

Department of Computer Science and Engineering

2017-01-11

CH ALMERS UNIV ERSI TY OF TEC HNO LO GY
Department of Co mputer Science and Engineerin g page 1
Division of Co mputer Engineering

EDA322 Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
16.5 Vi skall konstruera en räknare i VHDL. Specifikationen är lite lös så vi preciserar den till ett antal

punkter

a. Gör en 4 bitars uppräknare med reset. Räknaren skall bottna då den når maxvärde
b. Ändra så räknaren kan räkna både upp och ner. Räknaren skall bottna både vid uppräkning

till maxvärde och vid nedräkning till noll
c. Lägg in styrsignal för att aktivera räkning
d. Lägg till en kodbestämd övre och undre räknegräns
e. Ge möjlighet att sätta styrbara övre och undre räknegränser för räknaren
f. Ge möjlighet att ladda in startvärde
g. Gör designern generisk
h. Heltal som räknarvariabler

a) Låt oss rita ett blockschema, Figur 16.5a.

Vi skriver VHDL-kod där vi antar att resetsignalen
är aktivt låg.

-- ex16_5a.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5a IS
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5a;

ARCHITECTURE arch_ex16_5a OF ex16_5a IS
 SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN

clk

reset
count_value4

Figur 16.5a Räknarversion a

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 2

 count_signal<=(OTHERS=>'0');
 ELSIF rising_edge(clk) THEN
 IF (count_signal<"1111") THEN
 count_signal<=count_signal+1;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5a;

Då vi skall addera till räknevärdet så måste det gå att läsa. Därför inför vi en signal som
används vid uppräkningen varefter värdet överförs till utgången. Det finns inga funktioner för
att räkna upp STD_LOGIC_VECTOR så internt använder vi i stället undertypen UNSIGNED
som finns definierad i biblioteket NUMERIC_STD. Vi har valt en asynkron reset och
räkneprocessen får då triggas av reset eller clk.
Vi simulerar med en do-fil.

-- ex16_5a.do
restart -f -nowave
view signals wave
add wave reset clk count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
run 125ns
force reset 0
run 100ns
force reset 1
run 2000ns

b) Låt oss rita ett nytt blockschema, Figur 16.5b.
Vi kompletterar VHDL-koden med en styrsignal
som ger uppräkning då den är etta och nedräkning
då den är nolla.

-- ex16_5b.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5b IS
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5b;

ARCHITECTURE arch_ex16_5b OF ex16_5b IS

clk

reset count_value4

up_down
Figur 16.5b Räknarversion b

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 3

 SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=(OTHERS=>'0');
 ELSIF rising_edge(clk) THEN
 IF (up_down='1') THEN
 IF (count_signal<"1111") THEN
 count_signal<=count_signal+1;
 END IF;
 ELSE
 IF (count_signal>"0000") THEN
 count_signal<=count_signal-1;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5b;

Vi kompletterar do-filen

-- ex16_5b.do
restart -f -nowave
view signals wave
add wave reset clk up_down
add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force up_down 1
run 125ns
force reset 0
run 100ns
force reset 1
run 1800ns
force up_down 0
run 1800ns
force up_down 1
run 500ns
force up_down 0
run 400ns

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 4

c) Vi ritar ett nytt blockschema, Figur 16.5c.
Vi kompletterar VHDL-koden med en styrsignal
som aktiverar räkning. Vi gör signalen aktivt hög.

-- ex16_5c.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5c IS
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5c;

ARCHITECTURE arch_ex16_5c OF ex16_5c IS
 SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=(OTHERS=>'0');
 ELSIF rising_edge(clk) THEN
 IF (count='1') THEN
 IF (up_down='1') THEN
 IF (count_signal<"1111") THEN
 count_signal<=count_signal+1;
 END IF;
 ELSE
 IF (count_signal>"0000") THEN
 count_signal<=count_signal-1;
 END IF;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5c;

Och vi kompletterar do-filen

-- ex16_5c.do
restart -f -nowave
view signals wave
add wave reset clk count up_down

clk

reset
count_value4

up_down

count

Figur 16.5c Räknarversion c

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 5

add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count 0
force up_down 1
run 125ns
force reset 0
run 100ns
force reset 1
run 400ns
force count 1
run 900ns
force count 0
run 300ns
force count 1
run 900ns
force up_down 0
run 1800ns
force up_down 1
run 500ns
force up_down 0
run 400ns

d) Här gör vi bara en intern ändring så det blir inget nytt blockschema.
Vi kompletterar VHDL-koden med ett maximalt räknar värde som kan vara något annat än
1111. För att göra det enkelt att ändra gränsen så lägger vi in den som en konstant. Samtidigt
gör vi samma sak för den undre gränsen. Här får vi sätta räknevärdet till min_const vid
reset för att inte komma utanför räkneområdet

