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EDA322Digital DesignLab 

ChAccProcessor 
Designed by: Angelos Arelakis; Anurag Negi, Ioannis Sourdis 

 

 

This document provides the specifications of the ChAcc (Chalmers Accumulator) processor that 

will be implemented, evaluated in terms of performance, area and power dissipation and finally 

downloaded on an FPGA during the 7 lab sessions of the course Digital Design(EDA322).  

 

The ChAcc processor, which is based on the lab processor of HY-120 course in the institute of 

Computer Science in FORTH, Greece, is a simple but slow processor and can run a variety of 

programs. It is an 8-bit processor meaning that it executes operations on 8-bit data but using12-

bit wide instructions. ChAcc makes use of the accumulator architecture, which has only one 

special register that is called Accumulator. The Accumulator keeps the result of the most recent 

operation, while almost every operation works on the Accumulator and the content of a 

memory location. The Accumulator is so named because in this kind of architectures, it is 

possible to perform consecutive operations (e.g., additions) and accumulate the result to this 

register.  

 

This document describes the ChAcc processor and provides important details regarding the 

Instruction Set Architecture (ISA) and the control signals. This document is organized in the 

following manner. It first presents the processor’s datapath, where it briefly describes the 

contained components. Then it continues with the presentation of the ISA, where it discusses 

the syntax and the use of the instructions.At the end, the use of the controller is described 

detailing the set of control signals and when they must be set/reset so that ChAcc can correctly 

function. 

Section 1 – Datapath 

 

The ChAcc datapath is depicted in Figure 1. The datapath consists of many different units such 

as an adder, an Arithmetic and Logic Unit (ALU), a bus, memories, muxes, registers and 7-

segment displays, while on the upper part of the figure we find the controller. The controller is 

the brain of the processor since it orchestrates the different units based on the executed 

instruction (see ISA section).Please refer to the last section for more details about the controller. 
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The ChAcc processor, like any processor, runs a set of instructions or in other words a program. 

The program is executed instruction-by-instruction. An instruction execution can be 

summarized in the following steps: 

1. The instruction is read from the instruction memory using the current program counter 

(PC) as index address.  

2. The instruction is split into opcode and instruction arguments and decoded by the 

controller to figure out which processor’s units will be used and which control signals 

must be set during the whole instruction’s execution.  

3. Data are fetched using the address part of the instruction from the data memory (except 

for the jump/branch instructions). 

4. Finally, the instruction is executed using the Arithmetic-Logic Unit (ALU). The result is 

saved into the Accumulator and may be also displayed onto a display. 

 

The rest of this section focuses on particular components of the datapath. 
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Figure 1: ChAcc processor datapath 

Memory 

The program’s instructions and data are saved into the memory. ChAcc follows the Harvard 

architecture where the memory is organized in two separate memories: an instruction memory 

(IM) and a data memory (DM). Both instruction and data memories are accessed using an 8-bit 
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address (implying both memories have 256 entries) and can be initialized using an initialization 

file (memory initialization file – mif).  

 

The instruction memory stores the program instructions containing opcode and data memory 

address (12 bits) while the data memory stores the data (8 bits). Hence the instruction memory 

has a size of 384B while the data memory has a size of 256B. Finally, the instruction memory is a 

Read Only Memory (ROM), meaning that cannot be written at run-time, while the data memory 

can be both read and written at run-time. The memory write is synchronous. On the other hand, 

the read is implemented in an asynchronous way, but the memory read’s output is eventually 

connected to a register. For example, observe that the “MemDataOut” and “InstrMemOut”, 

which are the outputs of the Data Memory and Instruction Memory, respectively, are connected 

to the registers “FE/DE” and “DE/EX”, respectively, as depicted in Figure 1.  

 

Registers 

The registers of the ChAcc processor are the following: 

1. Accumulator (ACC): It is the main register of the ChAcc processor. 

2. “FE”, “FE/DE”, “DE/EX”:The datapath is divided in several stages1, thus registers are 

needed to separate the various stages. “FE/DE” and “DE/EX” registers are named 

based on which datapath stages they separate. For example, the register between the 

Fetch and Decode stage is named “FE/DE”. On the other hand, “FE” is placed before the 

Fetch stage.  

