CHALMERS

Department of Computer Science and Engineering

2017-01-11

EDA322 Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Losningar

Uppgifterna ar hamtade ur Brown, Vranesic: Fundamentals of Digital Logic with VHDL Design ed 3,
kapitel 8.

1 Ta fram en krets uppbyggd av D-vippor som imple- Present Next state Output
menterar tillstandstabellen i Figur E1. Skriv VHDL-kod state w=0 w=1
for implementeringen Vo | Vi V2| VYi]|Vy2| Yz 4
oOo|lo0]J]1|0]1]1 0
o(1]o|j1]0|0 0
1|/0f]1(1]0]O0 0
1|1]1]0]0]|1 1

Figur E1 Tillstandstabell

Vi ritar en tillstandsgraf, Figur S1a

) _ _) . . Figur S1a Tillstandgraf fran Figur E1
Vi skall implementera med hjap av D-vippor sa vi

tecknar D-vippans tillstandstabell, Figur S1b present | Dfliflop | Next
state D state

0 0 0

0 1 1

1 0 0

Vi infér D-vippor i tillstandtabellen utifran D-vippans 1 1 1

sanningstabell i Figur S1a och far, Figur S1c
Figur S1b D-vippans tillstdndstabell

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1
Division of Computer Engineering

1 forts. Present D flipflops Next state Output
state w=0 w=1 w=0 w=1
Q | Q| D | D | D | D: | Q2 | Q: | Q2 | Qu z
0 0 1 0 1 1 1 0 1 1 0
0 1 0 1 0 0 0 1 0 0 0
1 0 1 1 0 0 1 1 0 0 0
1 1 0 0 0 1 1 0 0 1 1

Figur Sic Tillstandstabell med D-vippor

Vi anviander Karnaughdiagram for att bestdmma villkoren for D-ingangarna, Figur S1d-f

Y2Y1
D 00 01 11 10

/ N -
0 0 1 1

” |
W — —_—
] 07" "767""” y2y1

Wy>

’\\71) o |

Figur S1d Karnaughdiagram fér D,

Y2Y1
Z 00 01 11 10
ol oo (? 0
W — VAV
1o fox]e

Figur S1f Karnaughdiagram for z

Vi far

Dz =y_2-y_1+v_v-y2

Wy2Y1
Y2Yy1
Dl 00 01 11 10
W — ot "
1o f2fol|
WY1

Figur Sle Karnaughdiagram fér D,

D1=W‘y2'y1+W'y_2'y_1+V_V'Y2’y_1+V_V’y_2'X1=W@ Y, ®y1

Z=Y,"Y;

Lat oss skriva VHDL-kod och testa resultatet.
Vi borjar med att skapa en D-flipflop som vi kan anvdanda som komponent.

EDA322

Digital konstruktion
Nagra uppgifter om tillstandsmaskiner

Lésningar
page 2

1 forts.

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY D_flipflop IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
D:IN STD_LOGIC;
Q:OUT STD_LOGIC);
END D_FflipFflop;

ARCHITECTURE arch_D_ Fflipflop OF
D Fflipflop IS
BEGIN
D_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
Q <= "0%;
ELSIF rising_edge(Clock) THEN
IF (D="1") THEN

Q<= "1%;
ELSE
Q <= "0%;
END IF;
END IF;

END PROCESS D_proc;
END arch_D_flipflop;

Vi simulerar ned en do-fil

restart -f -nowave

view signals wave

add wave Clock Resetn D Q
force Clock 0 0, 1 50ns -repeat 100ns
force D O

force Resetn O

run 225ns

force Resetn 1

run 200ns

force D 1

run 200ns

force D O

run 200ns

force D 1

run 200ns

force Resetn O

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 3

1 forts.

run 200ns
force Resetn 1
run 200ns

Nu kan vi skriva kod for tillstandsmaskinen

LIBRARY ieee;
USE ieee.std logic _1164.all;

ENTITY S1 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD _LOGIC;
w:IN STD _LOGIC;
z:0UT STD_LOGIC);
END S1;

ARCHITECTURE arch_S1 OF S1 IS
COMPONENT D_flipflop IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
D:IN STD_LOGIC;
Q:OUT STD_LOGIC);
END COMPONENT D_flipflop;
SIGNAL D1_signal:STD_LOGIC;
SIGNAL D2_signal:STD_LOGIC;
SIGNAL Q1_signal:STD_LOGIC;
SIGNAL Q2_signal:STD_LOGIC;
SIGNAL D_vector_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL Q_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
D_flipflop_comp_1:
D_flipflop
PORT MAP(Clock => Clock,
Resetn =>Resetn,
D => D1_signal,
Q => Q1_signal);

D_flipflop_comp_2:

D_flipflop

PORT MAP(Clock => Clock,
Resetn =>Resetn,
D => D2_signal,
Q => Q2_signal);

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 4

1 forts.

D1_signal <= w XOR (Q2_signal XOR Q1_signal);
D2_signal <= (NOT(Q2_signal) AND NOT(Q1l_signal)) OR
(NOT(w) AND Q2_signal);
D_vector_signal <= D2_signal & D1_signal;
Q_vector_signal <= Q2_signal & Q1_signal;

z <= Q2_signal AND Q1_signal;
END arch_S1;

| koden har vi lagt in vektorerna D_vector_signal och Q_vector_signal for att lattare se
tillstanden.
Vi simulerar med en ny do-fil

restart -f -nowave

view signhals wave

add wave Clock Resetn w D2 _signal D1 _signal Q2 signal
add wave Q1 signal -radix binary D _vector_signal Q vector_signal z
force Clock 0 0, 1 50ns -repeat 100ns

force w O

force Resetn O

run 225ns

force Resetn 1

run 400ns

force w 1

run 400ns

force w O

run 400ns

2 Upprepa uppgift 1 med hjalp av JK-vippor

Vi har samma tillstandstabell som i uppgift 1 men ska nu

implementera med JK-vippor. Present | JK-flipflop Next
Figur S2a ger JK-vippornas tillstandstabell state J K state
0 0 X 0
0 1 X 1
1 X 1 0
1 X 0 1

Figur S2a JK-vippans tillstandstabell

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 5

2 forts.

Vi kompletterar nu tillstandstabellen i Figur E1 med JK-vippor, Figur S2b

Present D flipflops Next state Output
state w=0 w=1 w=0 w=1
Q | Q| 42 K> J1 K1 Jz K J1 Ki | Q2 oF Q; Qi z
0 0 1 X 0 X 1 X 1 X 1 0 1 1 0
0 1 X 0 X 0 0 X X 1 0 1 0 0 0
1 0 X 0 1 X X 1 0 X 1 1 0 0 0
1 1 X 0 X 1 X 1 X 0 1 0 0 1 1
Figur S2b Tillstandstabell med D-vippor
Vi anvander Karnaughdiagram for att ta fram de logiska villkoren, Figur S2c-f
YY1 YaYy1
J2 00 01 11 10 K2 00 01 11 10
0| 1 X X X — 0| x 0 0 0
w n I — - w
11 1 0 X X 1] x X 1 1
| - o)
Figur S2c Karnaughdiagram for Jz Figur Sd Karnaughdiagram for Kz
YaY1 Ya2y1
Ji o0 01 11 10 — Ki 00 01 11 10 —
L — WY2 L~ WY2
0| O X X 1 0| x 0 1 X
| 1 X][x 0 1 x 1] 0 X
D % D B

Figur S2e Karnaughdiagram for J1

Vi far
3=V
K,=w

J =Wy, +W-y, =Wy,

Ki=J,=W-y,+W-y, =wé y,

Figur S2f Karnaughdiagram for Kz

Utsignalen z paverkas inte av vilka vippor vi véljer utan blir den samma som i exempel 1 dvs

EDA322

Digital konstruktion

Nagra uppgifter om tillstandsmaskiner
Lésningar
page 6

2 forts.
Z=X,X,

Lat oss ater skriva VHDL-kod och bérjar da med en JK-vippa.

ENTITY JK_Flipflop IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD LOGIC;
J:IN STD_LOGIC;
K:IN STD_LOGIC;
Q:O0UT STD_LOGIC);
END JK_flipflop;

ARCHITECTURE arch_JK_flipflop OF JK_flipflop IS
SIGNAL Q _signal:STD _LOGIC;
SIGNAL JK_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
JK signal <= J&K;
JK_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
Q_signal <= "07;
ELSIF rising_edge(Clock) THEN
CASE JK signal IS
WHEN *00" =>
Q_signal <= Q_signal;
WHEN *01" =>
Q_signal <= "07;
WHEN "10" =>
Q_signal <= *17;
WHEN "11" =>
Q_signal <= NOT(Q_signal);
WHEN OTHERS =>
END CASE;
END 1IF;
END PROCESS JK_proc;
Q <= Q_signal;
END arch_JK_flipflop;

Som vi simulerar med en do-fil.

restart -f -nowave

view signals wave

add wave Clock Resetn J K

add wave -radix binary JK _signal Q _signal Q
force Clock 0 0, 1 50ns -repeat 100ns

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 7

2 forts.

force J O
force K O
force Resetn O
run 225ns
force Resetn 1
run 200ns
force J 1
run 200ns
force K 1
run 200ns
force J O
run 200ns
force Resetn O
run 200ns
force Resetn 1
run 200ns

och nu over till tillstandsmaskinen

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY S2 IS
PORT(Clock:IN STD_ LOGIC;
Resetn:IN STD _LOGIC;
w:IN STD _LOGIC;
z-:0UT STD_LOGIC);
END S2;

ARCHITECTURE arch_S2 OF S2 1S
COMPONENT JK_flipflop IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
J:IN STD_LOGIC;
K:IN STD_LOGIC;
Q:0UT STD_LOGIC);
END COMPONENT JK_flipflop;
SIGNAL J1_signal:STD_LOGIC;
SIGNAL K1_signal:STD_LOGIC;
SIGNAL J2_signal:STD_LOGIC;
SIGNAL K2_signal:STD_LOGIC;
SIGNAL Q1_signal:STD_LOGIC;
SIGNAL Q2_signal:STD_LOGIC;
SIGNAL JK1_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0O);
SIGNAL JK2_vector_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL Q_vector_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 8

2 forts.

