bus: Control input. When enabled the bus output is addrFromInstruction.

6. dmRd: Control input. When enabled the bus output is MemDataOutReged.

7. acc2bus: Control input. When enabled the bus output is OutFromAcc.

8. ext2bus: Control input. When enabled the bus output is extIn.

9. busOut2seg: The bus data output.

10. errSig2seg: The error output of the bus. It is set when two or more control inputs of the

bus are set.

7-segment displays

Many datapath signals are connected to 7-segment displays, as depicted in Figure 1. These

displays can be used by the user to track the value of particular signals or registers, when the

processor is running, to verify the correct operation. The 7-segment displays are very useful

when debugging the design.

Top-level design

The entity of the top-level design of the ChAcc processor’s datapath is presented in Figure 4. In

this code snippet, the inputs/outputs as well as their data width are provided. The signals that

are driven to the 7-segment displays have self-explanatory names. All the synchronous circuits

are clocked (on the rising edge) with the signal CLK. The reset(ARESETN) is asynchronous and

negatively set (set when ‘0’).The use of master_load_enable is described in Section 3.

EDA322ChAcc processor D&IT, Chalmers 2018

6

Section 2 – Instruction Set Architecture (ISA)

The ChAcc processor uses its own Instruction Set Architecture (ISA). The ISA is the set of
instructions that this processor can recognize and execute.

The ISA of ChAcc is shown in Table 1. The table contains the following columns:

1. Machine code: The binary code of an instruction.

2. Instruction name: The name of the instruction.

3. The instruction written in assembly language format.

4. A brief description of the instruction.

5. Some extra information that must be taken into consideration in particular cases.

entity EDA322_processor is

 Port (externalIn : in STD_LOGIC_VECTOR (7 downto 0); -- “extIn” in Figure 1

 CLK : in STD_LOGIC;

 master_load_enable: in STD_LOGIC;

 ARESETN : in STD_LOGIC;

 pc2seg : out STD_LOGIC_VECTOR (7 downto 0); -- PC

 instr2seg : out STD_LOGIC_VECTOR (11 downto 0); -- Instruction register

 Addr2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Address register

 dMemOut2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Data memory output

 aluOut2seg : out STD_LOGIC_VECTOR (7 downto 0); -- ALU output

 acc2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Accumulator

 flag2seg : out STD_LOGIC_VECTOR (3 downto 0); -- Flags

 busOut2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Value on the bus

 disp2seg: out STD_LOGIC_VECTOR(7 downto 0); --Display register

 errSig2seg : out STD_LOGIC; -- Bus Error signal

 ovf : out STD_LOGIC; -- Overflow

 zero : out STD_LOGIC); -- Zero

end EDA322_processor;

Figure 4: The “entity” VHDL code of the Top-level design

EDA322ChAcc processor D&IT, Chalmers 2018

7

Table 1: ISA of the Accumulator architecture

Machine code Instruction
Name

Assembly language Comment Extra info

000000000000
No

operation
NOOP Do nothing —

0001aaaaaaaa Add AD ACC, DM[Addr]
ACC = ACC +
DataMem[Addr]

may set ”Ovf”,
”Zero”

0010aaaaaaaa Subtract SU ACC, DM[Addr]
ACC = ACC -
DataMem[Addr]

may set ”Ovf”,
”Zero”

0011aaaaaaaa AND
AND ACC,
DM[Addr]

ACC = ACC
&DataMem[Addr]

mayset”Zero”

010000000000 NOT NT ACC ACC = ACC' may set ”Zero”

0101aaaaaaaa Compare
CMP ACC,
DM[Addr]

Compare ACC vs.
DM[Addr]

set EQ, NEQ

0110aaaaaaaa Load Byte LB ACC, DM[Addr]
Load 8 byte value from
location DataMem[Addr]
into ACC

—

0111aaaaaaaa Store Byte SB DM[Addr], ACC
Store contents of ACC into
location DataMem[Addr]

—

1000aaaaaaaa Add Index
ADX ACC,
DM[DM[Addr]]

ACC = ACC +
DataMem[DataMem[Addr]]

may set ”Ovf”,

”Zero”

1001aaaaaaaa
Load Byte

Index
LBX ACC,
DM[DM[Addr]]

ACC =
DataMem[DataMem[Addr]]

