Dally, Harting and Aamodt:
Digital Design Using VHDL

Kapitel 14

14.1 Vi har tillstandstabellen fran Tabell 14.2, sida Noxt stote o
308 som vi upprepar i Figur 14.1a. in in
Lat oss rita tillstandsgraf, Figur 14.1b. State | © 1

00 00 01
01 00 11
11 01 10
10 11 00

elleolleolio} la]
R OO |0~

Figur 14.1a

Vi soker en insignal som gor att vi alltid stegar
tillbaka till starttillstandet 00 oberoende av nu-
varande tillstand. Vi ser att det intraffar om
in=0.

Figur 14.1b
14.2 Vi har tillstandstabellen fran Tabell 14.4, sida Next state
311 som vi upprepar i Figur 14.2a. carew
Lat oss rita tillstandsgraf, Figur 14.2b. State | 0 1 Oout

GNS | GNS | YNS | 100001
YNS | GEW | GEW | 010001
GEW | YEW | YEW | 001 100
YEW | GNS | GNS | 001010

Figur 14.2a

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 1

14.2 forts.

Vi soker en insignal som gor att vi 0
alltid stegar tillbaka till starttillstan- 3
det GNS oberoende av nuvarande

Out=100 001 @ C @ Out=010 001
tillstand. Vi ser att det intraffar om

carew=0. -

Out=001 010 @ @ Out=001 100

Figur 14.2b

14.3 Vi utgar fran tillstandstabell och
tillstandsgraf i Uppgift 14.2, dvs
Figur 14.2a respektive Figur
14.2b. Vara utsignaler ligger en-
ligt gron-gul-réd i nord-sydlig rikt-
ning foljt av gron-gul-rod i Ost-
vastlig riktning. Vi vill modifiera
sekvensen sa att det blir rott i
bada riktningarna innan ett trafik-
ljus gar till gront. Vi kan fa det ge-
nom att lagga in tillstand sar bada
riktningar har rott mellan YNS och

Out=100 001 Out=010 001

Out=001 001 Out=001 001

GEW samt mellan YEW och GNS, ~ ©ut=001010 Out=001 100
Figur 14.3a.
Vi far tillstandstabellen i Figur fig"r 22"
4.3b. Next state
carew
State 0 1 Out
GNS GNS YNS 100 001
YNS RNSEW1 | RNSEW1 | 010 001
RNSEW1 GEW GEW 001 001
GEW YEW YEW 001 100
YEW RNSEW2 | RNSEW?2 | 001 010
RNSEW?2 GNS GNS 001 001
Figur 14.3b

Dally, Harting, Aamodt: Digital design Using VHDL

Lésningar till uppgifter

Kapitel 14
Sida 2

14.4 Vi far ersatta tillstandsnamnen i Figur 14.3b med tillstandsvariabler och utsignalen be-
hover delas upp i sina individuella bitar. Vi har sex tillstand sa vi behover tre tillstands-
variabler. Vi tilldelar tillstand slump-
massigt och far Figur 14.4a.

Vi

staller upp Karnaughdiagram for

espektive signal.For tillstanden kravs di-
agram med fyra variabler medan utsig-
nalerna kraver tre variabler. D3 vi har ett
forlopp uppifran och ner i tabellen sa ar
det formodligen lampligt att gora en
tillstandstilldelning dar vi rad for rad
andrar en tillstandsvariabel.

Yo

00

01

carewx,
11

10|

Figur 14.4b

Y2

00

01
carewxs

11

10

Figur 14.4d

X1Xo
00 01 11 10
N ~
0 1 7,9,,L)f#7~ KXo
ol xlo|1]| caems
0 X 0| O
1| 1] 1| x| carewx
N /
X1Xo
00 01 11 10
0 0 1 X
0| x 111 X,
0 X 1 1
0 0 1 X

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter

Kapitel 14
Sida 3

Next state
carew
State 0 1 out
X2X1Xo y2y1yo VayiYo | 252423222120
000 000 001 100 001
001 011 011 010 001
011 111 111 001 001
111 110 110 001 100
110 100 100 001 010
100 000 000 001 001
Figur 14.4a
yl XlXO
00 01 11 10
01| O X 1 0
carewxs
11| O X 1 0
Figur 14.4c
Zo X1Xo
00 01 11 10
ofi 11| ™
X2 — 5
1 ’ 1 1 ’ 0 0
Figur 14.4e

Xo

14.4 forts.

Z1 X1Xo
X Ny X2X1X_0
Figur 14.4f
Z3 X1Xo
| XX
Xo _ _
11 0 0 (101 1 XoX1
Figur 14.4h
Zs X1Xo
— =TT -1 2A1A0

of1|o|o]o

X2

1,00} 0| O

Figur 14.4j

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter

Z7 X1Xo
00 01 11 10
0| O 0 0 0
X2 D “XoX1X
i1 0|10 27170
Figur 14.4g
Z4 X1Xo
00 01 11 10 —
— 71 171 X2X1Xo
ol o 1) 0 0
% T
1| O 0 0 0
Figur 14.4i

Kapitel 14
Sida 4

14.4 forts.

Vi far kopplingen i Figur 14.4k

carew o

b
)
l 1
R0 R0 Ro Ro Ro
— [
A A & & i % %
J o Lo L L L L
clock o ? L 1 | 1 L
ol © Ql ko) ol ©
= |

Figur 14.4k

14.5 Vi skriver VHDLK-kod for trafikljuset i Exempel 14.3

-- ex_14 5.vhdl
LIBRARY ieee;
USE ieee.std logic_1164._.all;

ENTITY ex14 5 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
carew:IN STD_LOGIC;
z-0UT STD_LOGIC_VECTOR(5 DOWNTO 0));

END ex14 5;

ARCHITECTURE arch_ex14_ 5 OF ex14 5 IS
TYPE state_type IS (GNS,YNS,RNSEW1,GEW,YEW,RNSEW2) ;
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;

BEGIN

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 5

14.5 forts.

state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=GNS;
ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;
END IF;
END PROCESS state_transition_proc;

stateflow_proc:
PROCESS(state_signal,carew)

BEGIN
CASE state_signal 1S
WHEN GNS =>
IF carew = "1" THEN
next_state _signal <= YNS;
ELSE
next_state _signal <= GNS;
END IF;
WHEN YNS =>

next_state_signal <= RNSEW1;
WHEN RNSEW1 =>

next_state signal <= GEW;
WHEN GEW =>

next_state _signal <= YEW;
WHEN YEW =>

next_state_signal <= RNSEW2;
WHEN RNSEW2 =>

next_state_signal <= GNS;

END CASE;
END PROCESS stateflow_proc;

assignment_proc:
PROCESS(state_signal,carew)
BEGIN
CASE state_signal 1S
WHEN GNS =>
z <= "100001";
WHEN YNS =>
z <= "010001";
WHEN RNSEW1 =>
z <= "001001";

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 6

14.5 forts.

