EDA322ChAcc processor D&IT, Chalmers 2018

EDA322Digital DesignLab

ChAccProcessor
Designed by: Angelos Arelakis; Anurag Negi, [oannis Sourdis

This document provides the specifications of the ChAcc (Chalmers Accumulator) processor that
will be implemented, evaluated in terms of performance, area and power dissipation and finally
downloaded on an FPGA during the 7 lab sessions of the course Digital Design(EDA322).

The ChAcc processor, which is based on the lab processor of HY-120 course in the institute of
Computer Science in FORTH, Greece, is a simple but slow processor and can run a variety of
programes. It is an 8-bit processor meaning that it executes operations on 8-bit data but using12-
bit wide instructions. ChAcc makes use of the accumulator architecture, which has only one
special register that is called Accumulator. The Accumulator keeps the result of the most recent
operation, while almost every operation works on the Accumulator and the content of a
memory location. The Accumulator is so named because in this kind of architectures, it is
possible to perform consecutive operations (e.g., additions) and accumulate the result to this
register.

This document describes the ChAcc processor and provides important details regarding the
Instruction Set Architecture (ISA) and the control signals. This document is organized in the
following manner. It first presents the processor’s datapath, where it briefly describes the
contained components. Then it continues with the presentation of the ISA, where it discusses
the syntax and the use of the instructions.At the end, the use of the controller is described
detailing the set of control signals and when they must be set/reset so that ChAcc can correctly
function.

Section 1 - Datapath

The ChAcc datapath is depicted in Figure 1. The datapath consists of many different units such
as an adder, an Arithmetic and Logic Unit (ALU), a bus, memories, muxes, registers and 7-
segment displays, while on the upper part of the figure we find the controller. The controller is
the brain of the processor since it orchestrates the different units based on the executed
instruction (see ISA section).Please refer to the last section for more details about the controller.

EDA322ChAcc processor D&IT, Chalmers 2018

The ChAcc processor, like any processor, runs a set of instructions or in other words a program.
The program is executed instruction-by-instruction. An instruction execution can be
summarized in the following steps:

1. The instruction is read from the instruction memory using the current program counter
(PC) as index address.

2. The instruction is split into opcode and instruction arguments and decoded by the
controller to figure out which processor’s units will be used and which control signals
must be set during the whole instruction’s execution.

3. Data are fetched using the address part of the instruction from the data memory (except
for the jump/branch instructions).

4. Finally, the instruction is executed using the Arithmetic-Logic Unit (ALU). The result is
saved into the Accumulator and may be also displayed onto a display.

The rest of this section focuses on particular components of the datapath.

Master_load_enable

——
—CLK Controller
ARESETN
’_/—
A
@ o© © =} = -
2 3 = 2 s g |2
ol Q 2 A 3 _g a2
= (3] © =
1 k=)
%
8 L_H:—/ InstrMel‘mOut 2
3}
=
g =
Instruction on | @[flag2deg
Memory - i
2/
EQ 4 A
% [=4 = g
< s 8= |&
5 £ B2
z g
5
5 ® & extin
o] —
>
o im2bu
cc2bus xt2bus
i DE/DE 8
‘ cteccccccccnsa
- - »-
Internal Bus ; & External
usOut2seg > Xternal
@
5 Bus
Figure 1: ChAcc processor datapath
Memo

The program’s instructions and data are saved into the memory. ChAcc follows the Harvard
architecture where the memory is organized in two separate memories: an instruction memory
(IM) and a data memory (DM). Both instruction and data memories are accessed using an 8-bit

EDA322ChAcc processor D&IT, Chalmers 2018

address (implying both memories have 256 entries) and can be initialized using an initialization
file (memory initialization file - mif).

The instruction memory stores the program instructions containing opcode and data memory
address (12 bits) while the data memory stores the data (8 bits). Hence the instruction memory
has a size of 384B while the data memory has a size of 256B. Finally, the instruction memory is a
Read Only Memory (ROM), meaning that cannot be written at run-time, while the data memory
can be both read and written at run-time. The memory write is synchronous. On the other hand,
the read is implemented in an asynchronous way, but the memory read’s output is eventually
connected to a register. For example, observe that the “MemDataOut” and “InstrMemOut”,
which are the outputs of the Data Memory and Instruction Memory, respectively, are connected
to the registers “FE/DE” and “DE/EX”, respectively, as depicted in Figure 1.