—

1010aaaaaaaa
Store Byte

Index

SBX
DM[DM[Addr]],
ACC

DataMem[DataMem[Addr]]
= ACC

—

1011aaaaaaaa Input
IN DM[Addr],
IO_BUS

DataMem[Addr] = value at
IO_BUS

—

1100aaaaaaaa Jump J Addr
Execute next instruction @
PC = Addr

—

1101aaaaaaaa
Jump Not

Equal
JNE Addr

Jump if the corresponding
flag NEQ is set

—

1110aaaaaaaa JumpEqual JEQ Addr
Jump if the corresponding
flag EQ is set

—

111100000000 Display DS
Move ACC to Display reg.
(used for debugging)

—

ChAcc makes use of an ISA with only 16 instructions. According to the first column of Table 1

that shows the machine code for all the instructions, each instruction is 12 bits wide. The 4 MSB

of the instruction compose the opcode (operation code), while the 8 LSB (“aaaaaaaa” at Table 1)

form the address that is used to access the data memory. The opcode is each instruction’s

unique code, while the use of the address is explained later. Instructions like NOT, NOOP and

DS have a zero address field, as they don’t need to access the data memory.

EDA322ChAcc processor D&IT, Chalmers 2018

8

The ISA (of Table 1) primarily consists of three groups of instructions:

1) Arithmetic and logic instructions: The instructions Add, Subtract, AND, NOT, Compare and

Add Index belong to this group. These instructions make use of the ALU unit and perform

arithmetic or logic operations between the ACC and the content of a data memory location

(except the NOT instruction). The address-field of the instruction is used to access the data

memory and retrieve the second operand of the ALU.

2) Memory instructions: The instructions Load Byte, Store Byte, Load Byte Index, Store Byte Index

and Input that belong to this group access the data memory using the address-field of the

instruction as an index. Memory instructions can:

a) read something from the data memory and save it to the ACC (Load Byte, Load Byte

Index),

b) write the content of the ACC into the data memory (Store Byte, Store Byte Index),or

c) write the data that come from the I/O bus into the data memory.

3) Jump instructions: The instructions Jump, Jump Equal and Jump Not Equal that belong to this

group can change the program flow by modifying the program counter (PC) based on a

condition (JE, JNE) or unconditionally (J), by jumping to a particular address. The address-

field of the instruction is used to change the program flow.

Moreover, there are other instructions that do not belong to any of the groups above. The

Display (DS) instruction is used for debugging by moving the content of the ACC register into

the Display register (shaded with blue color in Figure 1), while the NOOP is used to keep the

processor idle. However, the NOOP operation is implemented like an add instruction between

the ACC and the first location of the data memory (DM[0]), which is assumed that is always 0

and should not be modified. Thus, the NOOP doesn’t do any useful operation since it adds zero to

the current content of the ACC. Finally, note that the instructions ADX, LBX and SBXaccess the

data memory twice.

Section 3 – Controller

In any processor, a special unit is needed in order to synchronize the rest of the units and

orchestrate their operations. This unit is called controller and is actually the “brain” of a

processor. In the ChAcc processor, the controller is shown on the top of Figure 1.

Controller’s Interface

As is shown in this figure, the controller has the following inputs:

1. opcode: The 4 MSB of the currently decoded instruction are used by the controller in

order to determine the currently to-be-executed instruction and set/reset the particular

signals and enable/disable particular parts of the datapath during the phases of the

instruction.

2. The signals NEQ and EQ output from the “FReg”.

EDA322ChAcc processor D&IT, Chalmers 2018

9

3. CLK: The processor’s clock.

4. ARESETN: The processor’s reset signal.

5. master_load_enable: This signal is connected to an FPGA switch that is set by the user and

plays the role of a manual clock toggling. In other words, by toggling this signal, the

user is able to control the clocking of the design, “freezing” and “starting” the time. This

is useful when debugging the design; otherwise the changes on the displays would not

be visible to a human’s eye, as the design’s clock is on the order of hundreds of MHz.

The master_load_enable affects the following:

a. The internal state transitions of the controller (the controller is implemented as a

Finite State Machine (FSM), as is described in lab4 assignment) are enabled when

master_load_enable is set.