-- ex16_5d.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5d IS
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5d;

ARCHITECTURE arch_ex16_5d OF ex16_5d IS
 CONSTANT min_const:UNSIGNED(3 DOWNTO 0):="0010";
 CONSTANT max_const:UNSIGNED(3 DOWNTO 0):="1011";
 SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 6

 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=min_const;
 ELSIF rising_edge(clk) THEN
 IF (count='1') THEN
 IF (up_down='1') THEN
 IF (count_signal<max_const) THEN
 count_signal<=count_signal+1;
 END IF;
 ELSE
 IF (count_signal>min_const) THEN
 count_signal<=count_signal-1;
 END IF;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5d;

Och vi kompletterar do-filen

-- ex16_5d.do
restart -f -nowave
view signals wave
add wave reset clk count up_down
add wave max_const min_const
add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count 0
force up_down 1
run 125ns
force reset 0
run 100ns
force reset 1
run 400ns
force count 1
run 900ns
force count 0
run 300ns
force count 1
run 900ns
force up_down 0
run 1800ns

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 7

force up_down 1
run 500ns
force up_down 0
run 400ns
force up_down 1
run 1000ns

e) Vi ritar ett nytt blockschema, Figur 16.5e.
Vi kompletterar VHDL-koden med ingångar för
max- och minvärde samt styrsignaler för att ladda
in dessa. Vi gör styrsignalerna aktivt höga.
Lägg märke till konstruktionen där vi antingen
laddar in nya gränser eller räknar. Lägg också
märke till att vi samtidigt kan ladda in både max-
och minnivå.
Lägg till sist märke till att upp- och nedräkningarna
har ELSE-villkor för att säkerställa att en sänkt
maxnivå eller höjd minnivå gör att vi hamnar
utanför räkneintervallet.

-- ex16_5e.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5e IS
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 load_max:IN STD_LOGIC;
 max_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 load_min:IN STD_LOGIC;
 min_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5e;

ARCHITECTURE arch_ex16_5e OF ex16_5e IS
 SIGNAL max_signal:UNSIGNED(3 DOWNTO 0);
 SIGNAL min_signal:UNSIGNED(3 DOWNTO 0);
 SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=min_value;
 ELSIF rising_edge(clk) THEN

clk

reset

count_value4

up_down

count

load_max

max_value
4

load_min

min_value
4

Figur 16.5e Räknarversion e

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 8

 IF ((load_max='1') OR (load_min='1')) THEN
 IF (load_max='1') THEN
 max_signal<=UNSIGNED(max_value);
 END IF;
 IF (load_min='1') THEN
 min_signal<=UNSIGNED(min_value);
 END IF;
 ELSIF (count='1') THEN
 IF (up_down='1') THEN
 IF (count_signal<max_signal) THEN
 count_signal<=count_signal+1;
 ELSE
 count_signal<=max_signal;
 END IF;
 ELSE
 IF (count_signal>min_signal) THEN
 count_signal<=count_signal-1;
 ELSE
 count_signal<=count_signal;
 END IF;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5e;

Vi uppdaterar do-filen

-- ex16_5e.do
restart -f -nowave
view signals wave
add wave reset clk count up_down
add wave load_max max_value max_signal
add wave load_min min_value min_signal
add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count 0
force up_down 1
force load_max 0
force max_value 4'b0101
force load_min 0
force min_value 4'b0100
run 125ns
force reset 0
run 100ns

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 9

force reset 1
run 400ns
force load_max 1
run 100ns
force load_max 0
run 100ns
force count 1
run 900ns
force load_min 1
run 100ns
force load_min 0
run 900ns
force count 0
run 300ns
force count 1
run 900ns
force up_down 0
run 1800ns
force up_down 1
run 500ns
force up_down 0
run 400ns
force max_value 4'b1011
run 100ns
force load_max 1
run 100ns
force load_max 0
run 100ns
force up_down 1
run 1000ns

f) Vi ritar ett nytt blockschema, Figur 16.5f.
Vi kompletterar VHDL-koden med ingång för
nytt räknarvärde samt styrsignal för att ladda in
detta. Vi gör styrsignalen aktivt hög.
Lägg märke till att även det nya värdet kan
läggas in samtidigt med nya gränserna samt att
vi bara laddar i ett nytt räknarvärde om det
ligger inom tillåtet räkneområde

clk

reset

count_value4

up_down

count

load_max

max_value
4

load_min

min_value
4

load_new

new_value
4

Figur 16.5e Räknarversion f

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 10

-- ex16_5_5f.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5f IS
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 load_max:IN STD_LOGIC;
 max_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 load_min:IN STD_LOGIC;
 min_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 load_new:IN STD_LOGIC;
 new_value:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 count_value:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex16_5f;

