
EDA322 Lab 5 D&IT, Chalmers 2017

1

EDA322Digital Design Lab

LAB5
Designed by: Anurag Negi, Angelos Arelakis, Ioannis Sourdis

In this lab you will tie your top level design module with a testbench that you will design. This

is the only task of this lab assignment. The test will involve running a ModelSim simulation

where a program is executed on your VHDL description of the processor. The testbench will

observe values on five output ports and check these against expected values provided to you in

the form of five files that contain expected sequences of values on each of the five ports.

Before starting the lab, please do the preparation as described below.

Preparation

Preparing for the fifth lab requires to:

1. Complete lab4.

2. Study the lecture material of up to the previous study week.

3. Answer the following questions in a document:

a. Assuming that signal “expected_output” holds the correct value of signal

“output” at cycle X. Show the VHDL code that will detect the case when

“output” has different value than “expected_output”.

b. In the beginning of Task 1 (below), it is described which output ports are of

interest to check in this testbench. It is also explained which files keep the

expected values. Please write down the signals that will be needed for the

expected outputs. How many are they and what is their width?

4. Read through the Lab PM before starting to do each task.

Designing a Testbench – Task1

Make sure that your top level design entity description looks exactly like the one shown below:

EDA322 Lab 5 D&IT, Chalmers 2017

2

There are five output ports that must be observed in the testbench: disp2seg (value of display

register), acc2seg(value of the acc register), pc2seg (the program counter value),dMemOut2seg

(value of the data memory output register) and flag2seg (flag values).

Five files have been provided to you -- namely disptrace.txt, acctrace.txt, pctrace.txt,

dMemOuttrace.txt, flagtrace.txt -- containing the sequences of values that must be observed on

the corresponding signals during the test after reset release.

A test program has been provided to you as well in the form of an instruction memory

initialization file (inst_mem.mif) and a set of initial values for the data memory (data_mem.mif).

These files should be used to initialize the instruction and data memories in your processor

module.

What your testbench must do quite simply is to drive the inputs to the processor (clk, aresetn,

master_load_enable, external_in) and monitor the outputs to make sure that they are as

expected according to the trace files we have provided.

To structure your work in this lab, it is recommended that you follow the steps shown below:

Step 1:

Add a new VHDL module called EDA322Testbench.vhdl to the project of the previous lab that

contains your code for the processor.

entity EDA322_processor is

 Port (externalIn : in STD_LOGIC_VECTOR (7 downto 0); -- “extIn” in Figure 1

 CLK : in STD_LOGIC;

 master_load_enable: in STD_LOGIC;

 ARESETN : in STD_LOGIC;

 pc2seg : out STD_LOGIC_VECTOR (7 downto 0); -- PC

 instr2seg : out STD_LOGIC_VECTOR (11 downto 0); -- Instruction register

 Addr2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Address register

 dMemOut2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Data memory output

 aluOut2seg : out STD_LOGIC_VECTOR (7 downto 0); -- ALU output

 acc2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Accumulator

 flag2seg : out STD_LOGIC_VECTOR (3 downto 0); -- Flags

 busOut2seg : out STD_LOGIC_VECTOR (7 downto 0); -- Value on the bus

 disp2seg: out STD_LOGIC_VECTOR(7 downto 0); --Display register

 errSig2seg : out STD_LOGIC; -- Bus Error signal

 ovf : out STD_LOGIC; -- Overflow

 zero : out STD_LOGIC); -- Zero

end EDA322_processor;

EDA322 Lab 5 D&IT, Chalmers 2017

3

Step 2:

Create an instance of EDA322_processor inside the testbench. Compile your design and make

sure you do not have any errors. Hardwire the “externalIn” port to value “00000000”. And

declare signals to connect to all the processor ports. Compile your design and correct any

syntax errors.

Step 3:

Once you have properly instantiated your processor in the testbench you must start driving the

inputs: Create processes OR write continuous assignment statements that drive the following

signals: CLK, master_load_enable and ARESETN.

Please use appropriate delays to setup a clock with a 10ns period. “master_load_enable” can be

toggled at the same rate as the clock. Start your simulation with ARESETN active (‘0’) and then

deactivate it after 2 clock pulses. (HINT:Take a look at Testbenchlab4.vhdl). Compile your

design and correct any syntax errors.

Step 4:

Now that you have properly instantiated the processor in the testbench and driven the CLK,

master_load_enable and ARESETN signals, run a simulation and dump all processor ports at the

wave window to make sure everything is connected properly (No undefined -red- signals).