1. The registers save their input onthe rising clock edge when master_load_enable is set and

if the respective control signal of a register is also set. Thus themaster_load_enable must be

combined with the respective control signal (see pcSel and pcLd: Control the logic that is

relevant to the program counter (PC).

2. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the

only signal that is always set during the whole execution of all instructions. This

happens because according toTable 2, all instructions go through the Fetch (FE) and

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions:

the instruction must be read from the instruction memory using the PC as index, and

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the

“FE/DE”, is set during this stage for every instruction and can remain set for all the

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too.

3. addrMd: Controls the data memory’s index thatcan be input by two different sources. If

the instruction is a non-index instruction, the data memory is accessed using the

instruction’s address field. If the instruction is an index instruction, the data memory is

normally accessed using instruction’s address in DE stage. However, when the second

memory access takes place during the DE* stage, the source of the data memory index is

instead the output of the data memory itself.

4. dmWr: Enables the write function of the data memory, when set.

5. dmRd: Enables the read function of the data memory, when set.

6. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value.

7. flagLd: Is the “load enable” signal of “FReg” that saves the Flags.

8. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable”

signal of ACC, while the accSel controls the source of its input. ACC is loaded with data

that produced either from the ALU or come from the bus if it is a store instruction.

9. dispLd: Enables the load of the display register. The display register is used for buffering

values for display on a7-segment display available on the FPGA board.

10. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.

11. aluMd: Determines the ALU operation.

EDA322ChAcc processor D&IT, Chalmers 2018

10

b. Table 3) to eventually drive each register’s load enable (see Figure 2).

The controller outputs the rest of the depicted signals (in Figure 1), which control the muxes,

the memories, the bus, the registers, the ALU and in general all the datapath modules.

Stages

As it is shown on the bottom of Figure 1, the datapath of the ChAcc processor is divided into

five stages by the controller, as the various instructions make use of different datapath modules

in order to be executed. Thus the datapath is divided into many stages so that every instruction

is executed by utilizing only the useful stages. The 5 stages of the datapath are:

1. Fetch (FE): The instruction is fetched from the instruction memory using the program

counter (PC) as an address.

2. Decode (DE): The instruction is decoded and the data memory is read.

3. Decode* (DE*): The data memory is read for a second time.

4. Execute (EX):The ALU operation takes place and the result is written to ACC.

5. Memory (ME): A previously calculated result (already saved in ACC) is written back to

the data memory.

Every stage has a duration of one clock cycle. The clock cycle time is determined by the latency

of the slowest datapath stage (critical path). If the whole datapath was clocked as one large

stage, then all the instructions would have the same execution time resulting in a simpler

controller design. However, it is more advantageous to have a multi-stage datapath as different

instructions of the ISA utilize a variable number of datapath stages, thus require a variable

number of clock cycles, resulting in different execution time among them. This can potentially

yield a more efficient design in terms of performance. Finally, a multi-stage datapath can be

more easily pipelined to parallelize the execution of more instructions per cycle. However, the

latter requires computer organization knowledge and is out of the scope of this course.

Table 2 summarizes the stages utilized by the different instructions marking with ‘y’ (yes) the

used ones and with ‘n’ (no) the unused stages. The DE* stage is required only by the index

instructions (ADX, LBX, SBX) because these instructions access the data memory twice but this

cannot happen in the same cycle. The last column of the table presents the actual number of

used stages (cycles needed) per instruction. Looking at Table 2, we can conclude that although

the total number of datapath stages is 5, the longest executed instructions that are the Index

instructions make use of 4 datapath stages, while there are instructions that need only two

cycles to be executed.

EDA322ChAcc processor D&IT, Chalmers 2018

11

Table 2:Datapath stages per instruction

opcode detailedinstr FE DE DE* EX ME #stages

0000 AD ACC, DM[0] y y n y n 3

0001 AD ACC, DM[Addr] y y n y n 3

0010 SU ACC, DM[Addr] y y n y n 3

0011 AND ACC, DM[Addr] y y n y n 3

0100 NOT ACC y y n y n 3

0101 CMP ACC, DM[Addr] y y n y n 3

0110 LB ACC, DM[Addr] y y n y n 3

0111 SB DM[Addr], ACC y y n n y 3

1000 ADX ACC, DM[DM[Addr]] y y y y n 4

1001 LBX ACC, DM[DM[Addr]] y y y y n 4

1010 SBX DM[DM[Addr]], ACC y y y n y 4

1011 IN DM[Addr], IO_BUS y y n n n 2

1100 J Addr y y n n n 2

1101 JNE Addr, NEQ y y n n n 2

1110 JEQ Addr, EQ y y n n n 2

1111 DS y y n y n 3

Control signals

As different instructions make use of different datapath stages, the controller must determine

which datapath stage is used by an instruction and when (which cycle), by setting/resetting

particular signals that control the various datapath modules.