Registers
The registers of the ChAcc processor are the following:

1. Accumulator (ACC): It is the main register of the ChAcc processor.

2. “FE”, “FE/DE”, “DE/EX”:The datapath is divided in several stages!, thus registers are
needed to separate the various stages. “FE/DE” and “DE/EX” registers are named
based on which datapath stages they separate. For example, the register between the
Fetch and Decode stage is named “FE/DE”. On the other hand, “FE” is placed before the
Fetch stage.

3. Flag Register (FReg): It keeps the following4 flags inmost significant bit(MSB) toleast
significant bit(LSB) order:

a. Ovuf: It indicates overflow in the ALU operation.

b. NEQ3: Indicates that the two ALU input operands are not equal.
c. EQS3: Indicates that the two ALU input operands are equal.

d. Zero2: Indicates that the ALU data output is zero.

4. Display: The Display register saves the content of the Accumulator if we decide to show
its value onthe FPGA'’s display, using the respective instruction DS.

Looking at Figure 1, we notice that all registers take an input signal from the controller. Based
on this signal, the register either maintains the current value, or it updates it with a new one.
Thus, the register is implemented as a mux connected to a flip-flop, as is depicted in Figure 2.

1An instruction execution is divided in phases. Each phase is executed in one processor’s stage (one clock cycle).
2Ovf” and”Zero” are connected to two FPGA leds (Not shown in Figure 1).
¥NEQ” and”EQ” are used by the controller in certain situations. Please refer to Section “Controller” for more details.

3

EDA322ChAcc processor D&IT, Chalmers 2018

loadEnable

0
. res
in
] T
/‘\

ARESETN CLK

Figure 2: Register -D flip-flop with load enable

Arithmetic and Logic Unit (ALU)
The datapath contains an Arithmetic and Logic Unit (ALU) that can perform all the necessary

arithmetic and logic operations. In most modern processors, the ALU can perform addition,
multiplication, division between integer and floating point operands, and all logic operations.
However, the ALU of theChAcc processor is rather simple and only performs addition as well
as few logic operations (and, not, and compare), as depicted in Figure 3.

ALU_inA ALU_inB
8 8
[—
! Logic
| needed
I for sub A B
: A B A
cmp
EQ NEQ
2
operation
0 8(:;)
8
Carry isOutZero ALU_out Eq NotEq

Figure 3: Block diagram of the ALU

The ALU has three inputs and two outputs:
1. Two inputs named as”ALU_inA” and “ALU_inB” for the data operands (8 bits).
2. One input named as”operation” for the control signal(2 bits) that determines the ALU
operation.
3. One output (8 bits) named as “ALU_out” and connected to the ACC register,for the
result of the operation.
4. Four 1-bit outputs that are connected to the respective flags of the Flag Register (FReg)
in the following MSB to LSB bit order:
o Carry: The carry-out (COUT) of the adder.
o NotEg: Output of the comparator unit (cmp). Set when the input data operands
are not equal.
o Eg: Output of the comparator unit. Set when the input data operands are equal.

4

EDA322ChAcc processor D&IT, Chalmers 2018

o isOutZero: Set when the ALU data output is zero.

Bus
On the bottom of Figure 1, we can see the bus implemented with tri-states buffers.Each tri-state
buffer is driven by a control signal. However,this bus implementation with tri-state buffers is
not preferred because if more than one tri-state buffers are on, the bus will take an undefined
value. In the lab3 assignment, an alternative bus implementation is presented using
multiplexors instead.
The bus has 8 inputs (4 data inputs and 4 control inputs) and 2 outputs:

1. addrFromInstruction: The source of this data input is the 8 LSB of the instruction as it is
output by the “FE/DE” register.
MemDataOutReged: The source of this data input is the output of “DE/EX".
OutFromAcc: The source of this data input is the output of the ACC register.
extIn: The source of this data input is the output of the external bus.
im2bus: Control input. When enabled the bus output is addrFromlInstruction.
dmRd: Control input. When enabled the bus output is MemDataOutReged.
acc2bus: Control input. When enabled the bus output is OutFromAcc.
ext2bus: Control input. When enabled the bus output is extIn.
busOut2seg: The bus data output.

