

Department of Computer Science and Engineering

CH ALMERS UNIV ERSI TY OF TEC HNO LO GY
Department of Co mputer Science and Engineerin g page 1
Division of Co mputer Engineering

Dally, Harting and Aamodt:
Digital Design Using VHDL

Kapitel 7
 7.1 Vi får VHDL-koden

-- ex7_1.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_1 IS
 PORT (x:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_1;

ARCHITECTURE arch_ex7_1 OF ex7_1 IS
BEGIN
 fibonacci_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "0000" => y<='1';
 WHEN "0001" => y<='1';
 WHEN "0010" => y<='1';
 WHEN "0011" => y<='1';
 WHEN "0101" => y<='1';
 WHEN "1000" => y<='1';
 WHEN "1101" => y<='1';
 WHEN OTHERS => y<='0';
 END CASE;
 END PROCESS fibonacci_proc;
END arch_ex7_1;

Som vi simulerar med do-filen

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 2

 7.1 forts.

-- ex7_1.do --

restart -f -nowave
view signals wave
add wave x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
run 1700ns

 7.2 Vi har sanningstabellen Figur 7.2a som ger Kar-
naughdiagrammet i Figur 7.2b.

Vi får

𝑦𝑦 = 𝑥𝑥2��� ∙ 𝑥𝑥1��� ∙ 𝑥𝑥0��� + 𝑥𝑥2 ∙ 𝑥𝑥1 ∙ 𝑥𝑥0��� + 𝑥𝑥3��� ∙ 𝑥𝑥2���

Vi skriver VHDL-kod

-- ex7_2.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

x3 x2 x1 x0 y
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Figur 7.2a Sanningatabell

1 111

x1x0
00 11 1001

00

11

10

01
x3x2

0 001

0 001

1 000

x2x1x0

x2x1x0

x3x2

Figur7.2b Karnaughdiagram

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 3

 7.2 forts.

ENTITY ex7_2 IS
 PORT (x:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_2;

ARCHITECTURE arch_ex7_2 OF ex7_2 IS
BEGIN
 y<=(NOT(x(2)) AND NOT(x(1)) AND NOT(x(0))) OR
 (x(2) AND x(1) AND NOT(x(0))) OR
 (NOT(x(3)) AND NOT(x(2)));
END arch_ex7_2;

Vi kan använda samma do-fil som i Exempel 7.1.

 7.3 Vi skriver direkt VHDL-kod för sanningstabellen i Figur 7.2a

-- ex7_3.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_3 IS
 PORT (x:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_3;

ARCHITECTURE arch_ex7_3 OF ex7_3 IS
BEGIN
 y<=(NOT(x(3)) AND NOT(x(2)) AND NOT(x(1)) AND
 NOT(x(0))) OR
 (NOT(x(3)) AND NOT(x(2)) AND NOT(x(1)) AND x(0)) OR
 (NOT(x(3)) AND NOT(x(2)) AND x(1) AND NOT(x(0))) OR
 (NOT(x(3)) AND NOT(x(2)) AND x(1) AND x(0)) OR
 (NOT(x(3)) AND x(2) AND NOT(x(1)) AND x(0)) OR
 (x(3) AND NOT(x(2)) AND NOT(x(1)) AND NOT(x(0))) OR
 (x(3) AND x(2) AND NOT(x(1)) AND x(0));
END arch_ex7_3;

Vi kan återigen använda samma do-fil som i Exempel 7.1.

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 4

 7.4 Vi skriver en testbänk till Exempel 7.1 men då den har samma entitet som Exempel 7.2
och Exempel 7.3 så kan en användas i de fallen också.

-- ex7_4_tb3.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_4_tb3 IS

END ex7_4_tb3;

ARCHITECTURE arch_ex7_4_tb3 OF ex7_4_tb3 IS

COMPONENT ex7_1 IS
 PORT (x:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END COMPONENT ex7_1;

 SIGNAL x_tb_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL y_tb_signal:STD_LOGIC;
BEGIN
 ex7_1_comp:
 COMPONENT ex7_1
 PORT MAP(x=>x_tb_signal,
 y=>y_tb_signal);

 x_tb_signal(0)<='0',
 '1' AFTER 100 ns,
 '0' AFTER 200 ns,
 '1' AFTER 300 ns,
 '0' AFTER 400 ns,
 '1' AFTER 500 ns,
 '0' AFTER 600 ns,
 '1' AFTER 700 ns,
 '0' AFTER 800 ns,
 '1' AFTER 900 ns,
 '0' AFTER 1000 ns,
 '1' AFTER 1100 ns,
 '0' AFTER 1200 ns,
 '1' AFTER 1300 ns,
 '0' AFTER 1400 ns,
 '1' AFTER 1500 ns,

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 5

 7.4 forts.