ARCHITECTURE arch_ex16_5f OF ex16_5f IS
 SIGNAL max_signal:UNSIGNED(3 DOWNTO 0);
 SIGNAL min_signal:UNSIGNED(3 DOWNTO 0);
 SIGNAL count_signal:UNSIGNED(3 DOWNTO 0);
BEGIN
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=UNSIGNED(min_value);
 ELSIF rising_edge(clk) THEN
 IF ((load_max='1') OR
 (load_min='1') OR
 (load_new='1')) THEN
 IF (load_max='1') THEN
 max_signal<=UNSIGNED(max_value);
 END IF;
 END IF;
 IF (load_min='1') THEN
 min_signal<=UNSIGNED(min_value);
 END IF;
 IF ((load_new='1') AND
 (UNSIGNED(new_value)<=UNSIGNED(max_value)) AND
 (UNSIGNED(new_value)>=UNSIGNED(min_value))) THEN
 count_signal<=UNSIGNED(new_value);
 END IF;
 ELSIF (count='1') THEN
 IF (up_down='1') THEN
 IF (count_signal<max_signal) THEN

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 11

 count_signal<=count_signal+1;
 ELSE
 count_signal<=max_signal;
 END IF;
 ELSE
 IF (count_signal>min_signal) THEN
 count_signal<=count_signal-1;
 ELSE
 count_signal<=min_signal;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5f;

Vi uppdaterar do-filen

-- ex16_5f.do
restart -f -nowave
view signals wave
add wave reset clk count up_down
add wave load_max max_value max_signal
add wave load_min min_value min_signal
add wave load_new new_value
add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count 0
force up_down 1
force load_max 0
force max_value 4'b1010
force load_min 0
force min_value 4'b0100
force load_new 0
force new_value 4'b0111
run 125ns
force reset 0
run 100ns
force reset 1
run 400ns
force load_max 1
run 100ns
force load_max 0
run 100ns
force count 1
run 900ns

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 12

force load_min 1
run 100ns
force load_min 0
run 900ns
force count 0
run 300ns
force count 1
run 900ns
force up_down 0
run 1800ns
force up_down 1
run 500ns
force up_down 0
run 400ns
force max_value 4'b1011
run 100ns
force load_max 1
run 100ns
force load_max 0
run 100ns
force up_down 1
run 1000ns
force load_new 1
run 100ns
force load_new 0
run 1000ns
force new_value 4'b1101
run 100ns
force load_new 1
run 100ns
force load_new 0
run 1000ns

g) Här gör vi bara en ändring i koden som inte förändrar blockschemat. Notera att vi har två
GENERIC rader och genom att välja vilken som är okomenterad så väljer vi antalet bitar. I
det här fallet 4 bitar så resultatet blir det samma som i ex16.5f

-- ex16_5g_4bit.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex16_5g_4bit IS
 GENERIC (WIDTH:NATURAL:=4);
-- GENERIC (WIDTH:NATURAL:=8);
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count:IN STD_LOGIC;

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 13

 up_down:IN STD_LOGIC;
 load_max:IN STD_LOGIC;
 max_value:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
 load_min:IN STD_LOGIC;
 min_value:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
 load_new:IN STD_LOGIC;
 new_value:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

 count_value:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_5g_4bit;

ARCHITECTURE arch_ex16_5g_4bit OF ex16_5g_4bit IS
 SIGNAL max_signal:UNSIGNED(WIDTH-1 DOWNTO 0);
 SIGNAL min_signal:UNSIGNED(WIDTH-1 DOWNTO 0);
 SIGNAL count_signal:UNSIGNED(WIDTH-1 DOWNTO 0);
BEGIN
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=UNSIGNED(min_value);
 ELSIF rising_edge(clk) THEN
 IF ((load_max='1') OR
 (load_min='1') OR
 (load_new='1')) THEN
 IF (load_max='1') THEN
 max_signal<=UNSIGNED(max_value);
 END IF;
 IF (load_min='1') THEN
 min_signal<=UNSIGNED(min_value);
 END IF;
 IF ((load_new='1') AND
 (UNSIGNED(new_value)<=UNSIGNED(max_value)) AND
 (UNSIGNED(new_value)>=UNSIGNED(min_value))) THEN
 count_signal<=UNSIGNED(new_value);
 END IF;
 ELSIF (count='1') THEN
 IF (up_down='1') THEN
 IF (count_signal<max_signal) THEN
 count_signal<=count_signal+1;
 ELSE
 count_signal<=max_signal;
 END IF;
 ELSE
 IF (count_signal>min_signal) THEN
 count_signal<=count_signal-1;
 ELSE
 count_signal<=min_signal;
 END IF;

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 14

 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count_value<=STD_LOGIC_VECTOR(count_signal);
END arch_ex16_5g_4bit;

Vi kan använda samma do-fil som i ex16.5f.