O X NSO

—_
e}

. errSig2seg: The error output of the bus. It is set when two or more control inputs of the
bus are set.

7-segment displays

Many datapath signals are connected to 7-segment displays, as depicted in Figure 1. These
displays can be used by the user to track the value of particular signals or registers, when the
processor is running, to verify the correct operation. The 7-segment displays are very useful
when debugging the design.

Top-level design
The entity of the top-level design of the ChAcc processor’s datapath is presented in Figure 4. In
this code snippet, the inputs/outputs as well as their data width are provided. The signals that

are driven to the 7-segment displays have self-explanatory names. All the synchronous circuits
are clocked (on the rising edge) with the signal CLK. The reset(ARESETN) is asynchronous and
negatively set (set when ‘0").The use of master_load_enable is described in Section 3.

EDA322ChAcc processor D&IT, Chalmers 2018

entity EDA322 processor is
Port (externallIn : in STD LOGIC VECTOR (7 downto 0); -- “extIn” in Figure 1
CLK : in STD LOGIC;
master load enable: in STD LOGIC;
ARESETN : in STD LOGIC;

pc2seg : out STD LOGIC VECTOR (7 downto 0); -- PC

instr2seg : out STD LOGIC VECTOR (11 downto 0); -- Instruction register
Addr2seg : out STD LOGIC VECTOR (7 downto 0); -- Address register
dMemOut2seg : out STD LOGIC VECTOR (7 downto 0); -- Data memory output
aluOut2seg : out STD LOGIC VECTOR (7 downto 0); -- ALU output

acc2seg : out STD LOGIC VECTOR (7 downto 0); -- Accumulator

flag2seg : out STD LOGIC VECTOR (3 downto 0); -- Flags

busOut2seg : out STD LOGIC VECTOR (7 downto 0); -- Value on the bus
disp2seg: out STD LOGIC VECTOR(7 downto 0); --Display register
errSig2seg : out STD LOGIC; -- Bus Error signal

ovf : out STD LOGIC; -- Overflow

zero : out STD LOGIC); -- Zero

end EDA322 processor;

Figure 4: The “entity” VHDL code of the Top-level design

Section 2 - Instruction Set Architecture (ISA)

The ChAcc processor uses its own Instruction Set Architecture (ISA). The ISA is the set of
instructions that this processor can recognize and execute.

The ISA of ChAcc is shown in Table 1. The table contains the following columns:

Machine code: The binary code of an instruction.
Instruction name: The name of the instruction.

The instruction written in assembly language format.
A brief description of the instruction.

SIS NS

Some extra information that must be taken into consideration in particular cases.

EDA322ChAcc processor D&IT, Chalmers 2018

Table 1: ISA of the Accumulator architecture

Machine code Instruction Assembly language Comment Extra info
Name
000000000000 NO. NOOP Do nothing —
operation
ACC = ACC + may set "Ovf”,
000laaaaaaaa Add AD ACC, DMJ[Addr] DataMem([Addr] 7ot
ACC=ACC- may set “Ovf”,
0010aaaaaaaa Subtract SU ACC, DM[Addr] DataMem([Addr] 7o’

AND ACC, ACC = ACC mayset”Zero”
001laaaaaaaa AND - DyirAddr] &DataMem[Addr]

010000000000 NOT NT ACC ACC = ACC' may set “Zero”
CMP ACC, Compare ACC vs. set EQ, NEQ
0l0laaaaaaaa Compare DM[Addr] DM[Addr]
Load 8 byte value from

0110aaaaaaaa Load Byte LB ACC, DM[Addr] location DataMem[Addr] —
into ACC
Store contents of ACC into

0111aaaaaaaa Store Byte =SB DM[Addr], ACC location DataMem[Addr]

ADX ACC, ACC = ACC + may set “Ovf”,
1000aaaaaaaa EEHIEES DM|DMJ[Addr]] DataMem|[DataMem[Addr]] "Zero”
1001aaaaaaaa Load Byte LBX ACC, ACC = _

Index DM|[DMJ[Addr]] DataMem[DataMem[Addr]]