 '0' AFTER 1600 ns,
 '1' AFTER 1700 ns,
 '0' AFTER 1800 ns,
 '1' AFTER 1900 ns,
 '0' AFTER 2000 ns,
 '1' AFTER 2100 ns,
 '0' AFTER 2200 ns,
 '1' AFTER 2300 ns,
 '0' AFTER 2400 ns,
 '1' AFTER 2500 ns,
 '0' AFTER 2600 ns,
 '1' AFTER 2700 ns,
 '0' AFTER 2800 ns,
 '1' AFTER 2900 ns,
 '0' AFTER 3000 ns,
 '1' AFTER 3100 ns;

 x_tb_signal(1)<='0',
 '1' AFTER 200 ns,
 '0' AFTER 400 ns,
 '1' AFTER 600 ns,
 '0' AFTER 800 ns,
 '1' AFTER 1000 ns,
 '0' AFTER 1200 ns,
 '1' AFTER 1400 ns,
 '0' AFTER 1600 ns,
 '1' AFTER 1800 ns,
 '0' AFTER 2000 ns,
 '1' AFTER 2200 ns,
 '0' AFTER 2400 ns,
 '1' AFTER 2600 ns,
 '0' AFTER 2800 ns,
 '1' AFTER 3000 ns;

 x_tb_signal(2)<='0',
 '1' AFTER 400 ns,
 '0' AFTER 800 ns,
 '1' AFTER 1200 ns,
 '0' AFTER 1600 ns,
 '1' AFTER 2000 ns,
 '0' AFTER 2400 ns,
 '1' AFTER 2800 ns;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 6

 7.4 forts.

 x_tb_signal(3)<='0',
 '1' AFTER 800 ns,
 '0' AFTER 1600 ns,
 '1' AFTER 2400 ns;

 test_proc:
 PROCESS
 BEGIN
 WAIT FOR 50 ns; -- 50 ns x=0 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 150 ns x=1 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=1 150ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 250 ns x=2 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=2 250ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 350 ns x=3 -> y=1
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=3 350ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 450 ns x=4 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=4 450ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 550 ns x=5 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=5 550ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 650 ns x=6 -> y=1
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=6 650ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 750 ns x=7 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=7 750ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 850 ns x=8 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=8 850ns"

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 7

 7.4 forts.

 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 950 ns x=9 -> y=1
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=9 950ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1050 ns x=10 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=10 1050ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1150 ns x=11 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=11 1150ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1250 ns x=12 -> y=1
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=12 1250ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1350 ns x=13 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=13 1350ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1450 ns x=14-> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=14 1450ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1550 ns x=15 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=15 1550ns"
 SEVERITY ERROR;
 END PROCESS test_proc;

END arch_ex7_4_tb3;

Vi skriver också en do-fil

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 8

 7.4 forts.

-- ex7_4_tb3.do --

restart -f -nowave
view signals wave
add wave x_tb_signal y_tb_signal

run 1650ns

 7.5 Syntes lämnas till läsaren

 7.6 Vi gör två lösningar. Först en lösning som använder en CASE-sats och sedan en lösning

som använder ett litet minne, en LUT (Look Up Table).
Vi börjar med CASE-satsen.

ENTITY ex7_6_case IS
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_6_case;

ARCHITECTURE arch_ex7_6_case OF ex7_6_case IS
BEGIN
 case_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "00001" | "00011" | "00101" | "00111" |
 "01011" | "01101" | "10001" | "10111" |
 "11101" | "11111" =>
 y<='1';
 WHEN OTHERS =>
 y<='0';
 END CASE;
 END PROCESS case_proc;
END arch_ex7_6_case;

Och tar sedan LUT-lösningen där vi lägger alla utvärden i en datavektor och använder
invektorn som adress till positioner i data vektorn.

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7

Sida 9

 7.6 forts.

