CHALMERS

Department of Computer Science and Engineering

2017-01-11

EDA322 Digital konstruktion

Losningar till uppgifter | boken
Kapitel 16

16.5 Vi skall konstruera en raknare i VHDL. Specifikationen &r lite 16s sa vi preciserar den till ett antal
punkter

a. Gor en 4 bitars uppraknare med reset. Rédknaren skall bottna da den nar maxvéarde

Andra sa raknaren kan rakna bade upp och ner. Raknaren skall bottna bade vid upprikning
till maxvarde och vid nedrakning till noll

Lagg in styrsignal for att aktivera rakning

Lagg till en kodbestamd 6vre och undre raknegrans

Ge mojlighet att satta styrbara évre och undre raknegranser for raknaren

Ge mojlighet att ladda in startvarde

Gor designern generisk

Heltal som raknarvariabler

o

S@®@ 0o oo

a) Lat oss rita ett blockschema, Figur 16.5a. Ik —»
Vi skriver VHDL-kod dar vi antar att resetsignalen |~ » count_value
ar aktivt 1ag. reset —,

Figur 16.5a Réknarversion a
-- ex16_5a.vhdl

LIBRARY ieee;
USE i1eee.std logic_1164.all;
USE i1eee.numeric_std.all;

ENTITY ex16_5a IS
PORT(reset:IN STD_LOGIC;
clk:IN STD_LOGIC;
count_value:0OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5a;

ARCHITECTURE arch_ex16 5a OF ex16 5a IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1
Division of Computer Engineering




count_signal<=(0THERS=>"0");
ELSIF rising_edge(clk) THEN
IF (count_signal<"1111'") THEN
count_signal<=count_signal+1;
END 1IF;
END IF;
END PROCESS count_process;
count_value<=STD_LOGIC VECTOR(count_signal);
END arch_ex16 b5a;

Da vi skall addera till réknevardet sa maste det ga att ldasa. Darfor infor vi en signal som
anvands vid upprakningen varefter vardet 6verfors till utgangen. Det finns inga funktioner for
att rakna upp STD_LOGIC_VECTOR sa internt anvander vi i stallet undertypen UNSIGNED
som finns definierad i biblioteket NUMERIC_STD. Vi har valt en asynkron reset och
rékneprocessen far da triggas av reset eller clk.

Vi simulerar med en do-fil.

-- ex16_ba.do

restart -f -nowave

view signals wave

add wave reset clk count_signal count value

force reset 1
force clk 0 0,1 50ns -repeat 100ns

run 125ns
force reset 0
run 100ns
force reset 1
run 2000ns
b) Lat oss rita ett nytt blockschema, Figur 16.5b. clk —p!
Vi kompletterar VHDL-koden med en styrsignal 4 ol
som ger upprakning da den &r etta och nedrakning reset — > coumvete
da den &r nolla. up__down —»
-— ex16_5b.vhdl Figur 16.5b Réknarversion b

LIBRARY 1ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16 5b 1S
PORT(reset:IN STD_LOGIC;
clk:IN STD_LOGIC;
up_down:IN STD_LOGIC;
count_value:0UT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5b;

ARCHITECTURE arch_ex16_5b OF ex16_5b 1S

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 2



SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=(0THERS=>"0");
ELSIF rising_edge(clk) THEN
IF (up_down="1") THEN
IF (count_signal<™1111") THEN
count_signal<=count_signal+1;
END IF;
ELSE
IF (count_signal>"0000"") THEN
count_signal<=count_signal-1;
END IF;
END 1IF;
END IF;
END PROCESS count_process;
count_value<=STD_LOGIC VECTOR(count_signal);
END arch_ex16 5b;

Vi kompletterar do-filen

-- ex16_5b.do

restart -f -nowave

view signals wave

add wave reset clk up_down

add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force up_down 1
run 125ns

force reset 0
run 100ns

force reset 1
run 1800ns
force up_down O
run 1800ns
force up_down 1
run 500ns

force up_down O
run 400ns

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 3



c) Viritar ett nytt blockschema, Figur 16.5c.
Vi kompletterar VHDL-koden med en styrsignal
som aktiverar rakning. Vi gor signalen aktivt hog.

clk —»
reset —p

up_down —p|

-— ex16_5c.vhdl
LIBRARY 1ieee; count —

4
|~ » count_value

USE ieee.std_logic_1164._all;