3. Flag Register (FReg): It keeps the following4 flags inmost significant bit(MSB) toleast 

significant bit(LSB) order:  

a. Ovf2: It indicates overflow in the ALU operation. 

b. NEQ3: Indicates that the two ALU input operands are not equal. 

c. EQ3: Indicates that the two ALU input operands are equal. 

d. Zero2: Indicates that the ALU data output is zero. 

4. Display: The Display register saves the content of the Accumulator if we decide to show 

its value onthe FPGA’s display, using the respective instruction DS. 

 

Looking at Figure 1, we notice that all registers take an input signal from the controller. Based 

on this signal, the register either maintains the current value, or it updates it with a new one. 

Thus, the register is implemented as a mux connected to a flip-flop, as is depicted in Figure 2. 

 

                                                
1An instruction execution is divided in phases. Each phase is executed in one processor’s stage (one clock cycle).  
2“Ovf“ and“Zero“ are connected to two FPGA leds (Not shown in Figure 1). 
3“NEQ“ and“EQ“ are used by the controller in certain situations. Please refer to Section “Controller” for more details. 
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Figure 2: Register –D flip-flop with load enable 

Arithmetic and Logic Unit (ALU)  

The datapath contains an Arithmetic and Logic Unit (ALU) that can perform all the necessary 

arithmetic and logic operations. In most modern processors, the ALU can perform addition, 

multiplication, division between integer and floating point operands, and all logic operations. 

However, the ALU of theChAcc processor is rather simple and only performs addition as well 

as few logic operations (and, not, and compare), as depicted in Figure 3. 
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Figure 3: Block diagram of the ALU 

The ALU has three inputs and two outputs: 

1. Two inputs named as“ALU_inA” and “ALU_inB”,for the data operands (8 bits). 

2. One input named as“operation”,for the control signal(2 bits) that determines the ALU 

operation. 

3. One output (8 bits) named as “ALU_out” and connected to the ACC register,for the 

result of the operation. 

4. Four 1-bit outputs that are connected to the respective flags of the Flag Register (FReg) 

in the following MSB to LSB bit order: 

o Carry: The carry-out (COUT) of the adder. 

o NotEq: Output of the comparator unit (cmp). Set when the input data operands 

are not equal. 

o Eq: Output of the comparator unit. Set when the input data operands are equal. 
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o isOutZero: Set when the ALU data output is zero. 

Bus 

On the bottom of Figure 1, we can see the bus implemented with tri-states buffers.Each tri-state 

buffer is driven by a control signal. However,this bus implementation with tri-state buffers is 

not preferred because if more than one tri-state buffers are on, the bus will take an undefined 

value. In the lab3 assignment, an alternative bus implementation is presented using 

multiplexors instead. 

The bus has 8 inputs (4 data inputs and 4 control inputs) and 2 outputs: 

1. addrFromInstruction: The source of this data input is the 8 LSB of the instruction as it is 

output by the “FE/DE” register. 

2. MemDataOutReged: The source of this data input is the output of “DE/EX”. 

3. OutFromAcc: The source of this data input is the output of the ACC register. 

4. extIn: The source of this data input is the output of the external bus. 

5. im2bus: Control input. When enabled the bus output is addrFromInstruction. 

6. dmRd: Control input. When enabled the bus output is MemDataOutReged. 

7. acc2bus: Control input. When enabled the bus output is OutFromAcc. 

8. ext2bus: Control input. When enabled the bus output is extIn. 

9. busOut2seg: The bus data output. 

10. errSig2seg: The error output of the bus. It is set when two or more control inputs of the 

bus are set.  

 

7-segment displays 

Many datapath signals are connected to 7-segment displays, as depicted in Figure 1. These 

displays can be used by the user to track the value of particular signals or registers, when the 

processor is running, to verify the correct operation. The 7-segment displays are very useful 

when debugging the design. 

 

Top-level design 

The entity of the top-level design of the ChAcc processor’s datapath is presented in Figure 4. In 

this code snippet, the inputs/outputs as well as their data width are provided. The signals that 

are driven to the 7-segment displays have self-explanatory names. All the synchronous circuits 

are clocked (on the rising edge) with the signal CLK. The reset(ARESETN) is asynchronous and 

negatively set (set when ‘0’).The use of master_load_enable is described in Section 3. 