-- ex7_6_LUT --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex7_6_LUT IS
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_6_LUT;

ARCHITECTURE arch_ex7_6_LUT OF ex7_6_LUT IS
 CONSTANT value:STD_LOGIC_VECTOR(0 TO
31):="00110101000101000101000100000101";
BEGIN
 y<=value(TO_INTEGER(UNSIGNED(x)));
END arch_ex7_6_LUT;

Lägg märke till att vi inte direkt kan använda invektorn som adress till vektorn utan
måste typomvandla den binära vektorn till ett heltal via kommandot TO_INTEGER.
Detta kommando kräver i sin tur att vi anger om den binära vektorn skall tolkas som ett
tal med eller utan tecken. Då adressen är ett positivt tal så tolkar vi vektorn som ett tal
utan tecken via typningen UNSIGNED. Notera att detta inte är en typomvandling utan
bara anger hur talet skall tolkas. För att kunna dessa omvandlinar så måste vi inkuudera
IEEE-biblioteket numeric_std.
Då de två lösningarna har samma entitet så kan vi använda samma do-fil för båda si-
muleringarna. Vi skriver en do-fil där vi räknar igenom alla 32 möjliga invärden. Notera
att vi genom att definiera bitarna som upprepande signaler enkelt kan gå igenom all
möjliga invärden.

-- ex7_6.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 10

 7.6 forts.

force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns
run 3250ns

Notera att vi använder -radix för att visa värden på lite mer läsbar form

 7.7 Vi använder samma metoder som i Exempel 7.6 men nu för en fyra bitars invektor.
Först CASE-fallet

-- ex7_7_case --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_7_case IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_7_case;

ARCHITECTURE arch_ex7_7_case OF ex7_7_case IS
BEGIN
 case_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "0011" | "0110" | "1001" |
 "1100" | "1111" =>
 y<='1';
 WHEN OTHERS =>
 y<='0';
 END CASE;
 END PROCESS case_proc;
END arch_ex7_7_case;

Och sedan LUT-fallet

-- ex7_7_LUT --

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 11

 7.7 forts.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex7_7_LUT IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_7_LUT;

ARCHITECTURE arch_ex7_7_LUT OF ex7_7_LUT IS
 CONSTANT value:STD_LOGIC_VECTOR(0 TO
15):="0001001001001001";
BEGIN
 y<=value(TO_INTEGER(UNSIGNED(x)));
END arch_ex7_7_LUT;

Vi simulerar på samma sätt som i Exempel 7.6

-- ex7_7.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
run 1650ns

 7.8 Vi har en do-fil redan i Exempel 7.7 men vi skriver också en testbänk där vi använder
LUT-varianten av Exempel 7.7 men vi hade lika gärna kunnat använda CASE-formen.

-- ex7_7_tb3.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 12

 7.8 forts.

ENTITY ex7_7_tb3 IS

END ex7_7_tb3;

ARCHITECTURE arch_ex7_7_tb3 OF ex7_7_tb3 IS

COMPONENT ex7_7_LUT IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END COMPONENT ex7_7_LUT;

 SIGNAL x_tb_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL y_tb_signal:STD_LOGIC;
BEGIN
 ex7_7_comp:
 COMPONENT ex7_7_LUT
 PORT MAP(x=>x_tb_signal,
 y=>y_tb_signal);

 x_tb_signal(0)<='0',
 '1' AFTER 100 ns,
 '0' AFTER 200 ns,
 '1' AFTER 300 ns,
 '0' AFTER 400 ns,
 '1' AFTER 500 ns,
 '0' AFTER 600 ns,
 '1' AFTER 700 ns,
 '0' AFTER 800 ns,
 '1' AFTER 900 ns,
 '0' AFTER 1000 ns,
 '1' AFTER 1100 ns,
 '0' AFTER 1200 ns,
 '1' AFTER 1300 ns,
 '0' AFTER 1400 ns,
 '1' AFTER 1500 ns;

 x_tb_signal(1)<='0',
 '1' AFTER 200 ns,
 '0' AFTER 400 ns,
 '1' AFTER 600 ns,
 '0' AFTER 800 ns,
 '1' AFTER 1000 ns,
 '0' AFTER 1200 ns,

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 13

 7.8 forts.

 '1' AFTER 1400 ns;
 x_tb_signal(2)<='0',
 '1' AFTER 400 ns,
 '0' AFTER 800 ns,
 '1' AFTER 1200 ns;
 x_tb_signal(3)<='0',
 '1' AFTER 800 ns;

 test_proc:
 PROCESS
 BEGIN
 WAIT FOR 50 ns; -- 50 ns x=0 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 150 ns x=1 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 250 ns x=2 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 350 ns x=3 -> y=1
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 450 ns x=4 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 550 ns x=5 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 650 ns x=6 -> y=1
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 750 ns x=7 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 14

 7.8 forts.