USE ieee.numeric std.all: Figur 16.5¢ Réknarversion ¢

ENTITY ex16 _5c 1S
PORT(reset:IN STD_LOGIC;
clk:IN STD LOGIC;
count:IN STD LOGIC;
up_down: IN STD_LOGIC;

count_value:0OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END ex16 5c;

ARCHITECTURE arch_ex16 5c OF ex16 5c IS
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);
BEGIN
count_process:
PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=(0THERS=>"0");
ELSIF rising_edge(clk) THEN
IF (count="1") THEN
IF (up_down="1") THEN
IF (count_signal<"1111'") THEN
count_signal<=count_signal+1;
END IF;
ELSE
IF (count_signal>""0000'"") THEN
count_signal<=count_signal-1;
END IF;
END IF;
END 1IF;
END IF;
END PROCESS count_process;
count_value<=STD_LOGIC VECTOR(count_signal);
END arch_ex16 5c;

Och vi kompletterar do-filen

-- ex16_5c.do

restart -f -nowave

view signals wave

add wave reset clk count up_down

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 4



add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count O
force up_down 1
run 125ns

force reset 0
run 100ns

force reset 1
run 400ns

force count 1
run 900ns

force count O
run 300ns

force count 1
run 900ns

force up_down O
run 1800ns
force up_down 1
run 500ns

force up_down O
run 400ns

d) Har gor vi bara en intern andring sa det blir inget nytt blockschema.
Vi kompletterar VHDL-koden med ett maximalt raknar varde som kan vara nagot annat an
1111. For att gora det enkelt att dndra gransen sa lagger vi in den som en konstant. Samtidigt
gor vi samma sak for den undre gransen. Har far vi satta raknevardet tillmin_const vid
reset for att inte komma utanfér rakneomradet

-— ex16_5d.vhdl

LIBRARY 1ieee;

USE ieee.std logic _1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5d 1S
PORT(reset:IN STD_LOGIC;
clk:IN STD_LOGIC;
count:IN STD_LOGIC;
up_down:IN STD_LOGIC;
count_value:0OUT STD LOGIC_VECTOR(3 DOWNTO 0));
END ex16 5d;

ARCHITECTURE arch_ex16_5d OF ex16_5d 1S
CONSTANT min_const:UNSIGNED(3 DOWNTO 0):="0010";
CONSTANT max_const:UNSIGNED(3 DOWNTO 0):="1011";
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);

BEGIN

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 5



count_process:
PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=min_const;
ELSIF rising_edge(clk) THEN
IF (count="1") THEN
IF (up_down="1%) THEN
IF (count_signal<max_const) THEN
count_signal<=count_signal+1;
END 1IF;
ELSE
IF (count_signal>min_const) THEN
count_signal<=count_signal-1;
END IF;
END IF;
END 1IF;
END IF;
END PROCESS count_process;
count_value<=STD_LOGIC VECTOR(count_signal);
END arch_ex16 5d;

Och vi kompletterar do-filen

-- ex16_5d.do

restart -f -nowave

view signals wave

add wave reset clk count up_down
add wave max_const min_const

add wave count_signal count value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count O
force up_down 1
run 125ns

force reset 0
run 100ns

force reset 1
run 400ns

force count 1
run 900ns

force count 0
run 300ns

force count 1
run 900ns

force up_down O
run 1800ns

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 6



force up_down 1
run 500ns

force up_down O
run 400ns

force up_down 1
run 1000ns

e) Viritar ett nytt blockschema, Figur 16.5e.

Vi kompletterar VHDL-koden med ingangar for

max- och minvarde samt styrsignaler for att ladda
in dessa. Vi gor styrsignalerna aktivt hoga. up_down ——
Lagg marke till konstruktionen dar vi antingen count ——»]
laddar in nya granser eller réknar. Lagg ocksa | » count value
marke till att vi samtidigt kan ladda in bade max- load_max ——¥
och minniva.

clk ——

reset ——p|

max_value—Lb
Lagg till sist marke till att upp- och nedrakningarna

har ELSE-villkor for att sdkerstélla att en sankt
maxniva eller héjd minniva gor att vi hamnar
utanfor rakneintervallet.

load_min ——»

) 4
min_value —~p/

Figur 16.5e Réknarversion e

-— ex16_5e.vhdl

LIBRARY ieee;

USE ieee.std logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5e 1S
PORT(reset:IN STD_LOGIC;
clk:IN STD_LOGIC;
count:IN STD_LOGIC;
up_down:IN STD_LOGIC;
load_max:IN STD_LOGIC;
max_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
load _min:IN STD_LOGIC;
min_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
count_value:0UT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5e;