WHEN GEW =>
z <= "001100";
WHEN YEW =>

z <= "001010";
WHEN RNSEW2 =>
z <= "001001";
END CASE;
END PROCESS assignment_proc;
END arch_ex14 5;

Och simulerar med en do-fil

-- ex_14 5.do

restart -f -nowave

view signals wave

add wave Clock Resetn carew state_signal
add wave next_state_signal z

force Clock 0 O, 1 50ns -repeat 100ns
force carew 0O

force Resetn O

run 225ns

force Resetn 1

force carew 1

run 100ns

force carew 0O

run 600ns

force carew 1

run 100ns

force carew 0O

run 600ns

14.6 Vi gor en liten modifiering av till-
standsgrafen i Uppgift 14.2, dvs
Figur 14.2a respektive Figur
14.6b och far Figur 14.6a. Vad
som inte framgar av uppgiften ar
vad som skall hdanda om det finns
bilar i bada riktningarna men vi

Out=100 001 Out=010 001

antar att carew har prioritet i Out=001 010 Out=001 100
tillstand GNS medan carens har

prioritet i GEW. carns=0

Vi uppdaterar tillstandstabellen,]

Figur 14.6b Figur 14.6a

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 7

14.6 forts.

Next state
carew/carsn
State 00 01 10 11 Out
GNS | GNS | GNS YNS YNS | 100001

YNS | GEW | GEW | GEW | GEW | 010001
GEW | GEW | YEW | GEW | YEW | 001 100
YEW | GNS | GNS | GNS | GNS | 001010

Figur 14.6b
14.7 Vi gbr samma typ av till- Next state
standstilldelning som i carew/carsn
Exempel 14.4 och later State | 00 01 10 11 Out
bara en variabel andra X1Xo | YiYo | YiYo | YiYo | YiYo | Z5Z4Z3Z321Z0
tillstand i varje Oover- 00 00 00 01 01 100 001
géng, Figur 14.7a. 01 | 11 | 11 | 11 | 11 [010001
Vi stiller upp Kar- 11 11 10 11 10 001 100
10 00 00 00 00 001 010

naughdiagram, vi har
fyra insignaler och be- Figur14.7a

hoéver fyra-variablers di-

agram for tillstanden, Figur 14.7b-c, och tva-variablers diagram for utsignalerna, Figur
14.7d-i.

Yo carew/carsn
00 01 11 10

ool o 0 1 1 | Xicarew

oif 1| 1 |[1| 1] wh
X1Xo +———{— XoCarew carsn

111]of1]o0
— 1 ———— XxoCarew carsn

10| O 0 0| O

Figur 14.7b

V1 carew/carsn
00 01 11 10

ool 00| 1/0 Xicarew carsn

01| 1 | 1| 1|1 X

X1Xo
11 ‘ 11|11
10| O 0 0| O
Figur 14.7c

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 8

14.7 forts.

Z Xo Z Xo
2 . "o 1 0 1
PR A et _ 0
o1 |1} ™ 0l 0| 0| x5 0| o
X1 — T X1 7 X1 1 o X1Xo
10| 0 1110 0] 1
Figur 14.7d Figur 14.7e Figur 14.7f
Z3 Xo Zs Xo Zs Xo
0 1 0 1 . 0 1 L
a X1X By S - X1 X
olo| o ol o | 2| ¥° o1 o 170
X1 T X X1 — X1 —
1] 1) 1o o0 10| o0
Figur 14.7g Figur 14.7h Figur 14.7i
Vi far kopplingen i Figur 14.7j
carew o
carsn o
1 1) 1
[1] l] 1
& & R R % & %o S
=
|IX [l
o e | |
clock g U[4 5 20 21 z Iz oz Z5
Ol Lo} Ol Le)
i‘
Figur 14.7j

Kapite
Sida

14
9

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter

14.8 Vi skriver VHDL-kod

-- ex_14 8.vhdl
LIBRARY ieee;
USE ieee.std _logic_1164._.all;

ENTITY ex 14 8 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
carew: IN STD_LOGIC;
carsn:IN STD_LOGIC;
z-0UT STD_LOGIC_VECTOR(5 DOWNTO 0));
END ex 14 8;

ARCHITECTURE arch_ex14 8 OF ex_14 8 1S
TYPE state_type IS (GNS,YNS,GEW,YEW);
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;
BEGIN
state_transition_proc:

PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=0GNS;
ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;
END IF;
END PROCESS state_transition_proc;

stateflow_proc:
PROCESS(state_signal,carew)
BEGIN
CASE state_signal 1S
WHEN GNS =>
IF carew = "1" THEN
next_state _signal <= YNS;
ELSE
next_state _signal <= GNS;
END IF;
WHEN YNS =>
next_state_signal <= GEW;
WHEN GEW =>
IF carsn= "1" THEN
next_state _signal <= YEW;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 10

14.8 forts.

ELSE
next_state _signal <= GEW;
END IF;
WHEN YEW =>
next_state_signal <= GNS;
END CASE;

END PROCESS stateflow_proc;

assignment_proc:
PROCESS(state_signal,carew)

BEGIN
CASE state_signal 1S
WHEN GNS =>
z <= "100001";
WHEN YNS =>
z <= "010001";
WHEN GEW =>
z <= "001100";
WHEN YEW =>
z <= "001010";
END CASE;

END PROCESS assignment_proc;
END arch_ex14 8;

Vi simulerar med en do-fil

-- ex_14 8.do

restart -f -nowave

view signals wave

add wave Clock Resetn carew carsn

add wave state_signal next_state_signal z
force Clock 0 O, 1 50ns -repeat 100ns
force carew 0O

force carsn 0O

force Resetn 0O

run 225ns

force Resetn 1

force carew 1

run 100ns

force carew 0O

run 600ns

force carew 1

run 100ns

force carew 0O

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 11

14.8 forts.

force carsn 1
run 600ns
force carsn 0O
run 600ns

14.9 Vi gor en liten modifiering av till-
standsgrafen i Uppgift 14.2, dvs Fi-

gur 14.2a respektive Figur 14.6b Out=100 001 Out=010 001
och far Figur 14.9a.
Vi uppdaterar tillstandstabellen,
Figur 14.9b
Out=001 010 Out=001 100
carew=1
Figur 14.9a
Next state
carew
State 0 1 Out
GNS | GNS | YNS | 100001
YNS | GEW | GEW | 010001
GEW | YEW | GEW | 001 100
YEW | GNS | GNS | 001010
Figur 14.9b
14.10 Vi gor samma typ av tillstandstilldelning som Next state
i Exempel 14.4 och later bara en variabel carew
andra tillstand i varje Overgang, Figur State | 0 1 Out
14.10a. X1Xo | YiYo | Y1Yo | 252423222120
Vi staller upp Karnaughdiagram, vi har fyra 00 00 | 01 100 001
insignaler och behover tre-variablers dia- 01 | 11 | 11 | 010001
gram for tillstanden, Figur 14.10b-c, och tva 11 10 | 11 001 100
10 00 00 001 010

variablers diagram for utsignalerna, Figur
14.7d-i. Utsignallogiken forandras inte fran Figur 14.10a
Exempel 14.7.