EDA322ChAcc processor D&IT, Chalmers 2018 

6 
 

 

 

Section 2 – Instruction Set Architecture (ISA) 

The ChAcc processor uses its own Instruction Set Architecture (ISA). The ISA is the set of 
instructions that this processor can recognize and execute.  

The ISA of ChAcc is shown in Table 1. The table contains the following columns: 

1. Machine code: The binary code of an instruction.  

2. Instruction name: The name of the instruction. 

3. The instruction written in assembly language format. 

4. A brief description of the instruction. 

5. Some extra information that must be taken into consideration in particular cases. 

 
 

 

 

 

 

 
 

 

 

entity EDA322_processor is 

    Port (  externalIn : in  STD_LOGIC_VECTOR (7 downto 0); -- “extIn” in Figure 1 

  CLK : in STD_LOGIC; 

  master_load_enable: in STD_LOGIC; 

  ARESETN : in STD_LOGIC; 

  pc2seg : out  STD_LOGIC_VECTOR (7 downto 0); -- PC   

  instr2seg : out  STD_LOGIC_VECTOR (11 downto 0); -- Instruction register 

  Addr2seg : out  STD_LOGIC_VECTOR (7 downto 0); -- Address register 

  dMemOut2seg : out  STD_LOGIC_VECTOR (7 downto 0); -- Data memory output 

  aluOut2seg : out  STD_LOGIC_VECTOR (7 downto 0); -- ALU output 

  acc2seg : out  STD_LOGIC_VECTOR (7 downto 0); -- Accumulator 

  flag2seg : out  STD_LOGIC_VECTOR (3 downto 0); -- Flags 

  busOut2seg : out  STD_LOGIC_VECTOR (7 downto 0); -- Value on the bus 

  disp2seg: out STD_LOGIC_VECTOR(7 downto 0); --Display register 

  errSig2seg : out STD_LOGIC; -- Bus Error signal 

  ovf : out STD_LOGIC; -- Overflow  

  zero : out STD_LOGIC); -- Zero 

end EDA322_processor; 
 

Figure 4: The “entity” VHDL code of the Top-level design 
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Table 1: ISA of the Accumulator architecture 

Machine code Instruction 
Name 

Assembly language Comment Extra info 

000000000000 
No 

operation 
NOOP Do nothing — 

0001aaaaaaaa Add AD ACC, DM[Addr] 
ACC = ACC + 
DataMem[Addr] 

may set ”Ovf”, 
”Zero” 

0010aaaaaaaa Subtract SU ACC, DM[Addr] 
ACC = ACC - 
DataMem[Addr] 

may set ”Ovf”, 
”Zero” 

0011aaaaaaaa AND 
AND ACC, 
DM[Addr] 

ACC = ACC 
&DataMem[Addr] 

mayset”Zero” 

010000000000 NOT NT ACC ACC = ACC' may set ”Zero” 

     

0101aaaaaaaa Compare 
CMP ACC, 
DM[Addr] 

Compare ACC vs. 
DM[Addr] 

set EQ, NEQ 

0110aaaaaaaa Load Byte LB ACC, DM[Addr] 
Load 8 byte value from 
location DataMem[Addr] 
into ACC 

— 

0111aaaaaaaa Store Byte SB DM[Addr], ACC  
Store contents of ACC into 
location DataMem[Addr] 

— 

1000aaaaaaaa Add Index 
ADX ACC, 
DM[DM[Addr]] 

ACC = ACC + 
DataMem[DataMem[Addr]] 

may set ”Ovf”, 

”Zero” 

1001aaaaaaaa 
Load Byte 

Index 
LBX ACC, 
DM[DM[Addr]] 

ACC = 
DataMem[DataMem[Addr]] 

— 

1010aaaaaaaa 
Store Byte 

Index 

SBX 
DM[DM[Addr]], 
ACC 

DataMem[DataMem[Addr]] 
= ACC 

— 

1011aaaaaaaa Input 
IN DM[Addr], 
IO_BUS 

DataMem[Addr] = value at 
IO_BUS 

— 

1100aaaaaaaa Jump J Addr 
Execute next instruction @ 
PC = Addr 

— 

1101aaaaaaaa 
Jump Not 

Equal 
JNE Addr 

Jump if the corresponding 
flag NEQ is set 

— 

1110aaaaaaaa JumpEqual JEQ Addr 
Jump if the corresponding 
flag EQ is set 

— 

111100000000 Display DS 
Move ACC to Display reg. 
(used for debugging) 

— 

 