BEGIN

JKFflipflop_comp_1:

JK_Flipflop

PORT MAP(Clock => Clock,
Resetn =>Resetn,
J => J1 _signal,
K => K1_signal,
Q => Q1_signal);

JK_Flipflop_comp_2:

JK_Fflipflop

PORT MAP(Clock => Clock,
Resetn =>Resetn,
J => J2_signal,
K => K2_signal,
Q => Q2_signal);

J2_signal <= NOT(Q1l_signal);
K2_signal <= w;
J1 signal <= w XOR Q2_signal;
K1 signal <= J1_signal;
JK1 vector_signal <= J1 _signal & K1 _signal;
JK2_vector_signal <= J2_signal & K2_signal;
Q_vector_signal <= Q2_signal & Q1 signal;
z <= Q2_signal AND Q1 signal;
END arch_S2;

Vi har ater knutit ihop signaler i vektorer for att lttare se dom i simuleringen som vi gér med en do-
fil.

restart -f -nowave

view signals wave

add wave Clock Resetn w J1 signal K1_signal
add wave J2_signal K2 _signal Q1 signal Q2 _signal
add wave -radix binary JK1 vector_signal
add wave Q vector_signal z

force Clock 0 0, 1 50ns -repeat 100ns
force w O

force Resetn O

run 225ns

force Resetn 1

run 400ns

force w 1

run 400ns

force w O

run 400ns

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 9

3 Upprepa uppgift 1 med hjalp av T-vippor

Vi skall implementera med hjdp av T-vippor sa vi teck-

nar T-vippans tillstandstabell, Figur S3a

Present | T-flipflop | Next
state D state
0 0 0
0 1 1
1 0 1
1 1 0

Figur S3a T-vippans tillstdndstabell

Vi infor D-vippor i

o Present T flipflops Next state Output
tillstandtabellen
fean Dovi state w=0 w=1 w=0 w=1
uti r?n -lep.an.s Q| Q| T, T; T2 T: | Q| Q| Q| Q z
sanningstabell i Fi- 0 0 1 0 1 1 1 0 1 1 0
gur E1 och far, 9777110 [0 | 0| 1] o] 1]o]o]| o
Figur 53b 1 JoJo|1|1]o]1]1]0]o0 0
1 1 0 1 1 0 1 0 0 1 1
Figur S3b Tillstandstabell med D-vippor
Vi anvander Karnaughdiagram for att bestdamma villkoren for D-ingangarna, Figur S1c-e
Y2Yy1
y2y1 T
T. 00 01 11 10 __ 100 01 11 10 g,
T T, ololol|1]|1]
O[1 ‘ 0 0 0 w N WY
w — 1 41 | "2
tafofafa] ™ Mrjprjoejo
Figur S3c Karnaughdiagram fér T, Figur S3d Karnaughdiagram fér T,
. Y2Yy1
vifdr Z 00 01 11 10
_ 0| O 0 (? 0
T, =Yy, +W-y, w E—) 1
DODE

T :v_v-y2 +W-y_2

Z=Y,Y,

Figur S3e Karnaughdiagram for z

Lat oss ater skriva VHDL-kod och borjar da med en T-vippa.

EDA322

Digital konstruktion
Nagra uppgifter om tillstandsmaskiner

Lésningar
page 10

3 forts.

-- T_Fflipflop.vhdl
LIBRARY ieee;
USE i1eee.std _logic_1164.all;

ENTITY T _flipflop IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD _LOGIC;
T:-IN STD_LOGIC;
Q:OUT STD_LOGIC);
END T_flipflop;

ARCHITECTURE arch_T_flipflop OF T_flipflop IS
SIGNAL Q_signal:STD_LOGIC;
BEGIN
T_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
Q_signal <= "07;
ELSIF rising_edge(Clock) THEN
IF (T="1") THEN
Q_signal <= NOT(Q_signal);
ELSE
Q_signal <= Q_signal;
END IF;
END IF;
END PROCESS T_proc;
Q <= Q_signal;
END arch_T_Fflipflop;

som vi simulerar med en do-fil

-- T_flipflop.do

restart -f -nowave

view signals wave

add wave Clock Resetn T Q_signal Q
force Clock 0 0, 1 50ns -repeat 100ns
force T O

force Resetn O

run 225ns

force Resetn 1

run 200ns

force T 1

run 200ns

force T O

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 11

3 forts.

run 200ns
force T 1
run 200ns
force Resetn O
run 200ns
force Resetn 1
run 200ns

och nu over till tillstdandsmaskinen

-- S3.vhdl
LIBRARY ieee;
USE ieee.std _logic_1164.all;

ENTITY S3 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
z:0UT STD_LOGIC);
END S3;

ARCHITECTURE arch_S3 OF S3 IS
COMPONENT T_flipflop 1S
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
T:-IN STD_LOGIC;
Q:0UT STD_LOGIC);
END COMPONENT T_flipflop;
SIGNAL T1 signal:STD LOGIC;
SIGNAL T2 signal:STD _LOGIC;
SIGNAL Q1_signal:STD_LOGIC;
SIGNAL Q2_signal :STD_LOGIC;
SIGNAL T_vector_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL Q_vector_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
T _flipflop_comp_1:
T _flipflop
PORT MAP(Clock => Clock,
Resetn =>Resetn,
T => T1_signal,
Q => Q1_signal);

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 12

3 forts.

T _Fflipflop_comp_2:

T _flipflop

PORT MAP(Clock => Clock,
Resetn =>Resetn,
T => T2_signal,
Q => Q2_signal);

T1 signal <= (NOT(w) AND Q2_signal) OR
(w AND NOT(Q2_signal));
T2_signal <= (NOT(Q2_signal) AND NOT(Q1l_signal)) OR
(w AND Q2_signal);
T_vector_signal <= T2_signal & T1_signal;
Q_vector_signal <= Q2_signal & Q1_signal;
z <= Q2_signal AND Q1_signal;

END arch_S3;
som vi simulerar med en do-fil

-— ex8_1 logic_T.do

restart -f -nowave

view signals wave

add wave Clock Resetn w T2_signal T1_signal Q2_signal
add wave Q1_signal -radix binary T_vector_signal Q_vector_signal z
force Clock 0 0, 1 50ns -repeat 100ns

force w O

force Resetn O

run 225ns

force Resetn 1

run 400ns

force w 1

run 400ns

force w O

run 400ns

4 L6s uppgift 1 med beteendemassig VHDL-kod

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 13

4 forts.

Da vi skall anvanda beteendemassig kod sa atergar vi till

var ursprungliga tillstdndstabell som vi upprepar i Figur pPresent Next state Output
S4a. Vi ersatter tillstdndsvariablerna y, och y; med till- state w=0 | w=1
standsnamn, Figur S4b. Y2 | Y1 | Y2 | Y1]|Y2| Y1 Z
Om vi anvander tre processer sa far vi koden 0j]o0f1]j0]1 1 0
0 11]0(1]0]|0 0
—— S4_vhdl 1|/011(1]01}0 0
LIBRARY ieee; 1]1]1]0]0]1 1
USE ieee.std_logic_1164.all; Figur S4a Tillsténdstabell
ENTITY S4 1S
PORT(Clock: IN STD_LOGIC; Tillstands- | Tillstdnd
Resetn:IN STD_LOGIC; variabler
w2 IN STD_LOGIC;) Z V1
z:0UT STD_LOGIC); 0 0 A
END S4; 0 1 B
1 0 C
ARCHITECTURE arch_S4 OF S4 1S 1 1 D
TYPE state_type 1S (A,B,C,D); _ .
SIGNAL state_signal:state_type; Figur $4b Tillstdnds-
SIGNAL next_state_signal :state_type; tilldelning

BEGIN
state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=A;
ELSIF rising_edge(Clock) THEN
state_signhal<=next_state_signal;
END 1IF;
END PROCESS state_ transition_proc;

stateflow_proc:
PROCESS(state_signal ,w)
BEGIN
CASE state_signal IS
WHEN A =>
IF w = "1" THEN
next_state_signal <= D;
ELSE
next_state_signal <= C;
END IF;
WHEN B =>
IF w = "1" THEN
next_state_signal <= B;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 14

4 forts.