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 12

14.10 forts.

Yo X1Xo
Y1 X1Xo
00 01 11 10 o 00 01 11 10
D 0
carew0 il | A carew X 0/ 0 ’ 1t ’ 0
% 4 0 carew
O) S — 1lof1]1]o0
— /I 1 carew X; i
Figur 14.10b Figur 14.10c

Vi far kopplingen i Figur 14.10d

carew o

[1 — 1 1
1 l I 1 1
e R & R %o R 2
’IX
o t % | |
clock \ = 5 2 2 Z, I3 L4 Zs
ol Iel ol o
i‘

Figur 14.10d

14.11 Vi skriver VHDL-kod

-- ex_14 11 ._vhdl
LIBRARY 1eee;
USE 1eee.std_logic_1164._all;

ENTITY ex 14 11 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD LOGIC;
carew:-IN STD LOGIC;
z:0UT STD _LOGIC _VECTOR(5 DOWNTO 0));
END ex 14 11;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 13

14.11 forts.

ARCHITECTURE arch_ex_14 11 OF ex_14 11 IS
TYPE state_type IS (GNS,YNS,GEW,YEW);
SIGNAL state_signal:state_type;

SIGNAL next_state_signal:state_ type;
BEGIN
state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=CGNS;
ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;
END IF;
END PROCESS state_ transition_proc;

stateflow_proc:
PROCESS(state_signal,carew)
BEGIN
CASE state_signal 1S
WHEN GNS =>
IF carew = "1" THEN
next_state_signal <= YNS;
ELSE
next_state_signal <= GNS;
END IF;
WHEN YNS =>
next_state signal <= GEW;
WHEN GEW =>
IF carew= "1" THEN
next_state_signal <= GEW;
ELSE
next_state_signal <= YEW;
END IF;
WHEN YEW =>
next_state _signal <= GNS;
END CASE;
END PROCESS stateflow_proc;

assignment_proc:
PROCESS(state_signal,carew)
BEGIN
CASE state_signal 1S
WHEN GNS =>
z <= "100001";

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 14

14.11 forts.

WHEN YNS =>
z <= "010001";
WHEN GEW =>
z <= "001100";
WHEN YEW =>
z <= '"'001010";
END CASE;

END PROCESS assignment_proc;
END arch_ex 14 11;

och simulerar med en do-fil

-- ex_14 11.do

restart -f -nowave

view signals wave

add wave Clock Resetn carew

add wave state_signal next_state_signal z
force Clock 0 O, 1 50ns -repeat 100ns
force carew 0O

force Resetn 0O

run 225ns

force Resetn 1

force carew 1

run 100ns

force carew 0O

run 600ns

force carew 1

run 600ns

force carew 0O

run 600ns

14.12 Vi utgar fran tillstandsgra-
feni Figur 14.9, sidan 312,
som vi upprepar i Figur
14.12a

Figur 14.12a

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 15

14.12 forts.

For att utdka raknecykeln till sex klockpulser sa far vi lagga in et extra tillstand i kedjan
R —S3. Vi far ocksa korrigera vagarna da en puls saknas eller ar sen. Vi far Figur 14.12b

Figur 14.12b

Vi tecknar tillstandstabell, Figur 14.12c¢

State | 0 | 1

S1 |52 |82
S2 |S3|8S3
S3 |54 |54
S4|S5]|55
S5|55]|81

M|S2| L
L|S2]|S2

O|Rr| O|O(O|O0O|O | |O|N

14.13 Vi har tillstandsgrafen i Figur 14.9, sidan 312, som vi upprepar i Figur 14.13a

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 16

14.13forts.

Figur 14.13a

Vi tecknar tillstandstabell, Figur 14.13b

State | 0 | 1

R| R|S1
S1|S2|S2
S2 | S3|S3
S3|S4 |54
S4 | S5 |S1
S5| M| S1
M|S2]| L

L|S2|S2

ORr OO|O|O|R|O|N

Figur 14.13b

14.14 Vi ska nu gora om tillstandstabellen i Figur 14.13b med, Figur 14.14a.

a

State 0 1

X2X1Xo | Y2YiYo | Y2Y1Yo
000 | 000 001
001 | 011 011
011 | 010 010
010 | 110 110
110 | 111 001
111 | 101 001
101 | 011 100
100 | 011 011

ORr O|O|OC|O|Rr|O]|N

Figur 14.14a

Vi har tyvarr fyra diagonaler kvar dar mer én en variabel byter varde. Vi kan nog inte
eliminera det utan att dela upp tillstand.

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 17

14.15 Vi ska nu anvanda en annan uppsattning tillstands- .
variabler, Figur 14.15a. State 0 1
Vi skall ta fram de logiska uttrycken och anvander XaX1Xo | Yay1yo | Yayiye | Z
Karnaughdiagram. For tillstanden sa har vi fyra va- 000|000 |o0o01 |o
riabler sa vi behover fyra-variablers Karnughdia- 001 | 010 | 010 1
gram, Figur 14.15b-d medan vi behover ett tre- 010|011 |o011 |O
variablers diagram for utsignalen, Figur 14.15e 011|100 |100 |O
100 | 101 001 0
101 | 110 001 0
110 | 010 111 1
111 | 010 010 0
Fiaur 14.15a
Y1 Xoa
Yo Xod 00 01 11 10 __
00 01 11 10 T4 X2X1Xo
= 00| 0|0 1]1]
00| 0 | 1) 00| xa Tt X%
o1 1 1 0 0
. o1 1 1,]_07 Ox_xx_ XoX1 }/ } —3 XoX1
271 22170 (1 1 1 1)
ulol1folo| _ i B
XoXpad
> — | XoX1a 10 0 0 0 1 }1 2X0
01 14 12]0 N
N — XoX1Xo
Figur 14.15d
Figur 14.15d
Y2 Xod
00 01 11 10 . x
1A0
oo| O 0 0 0 00 01 11 10 XX
_ — I — A2A1A0
— 4 X2X1Xo
or/ofo|1]1 XOO[%‘WOO
S R J— 2 — —_
XoXq ——1] X2X1Xo@ (4 b X2X1Xo
1jof1]o]o 1ojpojoijt
107 i Il 0 0 \AL L x%a Figur 14.15d