 

 

ChAcc makes use of an ISA with only 16 instructions. According to the first column of Table 1 

that shows the machine code for all the instructions, each instruction is 12 bits wide. The 4 MSB 

of the instruction compose the opcode (operation code), while the 8 LSB (“aaaaaaaa” at Table 1) 

form the address that is used to access the data memory. The opcode is each instruction’s 

unique code, while the use of the address is explained later. Instructions like NOT, NOOP and 

DS have a zero address field, as they don’t need to access the data memory.  
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The ISA (of Table 1) primarily consists of three groups of instructions:  

1) Arithmetic and logic instructions: The instructions Add, Subtract, AND, NOT, Compare and 

Add Index belong to this group. These instructions make use of the ALU unit and perform 

arithmetic or logic operations between the ACC and the content of a data memory location 

(except the NOT instruction). The address-field of the instruction is used to access the data 

memory and retrieve the second operand of the ALU.  

2) Memory instructions: The instructions Load Byte, Store Byte, Load Byte Index, Store Byte Index 

and Input that belong to this group access the data memory using the address-field of the 

instruction as an index. Memory instructions can: 

a) read something from the data memory and save it to the ACC (Load Byte, Load Byte 

Index), 

b) write the content of the ACC into the data memory (Store Byte, Store Byte Index),or 

c) write the data that come from the I/O bus into the data memory.  

3) Jump instructions: The instructions Jump, Jump Equal and Jump Not Equal that belong to this 

group can change the program flow by modifying the program counter (PC) based on a 

condition (JE, JNE) or unconditionally (J), by jumping to a particular address. The address-

field of the instruction is used to change the program flow.  

 

Moreover, there are other instructions that do not belong to any of the groups above. The 

Display (DS) instruction is used for debugging by moving the content of the ACC register into 

the Display register (shaded with blue color in Figure 1), while the NOOP is used to keep the 

processor idle. However, the NOOP operation is implemented like an add instruction between 

the ACC and the first location of the data memory (DM[0]), which is assumed that is always 0 

and should not be modified. Thus, the NOOP doesn’t do any useful operation since it adds zero to 

the current content of the ACC. Finally, note that the instructions ADX, LBX and SBXaccess the 

data memory twice.  

Section 3 – Controller  

 

In any processor, a special unit is needed in order to synchronize the rest of the units and 

orchestrate their operations. This unit is called controller and is actually the “brain” of a 

processor. In the ChAcc processor, the controller is shown on the top of Figure 1.  

 

Controller’s Interface 

As is shown in this figure, the controller has the following inputs: 

1. opcode: The 4 MSB of the currently decoded instruction are used by the controller in 

order to determine the currently to-be-executed instruction and set/reset the particular 

signals and enable/disable particular parts of the datapath during the phases of the 

instruction. 

2. The signals NEQ and EQ output from the “FReg”. 
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3. CLK: The processor’s clock. 

4. ARESETN: The processor’s reset signal. 

5. master_load_enable: This signal is connected to an FPGA switch that is set by the user and 

plays the role of a manual clock toggling. In other words, by toggling this signal, the 

user is able to control the clocking of the design, “freezing” and “starting” the time. This 

is useful when debugging the design; otherwise the changes on the displays would not 

be visible to a human’s eye, as the design’s clock is on the order of hundreds of MHz. 

The master_load_enable affects the following: 

a. The internal state transitions of the controller (the controller is implemented as a 

Finite State Machine (FSM), as is described in lab4 assignment) are enabled when 

master_load_enable is set.  

1. The registers save their input onthe rising clock edge when master_load_enable is set and 

if the respective control signal of a register is also set. Thus themaster_load_enable must be 

combined with the respective control signal (see pcSel and pcLd: Control the logic that is 

relevant to the program counter (PC). 

2. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the 

only signal that is always set during the whole execution of all instructions. This 

happens because according toTable 2, all instructions go through the Fetch (FE) and 

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions: 

the instruction must be read from the instruction memory using the PC as index, and 

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the 

“FE/DE”, is set during this stage for every instruction and can remain set for all the 

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too. 