SBX

1010aaaaaaaa Store Byte DM[DM[Addr]], DataMem|[DataMem[Addr]] _
Index =ACC

ACC

IN DM[Addr], DataMem[Addr] = value at _
1011aaaaaaaa Input 10_BUS 10_BUS

Execute next instruction @
1100aaaaaaaa Jump] Addr PC = Addr =
Jump Not Jump if the corresponding _
1101aaaaaaaa el JNE Addr fs NEQ 5
Jump if the corresponding _
1110aaaaaaaa JumpEqual JEQ Addr s 00 5
. Move ACC to Display reg. _
111100000000 Display DS [l et

ChAcc makes use of an ISA with only 16 instructions. According to the first column of Table 1
that shows the machine code for all the instructions, each instruction is 12 bits wide. The 4 MSB
of the instruction compose the opcode (operation code), while the 8 LSB (“aaaaaaaa” at Table 1)
form the address that is used to access the data memory. The opcode is each instruction’s
unique code, while the use of the address is explained later. Instructions like NOT, NOOP and
DS have a zero address field, as they don’t need to access the data memory.

EDA322ChAcc processor D&IT, Chalmers 2018

The ISA (of Table 1) primarily consists of three groups of instructions:

1) Arithmetic and logic instructions: The instructions Add, Subtract, AND, NOT, Compare and
Add Index belong to this group. These instructions make use of the ALU unit and perform
arithmetic or logic operations between the ACC and the content of a data memory location
(except the NOT instruction). The address-field of the instruction is used to access the data
memory and retrieve the second operand of the ALU.

2) Memory instructions: The instructions Load Byte, Store Byte, Load Byte Index, Store Byte Index
and Input that belong to this group access the data memory using the address-field of the
instruction as an index. Memory instructions can:

a) read something from the data memory and save it to the ACC (Load Byte, Load Byte
Index),

b) write the content of the ACC into the data memory (Store Byte, Store Byte Index),or

c) write the data that come from the I/O bus into the data memory.

3) Jump instructions: The instructions Jump, Jump Equal and Jump Not Equal that belong to this
group can change the program flow by modifying the program counter (PC) based on a
condition (JE, INE) or unconditionally (J), by jumping to a particular address. The address-
tield of the instruction is used to change the program flow.

Moreover, there are other instructions that do not belong to any of the groups above. The
Display (DS) instruction is used for debugging by moving the content of the ACC register into
the Display register (shaded with blue color in Figure 1), while the NOOP is used to keep the
processor idle. However, the NOOP operation is implemented like an add instruction between
the ACC and the first location of the data memory (DM][0]), which is assumed that is always 0
and should not be modified. Thus, the NOOP doesn’t do any useful operation since it adds zero to
the current content of the ACC. Finally, note that the instructions ADX, LBX and SBXaccess the
data memory twice.

Section 3 - Controller

In any processor, a special unit is needed in order to synchronize the rest of the units and
orchestrate their operations. This unit is called controller and is actually the “brain” of a
processor. In the ChAcc processor, the controller is shown on the top of Figure 1.

Controller’s Interface

As is shown in this figure, the controller has the following inputs:

1. opcode: The 4 MSB of the currently decoded instruction are used by the controller in
order to determine the currently to-be-executed instruction and set/reset the particular
signals and enable/disable particular parts of the datapath during the phases of the
instruction.

2. The signals NEQ and EQ output from the “FReg”.

EDA322ChAcc processor D&IT, Chalmers 2018

NSO

CLK: The processor’s clock.

ARESETN: The processor’s reset signal.

master_load_enable: This signal is connected to an FPGA switch that is set by the user and
plays the role of a manual clock toggling. In other words, by toggling this signal, the
user is able to control the clocking of the design, “freezing” and “starting” the time. This
is useful when debugging the design; otherwise the changes on the displays would not
be visible to a human’s eye, as the design’s clock is on the order of hundreds of MHz.
The master_load_enable affects the following:

a. The internal state transitions of the controller (the controller is implemented as a
Finite State Machine (FSM), as is described in lab4 assignment) are enabled when
master_load_enable is set.