ELSE
next_state_signal <= B;
END IF;
WHEN C =>

IF w= "1" THEN
next_state_signal <= A;
ELSE
next_state_signal <= D;
END IF;
WHEN D =>
IFw= "1" THEN
next_state_signal <= B;
ELSE
next_state_signal <= C;
END IF;
END CASE;
END PROCESS stateflow _proc;

assignment_proc:
PROCESS(state_signal ,w)

BEGIN
IF (state_signal=D) THEN
z <= "17;
ELSE
z <= "0%;
END 1IF;

END PROCESS assignment_proc;
END arch_S4;

med do-filen

-- S4.do

restart -f -nowave

view signals wave

add wave Clock Resetn w

add wave state_sighal next _state _signal z
force Clock 0 0, 1 50ns -repeat 100ns
force w O

force Resetn O

run 225ns

force Resetn 1

force w O

run 100ns

force w 1

run 100ns

force w O

run 100ns

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 15

4 forts.

force w 1
run 400ns
force w O
run 200ns
force w 1
run 200ns
force w O
run 200ns
force w 1
run 400ns

5 Ta fram en tillstandsdiagrammet for en tillstandsmaskin av Mooretyp som ger utsignalen z vardet
ett (1) om vi via ingadngen w har detekterat ndgon av sekvenserna 110 eller 101. Sekvenserna kan
vara Overlappande

Vi skall fa en etta (1) ut fran var tillstands-
maskin om vi har identifierat ndgon av seri-
erna 110 eller 101 hos insignalen. Serierna
far vara overlappande. Vi ritar tillstands-
graf for en lamplig Mooremaskin, Figur S5a
och tecknar tillstandstabellen, Figur S5b.

Lat oss skriva VHDL-kod

-— ex8 5.vhdl

LIBRARY ieee;
USE ieee.std_logic_1164.all; Fiaur S5a TillstAndsaraf for Mooremaskin

ENTITY S5 1S Present | Next state | Output

PORT(Clock:IN STD_LOGIC; state w=0 | w=1 z
Resetn:IN STD LOGIC;
w:IN STD_LOGIC; A A | B 0
2:0UT STD_LOGIC); B E ¢ 0
END S5; ¢ b | C 0
D A F 1
ARCHITECTURE arch_S5 OF S5 1S E A F 0
TYPE state type 1S (A,B,C,D,E,F); F E C 1
SIGNAL state_signal:state_type; Figur S5b Tillstandstabell for
SIGNAL nextState_signal:state_type; Mooremaskin

BEGIN
state_transition_proc:

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 16

5 forts.

PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=A;
ELSIF rising_edge(Clock) THEN
state_signal<=nextState_signal;
END IF;
END PROCESS state_transition_proc;

flow_proc:
PROCESS(state_signal ,w)
BEGIN
CASE state_signal IS
WHEN A =>
IFw= "1" THEN
nextState_signal <= B;
ELSE
nextState_signal <= A;
END 1IF;
WHEN B =>
IF w= "1" THEN
nextState_signal <= C;
ELSE
nextState _signal <= E;
END 1IF;
WHEN C =>
IF w= "1" THEN
nextState _signal <= C;
ELSE
nextState _signal <= D;
END 1IF;
WHEN D =>
IFw= "1" THEN
nextState_signal <= F;
ELSE
nextState_signal <= A;
END IF;
WHEN E =>
IF w= "1" THEN
nextState_signal <= F;
ELSE
nextState_signal <= A;
END IF;
WHEN F =>
IFw= "1" THEN
nextState_signal <= C;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 17

5 forts.

ELSE
nextState_signal <= E;
END IF;
WHEN OTHERS =>
END CASE;

END PROCESS flow_proc;

signal_assignment_proc:
PROCESS(state_signal)
BEGIN
IF ((state_signal=D) OR
(state_signal=F)) THEN

z <= "1";
ELSE

z <= "0%;
END IF;

END PROCESS signal_assignment_proc;
END arch_S5;

Vi skriver en do-fil fér simulering

-- S5.do

restart -f -nowave

view signals wave

add wave Clock Resetn w state_signal nextState_signal z
force Clock 0 0, 1 50ns -repeat 100ns

force w O

force Resetn O

run 225ns
force Resetn 1
force w O
run 100ns
force w 1
run 100ns
#1

force w O
run 100ns
#10

force w 1
run 400ns
#101111
force w O
run 100ns
#1011110->1
force w 1

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 18

5 forts.

run 200ns

#101111011

force w O

run 100ns
#1011110110->1

force w 1

run 400ns
#101111011001111->1000

6 Upprepa uppgift 5 med hjalp av en tillstandsmaskin av Mealytyp

Vi ritar tilstandsgraf, Figur S6a och 6versatter till

o) Preset | Next state Output z
tillstandstabell, Figur S6b state | w=0 1 w=1 | w=0 w=1

A A B 0 0
Vi skriver VHDL-kod B E C 0 0

C E C 1 0
- SGa-vbdl _ E A F 0 1
LIBRARY 1eee; F E C 0 0

USE ieee.std logic _1164.all;

ENTITY S6a IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
z:0UT STD_LOGIC);
END S6a;

ARCHITECTURE arch_ S6a OF S6a IS
TYPE state type 1S (A,B,C,E,F);
SIGNAL state signal:state_ type;
SIGNAL

nextState_signal :state_type;

BEGIN
state_ transition_proc:
PROCESS(Resetn,Clock)

BEGIN
IF (Resetn="0") THEN
state_signal<=A;
ELSIF rising_edge(Clock) THEN

Figur S6b Tillstandstabell fér
Mealymaskin

z=0/1

z=1/0

Figur S6a Tillstandsgraf for Mealymaskin

state_signal<=nextState_signal;

END IF;

END PROCESS state_transition_proc;

flow_proc:

EDA322

Digital konstruktion

Nagra uppgifter om tillstandsmaskiner
Lésningar
page 19

6 forts.

PROCESS(state_signal ,w)
BEGIN
CASE state_signal IS
WHEN A =>
IF w= "1" THEN
nextState_signal <= B;
ELSE
nextState_signal <= A;
END IF;
WHEN B =>
IF w= "1" THEN
nextState_signal <= C;
ELSE
nextState_signal <= E;
END 1IF;
WHEN C =>
IF w= "1" THEN
nextState_signal <= C;
ELSE
nextState_signal <= E;
END 1IF;
WHEN E =>
IF w= "1" THEN
nextState_signal <= F;
ELSE
nextState _signal <= A;
END 1IF;
WHEN F =>
IF w= "1" THEN
nextState_signal <= C;
ELSE
nextState_signal <= E;
END 1IF;
WHEN OTHERS =>

END CASE;
END PROCESS flow_proc;

signhal_assignment_proc:
PROCESS(state_signal ,w)
BEGIN
IF (((state_signal=C) AND (w="0"))OR
((state_signal=E) AND (w="1%"))) THEN

z <= "17;
ELSE

z <= "0%;
END IF;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 20

5 forts.

END PROCESS signal_assignment_proc;
END arch_ S6a;

Vi ser ur tabellen i Figur S66b att tillstand B och F

Present | Next state Output z
ar likadana varfor vi kan sla ihop dem till ett enda state | w=0 | w=1 | w=0 w=1
tillstand. Vi behaller tillstand B och tar bort till- A A B 0 0
stand E och far Figur S6¢ som ger tillstandsgrafen B E C 0 0
i Figur S6d som vi ater skriver VHDL-kod for I E C 1 0

E A B 0 1

Figur S6c Modifierad tillstandsgraf for
Mealymaskin

-- St.vhdl
LIBRARY ieee;
USE i1eee.std _logic_1164.all;

ENTITY S6 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD LOGIC;
w2 IN STD_LOGIC;
z:0OUT STD_LOGIC);
END S6;

ARCHITECTURE arch_S6 OF 6 1S
TYPE state_type 1S (A,B,C,E);
SIGNAL

state_signal :state_type;

SIGNAL
nextState_signal:state_type;
BEGIN

state_transition_proc:

PROCESS(Resetn,Clock) Figur S6cdModifierad tillstandsgraf for

BEGIN Mealymaskin
IF (Resetn="0") THEN

state_signal<=A;

ELSIF rising_edge(Clock) THEN
state_signal<=nextState_signal;
END IF;
END PROCESS state_ transition_proc;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 21

6 forts.

flow_proc:
PROCESS(state_signal ,w)
BEGIN
CASE state_signal 1S
WHEN A =>

IF w= "1" THEN
nextState_signal <= B;
ELSE
nextState_signal <= A;
END IF;
WHEN B =>
IFw= "1" THEN
nextState_signal <= C;
ELSE
nextState_signal <= E;
END 1IF;
WHEN C =>
IF w= "1" THEN
nextState_signal <= C;
ELSE
nextState_signal <= E;
END 1IF;
WHEN E =>
IF w= "1" THEN
nextState _signal <= B;
ELSE
nextState_signal <= A;
END 1IF;
WHEN OTHERS =>

END CASE;
END PROCESS flow_proc;

signal_assignment_proc:
PROCESS(state_signal ,w)
BEGIN
IF (((state_signal=C) AND (w="0")) OR
((state_signal=E) AND (w="1%"))) THEN

7 <= "1°:
ELSE

z <= "0%;
END IF;

END PROCESS signal_assignment_proc;
END arch_ex8 6 v2;

Vi kan ater simulera med samma do-fil som i exempel S5.

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 22

7 Minimera tiIIsténodjsta.beIIen i Fi- Present Next state Output

gur E7 med d.e tva insignalerna D state DN

och N och utsignalen z 00 01 10 11 Z
s1 s1 s3 s2 - 0
52 52 4 S5 - 0
s3 s3 S6 57 - 0
s4 51 - - - L
55 53 - - - 1
S6 S6 S8 S9 0
57 s1 - - - 1
58 51 - - - L
59 53 - . . 1

Figur E7

Vi ritar tillstadsgraf, Figur S7a

Figur S7a Tillstdndsgraf for Figur E7

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 23

7 forts.