ARCHITECTURE arch_ex16 _5e OF ex16 5e 1S
SIGNAL max_signal :UNSIGNED(3 DOWNTO 0);
SIGNAL min_signal :UNSIGNED(3 DOWNTO 0);
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:

PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=min_value;
ELSIF rising_edge(clk) THEN

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 7



END

IF ((load_max="1") OR (load _min="1")) THEN
IF (load_max="1") THEN
max_sighal<=UNSIGNED(max_value);

END 1IF;

IF (load_min="1") THEN
min_signal<=UNSIGNED(min_value);
END IF;
ELSIF (count="1") THEN
IF (up_down="1%) THEN
IF (count_signal<max_signal) THEN
count_signal<=count_signal+1;
ELSE
count_signal<=max_signal;
END 1IF;
ELSE
IF (count_signal>min_signal) THEN
count_signal<=count_signal-1;
ELSE
count_signal<=count_signal;
END IF;
END IF;
END IF;
1F;

END PROCESS count_process;
count_value<=STD_LOGIC_VECTOR(count_signal);

END arch_

ex1l6 5e;

Vi uppdaterar do-filen

-- ex16_5e.do

restart -f -nowave

view signals wave

add wave reset clk count up_down

add wave load _max max_value max_signal
add wave load_min min_value min_signal
add wave count_signal count value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count O

force up_

down 1

force load max O
force max_value 4"b0101
force load min O
force min_value 4"b0100

run 125ns

force reset O

run 100ns

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 8



f)

force reset 1

run 400ns

force load _max 1
run 100ns

force load _max O
run 100ns

force count 1
run 900ns

force load _min 1
run 100ns

force load _min O
run 900ns

force count O
run 300ns

force count 1
run 900ns

force up_down O
run 1800ns

force up_down 1
run 500ns

force up_down O
run 400ns

force max_value 4"b1011
run 100ns

force load max 1
run 100ns

force load max O
run 100ns

force up_down 1
run 1000ns

Vi ritar ett nytt blockschema, Figur 16.5f.

Vi kompletterar VHDL-koden med ingang for
nytt raknarvarde samt styrsignal for att ladda in
detta. Vi gor styrsignalen aktivt hog.

Lagg marke till att dven det nya vardet kan
laggas in samtidigt med nya gréanserna samt att
vi bara laddar i ett nytt raknarvarde om det
ligger inom tillatet rékneomrade

EDA322

Digital konstruktion

clk ——»
reset ——p
up_down ——|
count ——p

load_max ——»

4
max_value —~p

load_min ——»|
) 4
min_value ——~—p|

load_new ——»

4
new_value —+4—|

Jl_, count_value

Losningar till uppgifter i boken

Kapitel 16
page 9

Figur 16.5e Rdknarversion f



-- ex16_5 5F.vhdl

LIBRARY ieee;

USE ieee.std logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5fF 1S

PORT(reset:IN STD_LOGIC;
clk:IN STD_LOGIC;
count:IN STD_LOGIC;
up_down:IN STD LOGIC;
load max:IN STD_LOGIC;
max_value: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
load min:IN STD_LOGIC;
min_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
load new:IN STD_LOGIC;
new_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5F;

ARCHITECTURE arch_ex16 _5F OF ex16 5fF 1S
SIGNAL max_signal :UNSIGNED(3 DOWNTO 0);
SIGNAL min_signal :UNSIGNED(3 DOWNTO 0);
SIGNAL count_signal :UNSIGNED(3 DOWNTO 0);

BEGIN
count_process:

PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=UNSIGNED(min_value);
ELSIF rising_edge(clk) THEN

IF ((load_max="1") OR
(load_min="1") OR
(load_new="1")) THEN
IF (load_max="1") THEN

max_sighal<=UNSIGNED(max_value);

END IF;

END 1IF;

IF (load_ min="1") THEN

min_signal<=UNSIGNED(min_value);

END 1IF;

IF ((load_new="1") AND
(UNSIGNED(new_value)<=UNSIGNED(max_value)) AND
(UNSIGNED(new_value)>=UNSIGNED(min_value))) THEN

count_signal<=UNSIGNED(new_value);

END 1IF;