För att generera kod med åtta bitars ordlängd behöver vi nu bara växla till att ha den andra
GENERIC-raden okommenterad.
Vi måste uppdatera do-filen så de stimuli vi ger har längden åtta bitar

-- arch_ex16_5g_8bit.do
restart -f -nowave
view signals wave
add wave reset clk count up_down
add wave load_max max_value max_signal
add wave load_min min_value min_signal
add wave load_new new_value
add wave count_signal count_value

force reset 1
force clk 0 0,1 50ns -repeat 100ns
force count 0
force up_down 1
force load_max 0
force max_value 8'b10100011
force load_min 0
force min_value 8'b01000011
force load_new 0
force new_value 8'b01110011
run 125ns
force reset 0
run 100ns
force reset 1
run 400ns
force load_max 1
run 100ns
force load_max 0
run 100ns
force count 1
run 900ns
force load_min 1
run 100ns
force load_min 0
run 900ns
force count 0

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 15

run 300ns
force count 1
run 900ns
force up_down 0
run 1800ns
force up_down 1
run 500ns
force up_down 0
run 400ns
force max_value 8'b10110011
run 100ns
force load_max 1
run 100ns
force load_max 0
run 100ns
force up_down 1
run 1000ns
force load_new 1
run 100ns
force load_new 0
run 1000ns
force new_value 8'b11010011
run 100ns
force load_new 1
run 100ns
force load_new 0
run 1000ns

h) Låt oss försöka göra samma sak med heltal som variabeltyp. Interfacet mot yttervärlden
måste fortfarande vara std_logic så entiteten påverkas inte

-- ex16_5h.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
USE ieee.math_real.all;

ENTITY ex16_5h IS
 GENERIC (MAXIMAL_INT:NATURAL:=4);
-- CONSTANT
WIDTH:NATURAL:=INTEGER(CEIL(LOG2(REAL(MAX_INT))));
 PORT(reset:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 count:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 load_max:IN STD_LOGIC;
 max_value:IN STD_LOGIC_VECTOR(INTEGER(CEIL
 (LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0);

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 16

 load_min:IN STD_LOGIC;
 min_value:IN STD_LOGIC_VECTOR(INTEGER(CEIL
 (LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0);
 load_new:IN STD_LOGIC;
 new_value:IN STD_LOGIC_VECTOR(INTEGER(CEIL
 (LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0);

 count_value:OUT STD_LOGIC_VECTOR(INTEGER
 (CEIL(LOG2(REAL(MAXIMAL_INT))))-1 DOWNTO 0));
END ex16_5h;

ARCHITECTURE arch_ex16_5h OF ex16_5h IS
 CONSTANT
WIDTH:NATURAL:=INTEGER(CEIL(LOG2(REAL(MAXIMAL_INT))));
 SIGNAL max_signal:NATURAL RANGE 0 TO MAXIMAL_INT;
 SIGNAL min_signal:NATURAL RANGE 0 TO MAXIMAL_INT;
 SIGNAL min_int:NATURAL RANGE 0 TO MAXIMAL_INT;
 SIGNAL max_int:NATURAL RANGE 0 TO MAXIMAL_INT;
 SIGNAL new_int:NATURAL RANGE 0 TO MAXIMAL_INT;
 SIGNAL count_signal:NATURAL RANGE 0 TO MAXIMAL_INT;
BEGIN
 min_int<=TO_INTEGER(UNSIGNED(min_value));
 max_int<=TO_INTEGER(UNSIGNED(max_value));
 new_int<=TO_INTEGER(UNSIGNED(new_value));
 count_process:
 PROCESS(reset,clk)
 BEGIN
 IF (reset='0') THEN
 count_signal<=0;
 ELSIF rising_edge(clk) THEN
 IF ((load_max='1') OR
 (load_min='1') OR
 (load_new='1')) THEN
 IF (load_max='1') THEN
 max_signal<=max_int;
 END IF;
 IF (load_min='1') THEN
 min_signal<=min_int;
 END IF;
 IF ((load_new='1') AND
 (new_int<=max_int) AND
 (new_int>=min_int)) THEN
 count_signal<=TO_INTEGER(UNSIGNED(new_value));
 END IF;
 ELSIF (count='1') THEN
 IF (up_down='1') THEN
 IF (count_signal<max_signal) THEN
 count_signal<=count_signal+1;
 ELSE

EDA322

Digital konstruktion
Lösningar till uppgifter i boken

Kapitel 16
page 17

 count_signal<=max_signal;
 END IF;
 ELSE
 IF (count_signal>min_signal) THEN
 count_signal<=count_signal-1;
 ELSE
 count_signal<=count_signal;
 END IF;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;

count_value<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,WIDTH));
END arch_ex16_5h;