Vi borjar med att stalla upp
en tabell 6ver alla mdjliga
tillstandsekvivalenter, Figur
S7b

S2
S3
S4
S5
S6
S7
S8

S9

| tabellen dimmar vi alla S1 S2 S3 S4 S5 S6 S7 S8

Elllstariqs',ekvnialenter som Figur S7b Tabell 1 for tillstdndsminimering med alla méjliga
ar omajliga pa grund av att jistandsekvivalenter

tillstanden har olika
utsignaler, Figur S7c

S2
S3
S4
S5
S6
S7
S8

S9

S1 S2 S3 S4 S5 S6 S7 S8

Figur S7c Tabell 2 for tillstindsminimering

For att tva tillstand skall
vara ekvivalenta sa
maste aven de efter-
foljande tillstanden, dvs
de tillstand till vilka vi
gar fran aktuellt tillstand
vara ekvivalenta. Vi

S2 |S3,54
S2,S5
S3 | 53,56 | 54,56
$2,S7 | S5,57

S4
S5 51,53

skriveri de odimmade 56 153,58 | 54,58 | 56,58

rutorna in de par av 52,59 | 85,59 | 57,59

efterféljande tillstand S7 51,53

som maste vara S8 51,53

ekvivalenta for att de tva 59 51,53 $1,53 | S1,S3
aktuella tillstdnden skall S1 S2 S3 S4 S5 S6 S7 S8

vara ekvivalenta. Ingar
de tva aktuella tillstan-
den i paret av efterféljande tillstand sa behover vi inte skriva in dem eftersom det &r dessa som vi
vill sl ihop. Vi behover inte heller skriva in ett par som redan &r en ekvivalens, dvs ar ett och samma
tillstand, Figur S7d.

Figur S7d Tabell 2 for tillstindsminimering

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 24

7 forts.

Vi fortsatter ge-
nom att dimma ut
ekvivalenter dar vi
har skrivit in till-
standspar som vi
redan har domt
som inte ekviva-
lenta genom att vi
har dimmat ut
dem, Figur S7e.
Detta har nu givit
upphov till nya
dimningar, dvs till-
stdand som inte
kan vara ekviva-
lenter och vi kan
upprepa forega-
ende uteslutning
av ekvivalenter
med hjidlp av de
nya dimningarna,
Figur S7f.\Vi
kommer inte
langre och vi ritar
relationsgraf,
Figur §79.

Vi ser att vi kan sla
ihop tillstand S4,
S7 och S8 samt till-

stand S5 och S9. Lat oss behalla tillstand S4 och
S5. Efter dessa sammanslagningar ser vi ocksa att
vi kan sla ihop tillstand S2 och S6, vi behaller S2
och tecknar den minimerade tillstandstabellen,

Figur S7h.

Lat oss forst rita upp den nya tillstandsgrafen,

Figur S7i

S2 | S3,54
S2,S5
S3 | S3,S6 S4,56
S2,57 S5,57
sS4
S5 $1,S3
S6 | S3,S8 S4,S8 | S6,S8
S2,59 S5,59 | S7,S9
S7 S1,S3
S8 §1,S3
S9 S1,S3 §1,S3 | S1,S3
S S2 S3 sS4 S5 S6 S7 S8
Figur S7e Tabell 2 for tillstAndsminimering
S2 | S3,54
S2,S5
S3 | S3,S6 | S4,S6
S2,S7 | S5,57
sS4
S5 S1,S3
S6 | S3,S8 | S4,58 | S6,S8
$2,59 | S5,59 | S7,S9
S7 $1,S3
S8 $1,S3
S9 $1,S3 $1,S3 | S1,S3
S S2 S3 sS4 S5 S6 S7 S8
Figur S7f Tabell 2 for tillstAndsminimering
S1 S2
[o
S9 P S3
S8 S4
S7 S5
o
S6

EDA322

Figur S7g Relationsgraf

Digital konstruktion
Nagra uppgifter om tillstandsmaskiner

Ldsninga
page 25

r

7 forts.

Present Next state Output
state DN

00 01 10 11 Z
S1 S1 S3 S2 - 0
S2 S2 S4 S5 - 0
S3 S3 S2 S4 - 0
S4 S1 - - - 1
S5 S3 - - - 1

Figur S7h Minimerad tillstandstabell

00

Lat oss gora en implementering med D-vippor Figur S7i Minimerad tillstandsgraf

Vi ger tillstanden varden samt infér D-vippor, Figur S7j

Present D-flipflops Next state
state D,D,D, Q,Q.Q,
DN DN Output
Q,Q,Q, 00 01 10 11 00 01 10 11 Z
000 000 | 010 | 001 | --- [OO0 | O10 | OO1 | --- 0
001 001 | 011 | 100 | --- [OO1 | O11 | 100 | --- 0
010 010 | OO1 | O112 | -——- | O10 | OO1 | O11 | --—- 0
011 o0 | -—-| -——— | -——— | 000 | === | =——= | ——- 1
100 oif0 | ---| -—| -—|[010 | - — | —— | ——- 1

Figur S7j Tillstandstabell

Har har vi fem

variabler sa det & | DQo

hanterligt att logik- Q2=0 DN Q=1 \\DN
minimera med hjalp D, 00 01 11 10 00 01, 11 10
av Karnaughdiagram, ool ol o x| o ool o | x « | x

Figur S7k-n

[EEN

01| 0 | o Fﬁ 01| x | x Fq
D, =D-Q, QlQO11 0| x MJ QlQO11 x | x @j

10l 0 | O | x | O 10 x | x | x | x

Figur S7k Karnaughdiagram for D2

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 26

7 forts.
NQ:
Q2=0 DN Q=1 DN

D, 00 01 1110 00 '01 11 10

OOOFTTO 001‘x x‘x'

01| O 1 X 0 01| x X X X

Q1Qo Q1Qo
11| O X X X 11| X X X X
10/ 1]/ 0| x {\1 10| x | x | x| x
NQl@) Q2

Figur S71 Karnaughdiagram for D1

D1=Qz + N'Q_1+N'Q1'Q_o

. D Q_lQO - DQO :
Q20 DN @Al oy
Do 00 01 11 10y 00 0111 10,
oo| O 0 X 1 00| O X X X
o1] 1 1\ X |0 01| x X\ X | X
QiQo ——T— QiQo ———T—
11| O X X X 11| x X X X
R e R e
10| O \\ 1 X /,\ 1 10| x \\ X x/\ X
' \ 7 \
NQ:1Qo

Figur S7m Karnaughdiagram for Do

Do = D'Q_o+ N QlQ_O+561QO

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 27

7 forts.

Q2=0 DN Qz=1 DN

z 00 01 11 10 00 01 11 10

oo| O 0 X 0 00| 1 X X X

01| O 0 X 0 01| x X X X

QQo — Qo |-

11 1 X X X | 11| X X X X |
- : ,/ - :)

10| O 0 x\\ 0 10| x fx X X

Q1Qo Q2

z :Qz +Q1'Qo

Figur S7n Karnaughdiagram for utsignalen z

For att kunna testa kretsen sa maste vi se vad vara logik har gjort av don’t care-tillstanden. Vi upp-
daterar tillstandstabellen, Figur S7o.

Present D-flipflops Next state
state D,D,D; Q.QQ,
DN DN Output
Q,Q,Q, 00 01 10 11 00 01 10 11 yA
000 000 | 010 | 001 | O11 | OO0 | O10 | 001 | O11 0
001 001 | 011 | 100 | 110 | 001 | O11 | 100 | 110 0
010 010 | 001 | 011 | 001 | 010 | OO1 | 011 | OO1 0
011 000 | OO0 | 100 | 100 | OO0 | OO0 | 100 | 100 1
100 010 | 010 | 011 | O11 | 010 | O10 | 011 | O11 1
101 011 | 011 | 110 | 110 | 0121 | O11 | 110 | 110 1
110 010 | 011 | 0112 | O11 | 010 | O11 | 011 | O11 1
111 010 | 010 | 110 | 110 | 010 | 010 | 110 | 110 1

Figur S70 TillstAndstabell med realiserade varden for don’t care-tillstdnd

Det ar mojligt att en annan tilldelning av varden till tillstdnden skulle ge en enklare implementering.
Vi gar inte in pa detta

8 Skriv VHDL-kod for bdde den ominimerade och den minimerade tillstandstabellen i uppgift 7

Vi borjar med den ominimerade tillstandsmaskinen fran figur S7a

-— S8 _omin.vhdl
LIBRARY ieee;
USE i1eee.std logic_1164.all;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 28

8 forts.