ELSIF (count="1") THEN
IF (up_down="1") THEN
IF (count_signal<max_signal) THEN

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 10



count_signal<=count_signal+1;
ELSE
count_signal<=max_signal;
END IF;
ELSE
IF (count_signal>min_signal) THEN
count_signal<=count_signal-1;
ELSE
count_signal<=min_signal;
END IF;
END 1IF;
END IF;
END PROCESS count_process;
count_value<=STD_LOGIC VECTOR(count_signal);
END arch_ex16 5fF;

Vi uppdaterar do-filen

-- ex16_5Ff.do

restart -f -nowave

view signals wave

add wave reset clk count up_down

add wave load_max max_value max_signal
add wave load_min min_value min_signal
add wave load_new new_value

add wave count_signal count_value

force reset 1

force clk 0 0,1 50ns -repeat 100ns
force count O

force up_down 1

force load max O

force max_value 4"b1010

force load _min O

force min_value 4"b0100

force load new O

force new_value 4"b0111

run 125ns

force reset 0
run 100ns

force reset 1
run 400ns

force load max 1
run 100ns

force load max O
run 100ns

force count 1
run 900ns

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 11



force load _min 1

run 100ns

force load_min O
run 900ns

force count 0O
run 300ns

force count 1
run 900ns

force up_down O
run 1800ns

force up_down 1
run 500ns

force up_down O
run 400ns

force max_value 4"b1011
run 100ns

force load max 1
run 100ns

force load max O
run 100ns

force up_down 1
run 1000ns

force load new 1
run 100ns

force load new O
run 1000ns

force new_value 4"b1101
run 100ns

force load _new 1
run 100ns

force load _new O
run 1000ns

g) Har gor vi bara en dndring i koden som inte fordndrar blockschemat. Notera att vi har tva
GENERIC rader och genom att vélja vilken som ar okomenterad sa véljer vi antalet bitar. |
det har fallet 4 bitar sa resultatet blir det samma som i ex16.5f

-- ex16_5g_4bit.vhdl

LIBRARY ieee;

USE ieee.std logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16 5g 4bit IS
GENERIC (WIDTH:NATURAL:=4);
- GENERIC (WIDTH:NATURAL:=8);
PORT(reset:IN STD_LOGIC;
clk:IN STD LOGIC;
count:IN STD LOGIC;

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 12



up_down:IN STD_LOGIC;

load max:IN STD_LOGIC;

max_value: IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
load min:IN STD_LOGIC;

min_value:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
load new:IN STD_LOGIC;

new_value:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

count_value:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_5g_4bit;

ARCHITECTURE arch_ex16_5g_4bit OF ex16_5g_4bit 1S
SIGNAL max_signal :UNSIGNED(WIDTH-1 DOWNTO 0);
SIGNAL min_signal :UNSIGNED(WIDTH-1 DOWNTO 0);
SIGNAL count_signal :UNSIGNED(WIDTH-1 DOWNTO 0);

BEGIN
count_process:

PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=UNSIGNED(min_value);
ELSIF rising_edge(clk) THEN

IF ((load_max="1") OR
(load_min="1%") OR
(load_new="1%)) THEN

IF (load_max="1") THEN
max_signal<=UNSIGNED(max_value);

END IF;

IF (load_min="1") THEN

min_signal<=UNSIGNED(min_value);

END 1IF;

IF ((load_new="1") AND
(UNSIGNED(new_value)<=UNSIGNED(max_value)) AND
(UNSIGNED(new_value)>=UNSIGNED(min_value))) THEN

count_signal<=UNSIGNED(new_value);

END 1IF;

ELSIF (count="1") THEN
IF (up_down="1") THEN

IF (count_signal<max_signal) THEN
count_signal<=count_signal+1;

ELSE
count_signal<=max_signal;

END 1IF;

ELSE

IF (count_signal>min_signal) THEN
count_signal<=count_signal-1;

ELSE
count_signal<=min_signal;

END 1IF;

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 13



END IF;
END 1IF;
END IF;
END PROCESS count_process;
count_value<=STD_LOGIC _VECTOR(count_signal);
END arch_ex16_5g_ 4bit;

Vi kan anvdanda samma do-fil som i ex16.5f.