3. addrMd: Controls the data memory’s index thatcan be input by two different sources. If 

the instruction is a non-index instruction, the data memory is accessed using the 

instruction’s address field. If the instruction is an index instruction, the data memory is 

normally accessed using instruction’s address in DE stage. However, when the second 

memory access takes place during the DE* stage, the source of the data memory index is 

instead the output of the data memory itself.  

4. dmWr: Enables the write function of the data memory, when set.  

5. dmRd: Enables the read function of the data memory, when set.  

6. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value. 

7. flagLd: Is the “load enable” signal of “FReg” that saves the Flags. 

8. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable” 

signal of ACC, while the accSel controls the source of its input. ACC is loaded with data 

that produced either from the ALU or come from the bus if it is a store instruction.  

9. dispLd: Enables the load of the display register. The display register is used for buffering 

values for display on a7-segment display available on the FPGA board.  

10. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.  

11. aluMd: Determines the ALU operation. 

 



EDA322ChAcc processor D&IT, Chalmers 2018 

10 
 

b. Table 3) to eventually drive each register’s load enable (see Figure 2).  

 

The controller outputs the rest of the depicted signals (in Figure 1), which control the muxes, 

the memories, the bus, the registers, the ALU and in general all the datapath modules. 

 

Stages 

As it is shown on the bottom of Figure 1, the datapath of the ChAcc processor is divided into 

five stages by the controller, as the various instructions make use of different datapath modules 

in order to be executed. Thus the datapath is divided into many stages so that every instruction 

is executed by utilizing only the useful stages. The 5 stages of the datapath are: 

1. Fetch (FE): The instruction is fetched from the instruction memory using the program 

counter (PC) as an address. 

2. Decode (DE): The instruction is decoded and the data memory is read. 

3. Decode* (DE*): The data memory is read for a second time. 

4. Execute (EX):The ALU operation takes place and the result is written to ACC. 

5. Memory (ME): A previously calculated result (already saved in ACC) is written back to 

the data memory.  

 

 

Every stage has a duration of one clock cycle. The clock cycle time is determined by the latency 

of the slowest datapath stage (critical path). If the whole datapath was clocked as one large 

stage, then all the instructions would have the same execution time resulting in a simpler 

controller design. However, it is more advantageous to have a multi-stage datapath as different 

instructions of the ISA utilize a variable number of datapath stages, thus require a variable 

number of clock cycles, resulting in different execution time among them. This can potentially 

yield a more efficient design in terms of performance. Finally, a multi-stage datapath can be 

more easily pipelined to parallelize the execution of more instructions per cycle. However, the 

latter requires computer organization knowledge and is out of the scope of this course.  

 

Table 2 summarizes the stages utilized by the different instructions marking with ‘y’ (yes) the 

used ones and with ‘n’ (no) the unused stages. The DE* stage is required only by the index 

instructions (ADX, LBX, SBX) because these instructions access the data memory twice but this 

cannot happen in the same cycle. The last column of the table presents the actual number of 

used stages (cycles needed) per instruction. Looking at Table 2, we can conclude that although 

the total number of datapath stages is 5, the longest executed instructions that are the Index 

instructions make use of 4 datapath stages, while there are instructions that need only two 

cycles to be executed. 
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Table 2:Datapath stages per instruction 

opcode detailedinstr FE DE DE* EX ME #stages 

0000 AD ACC, DM[0] y y n y n 3 

0001 AD ACC, DM[Addr] y y n y n 3 

0010 SU ACC, DM[Addr] y y n y n 3 

0011 AND ACC, DM[Addr] y y n y n 3 

0100 NOT ACC  y y n y n 3 

0101 CMP ACC, DM[Addr] y y n y n 3 

0110 LB ACC, DM[Addr] y y n y n 3 

0111 SB DM[Addr], ACC y y n n y 3 

1000 ADX ACC, DM[DM[Addr]] y y y y n 4 

1001 LBX ACC, DM[DM[Addr]] y y y y n 4 

1010 SBX DM[DM[Addr]], ACC y y y n y 4 

1011 IN DM[Addr], IO_BUS y y n n n 2 

1100 J Addr y y n n n 2 

1101 JNE Addr, NEQ y y n n n 2 

1110 JEQ Addr, EQ y y n n n 2 

1111 DS y y n y n 3 

 

 

 

 

Control signals 

As different instructions make use of different datapath stages, the controller must determine 

which datapath stage is used by an instruction and when (which cycle), by setting/resetting 

particular signals that control the various datapath modules.  