ENTITY S8 omin 1S
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
D:IN STD_LOGIC;
N:IN STD_LOGIC;
z:0UT STD_LOGIC);
END S8 omin;

ARCHITECTURE arch_ S8 omin OF S8 omin IS
TYPE state_type 1S (S1,S2,S3,54,S5,56,S7,S8,59);
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_ type;
SIGNAL DN_vector_signal :STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
DN_vector_signal <= D & N;
state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_sighal<=S1;
ELSIF rising_edge(Clock) THEN
state_sighal<=next_state_signal;
END IF;
END PROCESS state_ transition_proc;

stateflow_proc:
PROCESS(state_signal ,DN_vector_signal)
BEGIN
CASE state_signal IS
WHEN S1 =>
IF (DN_vector_signal = "00") THEN
next_state_signal <= S1;
ELSIF (DN_vector_signal = "01"™) THEN
next_state_signal <= S3;
ELSIF (DN_vector_signal = "10") THEN
next_state_signal <= S2;
END IF;
WHEN S2 =>
IF (DN_vector_signal = "00") THEN
next_state_signhal <= S2;
ELSIF (DN_vector_signal = "01"™) THEN
next_state_signhal <= S4;
ELSIF (DN_vector_signal = "10"™) THEN
next_state_signhal <= S5;
END IF;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 29

8 forts.
WHEN S3 =>
IF (DN_vector_signal = "00") THEN
next_state_signal <= S3;
ELSIF (DN_vector_signal = "01") THEN
next_state_signal <= S6;
ELSIF (DN_vector_signal = "10") THEN
next_state_signal <= S7;
END IF;
WHEN S4 =>
IF (DN_vector_signal = "00") THEN
next_state_signhal <= S1;
END IF;
WHEN S5 =>
IF (DN_vector_signal = "00'") THEN
next_state_signal <= S3;
END IF;
WHEN S6 =>
IF (DN_vector_signal = "00'") THEN
next_state_sighal <= S6;
ELSIF (DN_vector_signal = "01'") THEN
next_state _sighal <= S8;
ELSIF (DN_vector_signal = "10") THEN
next_state _signhal <= S9;
END 1IF;
WHEN S7 =>
IF (DN_vector_signal = "00") THEN
next_state_signal <= S1;
END 1IF;
WHEN S8 =>
IF (DN_vector_signal = "00") THEN
next_state_signal <= S1;
END 1IF;
WHEN S9 =>
IF (DN_vector_signal = "00'") THEN
next_state_signal <= S3;
END IF;
END CASE;
END PROCESS stateflow_proc;

assignment_proc:
PROCESS(state_signal ,DN_vector_signal)
BEGIN
IF ((state_signal=S4) OR
(state_signal=S5) OR
(state_signal=S7) OR
(state_signal=S8) OR
(state_signal=S9)) THEN
z <= "1%;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 30

8 forts.
ELSE

END

z <= "07";
1F;

END PROCESS assignment_proc;

END arch_

S8 omin;

Vi simulerar med en do-fil

-— S8 _omi

restart -f -nowave

view sign

n.do

als wave

add wave Clock Resetn D N

add wave -radix binary DN_vector_signal
add wave state_signhal next _state signal z
force Clock 0 0, 1 50ns -repeat 100ns

force D O
force N O
force Res
run 225ns
force Res
force D O
run 400ns
force D 1
run 400ns
force D O
run 400ns
force N 1
run 400ns
force N O
run 400ns
force D 1
run 400ns
force D O
run 400ns
force N 1
run 400ns

etn O

etn 1

Vi 6vergar till den minimerade tillstandsmaskinen

-— S8 min
LIBRARY i

.vhdl
eee;

USE ieee.std logic 1164 .all;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 31

8 forts.

ENTITY S8 min IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
D:IN STD_LOGIC;
N:IN STD_LOGIC;
z:0UT STD_LOGIC);
END S8 min;

ARCHITECTURE arch_S8 min OF S8 min IS
TYPE state_type 1S (S1,S2,S3,54,S5);
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;
SIGNAL DN_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
DN_vector_signal <= D & N;
state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_sighal<=S1;
ELSIF rising_edge(Clock) THEN
state_sighal<=next_state_signal;
END IF;
END PROCESS state_ transition_proc;

stateflow_proc:
PROCESS(state_signal ,DN_vector_signal)
BEGIN
CASE state_signal IS
WHEN S1 =>
IF (DN_vector_signal = "00") THEN
next_state_signal <= S1;
ELSIF (DN_vector_signal = "01") THEN
next_state_signal <= S3;
ELSIF (DN_vector_signal = "10") THEN
next_state_signal <= S2;
ELSE
next_state_signal <= S1;
END 1IF;
WHEN S2 =>
IF (DN_vector_signal = "00'") THEN
next_state_signhal <= S2;
ELSIF (DN_vector_signal = "01"™) THEN
next_state_signhal <= S4;
ELSIF (DN_vector_signal = "10"™) THEN
next_state_signhal <= S5;

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 32

8 forts.

ELSE
next_state_signal <= S1;

END IF;

WHEN S3 =>

IF (DN_vector_signal = "00") THEN
next_state_signal <= S3;

ELSIF (DN_vector_signal = "01") THEN
next_state_signal <= S2;

ELSIF (DN_vector_signal = "10") THEN
next_state_signhal <= S4;
ELSE
next_state_signal <= S1;
END IF;
WHEN S4 =>
IF (DN_vector_signal = "00") THEN
next_state_signhal <= S1;
ELSE
next_state signhal <= S1;
END 1IF;
WHEN S5 =>
IF (DN_vector_signal = "00'") THEN
next_state_signhal <= S3;
ELSE
next_state_signal <= S1;
END 1IF;
END CASE;
END PROCESS stateflow _proc;

assignment_proc:
PROCESS(state_signal ,DN_vector_signal)
BEGIN
IF ((state_signal=S4) OR
(state_signal=S5)) THEN

7z <= "1°:
ELSE

7z <= "0":
END IF;

END PROCESS assignment_proc;
END arch_S8 min;

Vi simulerar ater med en do-fil

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 33

8 forts.

-— S8 min.do

restart -f -nowave

view signals wave

add wave Clock Resetn D N

add wave -radix binary DN_vector_signal
add wave state_sighal next _state _signal z
force Clock 0 0, 1 50ns -repeat 100ns
force D O

force N O

force Resetn O

run 225ns

force Resetn 1

force D O

run 400ns

force D 1

run 400ns

force D O

run 400ns

force N 1

run 400ns

force N O

run 400ns

force D 1

run 400ns

force D O

run 400ns

force N 1

run 400ns

9 Ta fram tillstandstabellen for en tillstandsmaskin som skall detektera en sekvens av fyra varden pa
ingdngen w. Utsignalen z ska bli ett (1) om sekvensen &r 0010 eller 1110. | 6vriga fall ska utsignalen
bli noll (0). Efter en sekvens om fyra varden ska tillstandsmaskenen bérja om med en ny sekvens,
dvs sekvenserna kan inte vara 6verlappande. Minimera tillstandstabellen

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 34

9 forts.

Vi oversatter funktionsbeskriv-
ningen, att vi skall fa en etta (1)
som utsignal om vi har haft
pulssekvensen 0010 eller puls-
sekvensen 1110 och i annat fall
en nolla (0), till tillstandsgrafen
for en tillstandsmaskin av
Mooretyp, Figur S9a. Efter fyra
klockpulser skall vi alltid aterga
till starttillstandet

Figur S9a Tillstandsgraf

Fran tillstandsgrafen tecknar vi tillstandstabellen, Figur S9b,
som vi dven skriver som ett partionsuttryck Pre- Next state Out-
sent put
state | w=0 | w=1 Z
P =(AB,C,D,EF,G,H,IIJ) - - = =
B H C 0
C I D 0
D E J 0
E A A 1
F G H 0
G I D 0
H I I 0
I J J 0
J A A 0

Figur S9b Tillstandstabell

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 35

9 forts.

Vi bérjar tillstdandsminimeringen med att dela in tabellen
e e . . Pre- Next state Out-
i tillstand som skiljer sig genom att de ger olika utsignal. ; ;
Vi ser att har ar det tillstand E som skiljer sig fran de 6v- ster; 5 1 pu
riga och vi far ett nytt partionsuttryck samt en ny tabell, state | we il Z
Figur S9c A F B 0
B H C 0
P,=(AB,C,D,F,G,H,1,J)E) ¢ ! b | 0
D E J 0
F G H 0
G I D 0
H | I 0
I J J 0
J A A 0
E A A 1

Figur S9c minimeringstabell 1

Vi fortsatter med att titta pa vilka tillstand vi gar till fran

nuvarande tillstand d& w=0 respektive da w=1. For att vi Pre- | Nextstate | Out-
skall kunna sla ihop tillstanden sa maste efterféljande sent put
tillstand vid respektive insignal tillhdra samma partion. Vi state | w=0 | w=1 z
ser att tillstand D skiljer sig fran de andra tillstanden i den A F B 0
forsta gruppen genom att ge en 6vergang till den andra B H C 0
gruppen. Vi far ett nytt partionsuttryck och en ny tabell, C I D 0
Figur S9d F G H 0
G I D 0
P,=(A B,C,D,F,G,H,1,)D)E) H | | 0
| J J 0
J A A 0
D E J 0
E A A 1

Figur S9d minimeringstabell 2

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 36

9 forts.