 WAIT FOR 100 ns; -- 850 ns x=8 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 950 ns x=9 -> y=1
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1050 ns x=10 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1150 ns x=11 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1250 ns x=12 -> y=1
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1250 ns x=13 -> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1350 ns x=14-> y=0
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1450 ns x=15 -> y=0
 ASSERT (y_tb_signal='1')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 WAIT FOR 100 ns; -- 1550 ns x=0 -> y=1
 ASSERT (y_tb_signal='0')
 REPORT "Error for x=0 50ns"
 SEVERITY ERROR;
 END PROCESS test_proc;

END arch_ex7_7_tb3;

med tillhörande do-fil

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 15

 7.8 forts.

-- ex7_7_tb3.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x_tb_signal y_tb_signal

run 1625ns

 7.9 Vi skriver även här en CASE- och en LUT-lösning. Notera att utsignalen är satt till don´t
care för invärdena 10-15.
Först CASE-fallet

-- ex7_9_case --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_9_case IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_9_case;

ARCHITECTURE arch_ex7_9_case OF ex7_9_case IS
BEGIN
 case_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "0000" | "0001" | "0010" |
 "0011" | "0101" | "1000" =>
 y<='1';
 WHEN "0100" | "0110" | "0111" | "1001" =>
 y<='0';
 WHEN OTHERS =>
 y<='-';
 END CASE;
 END PROCESS case_proc;
END arch_ex7_9_case;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 16

 7.9 forts.

Och sedan LUT-lösningen

-- ex7_9_LUT --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex7_9_LUT IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_9_LUT;

ARCHITECTURE arch_ex7_9_LUT OF ex7_9_LUT IS
 CONSTANT value:STD_LOGIC_VECTOR(0 TO 15):="1111010010--
----";
BEGIN
 y<=value(TO_INTEGER(UNSIGNED(x)));
END arch_ex7_9_LUT;

Vi kan åter använda samma do-fil i de två fallen

-- ex7_9.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
run 1650ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 17

 7.10 Vi löser det på samma sätt som i tidigare uppgifter och gör en CASE- och en LUT-lösning.
Först CASE-fallet

-- ex7_10_case --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_10_case IS
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_10_case;

ARCHITECTURE arch_ex7_10_case OF ex7_10_case IS
BEGIN
 case_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "00000" | "00101" | "01010" | "01111" |
 "10100" | "11001" | "11110" =>
 y<='1';
 WHEN OTHERS =>
 y<='0';
 END CASE;
 END PROCESS case_proc;
END arch_ex7_10_case;

och sedan LUT-lösningen

-- ex7_10_LUT --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex7_10_LUT IS
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_10_LUT;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 18

 7.10 forts.

ARCHITECTURE arch_ex7_10_LUT OF ex7_10_LUT IS
 CONSTANT value:STD_LOGIC_VECTOR(0 TO 31)
 :="10000100001000010000100001000010";
BEGIN
 y<=value(TO_INTEGER(UNSIGNED(x)));
END arch_ex7_10_LUT;

Och vi använder samma do-fil för båda lösningarna

-- ex7_10.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns
run 3250ns

 7.11 Vi löser det på samma sätt som i tidigare uppgifter men då det blir lite jobbigt att hålla
rätt på en LUT med 256 värden vilket är vad vi får från en 8 bitars invektor så nöjer vi
oss med en CASE-lösning.
För att göra koden mer lättläst så typomvandlar vi invektorn till ett positivt heltal innan
vi använder den i CASE-satsen.

-- ex7_11 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex7_11 IS
 PORT(x:STD_LOGIC_VECTOR(7 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_11;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 19

 7.11 forts.

ARCHITECTURE arch_ex7_11 OF ex7_11 IS
 SIGNAL x_int_signal:INTEGER RANGE 0 TO 255;
BEGIN
 x_int_signal<=TO_INTEGER(UNSIGNED(x));
 case_proc:
 PROCESS(x_int_signal)
 BEGIN
 CASE x_int_signal IS
 WHEN 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
 100 | 121 | 144 | 169 | 196 | 225 =>
 y<='1';
 WHEN OTHERS =>
 y<='0';
 END CASE;
 END PROCESS case_proc;
END arch_ex7_11;

Och vi skriver en do-fil

-- ex7_11.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns
force x(5) 0 0ns, 1 3200ns -repeat 64000ns
force x(6) 0 0ns, 1 6400ns -repeat 12800ns
force x(7) 0 0ns, 1 12800ns -repeat 25600ns
run 25650ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 20

 7.12 Lösningen blir av samma form som i Exempel 7.11

-- ex7_12 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex7_12 IS
 PORT(x:STD_LOGIC_VECTOR(7 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex7_12;