The registers save their input onthe rising clock edge when master_load_enable is set and
if the respective control signal of a register is also set. Thus themaster_load_enable must be
combined with the respective control signal (see pcSel and pcLd: Control the logic that is
relevant to the program counter (PC).

instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the
only signal that is always set during the whole execution of all instructions. This
happens because according toTable 2, all instructions go through the Fetch (FE) and
Decode (DE) stages. During the FE stage, the same action is taken for all the instructions:
the instruction must be read from the instruction memory using the PC as index, and
must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the
“FE/DE”, is set during this stage for every instruction and can remain set for all the
stages, as the index of the Instruction Memory (saved in “FE”) remains the same too.
addrMd: Controls the data memory’s index thatcan be input by two different sources. If
the instruction is a non-index instruction, the data memory is accessed using the
instruction’s address field. If the instruction is an index instruction, the data memory is
normally accessed using instruction’s address in DE stage. However, when the second
memory access takes place during the DE* stage, the source of the data memory index is
instead the output of the data memory itself.

dmWr: Enables the write function of the data memory, when set.

dmRd: Enables the read function of the data memory, when set.

dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value.

flagLd: Is the “load enable” signal of “FReg” that saves the Flags.

accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable”
signal of ACC, while the accSel controls the source of its input. ACC is loaded with data
that produced either from the ALU or come from the bus if it is a store instruction.
dispLd: Enables the load of the display register. The display register is used for buffering
values for display on a7-segment display available on the FPGA board.

10. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.
11. aluMd: Determines the ALU operation.

EDA322ChAcc processor D&IT, Chalmers 2018

b. Table 3) to eventually drive each register’s load enable (see Figure 2).

The controller outputs the rest of the depicted signals (in Figure 1), which control the muxes,
the memories, the bus, the registers, the ALU and in general all the datapath modules.

Stages
As it is shown on the bottom of Figure 1, the datapath of the ChAcc processor is divided into

five stages by the controller, as the various instructions make use of different datapath modules
in order to be executed. Thus the datapath is divided into many stages so that every instruction
is executed by utilizing only the useful stages. The 5 stages of the datapath are:

1. Fetch (FE): The instruction is fetched from the instruction memory using the program
counter (PC) as an address.
Decode (DE): The instruction is decoded and the data memory is read.
Decode* (DE*): The data memory is read for a second time.
Execute (EX):The ALU operation takes place and the result is written to ACC.
Memory (ME): A previously calculated result (already saved in ACC) is written back to

ARSI

the data memory.

Every stage has a duration of one clock cycle. The clock cycle time is determined by the latency
of the slowest datapath stage (critical path). If the whole datapath was clocked as one large
stage, then all the instructions would have the same execution time resulting in a simpler
controller design. However, it is more advantageous to have a multi-stage datapath as different
instructions of the ISA utilize a variable number of datapath stages, thus require a variable
number of clock cycles, resulting in different execution time among them. This can potentially
yield a more efficient design in terms of performance. Finally, a multi-stage datapath can be
more easily pipelined to parallelize the execution of more instructions per cycle. However, the
latter requires computer organization knowledge and is out of the scope of this course.

Table 2 summarizes the stages utilized by the different instructions marking with “y” (yes) the
used ones and with ‘n” (no) the unused stages. The DE* stage is required only by the index
instructions (ADX, LBX, SBX) because these instructions access the data memory twice but this
cannot happen in the same cycle. The last column of the table presents the actual number of
used stages (cycles needed) per instruction. Looking at Table 2, we can conclude that although
the total number of datapath stages is 5, the longest executed instructions that are the Index
instructions make use of 4 datapath stages, while there are instructions that need only two
cycles to be executed.

10

EDA322ChAcc processor

opcode
0000
0001
0010
0011
0100
0101
0110
0111

1000

1001

1010

1011
1100
1101
1110
1111

Control signals

Table 2:Datapath stages per instruction

detailedinstr
AD ACC, DM|0]
AD ACC, DM[Addr]
SU ACC, DM[Addr]
AND ACC, DM[Addr]
NOT ACC
CMP ACC, DM[Addr]
LB ACC, DM[Addr]
SB DM[Addr], ACC

ADX ACC, DM[DM[Addr]]

LBX ACC, DM[DM[Addr]]

SBX DM[DMJ[Addr]], ACC

IN DM[Addr], IO_BUS
J Addr

JNE Addr, NEQ

JEQ Addr, EQ

DS

< B < BN < &< PE

<]

g < <N < <

D&IT, Chalmers

k<k<k<k<k<k<k<k<g

<]

g < <N < <

DE*

=28 S B S BN S BN S

<]

SN S BN S BB

e
P

5 X N ¥ 9 < <9 <

~<

< B B B |8

ME

N S IBa - BB ° Bl S

=)

SN S =N S B

#stages
3

W W W W W W W

L NN NN

2018

As different instructions make use of different datapath stages, the controller must determine

which datapath stage is used by an instruction and when (which cycle), by setting/resetting

particular signals that control the various datapath modules.