Vi har nu fatt nya partioner som vi kan granska pa samma
satt. Vi ser att tillstdnden C och G gar till en annan partion
an de andra tillstanden i den forsta gruppen. De gar dock
till samma grupp vilket innebér att de har en egen part-
ion. Vi far ett nytt partionsuttryck och en ny tabell, Figur
S9e

P, =(A B,F,H,17J)(C,G)(D)E)

Vi fortsdtter pa samma satt och ser att i den forsta
partionen gar tillstand B och F till andra partioner, de
gar dock inte till samma partioner sa de far var och en
laggas i en egen ny partion. Vi far ett nytt part-
ionsuttryck och en ny tabell, Figur S9f

P,=(AH,1,3)(B)(C,G)(D)(E)(F)

EDA322
Digital konstruktion

Pre- Next state Out-
sent put
state | w=0 w=1 z
A F B 0
B H C 0
F G H 0
H I | 0
I J J 0
J A A 0
C I D 0
G I D 0
D E J 0
E A A 1

Figur S9e minimeringstabell 3

Pre- Next state Out-

sent put

state | w=0 | w=1 z
A F B 0
H I I 0
I J J 0
J A A 0
B H C 0
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0

Nagra uppgifter om tillstandsmaskiner

Lésningar
page 37

Figur SOf minimeringstabell 4

9 forts.

Vifortsatter och ser att tillstand A gar till en annan part-
S i o Pre- Next state Out-
ion an vad oOvriga tillstand i den forsta partionen gar. A
o o . . o sent put
far alltsd en egen partion och vi far ett nytt tat 0 1
partionsuttryck och en ny tabell, Figur S9g state | w= s z
A F B 0
— B H C 0
P, =(A)(B)(C,G)(D)(E)(F)(H,1,)
C I D 0
G | D 0
D E J 0
E A A 1
F G H 0
H I I 0
| J J 0
J A A 0

Figur S9g minimeringstabell 5

Vi ser nu att i den sista partionen gar tillstand J till en
S I . Pre- Next state Out-
annan partion an ovriga tillstand och den far en egen sent ut
partion. Vi far ett nytt partionsuttryck och en ny tabell, P
) state | w=0 | w=1 z
Figur S9h
A F B 0
B H C 0
P: = (A)(B)(C. G)(D)E)F)(H, 1))
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0
H I | 0
I J J 0
J A A 0
Figur S9 minimeringstabell 6

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 38

9 forts.

Vi kan nu se att tillstand H och / gar till olika partioner sa ro- Next state Ut
de far delas upp i tva partioner. Vi skriver ett nytt part- sent put
ionsuttryck och tecknar en ny tabell, Figur S9i state | ' weo | we1 z
P, = (A)(B)(C, B)(D)(E)F)(H)(1)0) T
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0
H | I 0
I J J 0
J A A 0
Figur S9i minimeringstabell 7

. Pre- Next state Out-
Vi kommer nu inte langre och kan konstatera att vi kan
. - s . . sent put
sld samman tillstand C med tillstdnd G. Behaller vi state "> -
tillstand C sa far vi tillstandstabellen i Figur S9j i i i
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F C H 0
H I I 0
| J 0
J A A 0

Figur S9j Minimerad
tillstandstabell

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 39

9 forts.
Vi skall nu se pa en annan metod for tillstandsminimering
som ar lite enklare att hantera med penna och papper. Vi
upprepar den ursprungliga tillstandstabellen for att ha
den tillganglig, Figur S9k.

Pre- Next state Out-

sent put

state | w=0 | w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F G H 0
G I D 0
H I | 0
I J J 0
J A A 0

Vi staller upp en tabell 6ver alla mojliga tillstandsekvivalenter, Figur S9/

Figur S9k Tillstandstabell

“|l—7|lT|I|MMO|O|®

A B C D E

F

G H

Figur S9I Tabell 1 for tillstdndsminimering med alla mojliga

tillstdndsekvivalenter

| tabellen dimmar vi alla tillstandsekvivalenter som ar omgjliga pa grund av att tillstanden har
olika utsignaler, vi ser enkelt att tillstand E har avvikande utsignal fran de andra tillstanden, Figur

S9m

EDA322
Digital konstruktion

Nagra uppgifter om tillstandsmaskiner

Lésningar
page 40

9 forts.

|7 |lT|IO|TMMQO|O|®

A B C D E F G H

Figur S9m Tabell 2 for tillstdndsminimering

For att tva tillstand skall vara ekvivalenta sa maste dven de efterféljande tillstanden, dvs de till-
stand till vilka vi gar fran aktuellt tillstand vara ekvivalenta. Vi skriver i de odimmade rutorna in
de par av efterféljande tillstdand som maste vara ekvivalenta for att de tva aktuella tillstanden
skall vara ekvivalenta. Ingar de tva aktuella tillstanden i paret av efterféljande tillstand sa
behoéver vi inte skriva in dem eftersom det dr dessa som vi vill sla ihop. Vi behover inte heller
skriva in ett par som redan ar en ekvivalens, dvs ar ett och samma tillstand, Figur S9n

B |B,C
FH
c |sp [cD
Fl H,l
D |8, cJ D,J
EF |EH |E|l
BH [CH |DH |EG
G |GH |G| H,J
G 8D [cD D,J D,H
Fl H,l E,l G,
H |8, C, D, E,l G, D,
Fl H,l 1) H,l
B,J cJ DJ |EJ GJ) |pJ |1
F,J HJ |1 HJ |1
) |aB |[ac |[AaD |[AE AG |AD [Al A
AF |AH | Al A AH | Al
A B C D E F G H |

Figur S9n Tabell 3 for tillstAndsminimering

Vi fortsatter genom att dimma ut ekvivalenter dar vi har skrivit in tillstandspar som vi redan har
démt som inte ekvivalenta genom att vi har dimmat ut dem, Figur S90

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 41

9 forts.

B |B,C
FH
c [sD [cD
Fl H,l
D |[BJ |cCJ D,J
EF |EH |E|l
BH [CH |DH |EG
FG [GH |G| H,J
G [8D [cD D,J D,H
Fl H,l E,l G,
H |8, c,l D, E,|l G, D,
| H,l 1,J H,I
BJ |[CJ DJ |EJ GJ) |pJ |1
F,J HJ |1 HJ 1)
) |aB |Aac |AaD [AE AG |AD |[Al A
AF |AH |Al A) AH | Al
A B C D E F G H

Figur s9o Tabell 4 for tillstandsminimering

Detta har nu givit upphov till nya dimningar, dvs tillstand som inte kan vara ekvivalenter och vi
kan upprepa foregaende uteslutning av ekvivalenter med hjilp av de nya dimningarna, Figur S9p

B | B,
FH
c |8pD C,D
Fl H,l
D |[B) c) |pJ
EF EH |El
E
F |BH CH |DH |EG
F,G GH |Gl |HJ
G |8D C,D D,) D,H
Fl H,l E,|l G,
H |8, ¢! |bpl |El G| |D|
Fl H,l 1,) H,l
Y c) |pJ |EJ GJ |pJ |1
F,J HJ o [1) HJ o [1)
J | AB AC |AD |AE AG |[AD |[Al [A)J
AF AH |Al |AJ AH | Al
A B C D E F G H |

Figur E8.11p Tabell 5 for tillstandsminimering

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 42

9 forts.

Detta ger upphov till ytterligare tillstand som inte kan vara ekvivalenter och vi kor ett varv till,
Figur S9q

Figur S9q Tabell 6 for tillstAndsminimering

Detta ger upphov till ytterligare nya icke-ekvivalenta tillstand, Figur S9r

Figur S9r Tabell 7 for tillstandsminimering

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Ldsningar
page 43

9 forts.

Vi kor ett varv till, Figur S9s

Figur S9s Tabell 8 for tillstindsminimering

och ett varv till, Figur S9t

Figur S9t Tabell 9 for tillstdndsminimering

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Ldsningar
page 44

9 forts.

eftersom det enda
kvarstaende moj-
liga ekvivalenspa-
ret saknar
efterféljande par
som maste vara ek-
vivalenter sa
kommer vi inte
langre och kan dra
slutsats att vi kan
sld ihop tillstand C
och tillstdnd G och

Vi far den
minimerade
tillstandstabellen, Figur S9v Férenklad tillstAndsgraf

Figur S9u, som ar
likadan som Figur S9j som vi fick fran den foérsta

metoden. Pre- Next state Out-

Lat oss rita upp den férenklade tillstdndsgrafen, Figur sent put

Sv state | w=0 | w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F C H 0
H I I 0
I J 0
J A A 0

Figur S9u Minimerad
tillstandstabell

10 Ta fram och minimera tillstandstabellen for en tillstdandsmaskin som detekterar om antalet ettor
(1) i en trebitars sekvens pa ingangen w ar udda eller jamnt. Udda antal ettor skall satta utsignalen
z till ett (1). Trebitarssekvenserna &r kan inte vara overlappande

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 45

10 forts.