Figur 14.15d

Yo=Xo a+ Xz X1 Xg+ Xz X a+ X3 X1 Xp
V1= X3 X1 Xot Xp"Xo+ Xp X1+ X2 XoQ
Y2 = X3 X" Xot+ X2t X" Xpra+ Xy X1t @
Z= X3 X1 X0+ Xz X1 Xo
Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter

Kapitel 14
Sida 18

14.16 Vi ska nu gora en one-

a

hot tillstandstilldel- State 0 1
ning av FSM:n fran Ex- X7X6X5XaX3X2X1Xo | Y7YeYsYaYaY2Y1Yo | Y7YeYsYaysyaYiYo | Z
empel 14.12. Vi har 00000001 | 00000001 00000010 0
atta tillstand s3 vi be- 00000010 | 00000100 00000100 1
héver &tta tillstands- 00000100 | 00001000 00001000 0
variabler samt en vari- 00001000 | 00010000 00010000 0

.. .) 00010000 | 00100000 00000010 0
abel for utsignalen. Vi 00100000 | 01000000 00000010 0
far Figur 14.16a. 01000000 | 00000100 10000000 1
Vikan inte soka en bra 10000000 | 00000100 00000100 0
|6sning pa detta utan .

. . Figur 14.16a
att anvanda optime-
ringsverktyg.
14.17 Vi har tillstandstabellen for trafikljuset fran Ta- Next state

bell 14.4, sida 311 som vi upprepar i Figur carew
14.17a. State | 0 1 Out
Vi infor tillstandskodning, Figur 14.17b. GNS | GNS | YNS | 100001
For tillstanden har vi tre variabler varfor vi be- YNS | GEW | GEW | 010001
hover tre-variablers Karnaughdiagram, Figur GEW | YEW | YEW | 001 100
14.17c-d, medan utsignalerna bestams av bara YEW | GNS | GNS | 001010

tva variabler sa dar behdver vi tva-variablers
Karnaughdigram, Figur 14.17e-j.

Figur 14.17a

Next state
carew
State | O 1 Out
X1Xo | YiYo | YiYo | Z5Z24Z3Z32Z1Y0
00 00 01 100 001
01 10 10 010001
10 11 11 001 100
11 00 00 001 010

Figur 14.17a

X1Xo

00 01 11 10
1

ol

’ % ’ 0 J E L/leo

00 01 11 10 Yo
oo oo/ *1Xo ol o
carew —— — carew
111 0 0 || 1 | ~Xccarew 1!l o
N 2z
Figur 14.17c Figur 14.17d

Dally, Harting, Aamodt: Digital design Using VHDL

Lésningar till uppgifter
Kapitel 14
Sida 19

14.17 forts.

Xo Xo Xo
o9 1 9 1 2 9 1
o1 |1 ™ 0olo| o olo|o .
X1 . X1 — X1Xo X1 — X1Xo
1| o 0 11 o |l 1] 110
Figur 14.17e Figur 14.17f Figur 14.17g
Xo Xo Xo
2 0 1 o9 1 %5 0 1 __
- XX = X1Xo
0Olo| o ol o[1] o o1 o
X1 [— X1 X1 — X1 —
1 1 1) 11 0 0 11 0 0
Figur 14.17h Figur 14.17i Figur 14.17j

Vi far kopplingen i Figur 14.17k

carewo
1 T |

1T 1 1 l l T l |
R0 R0 R0 R0 Ro Ro Ro Ro

= [Y

N N

clock o T % l ‘
v © v v zi 7 Z, zj 24 Zs

Ol O Ol)

—]

Figur 14.17k

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 20

14.18 Om vi tar med alla even-
tualiteter, dven att bade input = ab 00
a och b ar hoga sa far vi

Figur 14.18a 10 6

00
01
11
00
10 00
Figur 14.18
och vi far tillstandstabellen i Figur 4.18b Next state
ab
State | 00 01 10 11 UL
SO SO SO S1 SO 0
S1 S2 SO S1 SO 0
S2 S2 S3 SO SO 0
S3 S4 S3 SO SO 0
S4 S4 SO S5 SO 0
S5 S6 SO S5 SO 0
S6 S6 SO S7 SO 0
S7 S8 SO S7 SO 1
S8 S8 SO SO SO 1

Figur 14.18b

14.19 Vi skriver VHDL-kod

-- ex_14 19.vhdl
LIBRARY 1eee;
USE 1eee.std_logic_1164._all;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 21

14.19 forts.

ENTITY ex 14 19 IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD LOGIC;
a:IN STD_LOGIC;
b:IN STD_LOGIC;
z:0UT STD _LOGIC);
END ex 14 19;

ARCHITECTURE arch_ex_14 19 OF ex_14 19 IS
TYPE state_type 1S (S0,S1,S2,S3,54,S5,S6,57,S8);
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;
SIGNAL ab:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
ab <= a & b;

state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=S0;
ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;
END IF;
END PROCESS state_transition_proc;

stateflow_proc:
PROCESS(state_signal,a,b)
BEGIN
CASE state_signal 1S
WHEN SO =>
IF ab = 00" THEN
next_state_signal <= SO;
ELSIF ab = 01" THEN
next_state_signal <= SO;
ELSIF ab = "10" THEN
next_state_signal <= S1;
ELSE
next_state_signal <= SO;
END IF;
WHEN S1 =>
IF ab = 00" THEN
next_state_signal <= S2;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 22

14.19 forts.