ARCHITECTURE arch_ex7_12 OF ex7_12 IS
 SIGNAL x_int_signal:INTEGER RANGE 0 TO 255;
BEGIN
 x_int_signal<=TO_INTEGER(UNSIGNED(x));
 case_proc:
 PROCESS(x_int_signal)
 BEGIN
 CASE x_int_signal IS
 WHEN 1 | 8 | 27 | 64 | 125 | 216 =>
 y<='1';
 WHEN OTHERS =>
 y<='0';
 END CASE;
 END PROCESS case_proc;
END arch_ex7_12;

Som vi simulerar med en do-fil

-- ex7_12.do --

restart -f -nowave
view signals wave
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 21

 7.12 forts.

force x(5) 0 0ns, 1 3200ns -repeat 64000ns
force x(6) 0 0ns, 1 6400ns -repeat 12800ns
force x(7) 0 0ns, 1 12800ns -repeat 25600ns
run 25650ns

 7.13 Vi gör först en CASE-lösning. Lösningen är inte så bra då den saknar all flexibilitet

-- ex7_13 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_13 IS
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7_13;

ARCHITECTURE arch_ex7_13 OF ex7_13 IS
BEGIN
 case_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "00000" => --0
 y<="00000";
 WHEN "00001" => --1
 y<="10000";
 WHEN "00010" => --2
 y<="01000";
 WHEN "00011" => --3
 y<="11000";
 WHEN "00100" => --4
 y<="00100";
 WHEN "00101" => --5
 y<="10100";
 WHEN "00110" => --6
 y<="01100";
 WHEN "00111" => --7
 y<="11100";
 WHEN "01000" => --8
 y<="00010";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 22

 7.13 forts.

 WHEN "01001" => --9
 y<="10010";
 WHEN "01010" => --10
 y<="01010";
 WHEN "01011" => --11
 y<="11010";
 WHEN "01100" => --12
 y<="00110";
 WHEN "01101" => --13
 y<="10110";
 WHEN "01110" => --14
 y<="01110";
 WHEN "01111" => --15
 y<="11110";
 WHEN "10000" => --16
 y<="00001";
 WHEN "10001" => --17
 y<="10001";
 WHEN "10010" => --18
 y<="01001";
 WHEN "10011" => --19
 y<="11001";
 WHEN "10100" => --20
 y<="00101";
 WHEN "10101" => --21
 y<="10101";
 WHEN "10110" => --22
 y<="01101";
 WHEN "10111" => --23
 y<="11101";
 WHEN "11000" => --24
 y<="00011";
 WHEN "11001" => --25
 y<="10011";
 WHEN "11010" => --26
 y<="01011";
 WHEN "11011" => --27
 y<="11011";
 WHEN "11100" => --28
 y<="00111";
 WHEN "11101" => --29
 y<="10111";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 23

 7.13 forts.

 WHEN "11110" => --30
 y<="01111";
 WHEN "11111" => --31
 y<="11111";
 WHEN OTHERS =>
 y<=(OTHERS=>'0');
 END CASE;
 END PROCESS case_proc;
END arch_ex7_13;

Vi simulerar med en do-fil

-- ex7_13.do --

restart -f -nowave
view signals wave
add wave -radix binary x y
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns
run 3250ns

 7.14 I uppgiften begärs att vi skal lösa med hjälp av konkatenering men vi ger också en
lösning som använder en loop.
Först konkateneringen

-- ex7_14_conc --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_14_conc IS
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7_14_conc;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 24

 7.14 forts.

ARCHITECTURE arch_ex7_14_conc OF ex7_14_conc IS
BEGIN
 y<=x(0) & x(1) & x(2) & x(3) & x(4);
END arch_ex7_14_conc;

Sedan looplösningen som är mer flexibel då den via GENERICS lätt kan anpassas till
vektorer av olika längd. Detta kan till och med ske när vi använder koden så allt som
behöver ändras är värdet på GENERIC.

-- ex7_14_loop --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_14_loop IS
 GENERIC(WIDTH:NATURAL:=5);
 PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7_14_loop;

ARCHITECTURE arch_ex7_14_loop OF ex7_14_loop IS
BEGIN
 loop_proc:
 PROCESS(x)
 BEGIN
 FOR i IN 0 TO WIDTH-1 LOOP
 y(i) <= x(WIDTH-1-i);
 END LOOP;
 END PROCESS loop_proc;
END arch_ex7_14_loop;

Vi kan använda samma do-fil i båda fallen och det är samma do-fil som i Exempel 7.13

-- ex7_14.do --

restart -f -nowave
view signals wave
add wave -radix binary x y
add wave -radix unsigned x y

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 25

 7.14 forts.