Vi far tillstandsdiagrammet i Figur
S$10a

Figur S10a Tillstandsdiagram

Fran tillstandsgrafen tecknar vi tillstandstabel-

Present Next state Output
len, Figur S10b, och borjar till-
. 2 . B state w=0 w=1 z
standsmimimeringen med att stdlla upp en
.. 1 e . A E B 0
tabell over alla mdjliga tillstandsekvivalenter,
. B F C 0
Figur E8.12c
C A D 0
D E B 1
E C F 0
F D A 0

Figur S10b Tillstandstabell

MmO O|®

A B C D E

Figur S10c Tabell for tillstdndsminimering
med alla mgjliga tillstandsekvivalenter

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 46

10 forts.

| tabellen dimmar vi alla ekvivalenter som ar

omojliga pa grund av att tillstanden har olika
utsignaler, vi ser enkelt att tillstdnd D har
enutsignal som avviker fran o6vriga tillstand,
Figur S10d

mMmMmMmOO|®

A B C D E

Figur S10d Tabell 2 for tillstandsminimering

For att tva tillstand skall vara ekvivalenta sa B BC
maste dven de efterfoljande tillstanden, dvs de E’F
tillstand till vilka vi gar fran aktuellt tillstand C A'E AF
vara ekvivalenta. Vi skriver i de odimmade BID CID
rutorna in de par av efterféljande tillstand som 5 4 4
maste vara ekvivalenta for att de tva aktuella
e . o . E B,F CF | AC
tillstanden skall vara ekvivalenta. Ingar de tva

I . . CE D,F
aktuella tillstanden i paret av efterféljande
s . . L L F |]AB| AC | AD AF
tillstand sa behover vi inte skriva in dem

. C o e . D,E | D,F C,D

eftersom det ar dessa som vi vill sla ihop. Vi
behoéver inte heller skriva in ett par som redan A B ¢ D E

ar en ekvivalens, dvs dr ett och samma till- Figur S10e Tabell 3 for tillstindsminimering
stand, Figur S10e.
Vi fortsatter genom att dimma ut ekvivalenter

B B,C
dar vi har tillstandspar som vi redan har domt EF
sir: mte;kvw;!;}r:ta genom att vi har dimmat c [AE | AF
ut dem, Figur BD | CD

E B,F | CF | AC

CE D,F
F |AB | AC| AD AF
D,E | DF CD

A B C D E

Figur S10f Tabell 4 for tillstdndsminimering

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 47

10 forts.

Detta har nu givit upphov till nya dimningar,

B | BC
dvs tillstand som inte ar ekvivalenter och vi kan EE
upprepa foregaende uteslutning av ekvivalen- C A’E AF
ter med hjélp av de nya dimningarna, Figur BD | CD
S$10g.
Vi ser att alla mdjliga ekvivalenter ar bort- £ BE | CF RS
dimmade och vi kan dra slutsatsen att vi hade ! ! !
- I o L. C,E D,F
en minimal tillstandstabell fran bérjan
F | AB | AC | AD AF
D,E | D,F CD
A B C D E
Figur E8.12g Tabell 5 for
tillstdndsminimering
11 Minimera 5 m 5
tillstandstabellen i figur resent ext state utput
state W1:O W1=1 W1:O W1:1
E11
A B C 0 0
B D - 0 0
C F E 0 1
D B G 0 0
E F C 0 1
F E D 0 1
G F - 0 1

Figur E11 Modifierad tillstandstabell

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 48

11 forts.

Lat oss forst rita tillstandsdiagram, Figur S11a

Figur S11a Tillstindsgraf

Vi borjar var tillstandsminimering
med att stalla upp en tabell 6ver alla
mojliga tillstandsekvivalenter, Figur
S11b

QMmO O|®

A B C D E F

Figur S11b Tabell for tillstandsminimering

| tabellen dimmar vi alla ekvivalenter
som &r omojliga pd grund av att till-
standen har olika utsignal, Figur S11c

O M mMO|O|m

A B c D E F

Figur S11c Tabell 2 for tillstandsminimering

For att tva tillstand skall vara ekvivalenta sa maste dven de efterfoljande tillstanden, dvs de tillstand
till vilka vi gar fran aktuellt tillstand vara ekvivalenta. Vi skriver i de odimmade rutorna in de par av
efterféljande tillstdnd som maste vara ekvivalenta for att de tva aktuella tillstanden skall vara
ekvivalenta.

11 forts.

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 49

Ingar de tva aktuella tillstanden i
paret av efterfoljande tillstand sa
behdver vi inte skriva in dem
eftersom det ar dessa som vi vill sla
ihop. Vi behover inte heller skriva in
ett par som redan ar en ekvivalens,
dvs ar ett och samma tillstand, Figur
S11d.

Vifortsatter genom att dimma ut par
som vi redan har domt som icke
ekvivalenta genom att vi har dimmat
ut dem, Figur S11e.

Vi fortsatter pa samma satt, Figur
S11f.

B B,D
C
D| CG
E
F E,F C,D
D,E
G E,F
A B C D E F
Figur S11d Tabell 3 for tillstAindsminimering
B B,D
C
D| CG
E
F E,F C,D
D,E
G E,F
A B C D E F
Figur S1le Tabell 4 for tillstandsminimering
B B,D
C
D| CG
E
F E,F C,D
D,E
G E,F
A B C D E F

Figur S11f Tabell 5 for tillstAndsminimering

EDA322

Digital konstruktion
Nagra uppgifter om tillstandsmaskiner

Lésningar

page 50

11 forts.

Vi kommer inte langre i minimeringen och ritar relations-

B C
graf, Figur S11g.
Vi ser att vi kan sla ihop tillstand A och B eller tillstand B och A D
D samt tillstand C, E och G. Da vi har slagit ihop tillstand C
och G sa ser vi att dven A och D kan slas ihop och vi slar ihop
tillstand A, B och D till ett tillstand. E E
Lat oss behalla tillstand A och C. Vi far den minimerade)
tillstandstabellen, Figur S11h.

G

Figur S11g Relationsgraf

Present Next state Output
state wi=0 wi=1 w1=0 wi=1
A A C 0 0
C F C 0 1
F C A 0 1

Figur S11h Minimerad tillstAndstabell

Vi ritar ny tillstandsgraf, Figur S11i.

Figur S11i Minimerad tillstdndsgraf

12 Anvand D-vippor for att konstruera en modulo-6-raknare med sekvensen 0, 1, 2, 3, 4, 5, 0, 1,....
Réaknaren raknar klockpulser men bara da ingdngen w ar ett (1).

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 51

12 forts.

Vi har tillstandsgrafen i Figur S12a.

Figur S12a Tillstandsgraf

For detta behdver vi tre (3) utsignaler (23=8) och dven tre (3) vippor. Vi stéller upp tillstdndstabel-

len, Figur S12b

Present Next state Output
state w=0 w=1 22 Z1 | 2o
A A B 0 0 0
B B C 0 0 1
C C D 0 1 0
D D E 0 1 1
E E F 1 0 0
F F A 1 0 1

Figur S12b Tillstandstabell

Present D- Next
state | flipflop | state
D
0 0 0
0 1 1
1 0 0
1 1 1

Figur S12c Tillstandstabell for

JK-vippa

Da vi skall anvanda D-vippor stéller vi upp tillstandstabellen for dessa, Figur S12c, och anvander

denna tabell for att infora D-vippor i var tillstandstabell, S12d

Present state D-flipflops Next state Output
w=0 w=1 w=0 w=1
Q | Q| Qo | D2 | D1 | Do D> | D1 | Do Q | Q| Q | Q| Q| Q | 22| z1 | 2
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 OO0 O
0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0|O 1
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0|1 0
0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0|1 1
1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 10| 0
1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1|0 1
Figur S12d Tillstandstabell med D-vippor
EDA322

Digital konstruktion

Nagra uppgifter om tillstandsmaskiner
Lésningar

page 52

12 forts.

| tabellen behdver vi egentligen inte ha med D-ingangarna eftersom dom har samma varden som
Q-utgangarna i Next state.
Vi anvander Karnaughdiagram for att bestdmma villkoren for vara tre insignaler, Figur S12e-g

Q1Qo Q1Qo
D 00 01 11 10 Di 00 01 11 10
s
o|lo|o]o]o oolo o111
= — W W
01 Kl\‘ 1 X | x)é— Q2 o1l O 0 X X @
wQ; — Q.00 wQ; — Q1Qo
111 1| O ‘ X ‘ X 11| O 0 X X o
T —=" WQ,Q —1——1 WQ:Q1Qo
10| O 0 ‘ 1 T 0 10l O |1 | O 1
___/ N N
Figur S12e Karnaughdiagram for D2 Figur S12f Karnaughdiagram for D1
D, = .___4_0Q. + W- . (?ﬂQO
2 =QQ+WQ +WQ-Q Do 00 01 11 10
00| O 1110
D1 = Ql 'Qo + W'Q1 + W'Qz : Q1 'Qo WQO
01| 0 | 1 X X

_ _ WO, | B -
Dy =W-Qy +W-Q, =w® Q, Qzllq 0| « F

10&0 0@7""60

Figur S12g Karnaughdiagram foér Do

Utsignalerna ar de samma som vippornas utsignaler.
Det ar modjligt att ndgon annan tilldelning av varden till tillstdnden skulle ge en enklare
implementering men vi gar inte in pa detta

13 Upprepa uppgift 12 med JK-vippor

Vi har tillstandstabellen fér en JK-vippa i Figur S13a och Present | JK-flipflop Next
skriver om tillstdndstabellen i Figur S12a men for att f& state J K state
plats s& uteldmnar vi kolumnerna med utsignaler da 0 0 X 0
dessa har samma varden som vippornas utsignaler. Vi 0 1 X 1
far Figur S13b 1 X 1 0
1 X 0 1

Figur S13a Tillstindstabell for JK-
vippa

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 53

13 forts.