ELSIF ab = 01" THEN
next_state_signal <= SO;

ELSIF ab = 10" THEN
next_state _signal <= S1;

ELSE
next_state_signal <= SO;
END IF;

WHEN S2 =>

IF ab = 00" THEN
next_state_signal <= S2;

ELSIF ab = 01" THEN
next_state _signal <= S3;

ELSIF ab = 10" THEN
next_state_signal <= SO;

ELSE
next_state_signal <= SO;
END IF;

WHEN S3 =>

IF ab = 00" THEN
next_state_signal <= S4;

ELSIF ab = 01" THEN
next_state_signal <= S3;

ELSIF ab = "10" THEN
next_state_signal <= SO;

ELSE
next_state_signal <= SO;
END IF;

WHEN S4 =>

IF ab = 00" THEN
next_state_signal <= S$4;

ELSIF ab = 01" THEN
next_state_signal <= SO;

ELSIF ab = 10" THEN
next_state_signal <= S5;

ELSE
next_state_signal <= SO;
END IF;

WHEN S5 =>

IF ab = 00" THEN
next_state_signal <= S6;

ELSIF ab = 01" THEN
next_state_signal <= SO;

ELSIF ab = 10" THEN
next_state_signal <= S5;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 23

14.19 forts.

ELSE
next_state_signal <= SO;
END IF;

WHEN S6 =>

IF ab = 00" THEN
next_state_signal <= S6;

ELSIF ab = 01" THEN
next_state_signal <= SO;

ELSIF ab = 10" THEN
next_state_signal <= S7;

ELSE
next_state_signal <= SO;
END IF;

WHEN S7 =>

IF ab = 00" THEN
next_state_signal <= S8;

ELSIF ab = 01" THEN
next_state_signal <= SO;

ELSIF ab = 10" THEN
next_state_signal <= S7;

ELSE
next_state_signal <= SO;
END IF;

WHEN S8 =>

IF ab = 00" THEN
next_state_signal <= S8;

ELSIF ab = 01" THEN
next_state_signal <= SO;

ELSIF ab = "10" THEN
next_state_signal <= SO;

ELSE
next_state_signal <= SO;
END IF;

END CASE;
END PROCESS stateflow_proc;

assignment_proc:
PROCESS(state_signal,a,b)
BEGIN
CASE state_signal 1S
WHEN S7 =>
z <= "17;
WHEN S8 =>
z <= "17;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 24

14.19 forts.
WHEN OTHERS =>
z <= "07;
END CASE;
END PROCESS assignment_proc;
END arch_ex_14 19;

och simulerar med en do-fil

-- ex_14 19.do
restart -f -nowave
view signals wave
add wave Clock Resetn a b
add wave state_signal next_state signal z
force Clock 0 O, 1 50ns -repeat 100ns
force a 0O

force b O

force Resetn 0O

run 225ns

force Resetn 1
force a 1

run 100ns

force a 0O

run 100ns

force b 1

run 100ns

force b O

run 100ns

force a 1

run 100ns

force a 0O

run 100ns

force a 1

run 100ns

force a 0O

run 100ns

force b 1

run 100ns

force b O

run 100ns

force a 1

run 100ns

force a O

run 100ns

force b 1

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 25

14.19 forts.
run 100ns

force a 1
run 200ns

14.20 Vi ritar en tillstandsgraf, Figur 14.20a

input = nickel,dime

output = thing,change

Figur 14.20a

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 26

14.20 forts.

och staller upp tillstandsta-
bell, Figur 4.20b. Vi utelam-
nar alternativet att bada in-
signalerna skulle varahoga
datinte kan intraffa. | VHDL-
koden later vi i det fallet
FSM:n ga tillbaka till starttil-
standet.

Next state
Nickel/dime
State | 00 | 01 | 10 | 11 | thing | change
SO SO | S3 | S1 - 0 0
S1 S2 | SO | S1 - 0 0
S2 S2 | S5 | S3 - 0 0
S3 S4 | S3 | S3 - 0 0
sS4 S4 | S7 | S5 - 0 0
S5 S6 | S5 | S5 - 0 0
S6 S6 | S9 | S7 - 0 0
S7 S8 | S7 | S7 - 0 0
S8 S8 | S11| S9 - 0 0
S9 S10 | S9 | S9 - 0 0
S10 | S10 | S13 | S11 - 0 0
S11 | S12 | S11 | S11 - 0 0
S§12 | S12 | S15 | S13 - 0 0
S13 | S14 | S13 | S13 - 0 0
S14 | S14 | S16 | S15 - 0 0
S15 | SO | S15| S15 - 1 0
S16 | SO | S16 | SO 0 1
Figur 14.20b

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter

Kapitel 14

Sida 27

14.21 17 tillstand sa vi behover 5 tillstandsvariabler

Next state
Nickel/dime
State 00 01 10 11 thing change
00000 00000 00011 00001 - 0 0
00001 00010 00000 00001 - 0 0
00010 00010 00101 00011 - 0 0
00011 00100 00011 00011 - 0 0
00100 00100 00111 00101 - 0 0
00101 00110 00101 00101 - 0 0
00110 00110 01001 00111 - 0 0
00111 01000 00111 00111 - 0 0
01000 01000 01011 01001 - 0 0
01001 01010 01001 01001 - 0 0
01010 01010 01101 01011 - 0 0
01011 01100 01011 01011 - 0 0
01100 01100 01111 01101 - 0 0
01101 01110 01101 01101 - 0 0
01110 01110 10000 01111 - 0 0
01111 00000 01111 01111 - 1 0
10000 00000 10000 00000 0 1

Figur 14.20a

Losningen blir ratt komplicerad med manga variabler sa vi uteldmnar den har
14.22 Vi far VHDL-koden

-- ex_14 22._.vhdl

LIBRARY ieee;

USE i1eee.std_logic_1164.all;
USE 1eee.numeric_std.all;

ENTITY ex_14 22 1S
PORT(Clock:IN STD LOGIC;
Resetn:IN STD LOGIC;
nickel:IN STD LOGIC;
dime:IN STD LOGIC;
z:0UT STD_LOGIC;
change:OUT STD _LOGIC);
END ex_14 22;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 28

14.22 forts.
ARCHITECTURE arch_ex_14 22 OF ex_14 22 1S
TYPE state_type IS
(so0,s1,s2,s3,54,55,S6,S7,S8,S9,
s10,S11,S12,S13,S14,S15,S16) ;
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;
SIGNAL nickel_dime_signal:STD_LOGIC_VECTOR(1
DOWNTO 0);
SIGNAL value:NATURAL RANGE O TO 45:=0;
BEGIN
nickel _dime_signal <= nickel & dime;

state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=S0;
ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;
END IF;
END PROCESS state transition_proc;

stateflow_proc:
PROCESS(state_signal,nickel ,dime)
BEGIN
CASE state_signal 1S
WHEN SO =>
value <= 0;
IF nickel_dime_signal = "00" THEN
next_state_signal <= SO;
ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S3;
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S1;
ELSE
next_state_signal <= SO;
END IF;
WHEN S1 =>
value <= 5;
IF nickel_dime_signal = 00" THEN
next_state_signal <= S2;
ELSIF nickel _dime_signal = 01" THEN
next_state_signal <= SO;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 29

14.22 forts.

ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S1;

ELSE
next_state_signal <= SO;

END IF;

WHEN S2 =>

value <= 5;

IF nickel _dime_signal = "00" THEN
next_state_signal <= S2;

ELSIF nickel _dime_signal = 01" THEN
next_state_signal <= S5;

ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S3;
ELSE
next_state_signal <= SO;
END IF;
WHEN S3 =>

value <= 10;

IF nickel _dime_signal = 00" THEN
next_state_signal <= S$4;

ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S3;

ELSIF nickel_dime_signal = "10" THEN
next_state_signal <= S3;

ELSE
next_state_signal <= SO;

END IF;

WHEN S4 =>

value <= 10;

IF nickel_dime_signal = "00" THEN
next_state_signal <= S$4;

ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S7;

ELSIF nickel _dime_signal = 10" THEN
next_state _signal <= S5;

ELSE
next_state_signal <= SO;

END IF;

WHEN S5 =>

value <= 15;

IF nickel _dime_signal = 00" THEN
next_state_signal <= S6;

ELSIF nickel _dime_signal = 01" THEN
next_state_signal <= S5;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 30

14.22 forts.
ELSIF nickel _dime_signal = 10" THEN
next_state _signal <= S5;
ELSE
next_state_signal <= SO;
END IF;
WHEN S6 =>
value <= 15;
IF nickel _dime_signal = "00" THEN
next_state_signal <= S6;
ELSIF nickel _dime_signal = 01" THEN
next_state_signal <= S9;
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S7;
ELSE
next_state_signal <= SO;
END IF;
WHEN S7 =>
value <= 20;
IF nickel _dime_signal = 00" THEN
next_state _signal <= S8;
ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S7;
ELSIF nickel_dime_signal = "10" THEN
next_state_signal <= S7;
ELSE
next_state_signal <= SO;
END IF;
WHEN S8 =>
value <= 20;
IF nickel_dime_signal = "00" THEN
next_state_signal <= S8;
ELSIF nickel_dime_signal = "01" THEN
next_state _signal <= S11;
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S9;
ELSE
next_state_signal <= SO;
END IF;
WHEN S9 =>
value <= 25;
IF nickel _dime_signal = 00" THEN
next_state_signal <= S10;
ELSIF nickel _dime_signal = 01" THEN
next_state_signal <= S9;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 31

14.22 forts.
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S9;
ELSE
next_state_signal <= SO;
END IF;
WHEN S10 =>
value <= 25;
IF nickel _dime_signal = "00" THEN
next_state_signal <= S10;
ELSIF nickel _dime_signal = 01" THEN
next_state signal <= S13;
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S11;
ELSE
next_state_signal <= SO;
END IF;
WHEN S11 =>
value <= 30;
IF nickel _dime_signal = 00" THEN
next_state signal <= S12;
ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S11;
ELSIF nickel_dime_signal = "10" THEN
next_state_signal <= S11;
ELSE
next_state_signal <= SO;
END IF;
WHEN S12 =>
value <= 30;
IF nickel_dime_signal = "00" THEN
next_state_signal <= S12;
ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S15;
ELSIF nickel _dime_signal = 10" THEN
next_state _signal <= S13;
ELSE
next_state_signal <= SO;
END IF;
WHEN S13 =>
value <= 35;
IF nickel _dime_signal = 00" THEN
next_state_signal <= S14;
ELSIF nickel _dime_signal = 01" THEN
next_state_signal <= S13;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 32

14.22 forts.
ELSIF nickel _dime_signal = 10" THEN
next_state signal <= S13;
ELSE
next_state_signal <= SO;
END IF;
WHEN S14 =>
value <= 35;
IF nickel _dime_signal = "00" THEN
next_state_signal <= S14;
ELSIF nickel _dime_signal = 01" THEN
next_state signal <= S16;
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= S15;
ELSE
next_state_signal <= SO;
END IF;
WHEN S15 =>
value <= 40;
IF nickel _dime_signal = 00" THEN
next_state _signal <= SO;
ELSIF nickel_dime_signal = "01" THEN
next_state_signal <= S15;
ELSIF nickel_dime_signal = "10" THEN
next_state_signal <= S15;
ELSE
next_state_signal <= SO;
END IF;
WHEN S16 =>
value <= 45;
IF nickel_dime_signal = "00" THEN
next_state_signal <= SO;
ELSIF nickel_dime_signal = "01" THEN
next_state _signal <= S16;
ELSIF nickel _dime_signal = 10" THEN
next_state_signal <= SO;
ELSE
next_state_signal <= SO;
END IF;
END CASE;
END PROCESS stateflow proc;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 33

14.22 forts.
assignment_proc:
PROCESS(state_signal ,nickel ,dime)
BEGIN
CASE state_signal 1S
WHEN S15 =>
z <= "1°%;
change <= "0";
WHEN S16 =>
7 <= "1":
change <= "1%;
WHEN OTHERS =>

Z <: IOI;
change <= "0";
END CASE;

END PROCESS assignment_proc;
END arch_ex 14 22;

Som vi simulerar med en do-fil

-- ex_14 20.do

restart -f -nowave

view signals wave

add wave Clock Resetn nickel dime
add wave state_signal next_state_signal z change
add wave -radix unsigned value
force Clock 0 0, 1 50ns -repeat 100ns
force nickel 0O

force dime O

force Resetn 0O

run 225ns

force Resetn 1

#1 dime = 10

force dime 1

run 100ns

force dime O

run 100ns

#1+1 dime = 20

force dime 1

run 100ns

force dime O

run 100ns

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 34

14.22 forts.

#1+1+1 dime = 30
force dime 1
run 100ns
force dime O
run 100ns
#1+1+1+1 dime = 40
force dime 1
run 100ns
force dime O
run 100ns

#10

force dime 1
run 100ns
force dime O
run 100ns

#15

force nickel 1
run 100ns
force nickel 0O
run 100ns

#25

force dime 1
run 100ns
force dime O
run 100ns

#35

force dime 1
run 100ns
force dime O
run 100ns

#45

force dime 1
run 100ns
force dime O
run 100ns

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 35

14.23 Viritar en tillstandsgraf, Figur 14.23a

input = nickel,dime

100
output = thing,change 010

001

Figur 14.23a

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 36

14.23 forts.