force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns
run 3250ns

 7.15 Uppgiften är lite oklar. Vi kan skriva en oflexibel lösning som bara använder de angivna
värdena eller också kan vi göra en mer flexibel lösning där vi låter koden räkna ut till-
räckligt många Fibonaccivärden. Vi visar här den statiska lösningen. Lägg märke till att
du uppgiften säger att vi bara kan ha Fibonaccital som insignal så utsignalen satt till
don´t care i övriga fall

-- ex7_15 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_15 IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7_15;

ARCHITECTURE arch_ex7_15 OF ex7_15 IS
BEGIN
 fibo_proc:
 PROCESS(x)
 BEGIN
 CASE x IS
 WHEN "0001" =>
 y<="00011";
 WHEN "0011" =>
 y<="00101";
 WHEN "0101" =>
 y<="01000";
 WHEN "1000" =>
 y<="01101";
 WHEN "1101" =>
 y<="10101";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 26

 7.15 forts.

 WHEN OTHERS =>
 y<="-----";
 END CASE;
 END PROCESS fibo_proc;
END arch_ex7_15;

Och vi simulerar med en do-fil

-- ex7_15.do --

restart -f -nowave
view signals wave
add wave -radix binary x y
add wave -radix unsigned x y
force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
run 1650ns

 7.16 Vi uppdaterar koden från Exempel 7.15 med en valid-signal. Lägg märke till att i pro-
cessen har valid-signalen fått ett defaultvärde i början av processen so vi bara ändrar i
det fall när signalen behöver ha ett annat värde.

-- ex7_16 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_16 IS
 PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
 valid:OUT STD_LOGIC);
END ex7_16;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 27

 7.16 forts.

ARCHITECTURE arch_ex7_16 OF ex7_16 IS
BEGIN
 fibo_proc:
 PROCESS(x)
 BEGIN
 valid<='1';
 CASE x IS
 WHEN "0001" =>
 y<="00011";
 WHEN "0011" =>
 y<="00101";
 WHEN "0101" =>
 y<="01000";
 WHEN "1000" =>
 y<="01101";
 WHEN "1101" =>
 y<="10101";
 WHEN OTHERS =>
 y<="-----";
 valid<='0';
 END CASE;
 END PROCESS fibo_proc;
END arch_ex7_16;

do-filen blir likadan som i Exempel 7.15 bortsett från att vi också vill visa valid-signa-
len

 7.17 Vi fortsätter modifiera Fibonacci-koden

-- ex7_17 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_17 IS
 PORT(rst:IN STD_LOGIC;
 ivalid:IN STD_LOGIC;
 x:STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
 valid:OUT STD_LOGIC);
END ex7_17;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 28

 7.17 forts.

ARCHITECTURE arch_ex7_17 OF ex7_17 IS
 SIGNAL y_signal:STD_LOGIC_VECTOR(4 DOWNTO 0);
 SIGNAL valid_signal:STD_LOGIC;
BEGIN
 fibo_proc:
 PROCESS(x)
 BEGIN
 valid_signal<='1';
 CASE x IS
 WHEN "0001" =>
 y_signal<="00011";
 WHEN "0011" =>
 y_signal<="00101";
 WHEN "0101" =>
 y_signal<="01000";
 WHEN "1000" =>
 y_signal<="01101";
 WHEN "1101" =>
 y_signal<="10101";
 WHEN OTHERS =>
 y_signal<="-----";
 valid_signal<='0';
 END CASE;
 END PROCESS fibo_proc;
 y<=(OTHERS=>'0') WHEN rst='1' ELSE
 y_signal;
 valid<=(ivalid AND NOT(rst)) AND valid_signal;
END arch_ex7_17;

Som vi simulerar med en do-fil där vi kör samma simulering som tidigare men vi kör den
fyra gånger så att vi kan testa alla fyra möjliga kombinationer av de nya insignalerna
rst och ivalid

 7.18 Vi behandlar inte implementeringen

 7.19 Vi får komplettera segmentkonstanterna från Figur 7.23 sidan 149 med koder för A-F.

Vi får

constant SS_A : sseg_type := 7b”0001000”;
constant SS_B : sseg_type := 7b”0001011”;
constant SS_C : sseg_type := 7b”1000110”;
constant SS_D : sseg_type := 7b”0100001”;
constant SS_E : sseg_type := 7b”0000110”;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 29

 7.19 forts.

constant SS_F : sseg_type := 7b”0001110”;

Vi får också komplettera case- satsen i Figur 7.24 sidan 150

When x”A” _> segs <= SS_A;
When x”B” _> segs <= SS_B;
When x”C” _> segs <= SS_C;
When x”D” _> segs <= SS_D;
When x”E” _> segs <= SS_E;
When x”F” _> segs <= SS_F;