 

12. pcSel and pcLd: Control the logic that is relevant to the program counter (PC). 

13. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the 

only signal that is always set during the whole execution of all instructions. This 

happens because according toTable 2, all instructions go through the Fetch (FE) and 

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions: 

the instruction must be read from the instruction memory using the PC as index, and 

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the 

“FE/DE”, is set during this stage for every instruction and can remain set for all the 

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too. 

14. addrMd: Controls the data memory’s index thatcan be input by two different sources. If 

the instruction is a non-index instruction, the data memory is accessed using the 
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instruction’s address field. If the instruction is an index instruction, the data memory is 

normally accessed using instruction’s address in DE stage. However, when the second 

memory access takes place during the DE* stage, the source of the data memory index is 

instead the output of the data memory itself.  

15. dmWr: Enables the write function of the data memory, when set.  

16. dmRd: Enables the read function of the data memory, when set.  

17. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value. 

18. flagLd: Is the “load enable” signal of “FReg” that saves the Flags. 

19. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable” 

signal of ACC, while the accSel controls the source of its input. ACC is loaded with data 

that produced either from the ALU or come from the bus if it is a store instruction.  

20. dispLd: Enables the load of the display register. The display register is used for buffering 

values for display on a7-segment display available on the FPGA board.  

21. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.  

22. aluMd: Determines the ALU operation. 

 

Table 3 depicts the values of the control signals for every instruction. The first column of the 

table presents the “opcode” (of the decoded instruction) while the rows summarizes all the 

control signals for the opcodes. The notation used follows the “X_Y” format, where X is the 

signal’s value and Y is the stage which the signal must take this value at. For example, the 

signal flagLd is set at stage EX (Execute) when the opcode of the instruction is “0000”, otherwise 

it is 0.However, in cases when a signal is set or unset during the whole execution of an 

instruction, the value X is only presented, e.g., acc2busis ‘1’ during the whole execution of 

instruction with opcode “1010”. Note also that the value of a signal may be ‘x’ instead of ‘1’ or 

‘0’. This means that the signal can take any value (don’t care). The control signals are the 

following: 

23. pcSel and pcLd: Control the logic that is relevant to the program counter (PC). 

24. instrLd: Is the “load enable” signal of the register that keeps the instruction read. It’s the 

only signal that is always set during the whole execution of all instructions. This 

happens because according toTable 2, all instructions go through the Fetch (FE) and 

Decode (DE) stages. During the FE stage, the same action is taken for all the instructions: 

the instruction must be read from the instruction memory using the PC as index, and 

must be saved in the “FE/DE” register. Thus the instrLd signal, which enables the 

“FE/DE”, is set during this stage for every instruction and can remain set for all the 

stages, as the index of the Instruction Memory (saved in “FE”) remains the same too. 

25. addrMd: Controls the data memory’s index thatcan be input by two different sources. If 

the instruction is a non-index instruction, the data memory is accessed using the 

instruction’s address field. If the instruction is an index instruction, the data memory is 

normally accessed using instruction’s address in DE stage. However, when the second 

memory access takes place during the DE* stage, the source of the data memory index is 

instead the output of the data memory itself.  
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26. dmWr: Enables the write function of the data memory, when set.  

27. dmRd: Enables the read function of the data memory, when set.  

28. dataLd: Is the “load enable” signal of “DE/EX” that saves the read memory value. 

29. flagLd: Is the “load enable” signal of “FReg” that saves the Flags. 

30. accSel and accLd: Control the logic of the ACC register. The accLd is the “load enable” 

signal of ACC, while the accSel controls the source of its input. ACC is loaded with data 

that produced either from the ALU or come from the bus if it is a store instruction.  

31. dispLd: Enables the load of the display register. The display register is used for buffering 

values for display on a7-segment display available on the FPGA board.  

32. im2bus, dmRd, acc2bus and ext2bus: Are the control signals of the bus.  

33. aluMd: Determines the ALU operation. 