Present state JK-flipflops Next state
w=0 w=1 w=0 w=1

Q| Q| Q2| Ko 1| Ki|Jo| Ko|J2| Ko | Jz| Ki|Jo| Ko | Q| Q| Q| Q| Qi

0 0 OJO0| x |0 x |O0O|x]O]| x |0 x 1 X 0 0 0 0 0 1
0 0 10| x |0 x|x]|]O0O]O0| x |1]|x|x]1 0 0 1 0 1 0
0 1 OJO0| x |[x] O]|]O0O| x]0] x x| O 1 X 0 1 0 0 1 1
0 1 110 x x| O x| O 1 X X 1 X 1 0 1 1 1 0 0
1 0 Olx|O0O]O| x |0 Xx]x]O0|O0| x |1] x 1 0 0 1 0 1
1 0 1|1 x|]0|]O0| x|x|O]x|1|0]| x |x|1 1 0 1 0 0 0

Figur S13b Tillstandstabell med D-vippor

Vi staller upp Karnaughdiagram for vara insignaler J och K till de tre vipporna, Figur S13c-h

Q1Qo Q1Qo
J2 00 01 11 10 K2 00 01 11 10
oo|lo|o| 0] o 0] x | x| x| x
01| x | x | x| x o1l 0] 0| x| x
wQ:> wQ;

T+ WQ2Qo
11| x | X F/X//WQlQO 111 0 |[1 | x| x
10/ 0 | O b 0 10| X 0 0| x

Figur S13c Karnaughdiagram for Jz Figur S13d Karnaughdiagram for Kz

J 5 = W'Ql .QO

Kz = W'Qz 'Qo

Q1Qo Q1Qo
Ji 00 01 11 10 Ki 00 01 11 10
00| O 0 X X 00| x X 0 0
01| O 0 X X 01| x X X X
wQ wQ;

|} wQ

11| O 0 X X . 11| x X xr X °
—1—WQ2Qo

10| O 1 X X 10| X X 1 0

Figur S13e Karnaughdiagram for J1 Figur S13f Karnaughdiagram for Kz

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 54

13 forts.

‘J1:W'Q2'Qo
Kl = W'Qo
Q1Qo Q1Qo

Jo 00 01 11 10 Ko 00 01 11 10

00| O X X 0 00| x 0 0 X

o1 O X X X 01| x 0 X X
WQ2 I W WQZ L w

11 ‘ 1 X X X ‘ 11 ‘ X 1 X X ‘

10 ‘ 1 X X 1 ‘ 10 ‘ X 1 1 X
Figur S13 Karnaughdiagram for Jo Figur S13 Karnaughdiagram for Ko

Jo=K,=w

Och utsignalerna z2, z1 och z0 ar alltsa de samma som JK-vippornas utsignaler Q2, Q1 respektive

Q0.
Det dr maojligt att nagon annan tilldelning av varden till tillstanden skulle ge en enklare implemen-

tering men vi gar inte in pa detta

14 Upprepa uppgift 12 med T-vippor

Vi har tillstandstabellen for en T-vippa i Figur S14a och skriver

illstandstabellen i Fi q . hfar Fi Present T- Next
om tillstandstabellen i Figur S12a med T-vippor och far Figur state | flioflop | state
S14b
T
0 0 0
0 1 1
1 1 0
1 0 1

Figur S14a TillstAndstabell for
JK-vippa

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 55

14 forts.

Present state T-flipflops Next state Output
w=0 w=1 w=0 w=1

Q | Q |Q | T2 | T2 | To T | T1 | To Q | Q| Q | Q| Q|Q | 2z2 | 21 |2
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0
0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1
1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0
1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1

Figur S14b Tillstindstabell med D-vippor

Vi anvander Karnaughdiagram for att ta fram de logiska uttrycken for T-signalerna, Figur S15c-e.
Da utsignalerna har samma varden som tillstandsvardena sa behover vi inte bestédmma dessa for

sig.
Q1Qo Q1Qo
T 00 01 11 10 Ti 00 01 11 10
oo| O 0 0 0 oo| O 0 0 0
o1 0 [O X | X o1} 1 | O X | x
wQ:> — wQ:
11| O ‘\1 /ax - WwQ2Q0 111 0 | O X | x .
— wQ1Qo 1 WQ2Qo
10/ 0 | 0 Lljf 10| 0 |1 E 0
Figur S14c Karnaughdiagram for T> Figur S14d Karnaughdiagram for T.
T, =w-Q-Qy +W-Q,-Q Q1Qo
To 00 01 11 10
T, =w-Q,-Q, oo|o|o|ofo
01 0 [O X | x
TO =W wQ; W

11‘1 1 X x‘

10‘1 1 1 1‘

Figur S14e Karnaughdiagram for To

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 56

15 Ta fram tillstdndsgraf och tillstdndstabell fér en riknarliknande krets med &tta (8) tillstdnd 0-7. Ar
ingangen w ett (1) sa skall kretsen rdkna uppat med steget tva (2). Da den har matt maxvéarde sa
skall den géra wrap around, dvs ar vardet atta (8) sa skall ndsta varde bli noll (0) medan nésta varde
skall bli ett (1) om nuvarande vérde &r nio (9). Ar w noll (0) sa skall kretsen fungera som en vanlig
nedraknare med steget ett som goér wrap around da den nar noll (0).

Implementera kretsen med hjalp av D-vippor

Vi ritar tillstandsgraf, Figur S15a och tecknar tillstandstabell, Figur S15b, dar vi har givit tillstanden
bokstavsbeteckningar

1 Present Next state Count
state w=0 w=1
SO S7 S2 0
S1 SO S3 1
S2 S1 S4 2
S3 S2 S5 3
S4 S3 S6 4
S5 S4 S7 5
S6 S5 SO 6
S7 S6 S1 7
Figur S15b Tillstandstabell
Present D- Next
state flipflop | state
Figur S15a Tillstindsgraf D
Vi har tillstandstabellen for en D-vippa i Figur S16c. 0 0 0
Virden 0 — 7 innebér at vi behéver tre (3) D-vippor (23=8). Vi 0 1 1
skriver om tillstdndstabellen med tilldelade virden pa tillstdnden 1 0 0
och med D-ingdngarnas varden, Figur S16d 1 1 1

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 57

Figur S15c Tillstandstabell for

JK-vippa

15 forts.

Present state D-flipflops Next state Output
w=0 w=1 w=0 w=1

Q | Qi1 | Qo | D2 | D1 | Do D | D1 [Do | Q2 | Q1 | Qo | Q2 | Q1 | Qo | 22 | 21 | 20
0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1
1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0
1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1
1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0
1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1

Figur S15d Tillstandstabell med D-vippor

Vi anvander Karnaughdiagram for att soka de logiska villkoren for D-vipporna, Figur S15e-g. Ef-
tersom rdknarutgangarna har samma varden som vara vippors utgangar sa behover vi inga egna
uttryck for dessa

D Q1Qo D Q1Qo
2 00 01 11 10 __—___ Y00 01 11 10
— 1 T T | WQ2QiQo N N
oo 1] 0O 0 0 00| 1 0‘1}\70
— wQ2Q1 — 1 wQ,Q
N 4 10
01| 0 (|1 1] 1 — 01| 1 0 ‘ 1 ‘ 0
LT o e e o B QLA wQ, T T e (o | @
11 ‘\7\7_/‘ °1° wQ2Q1 ‘ }(B
10| 0 | O \(1] 1 \ - wWQ.Q: 10 1) j 0| o0 wQ:
Figur S15e Karnaughdiagram for D2 Figur S15f Karnaughdiagram for D1
D, =w-Q,-Q +Q,-Q;-Qy +W-Q,-Q; +W-Q,-Q; +W-Q,-Q,-Q,
D ::mp___k__.___%ﬁi . D Q1Qo
P EWQAQQ FWQQ ° 00 01 11 10
- oo| 1]lo| o1} __
D, = wW-Q, + W-Q, =W ® Q, | | woR

01 ,‘0 0\
wQ, |

1
110 (1 1]l 0| w
10 1

Figur S15g Karnaughdiagram fér Do

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 58

O"l—\

o

F

16 Skriv VHDL-kod for tillstandstabellen framtagen i uppgift 15

Vi far koden

-- S16.vhdl

LIBRARY ieee;

USE ieee.std _logic_1164.all;
USE i1eee.numeric_std.all;

16 forts.

ENTITY S16 IS
PORT(Clock: IN STD_LOGIC;
Resetn:IN STD_LOGIC;
wzIN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));
END S16;

ARCHITECTURE arch_S16 OF S16 IS

SIGNAL count_signal: INTEGER RANGE O TO 7;
BEGIN
count_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
count_signal<=0;
ELSIF rising_edge(Clock) THEN
IF (w="1") THEN
IF (count_signal = 6) THEN
count_signal <= 0;
ELSIF (count_signal = 7) THEN
count_signal <= 1;

ELSE
count_signal <= count_signal + 2;
END IF;
ELSE
IF (count_signal = 0) THEN
count_signal <= 7;
ELSE
count_signal <= count_signal -1;
END IF;
END 1IF;
END IF;
END PROCESS count_proc;
EDA322

Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 59

count <= STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,3));

END arch_S16;
Vi simulerar med en do-fil

-- S16.do

restart -f -nowave

view signals wave

add wave Clock Resetn w

add wave count_signal count
add wave -radix binary count
add wave -unsigned count
force Clock 0 0, 1 50ns -repeat 100ns
force Resetn O

force w O

run 225ns

force Resetn 1

run 1500ns

force w 1

run 1500ns

force w O

run 500ns

force w 1

run 500ns

EDA322
Digital konstruktion
Nagra uppgifter om tillstandsmaskiner
Lésningar
page 60