Vi stéller upp tillstandstabell

Next state
Nickel/dime/quarter
State | 000 | 001 | 010 | 100 | 011 101 110 111 | thing | change
SO SO S9 S3 S1 - - - - 0 0
S1 S2 S1 S1 S1 - - - - 0 0
S2 S2 | S11| S5 S3 - - - - 0 0
S3 S4 S3 S3 S3 - - - - 0 0
S4 S4 | S13 | S7 S5 - - - - 0 0
S5 S6 S5 S5 S5 - - - - 0 0
S6 S6 | S15 | S9 S7 - - - - 0 0
S7 S8 S7 S7 S7 - - - - 0 0
S8 S8 | S19 | S11 | S9 - - - - 0 0
S9 S10 | S9 S9 S9 - - - - 0 0
S10 | S10 | S18 | S13 | S11 - - - - 0 0
$11 | S12 | S11 | S11 | S11 - - - - 0 0
§$12 | S12 | S17 | S15 | S13 - - - - 0 0
S$13 | S14 | S13 | S13 | S13 - - - - 0 0
S14 | S14 | S16 | S19 | S15 - - - - 0 0
S15 SO | S15 | S15 | S15 - - - - 1 0
S16 | S17 | S17 | S17 | S17 - - - - 0 1
S$17 | S18 | S18 | S18 | S18 - - - - 0 1
$18 | S19 | S19 | S19 | S19 - - - - 0 1
S19 SO SO SO SO - - - - 1 1
Figur 14.23b

14.24 Vi skriver VHDL-kod

-- ex_14 24 _vhdl

LIBRARY 1ieee;

USE 1eee.std_logic_1164._all;
USE 1eee.numeric_std.all;

Dally, Harting, Aamodt: Digital design Using VHDL

Lésningar till uppgifter
Kapitel 14
Sida 37

14.24 forts.

ENTITY ex_14 24 IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD LOGIC;
nickel:IN STD LOGIC;
dime:IN STD LOGIC;
quarter:-IN STD_LOGIC;
z:0UT STD_LOGIC;
change:OUT STD _LOGIC);

END ex_14 24;

ARCHITECTURE arch_ex_14 24 OF ex_14 24 1S
TYPE state_ type 1S (S0,S1,S2,S3,54,S5,S6,
10,S11,S12,S13,514,S15,S16,
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;
SIGNAL nickel_dime_quarter_signal:

S7,S8,S89,
S17,S18,S19);

STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL value:NATURAL RANGE O TO 60:=0;
BEGIN
nickel _dime_quarter_signal <=
nickel & dime

state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=S0;
ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;
END IF;
END PROCESS state transition_proc;

stateflow_proc:
PROCESS(state_signal ,nickel ,dime)
BEGIN
CASE state_signal 1S
WHEN SO =>
value <= 0;
IF nickel_dime_quarter_signal =
next_state_signal <= SO;
ELSIF nickel_dime_quarter_signal
next_state_signal <= S9;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 38

& quarter;

000" THEN

= 001" THEN

14.24 forts.

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state _signal <= S3;
ELSIF nickel _dime_quarter_signal = 100" THEN

next_state _signal <= S1;

ELSE
next_state_signal <= SO;

END IF;

WHEN S1 =>

value <= 5;

IF nickel _dime_quarter_signal = 000" THEN
next_state _signal <= S2;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state_signal <= S1;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state_signal <= S1;

ELSIF nickel _dime_quarter_signal = 100" THEN

next_state _signal <= S1;
ELSE
next_state_signal <= SO;
END IF;
WHEN S2 =>
value <= 5;
IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S2;
ELSIF nickel _dime_quarter_signal
THEN
next_state _signal <= S11;
ELSIF nickel _dime_quarter_signal = 010"
THEN
next_state_signal <= S5;
ELSIF nickel_dime_quarter_signal
THEN
next_state_signal <= S3;

001"

lllooll

ELSE
next_state _signal <= SO;
END IF;
WHEN S3 =>
value <= 10;
IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S$4;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state_signal <= S3;
ELSIF nickel _dime_quarter_signal = 010" THEN

next_state_signal <= S3;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 39

14.24 forts.

ELSIF nickel _dime_quarter_signal = 100" THEN
next_state _signal <= S3;
ELSE
next_state_signal <= SO;
END IF;
WHEN S4 =>

value <= 10;
IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S$4;
ELSIF nickel _dime_quarter_signal
THEN
next_state signal <= S13;
ELSIF nickel _dime_quarter_signal = 010"
THEN
next_state_signal <= S7;
ELSIF nickel _dime_quarter_signal
THEN
next_state _signal <= S5;

"'001"

lllooll

ELSE
next_state_signal <= SO;
END IF;
WHEN S5 =>
value <= 15;
IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S6;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state_signal <= S5;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state_signal <= S5;

ELSIF nickel_dime_quarter_signal = 100" THEN

next_state_signal <= S5;

ELSE
next_state_signal <= SO;

END IF;

WHEN S6 =>

value <= 15;

IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S6;

ELSIF nickel_dime_quarter_signal = 001" THEN
next_state_signal <= S15;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state_signal <= S9;

ELSIF nickel _dime_quarter_signal = 100" THEN

next_state_signal <= S7;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 40

14.24 forts.
ELSE
next_state_signal <= SO;
END IF;
WHEN S7 =>
value <= 20;
IF nickel_dime_quarter_signal =
next_state_signal <= S8;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S7;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S7;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S7;
ELSE
next_state_signal <= SO;
END IF;
WHEN S8 =>
value <= 20;
IF nickel _dime_quarter_signal =
next_state _signal <= S8;
ELSIF nickel_dime_quarter_signal
next_state_signal <= S19;
ELSIF nickel_dime_quarter_signal
next_state_signal <= S11;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S9;
ELSE
next_state_signal <= SO;
END IF;
WHEN S9 =>
value <= 25;
IF nickel_dime_quarter_signal =
next_state signal <= S10;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S9;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S9;
ELSIF nickel_dime_quarter_signal
next_state_signal <= S9;
ELSE
next_state_signal <= SO;
END IF;
WHEN S10 =>
value <= 25;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 41

000" THEN

= 001" THEN
= 010" THEN
= 100" THEN
*"000" THEN

= 001" THEN
= 010" THEN
= 100" THEN
000" THEN

= 001" THEN
= 010" THEN
= 100" THEN

14.24 forts.
IF nickel _dime_quarter_signal = 000" THEN
next_state _signal <= S10;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state signal <= S18;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state_signal <= S13;

ELSIF nickel _dime_quarter_signal = 100" THEN

next_state_signal <= S11;

ELSE
next_state_signal <= SO;

END IF;

WHEN S11 =>
value <= 30;
IF nickel _dime_quarter_signal = 000" THEN

next_state_signal <= S12;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state signal <= S11;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state signal <= S11;