 
Table 3: Control signals per instruction 
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0000 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00 

0001 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00 

0010 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 01 

0011 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 X 0 0 0 10 

0100 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 11 

0101 0 1_ EX 1 0 0 1_DE 1_EX 0 0 0 1_EX 0 0 0 xx 

0110 0 1_ EX 1 0 0 1_DE 0 1_EX 1_EX 0 1_EX 0 0 0 xx 

0111 0 1_ME 1 0 1_M
E 

0 0 0 0 0 0 1 0 0 xx 

1000 0 1_EX 1 1_DE* 0 1_DE/ 
1_DE* 

1_EX 0 1_EX 0 1_EX 0 0 0 00 

1001 0 1_EX 1 1_DE* 0 1_DE/ 
1_DE* 

0 1_EX 1_EX 0 1_EX 0 0 0 xx 

1010 0 1_ME 1 1_ME 1_M
E 

1_DE 0 0 0 0 0 1 0 0 xx 

1011 0 1_DE 1 0 1_D
E 

0 0 0 0 0 0 0 1 0 xx 

1100 1_DE 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx 

1101 1_DE4 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx 

1110 1_DE5 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx 

1111 0 1_EX 1 0 0 0 0 0 0 0 0 0 0 1_EX 00 

 

                                                
4If the instruction is JNE, the value of pcSel at the DE stage is additionally affected by signal NEQ. 
5If the instruction is JEQ, the value of pcSel at the DE stage is additionally affected by signal EQ. 
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Let’s take some example instructions, to explain how particular control signals are set. You can 

better comprehend these examples by looking at the datapath animations in the slides of 

Lecture 4 or the uploaded document “example_commands.pdf”. 

 

A first example isan Add Index instruction. First of all, according to Table 2, the ADX(opcode: 

1000) uses 4 stages: FE, DE, DE* and EX. It was previously explained what happens during the 

FE stage. Looking at the line with opcode “1000” in Table 3 we can see the exact value of all the 

signals during all the stages. As the ADX instruction (like all index instructions) accesses the 

data memory twice, it needs the output of the data memory as an address in the DE* stage. 

Thus, during the DE* stage, the addrMd is now set so that the mux (before the data memory) 

multiplexes the input coming from “DE/EX” as an index to the data memory. The dataLd has to 

be set for both DE and DE* stages to save the data read from the data memory in the “DE/EX”. 

Finally, in the Execute stage, the previously set signals are reset and 4 new signals are set:  

• dmRd: It drives the read data (saved in the “DE/EX” register) to the ALU (ALU_inB). 

• accLd: It enables ACC to save the ALU output. 

• flagLd: It enables FReg to save the Flags. 

• pcLd: It enables the “FE” register to save the PC of the next executed instruction. 

 

The signal aluMd, which is connected to the operation input of the ALU, is also set to “00” which 

stands for the add operation. The aluMd encoding is explained in detail in the description of the 

lab2 assignment. 

 

A second example is the Store Byte instruction. According to Table 2, the opcode is “0111” and 

uses 3 stages: FE, DE and ME. Looking at Table 3, none of the signals is set during the DE stage 

while during the ME stage, the ACC output is written to the data memory. Therefore, the dmWr 

signal is set so that the data memory can write the data into the memory location that is 

determined by the instruction address-field.  The signalacc2bus is also set so that the ACC 

register’s output can be driven to the data memory through the bus. Similarly to the ADX 

instruction above, the pcLd is set to save the PC of the next instruction in the FE register.  

 

A last example is the JEQ instruction, which has the “1110” opcode and uses only two stages: FE 

and DE. In the DE stage, according to Table 3, the pcLd and pcSel are set so that the address-field 

of the instruction, which is driven through the bus (notice that im2bus is also set), can be saved 

in the FE register. However, when JEQ and JNE instructions are executed, the EQ and NEQ 

fields of the “Flags” signal must be evaluated as well to determine whether pcSel will be set or 

not. This takes place inside the controller. If the respective flag (in this example the EQ) is not 

set, then the pcSel (pcSel controls the multiplexor on the left of the datapath) must not be set.  

 

Finally, it must be mentioned here that the purpose of this document was to describe the 

processor’s datapath and the specifications of the controller. The specifications and the 

functionality of particular components, such as the adder or the implementation of the 
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controller using an FSM, as well as the detailed interfaces (inputs/output names and exact 

widths)are described in detail in the lab assignments. 