12. pcSel and pcLd: Control the logic that is relevant to the program counter (PC).

13. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the

only signal that is always set during the whole execution of all instructions. This

happens because according toTable 2, all instructions go through the Fetch (FE) and

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions:

the instruction must be read from the instruction memory using the PC as index, and

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the

“FE/DE”, is set during this stage for every instruction and can remain set for all the

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too.

14. addrMd: Controls the data memory’s index thatcan be input by two different sources. If

the instruction is a non-index instruction, the data memory is accessed using the

EDA322ChAcc processor D&IT, Chalmers 2018

12

instruction’s address field. If the instruction is an index instruction, the data memory is

normally accessed using instruction’s address in DE stage. However, when the second

memory access takes place during the DE* stage, the source of the data memory index is

instead the output of the data memory itself.

15. dmWr: Enables the write function of the data memory, when set.

16. dmRd: Enables the read function of the data memory, when set.

17. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value.

18. flagLd: Is the “load enable” signal of “FReg” that saves the Flags.

19. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable”

signal of ACC, while the accSel controls the source of its input. ACC is loaded with data

that produced either from the ALU or come from the bus if it is a store instruction.

20. dispLd: Enables the load of the display register. The display register is used for buffering

values for display on a7-segment display available on the FPGA board.

21. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.

22. aluMd: Determines the ALU operation.

Table 3 depicts the values of the control signals for every instruction. The first column of the

table presents the “opcode” (of the decoded instruction) while the rows summarizes all the

control signals for the opcodes. The notation used follows the “X_Y” format, where X is the

signal’s value and Y is the stage which the signal must take this value at. For example, the

signal flagLd is set at stage EX (Execute) when the opcode of the instruction is “0000”, otherwise

it is 0.However, in cases when a signal is set or unset during the whole execution of an

instruction, the value X is only presented, e.g., acc2busis ‘1’ during the whole execution of

instruction with opcode “1010”. Note also that the value of a signal may be ‘x’ instead of ‘1’ or

‘0’. This means that the signal can take any value (don’t care). The control signals are the

following:

23. pcSel and pcLd: Control the logic that is relevant to the program counter (PC).

24. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the

only signal that is always set during the whole execution of all instructions. This

happens because according toTable 2, all instructions go through the Fetch (FE) and

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions:

the instruction must be read from the instruction memory using the PC as index, and

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the

“FE/DE”, is set during this stage for every instruction and can remain set for all the

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too.

25. addrMd: Controls the data memory’s index thatcan be input by two different sources. If

the instruction is a non-index instruction, the data memory is accessed using the

instruction’s address field. If the instruction is an index instruction, the data memory is

normally accessed using instruction’s address in DE stage. However, when the second

memory access takes place during the DE* stage, the source of the data memory index is

instead the output of the data memory itself.

EDA322ChAcc processor D&IT, Chalmers 2018

13

26. dmWr: Enables the write function of the data memory, when set.

27. dmRd: Enables the read function of the data memory, when set.

28. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value.

29. flagLd: Is the “load enable” signal of “FReg” that saves the Flags.

30. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable”

signal of ACC, while the accSel controls the source of its input. ACC is loaded with data

that produced either from the ALU or come from the bus if it is a store instruction.

31. dispLd: Enables the load of the display register. The display register is used for buffering

values for display on a7-segment display available on the FPGA board.

32. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.

33. aluMd: Determines the ALU operation.