 7.20 Vi behöver komplettera med kod för den alternativa nian

constant SS_9_alt : sseg_type := 7b”0011000”;

och sedan komplettera case-satsen i Figur 7.25 sidan 151 med

when SS_9_alt => valid >= ’1’; bin <= x”9”;

 7.21 Vi modifierar processen i Figur 7.18, sidan 144

PROCESS
BEGIN
 isprime_signal <= ’1’
 FOR i IN 0 TO 15 LOOP
 Input <= STD_LOGIC_VECTOR(TO_UNSIGNED(i,4));
 WAIT FOR 10 ns;
 IF isprim = ‘0’ THEN
 isprime_signal <= ‘0’;
 END LOOP;

Notera att isprime_signal har defaultvärdet 1 som indikerar att det är ett primtal.
Har vi i något loopvarv inte ett primtal så kommer signalen att bli 0 och då den inte
återställs inne i loopen så kommer den då att ligga kvar låg ända till slutet. Då alla tal 0-
15 inte är primtal så kommer denna process alltid att indikera fel men vi kommer via
signalen isprime_signal att se vid vilket värde på i det första felet dyker upp.

 7.22 Det här är en klumpig mutiplikationslösning men det är ju vad som begärs. Vi konkati-

nerar de två intalen, a och b, till envektor som vi kan använda som selektionselement i
case-satsen

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 30

 7.22 forts.

-- ex7_22 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_22 IS
 PORT(a:STD_LOGIC_VECTOR(1 DOWNTO 0);
 b:STD_LOGIC_VECTOR(1 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex7_22;

ARCHITECTURE arch_ex7_22 OF ex7_22 IS
 SIGNAL in_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
 in_signal<=a&b;
 mult_proc:
 PROCESS(in_signal)
 BEGIN
 CASE in_signal IS
 WHEN "0000" =>
 y<="0000";
 WHEN "0001" =>
 y<="0000";
 WHEN "0010" =>
 y<="0000";
 WHEN "0011" =>
 y<="0000";
 WHEN "0100" =>
 y<="0000";
 WHEN "0101" =>
 y<="0001";
 WHEN "0110" =>
 y<="0010";
 WHEN "0111" =>
 y<="0011";
 WHEN "1000" =>
 y<="0000";
 WHEN "1001" =>
 y<="0010";
 WHEN "1010" =>
 y<="0100";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 31

 7.22 forts.

 WHEN "1011" =>
 y<="0110";
 WHEN "1100" =>
 y<="0000";
 WHEN "1101" =>
 y<="0011";
 WHEN "1110" =>
 y<="0110";
 WHEN "1111" =>
 y<="1001";
 WHEN OTHERS =>
 y<="----";
 END CASE;
 END PROCESS mult_proc;
END arch_ex7_22;

Vi simulerar genom att gå igenom alla möjliga insignaler

-- ex7_22.do --

restart -f -nowave
view signals wave
add wave a b y
add wave -radix unsigned a b y

force a(0) 0 0ns, 1 100ns -repeat 200ns
force a(1) 0 0ns, 1 200ns -repeat 400ns
force b(0) 0 0ns, 1 400ns -repeat 800ns
force b(1) 0 0ns, 1 800ns -repeat 1600ns
run 1650 ns

 7.23 För att kunna använda don´t care-värden i insignalerna så måste vi använda den alter-
nativa case-funktionen case?. Denna stöds tyvärr inte i 2002-års VHDL vilket är vad
som är deafult i QuestaSim utan det krävs version 2008. Vi kan dock gå förbi detta.
Vi har koden

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 32

 7.23 forts.

-- ex7_23 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex7_23 IS
 PORT(x:STD_LOGIC_VECTOR(15 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 no_ones:OUT STD_LOGIC);
END ex7_23;

ARCHITECTURE arch_ex7_23 OF ex7_23 IS
BEGIN
 one_proc:
 PROCESS(x)
 BEGIN
 no_ones<='0';
 CASE? x IS
 WHEN "1---------------" =>
 y<="1111";
 WHEN "01--------------" =>
 y<="1110";
 WHEN "001-------------" =>
 y<="1101";
 WHEN "0001------------" =>
 y<="1100";
 WHEN "00001-----------" =>
 y<="1011";
 WHEN "000001----------" =>
 y<="1010";
 WHEN "0000001---------" =>
 y<="1001";
 WHEN "00000001--------" =>
 y<="1000";
 WHEN "000000001-------" =>
 y<="0111";
 WHEN "0000000001------" =>
 y<="0110";
 WHEN "00000000001-----" =>
 y<="0101";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 33