Make sure the ARESETN signal is set correctly and that the clock and master_load_enable work

as expected. Also look at the pc2seg signal. If everything is correct it should change values

0,1,2,3,4,5,6,0,1,2,3,4,5,6,0,…

Step 5:

Declare a type for array of 8 bit std_logic_vector and write a function that can be used to

initialize that array from a file. This is very similar to the way we initialized the memory arrays

and you can use the same function. (Be careful with the size of each array as the function from

lab2 assumes that the files are as big as the array). (HINT: change the for loop in the

init_mem_wfile function with a “while not endfile(mif_file)” statement to read every file to

completion). Once you have the function and in compiles without errors declare five signals

and initialize them with the function for every trace file (disptrace.txt, acctrace.txt, pctrace.txt,

dMemOuttrace.txt, flagtrace.txt). Compile the design again and simulate it to make sure the

arrays are properly initialized from the file contents. Remember to Compile your design and

correct any syntax errors before they pile up.

Step 6:

Write processes to check for transitions on each of the five signals of interest. You can code five

processes. Each process is triggered when the signal of interest changes. Remember that the

trace files only contain values for transitions seen after ARESETN has been released. For correct

comparison you only need to check for transitions seen after ARESETN is released (set to

EDA322 Lab 5 D&IT, Chalmers 2017

4

“1”). Make sure that in your simulation ARESETNis assigned an initial value of 0 (active) and

is deactivated only once. You have to design your processes such that they ignore any

transitions on the five signals until ARESETN is released. Inside each process you must compare

the expected value stored in the corresponding array and the value observed on the signal.

Terminate the test using an assertion check if a mismatch occurs. Print an appropriate error

message on the console.

Terminate the test if a value of 144(decimal) is reached on the signal disp2seg. If all previous

checks until this point have passed you can declare that that a test was successful. The testbench

should report success with an appropriate message on the console.

Step7:

Does your processor pass the testbench checks? If not then simulate and examine the

waveforms to see what goes wrong and fix it. Check the file code_to_test.txt in ping pong which

explains what each instruction in instr_mem.mif does. Run the simulation slowly and examine

the waveform step by step to make sure each instruction is executed correctly.

Demonstration

Tasks to be done for successfully completing this lab:

1. Design and implement the testbench. Show the code to the instructor. Demonst rate a

successful run to your instructor.

Evaluation:

The instructor will check for the following:

Task# Coding style Simulation

1 X X

Make sure that when you are done with the lab, you have demonstrated all checked aspects of

each task. This is necessary for successful completion of the lab.

Lab report:

Describe what you did in lab5. More specifically, describe how you made the testbench to verify

that your processor design was functionally correct. For example, you can focus on the

following points:

• Mention briefly the general purpose of a testbench and the core principle used to

achieve it.

EDA322 Lab 5 D&IT, Chalmers 2017

5

• Show how you generated inputs to the processor during the testing, how the expected

outputs were determined and how you compare the expected outputs with the actual

outputs.

• Mention if your processor design was working correctly from the beginning and if not ,

describe how you backtracked the bugs.

Learning outcome:

After completing this lab, you should:

• Know the methodology one needs to follow to write a testbench.

• Be able to write a testbench for a digital design. This includes reading from reference

files and comparing the value of design’s signals to expected values that are saved in

files.

Hints and Tips

Take a look at alu_testbench.vhd and Testbenchlab4.vhd from labs 2 and 4 for ideas on

how to design your own testbench.

Make sure you are using the correct files

As mentioned in the main part of this document, for lab 5 you are supplied with different .mi f files for

initializing the two memories of the processor. Please make sure you are using the correct files, since the

testbench will obviously fail if you run the test program of lab 4. Pay attention to this point especially if

you need to switch focus between labs 4 and 5.

Reading text files using functions

As mentioned before, there are several ways to read a text file in VHDL. If you decided to use the

function given in lab 3 (init_memory_wfile function), since different traces have different number of

elements, you will be forced to declare multiple copies of the function. In order to avoid writing multiple

instances of the function, one way is to set the maximum needed size for the array and then use:

While not endfile(in_file) loop

…

End loop;

Disp2reg

The instructions used for evaluating the functionality of the processor at the end of lab4 do not fully

check the disp2reg register. Hence, there is a chance that although the design has passed lab 4, the

testbench in lab 5 will detect a mismatch. In this case, start your debugging by double checking the

connections for the disp2reg.

EDA322 Lab 5 D&IT, Chalmers 2017

6