Table 3: Control signals per instruction

o
p

co
d

e

p
cS

e
l

p
cL

d

in
st

rL
d

a
d

d
rM

d

d
m

W
r

d
a

ta
L

d

fl
a

g
L

d

a
cc

S
e

l

a
cc

L
d

im
2

b
u

s

d
m

R
d

a
cc

2
b

u
s

e
x

t2
b

u
s

d
is

p
L

d

a
lu

M
d

0000 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00

0001 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00

0010 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 01

0011 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 X 0 0 0 10

0100 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 11

0101 0 1_ EX 1 0 0 1_DE 1_EX 0 0 0 1_EX 0 0 0 xx

0110 0 1_ EX 1 0 0 1_DE 0 1_EX 1_EX 0 1_EX 0 0 0 xx

0111 0 1_ME 1 0 1_M
E

0 0 0 0 0 0 1 0 0 xx

1000 0 1_EX 1 1_DE* 0 1_DE/
1_DE*

1_EX 0 1_EX 0 1_EX 0 0 0 00

1001 0 1_EX 1 1_DE* 0 1_DE/
1_DE*

0 1_EX 1_EX 0 1_EX 0 0 0 xx

1010 0 1_ME 1 1_ME 1_M
E

1_DE 0 0 0 0 0 1 0 0 xx

1011 0 1_DE 1 0 1_D
E

0 0 0 0 0 0 0 1 0 xx

1100 1_DE 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx

1101 1_DE4 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx

1110 1_DE5 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx

1111 0 1_EX 1 0 0 0 0 0 0 0 0 0 0 1_EX 00

4If the instruction is JNE, the value of pcSel at the DE stage is additionally affected by signal NEQ.
5If the instruction is JEQ, the value of pcSel at the DE stage is additionally affected by signal EQ.

EDA322ChAcc processor D&IT, Chalmers 2018

14

Let’s take some example instructions, to explain how particular control signals are set. You can

better comprehend these examples by looking at the datapath animations in the slides of

Lecture 4 or the uploaded document “example_commands.pdf”.

A first example isan Add Index instruction. First of all, according to Table 2, the ADX(opcode:

1000) uses 4 stages: FE, DE, DE* and EX. It was previously explained what happens during the

FE stage. Looking at the line with opcode “1000” in Table 3 we can see the exact value of all the

signals during all the stages. As the ADX instruction (like all index instructions) accesses the

data memory twice, it needs the output of the data memory as an address in the DE* stage.

Thus, during the DE* stage, the addrMd is now set so that the mux (before the data memory)

multiplexes the input coming from “DE/EX” as an index to the data memory. The dataLd has to

be set for both DE and DE* stages to save the data read from the data memory in the “DE/EX”.

Finally, in the Execute stage, the previously set signals are reset and 4 new signals are set:

• dmRd: It drives the read data (saved in the “DE/EX” register) to the ALU (ALU_inB).

• accLd: It enables ACC to save the ALU output.

• flagLd: It enables FReg to save the Flags.

• pcLd: It enables the “FE” register to save the PC of the next executed instruction.

The signal aluMd, which is connected to the operation input of the ALU, is also set to “00” which

stands for the add operation. The aluMd encoding is explained in detail in the description of the

lab2 assignment.

A second example is the Store Byte instruction. According to Table 2, the opcode is “0111” and

uses 3 stages: FE, DE and ME. Looking at Table 3, none of the signals is set during the DE stage

while during the ME stage, the ACC output is written to the data memory. Therefore, the dmWr

signal is set so that the data memory can write the data into the memory location that is

determined by the instruction address-field. The signalacc2bus is also set so that the ACC

register’s output can be driven to the data memory through the bus. Similarly to the ADX

instruction above, the pcLd is set to save the PC of the next instruction in the FE register.

A last example is the JEQ instruction, which has the “1110” opcode and uses only two stages: FE

and DE. In the DE stage, according to Table 3, the pcLd and pcSel are set so that the address-field

of the instruction, which is driven through the bus (notice that im2bus is also set), can be saved

in the FE register. However, when JEQ and JNE instructions are executed, the EQ and NEQ

fields of the “Flags” signal must be evaluated as well to determine whether pcSel will be set or

not. This takes place inside the controller. If the respective flag (in this example the EQ) is not

set, then the pcSel (pcSel controls the multiplexor on the left of the datapath) must not be set.

Finally, it must be mentioned here that the purpose of this document was to describe the

processor’s datapath and the specifications of the controller. The specifications and the

functionality of particular components, such as the adder or the implementation of the

EDA322ChAcc processor D&IT, Chalmers 2018

15

controller using an FSM, as well as the detailed interfaces (inputs/output names and exact

widths)are described in detail in the lab assignments.