ELSIF nickel _dime_quarter_signal = 100" THEN

next_state_signal <= S11;
ELSE
next_state_signal <= SO;
END IF;
WHEN S12 =>
value <= 30;

IF nickel _dime_quarter_signal = 000" THEN
next_state _signal <= S12;
ELSIF nickel_dime_quarter_signal

THEN
next_state_signal <= S17;
ELSIF nickel _dime_quarter_signal = 010"
THEN
next_state_signal <= S15;
ELSIF nickel _dime_quarter_signal
THEN
next_state_signal <= S13;

lloolll

100"

ELSE
next_state_signal <= SO;
END IF;
WHEN S13 =>
value <= 35;
IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S14;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 42

ELSIF nickel _dime_quarter_signal
next_state _signal <= S13;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S13;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S13;

ELSE
next_state_signal <= SO;
END IF;
WHEN S14 =>
value <= 35;

IF nickel_dime_quarter_signal =
next_state_signal <= S14;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S16;
ELSIF nickel _dime_quarter_signal
next_state signal <= S19;
ELSIF nickel _dime_quarter_signal
next_state _signal <= S15;

ELSE
next_state_signal <= SO;
END IF;
WHEN S15 =>
value <= 40;
IF nickel _dime_quarter_signal =
next_state_signal <= SO;
ELSIF nickel _dime_quarter_signal
next_state_signal <= S15;
ELSIF nickel_dime_quarter_signal
next_state_signal <= S15;
ELSIF nickel_dime_quarter_signal
next_state _signal <= S15;
ELSE
next_state_signal <= SO;
END IF;
WHEN S16 =>
value <= 60;

IF nickel_dime_quarter_signal =
next_state_signal <= S17;
ELSIF nickel _dime_quarter_signal
next_state signal <= S17;
ELSIF nickel _dime_quarter_signal
next_state signal <= S17;
ELSIF nickel_dime_quarter_signal
next_state_signal <= S17;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 43

= 001" THEN
= 010" THEN
= 100" THEN
000" THEN

= 001" THEN
= 010" THEN
= 100" THEN
*"000" THEN

= 001" THEN
= 010" THEN
= 100" THEN
000" THEN

= 001" THEN
= 010" THEN
= 100" THEN

14.24 forts.

ELSE
next_state_signal <= SO;

END IF;

WHEN S17 =>

value <= 55;

IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= S18;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state signal <= S18;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state signal <= S18;

ELSIF nickel _dime_quarter_signal = 100" THEN

next_state_signal <= S18;

ELSE
next_state_signal <= SO;

END IF;

WHEN S18 =>

value <= 50;

IF nickel _dime_quarter_signal = 000" THEN
next_state _signal <= S19;

ELSIF nickel_dime_quarter_signal = 001" THEN
next_state_signal <= S19;

ELSIF nickel_dime_quarter_signal = 010" THEN
next_state_signal <= S19;

ELSIF nickel _dime_quarter_signal = 100" THEN

next_state_signal <= S19;

ELSE
next_state_signal <= SO;

END IF;

WHEN S19 =>

value <= 45;

IF nickel _dime_quarter_signal = 000" THEN
next_state_signal <= SO;

ELSIF nickel _dime_quarter_signal = 001" THEN
next_state_signal <= SO;

ELSIF nickel _dime_quarter_signal = 010" THEN
next_state_signal <= SO;

ELSIF nickel_dime_quarter_signal = 100" THEN

next_state_signal <= SO;
ELSE
next_state_signal <= SO;
END IF;
END CASE;
END PROCESS stateflow_proc;

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 44

14.24 forts.
assignment_proc:
PROCESS(state_signal ,nickel ,dime)
BEGIN
CASE state_signal 1S
WHEN S15 =>
z <= "1°%;
change <= "0";
WHEN S16 =>
z <= "0":
change <= "1%;
WHEN S17 =>
z <= "07;
change <= "17;
WHEN S18 =>
z <= "07;
change <= "1%;
WHEN S19 =>
z <= "1%;
change <= "1%;
WHEN OTHERS =>

z <= "0%;
change <= "0";
END CASE;

END PROCESS assignment_proc;
END arch_ex_14 24;

Och vi simulerar med en do-fil som inte ar heltidckande

-- ex_14 24.do

restart -f -nowave

view signals wave

add wave Clock Resetn nickel dime quarter
add wave state_signal next_state _signal z change
add wave -radix unsigned value

force Clock 0 0, 1 50ns -repeat 100ns
force nickel 0O

force dime O

force quarter O

force Resetn O

run 225ns

force Resetn 1

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 45

14.24 forts.

#1 dime = 10
force dime 1
run 100ns
force dime O
run 100ns

#1+1 dime = 20
force dime 1
run 100ns
force dime O
run 100ns
#1+1+1 dime = 30
force dime 1
run 100ns
force dime O
run 100ns
#1+1+1+1 dime = 40
force dime 1
run 100ns
force dime O
run 100ns

#5

force nickel 1
run 100ns
force nickel 0O
run 100ns

#10

force nickel 1
run 100ns
force nickel 0O
run 100ns

#15

force nickel 1
run 100ns
force nickel 0O
run 100ns

#20

force nickel 1
run 100ns
force nickel 0O
run 100ns

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 46

14.24 forts.

#25

force nickel 1
run 100ns

force nickel 0
run 100ns

#30

force nickel 1
run 100ns

force nickel 0O
run 100ns

#35

force nickel 1
run 100ns

force nickel 0O
run 100ns

#40

force nickel 1
run 100ns

force nickel 0O
run 100ns

force quarter 1
run 100ns

force quarter O
run 100ns

force quarter 1
run 100ns

force quarter O
run 400ns

14.25 Losningen utelamnas nu den blir sa komplicerad att vi anda inte kan ga igenom den
14.26 Losningen utelamnas nu den blir sa komplicerad att vi anda inte kan ga igenom den
14.27 Losningen uteldmnas nu den blir sa komplicerad att vi anda inte kan ga igenom den
14.28 Losningen uteldmnas nu den blir sa komplicerad att vi anda inte kan ga igenom den
14.29 Losningen utelamnas nu den blir sa komplicerad att vi anda inte kan ga igenom den
14.30 Losningen utelamnas nu den blir sa komplicerad att vi anda inte kan ga igenom den

14.31 Lésningen uteldmnas nu den blir sa komplicerad att vi anda inte kan ga igenom den

Dally, Harting, Aamodt: Digital design Using VHDL
Lésningar till uppgifter
Kapitel 14
Sida 47