For att generera kod med atta bitars ordlangd behover vi nu bara vaxla till att ha den andra
GENERIC-raden okommenterad.
Vi maste uppdatera do-filen sa de stimuli vi ger har langden atta bitar

-- arch_ex16 5g 8bit.do

restart -f -nowave

view signals wave

add wave reset clk count up_down

add wave load_max max_value max_signal
add wave load_min min_value min_signal
add wave load _new new_value

add wave count_signal count_value

force reset 1

force clk 0 0,1 50ns -repeat 100ns
force count O

force up_down 1

force load max O

force max_value 8"b10100011

force load min O

force min_value 8"b01000011

force load new O

force new_value 8"b01110011

run 125ns

force reset 0O
run 100ns

force reset 1
run 400ns

force load _max 1
run 100ns

force load_max O
run 100ns

force count 1
run 900ns

force load min 1
run 100ns

force load min O
run 900ns

force count O

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 14



run 300ns

force count 1
run 900ns

force up_down O
run 1800ns

force up_down 1
run 500ns

force up_down O
run 400ns

force max_value 8"b10110011
run 100ns

force load max 1
run 100ns

force load max O
run 100ns

force up_down 1
run 1000ns

force load new 1
run 100ns

force load new O
run 1000ns

force new_value 8"b11010011
run 100ns

force load new 1
run 100ns

force load new O
run 1000ns

h) Lat oss forsoka géra samma sak med heltal som variabeltyp. Interfacet mot yttervarlden
maste fortfarande vara std_logi c s3 entiteten paverkas inte

-- ex16_5h.vhdl

LIBRARY ieee;

USE ieee.std logic_1164._all;
USE ieee.numeric_std.all;
USE ieee.math_real.all;

ENTITY ex16 _5h 1S
GENERIC (MAXIMAL_INT:NATURAL:=4);
- CONSTANT
WIDTH:NATURAL : =INTEGER(CEIL(LOG2(REAL(MAX_INT))));
PORT(reset:IN STD_LOGIC;
clk:IN STD_LOGIC;
count:IN STD LOGIC;
up_down:IN STD LOGIC;
load max:IN STD _LOGIC;
max_value: IN STD_LOGIC_VECTOR(INTEGER(CEIL
(LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0);

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 15



load min:IN STD_LOGIC;

min_value:IN STD_LOGIC_VECTOR(INTEGER(CEIL
(LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0);

load new:IN STD_LOGIC;

new_value:IN STD_LOGIC_VECTOR(INTEGER(CEIL
(LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0);

count_value:OUT STD_LOGIC_VECTOR(INTEGER
(CEIL(LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0));
END ex16_5h;

ARCHITECTURE arch_ex16_5h OF ex16_5h IS
CONSTANT
WIDTH:NATURAL : =INTEGER(CEIL(LOG2(REAL(MAXIMAL_INT))));
SIGNAL max_signal :NATURAL RANGE O TO MAXIMAL_INT;
SIGNAL min_signal :NATURAL RANGE O TO MAXIMAL_INT;
SIGNAL min_int:NATURAL RANGE O TO MAXIMAL_INT;
SIGNAL max_int:NATURAL RANGE O TO MAXIMAL_INT;
SIGNAL new_int:NATURAL RANGE O TO MAXIMAL_INT;
SIGNAL count_signal :NATURAL RANGE O TO MAXIMAL_INT;
BEGIN
min_int<=TO_INTEGER(UNSIGNED(min_value));
max_int<=TO_INTEGER(UNSIGNED(max_value));
new_int<=TO_INTEGER(UNSIGNED(new_value));
count_process:
PROCESS(reset,clk)
BEGIN
IF (reset="0") THEN
count_signal<=0;
ELSIF rising_edge(clk) THEN
IF ((load_max="1") OR
(load_min="1") OR
(load_new="1")) THEN
IF (load_max="1") THEN
max_sighal<=max_int;
END 1IF;
IF (load_ min="1") THEN
min_signal<=min_int;
END 1IF;
IF ((load_new="1") AND
(new_int<=max_int) AND
(new_int>=min_int)) THEN
count_signal<=TO_INTEGER(UNSIGNED(new_value));
END 1IF;
ELSIF (count="1") THEN
IF (up_down="1") THEN
IF (count_signal<max_signal) THEN
count_signal<=count_signal+1;
ELSE

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 16



count_signal<=max_signal;
END 1IF;
ELSE
IF (count_signal>min_signal) THEN
count_signal<=count_signal-1;
ELSE
count_signal<=count_signal;
END 1IF;
END IF;
END 1IF;
END IF;
END PROCESS count_process;

count_value<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal ,WIDTH));
END arch_ex16 5h;

EDA322
Digital konstruktion
Losningar till uppgifter i boken
Kapitel 16
page 17