12. pcSel and pcLd: Control the logic that is relevant to the program counter (PC).

13. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It's the

only signal that is always set during the whole execution of all instructions. This

happens because according toTable 2, all instructions go through the Fetch (FE) and

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions:

the instruction must be read from the instruction memory using the PC as index, and

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the

“FE/DE”, is set during this stage for every instruction and can remain set for all the

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too.

14. addrMd: Controls the data memory’s index thatcan be input by two different sources. If

the instruction is a non-index instruction, the data memory is accessed using the

11

EDA322ChAcc processor D&IT, Chalmers 2018

15.
16.
17.

instruction’s address field. If the instruction is an index instruction, the data memory is
normally accessed using instruction’s address in DE stage. However, when the second
memory access takes place during the DE* stage, the source of the data memory index is
instead the output of the data memory itself.

dmWr: Enables the write function of the data memory, when set.

dmRd: Enables the read function of the data memory, when set.

dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value.

18. flagLd: Is the “load enable” signal of “FReg” that saves the Flags.

19.

20.

21.
22.

accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable”
signal of ACC, while the accSel controls the source of its input. ACC is loaded with data
that produced either from the ALU or come from the bus if it is a store instruction.
dispLd: Enables the load of the display register. The display register is used for buffering
values for display on a7-segment display available on the FPGA board.

im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.

aluMd: Determines the ALU operation.

Table 3 depicts the values of the control signals for every instruction. The first column of the

table presents the “opcode” (of the decoded instruction) while the rows summarizes all the

control signals for the opcodes. The notation used follows the “X_Y” format, where X is the

signal’s value and Y is the stage which the signal must take this value at. For example, the

signal flagld is set at stage EX (Execute) when the opcode of the instruction is “0000”, otherwise

it is 0.However, in cases when a signal is set or unset during the whole execution of an

instruction, the value X is only presented, e.g., acc2busis ‘1’ during the whole execution of

instruction with opcode “1010”. Note also that the value of a signal may be ‘x” instead of ‘1" or

‘0’. This means that the signal can take any value (don’t care). The control signals are the

following:

23. pcSel and pcLd: Control the logic that is relevant to the program counter (PC).

24.

25.

instrLd: Is the “load enable” signal of the register that keeps the instruction read. It's the
only signal that is always set during the whole execution of all instructions. This
happens because according toTable 2, all instructions go through the Fetch (FE) and
Decode (DE) stages. During the FE stage, the same action is taken for all the instructions:
the instruction must be read from the instruction memory using the PC as index, and
must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the
“FE/DE”, is set during this stage for every instruction and can remain set for all the
stages, as the index of the Instruction Memory (saved in “FE”) remains the same too.
addrMd: Controls the data memory’s index thatcan be input by two different sources. If
the instruction is a non-index instruction, the data memory is accessed using the
instruction’s address field. If the instruction is an index instruction, the data memory is
normally accessed using instruction’s address in DE stage. However, when the second
memory access takes place during the DE* stage, the source of the data memory index is
instead the output of the data memory itself.

12

EDA322ChAcc processor

1001

1010

1011

1100
1101
1110
1111

26. dmWWr: Enables the write function of the data memory, when set.

27. dmRd: Enables the read function of the data memory, when set.

28. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value.
29. flagLd: Is the “load enable” signal of “FReg” that saves the Flags.

D&IT, Chalmers

2018

30. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable”
signal of ACC, while the accSel controls the source of its input. ACC is loaded with data

that produced either from the ALU or come from the bus if it is a store instruction.