 7.23 forts.

 y<="0100";
 WHEN "0000000000001---" =>
 y<="0011";
 WHEN "00000000000001--" =>
 y<="0010";
 WHEN "000000000000001-" =>
 y<="0001";

 WHEN "0000000000000001" =>
 y<="0000";
 WHEN OTHERS =>
 y<=(OTHERS=>'0');
 no_ones<='1';
 END CASE?;
 END PROCESS one_proc;
END arch_ex7_23;

Försöker vi kompilera detta i QuestaSim så får vi felet i Figur ex7.23

På den första raden i rutan ser vi det kommando som körs. Här ser vi bland annat kom-
mandot -2002 som anger vilken version av VHDL som ska användas. Vi kan kopiera
denna rad till QuestaSims kommandorad i Transcript-fönstret och ändra -2002 till -2008

vcom -work work -2008 -explicit -vopt -stats=none
Z:/EDA/EDA322/1718/exercises/Kapitel_7/ex7_23/ex7_23.vhdl

Detta kommer att kompilera koden till version 2008 och vi kan simulera den på vanligt
sätt med en do-fil

Figur ex7.23

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 34

 7.23 forts.

-- ex7_23.do --

restart -f -nowave
view signals wave
add wave -radix binary x y
add wave -radix unsigned y
add wave no_ones

force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns
force x(4) 0 0ns, 1 1600ns -repeat 3200ns
force x(5) 0 0ns, 1 3200ns -repeat 6400ns
force x(6) 0 0ns, 1 6400ns -repeat 12800ns
force x(7) 0 0ns, 1 12800ns -repeat 25600ns
force x(8) 0 0ns, 1 25600ns -repeat 51200ns
force x(9) 0 0ns, 1 51200ns -repeat 102400ns
force x(10) 0 0ns, 1 102400ns -repeat 204800ns
force x(11) 0 0ns, 1 204800ns -repeat 409600ns
force x(12) 0 0ns, 1 409600ns -repeat 819200ns
force x(13) 0 0ns, 1 819200ns -repeat 1638400ns
force x(14) 0 0ns, 1 1638400ns -repeat 3276800ns
force x(15) 0 0ns, 1 3276800ns -repeat 6553600ns

run 6553650 ns

7.24 Vi skriver koden. Åter igen lägger vi i default-värden på utsignalerna i början av case-
satsen

-- ex7_24 --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 35

 7.24 forts.

ENTITY ex7_24 IS
 PORT(x:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 two:OUT STD_LOGIC;
 three:OUT STD_LOGIC;
 five:OUT STD_LOGIC;
 seven:OUT STD_LOGIC;
 eleven:OUT STD_LOGIC;
 thirteen:OUT STD_LOGIC);
END ex7_24;

ARCHITECTURE arch_ex7_24 OF ex7_24 IS
BEGIN
 one_proc:
 PROCESS(x)
 BEGIN
 two<='0';
 three<='0';
 five<='0';
 seven<='0';
 eleven<='0';
 thirteen<='0';
 CASE x IS
 WHEN "0000" =>

 WHEN "0001" =>

 WHEN "0010" =>
 two<='1';
 WHEN "0011" =>
 three<='1';
 WHEN "0100" =>
 two<='1';
 WHEN "0101" =>
 five<='1';
 WHEN "0110" =>
 two<='1';
 three<='1';
 WHEN "0111" =>
 seven<='1';
 WHEN "1000" =>
 two<='1';
 WHEN "1001" =>
 three<='1';

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 7
Sida 36

 7.24 forts.

 WHEN "1010" =>
 two<='1';
 five<='1';
 WHEN "1011" =>
 eleven<='1';
 WHEN "1100" =>
 two<='1';
 three<='1';
 WHEN "1101" =>
 thirteen<='1';

 WHEN "1110" =>
 two<='1';
 seven<='1';
 WHEN "1111" =>
 three<='1';
 five<='1';
 WHEN OTHERS =>
 END CASE;
 END PROCESS one_proc;
END arch_ex7_24;

Som vi simulerar med en do-fil

-- ex7_24.do --

restart -f -nowave
view signals wave
add wave -radix binary x
add wave -radix unsigned x
add wave two three five seven eleven thirteen

force x(0) 0 0ns, 1 100ns -repeat 200ns
force x(1) 0 0ns, 1 200ns -repeat 400ns
force x(2) 0 0ns, 1 400ns -repeat 800ns
force x(3) 0 0ns, 1 800ns -repeat 1600ns

run 1650 ns