31. dispLd: Enables the load of the display register. The display register is used for buffering

values for display on a7-segment display available on the FPGA board.
32. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.
33. aluMd: Determines the ALU operation.

i) el
9] =
o9 1°)
a, e,

0 1_EX

0 1_EX

0 1_EX

0 1_EX

0 1_EX

0 1_EX

0 1_EX

0 1_ME

0 1_EX

0 1_EX

0 1_ME

0 1_DE

1_DE 1_DE

1_DE* 1_DE

1_DE5 1_DE

0 1_EX

instrLd

O Y

_

[G Y

addrMd

Bl O S O© S © Sl O

1_DE*

1_DE*

1_ME

o O © O

dmWr

O Sl © Sl © el ©

1M

sl

0

1M

sl

1.D

Sl o Bl o IEl

dataLd

1_DE
1_DE
1_DE
1_DE
1_DE
1_DE
1_DE

1_DE/
1_DE*
1_DE/
1_DE*
1_DE

o O © O

& © &Sl ©

accSel

o lglo oo oo o

1_EX

o O O© O

Table 3: Control signals per instruction

accLd

1_EX
1_EX
1_EX
1_EX
1_EX

1_EX

1_EX

1_EX

& © &l ©

im2bus

& © & © & © = ©

o R R -

dmRd

1_EX
1_EX
1_EX

1_EX
1_EX
1_EX

1_EX

1_EX

B O el ©

4If the instruction is JNE, the value of pcSel at the DE stage is additionally affected by signal NEQ.

SIf the instruction is JEQ, the value of pcSel at the DE stage is additionally affected by signal EQ.

13

m o o © © © © © acc2bus

o O © O

ext2bus

Bl O & © Sl © el O

B O &l ©

dispLd

Bl O & O© sl © el O

aluMd

10
11
XX
XX

XX

00

XX

XX

XX

XX
XX
XX

00

EDA322ChAcc processor D&IT, Chalmers 2018

Let’s take some example instructions, to explain how particular control signals are set. You can
better comprehend these examples by looking at the datapath animations in the slides of
Lecture 4 or the uploaded document “example_commands.pdf”.

A first example isan Add Index instruction. First of all, according to Table 2, the ADX(opcode:
1000) uses 4 stages: FE, DE, DE* and EX. It was previously explained what happens during the
FE stage. Looking at the line with opcode “1000” in Table 3 we can see the exact value of all the
signals during all the stages. As the ADX instruction (like all index instructions) accesses the
data memory twice, it needs the output of the data memory as an address in the DE* stage.
Thus, during the DE* stage, the addrMd is now set so that the mux (before the data memory)
multiplexes the input coming from “DE/EX” as an index to the data memory. The datalLd has to
be set for both DE and DE* stages to save the data read from the data memory in the “DE/EX”.
Finally, in the Execute stage, the previously set signals are reset and 4 new signals are set:

e dmRd: It drives the read data (saved in the “DE/EX” register) to the ALU (ALU_inB).

e accLd: It enables ACC to save the ALU output.

o flagLd: It enables FReg to save the Flags.

e pcLd: It enables the “FE” register to save the PC of the next executed instruction.

The signal aluMd, which is connected to the operation input of the ALU, is also set to “00” which
stands for the add operation. The aluMd encoding is explained in detail in the description of the
lab2 assignment.

A second example is the Store Byte instruction. According to Table 2, the opcode is “0111” and
uses 3 stages: FE, DE and ME. Looking at Table 3, none of the signals is set during the DE stage
while during the ME stage, the ACC output is written to the data memory. Therefore, the dmlVr
signal is set so that the data memory can write the data into the memory location that is
determined by the instruction address-field. The signalacc2bus is also set so that the ACC
register’s output can be driven to the data memory through the bus. Similarly to the ADX
instruction above, the pcLd is set to save the PC of the next instruction in the FE register.

A last example is the JEQ instruction, which has the “1110” opcode and uses only two stages: FE
and DE. In the DE stage, according to Table 3, the pcLd and pcSel are set so that the address-field
of the instruction, which is driven through the bus (notice that im2bus is also set), can be saved
in the FE register. However, when JEQ and JNE instructions are executed, the EQ and NEQ
fields of the “Flags” signal must be evaluated as well to determine whether pcSel will be set or
not. This takes place inside the controller. If the respective flag (in this example the EQ) is not
set, then the pcSel (pcSel controls the multiplexor on the left of the datapath) must not be set.

Finally, it must be mentioned here that the purpose of this document was to describe the
processor’s datapath and the specifications of the controller. The specifications and the
functionality of particular components, such as the adder or the implementation of the

14

EDA322ChAcc processor D&IT, Chalmers 2018

controller using an FSM, as well as the detailed interfaces (inputs/output names and exact
widths)are described in detail in the lab assignments.

15

