

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 1

Dally, Harting and Aamodt:
Digital Design Using VHDL

Kapitel 14
 14.1 Vi har tillståndstabellen från Tabell 14.2, sida

308 som vi upprepar i Figur 14.1a.
Låt oss rita tillståndsgraf, Figur 14.1b.

Vi söker en insignal som gör att vi alltid stegar
tillbaka till starttillståndet 00 oberoende av nu-
varande tillstånd. Vi ser att det inträffar om
in=0.

 14.2 Vi har tillståndstabellen från Tabell 14.4, sida
311 som vi upprepar i Figur 14.2a.
Låt oss rita tillståndsgraf, Figur 14.2b.

 Next state out
 in in

State 0 1 0 1
00 00 01 0 0
01 00 11 0 0
11 01 10 0 0
10 11 00 0 1

Figur 14.1a

00 01

1110

1

0

1 0

1

0

1

0
out=0 out=0

out=0out=1

Figur 14.1b

 Next state
 carew

State 0 1 Out
GNS GNS YNS 100 001
YNS GEW GEW 010 001
GEW YEW YEW 001 100
YEW GNS GNS 001 010

Figur 14.2a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 2

 14.2 forts.

Vi söker en insignal som gör att vi
alltid stegar tillbaka till starttillstån-
det GNS oberoende av nuvarande
tillstånd. Vi ser att det inträffar om
carew=0.

14.3 Vi utgår från tillståndstabell och

tillståndsgraf i Uppgift 14.2, dvs
Figur 14.2a respektive Figur
14.2b. Våra utsignaler ligger en-
ligt grön-gul-röd i nord-sydlig rikt-
ning följt av grön-gul-röd i öst-
västlig riktning. Vi vill modifiera
sekvensen så att det blir rött i
båda riktningarna innan ett trafik-
ljus går till grönt. Vi kan få det ge-
nom att lägga in tillstånd sär båda
riktningar har rött mellan YNS och
GEW samt mellan YEW och GNS,
Figur 14.3a.
Vi får tillståndstabellen i Figur
4.3b.

GNS YNS

GEWYEW

1

-

0

Out=100 001

-

-

Out=010 001

Out=001 100Out=001 010

Figur 14.2b

GNS YNS

RNS
EW1

RNS
EW2

1

-

0

Out=100 001

-

Out=010 001

Out=001 001Out=001 001

GEWYEW
-

Out=001 100Out=001 010

--

Figur 14.3a
 Next state
 carew

State 0 1 Out
GNS GNS YNS 100 001
YNS RNSEW1 RNSEW1 010 001

RNSEW1 GEW GEW 001 001
GEW YEW YEW 001 100
YEW RNSEW2 RNSEW2 001 010

RNSEW2 GNS GNS 001 001

Figur 14.3b

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 3

14.4 Vi får ersätta tillståndsnamnen i Figur 14.3b med tillståndsvariabler och utsignalen be-
höver delas upp i sina individuella bitar. Vi har sex tillstånd så vi behöver tre tillstånds-
variabler. Vi tilldelar tillstånd slump-
mässigt och får Figur 14.4a.
Vi ställer upp Karnaughdiagram för
espektive signal.För tillstånden krävs di-
agram med fyra variabler medan utsig-
nalerna kräver tre variabler. Då vi har ett
förlopp uppifrån och ner i tabellen så är
det förmodligen lämpligt att göra en
tillståndstilldelning där vi rad för rad
ändrar en tillståndsvariabel.

 Next state
 carew

State 0 1 Out
x2x1x0 y2y1y0 y2y1y0 z5z4z3z2z1z0
000 000 001 100 001
001 011 011 010 001
011 111 111 001 001
111 110 110 001 100
110 100 100 001 010
100 000 000 001 001

Figur 14.4a

0 x01

x1x0
00 11 1001

00

11

10

01
carewx2

0 00x

0 10x

1 x11

y0

x1x0

carewx2x0

carewx2

Figur 14.4b

0 x11

x1x0
00 11 1001

00

11

10

01
carewx2

0 01x

0 01x

0 x11

y1

x0

Figur 14.4c

0 x10

x1x0
00 11 1001

00

11

10

01
carewx2

0 11x

0 11x

0 x10

y2

x1

Figur 14.4d

x1x0

x2

00 11 1001

0

1

1

1

111

1 00

z0

x2

x1

Figur 14.4e

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 4

 14.4 forts.

x1x0

x2

00 11 1001

0

1

0

0

000

0 10

z1

x2x1x0

Figur 14.4f

x1x0

x2

00 11 1001

0

1

0

1

000

0 01

z2

x2x1x0

Figur 14.4g

x1x0

x2

00 11 1001

0

1

0

0

010

0 11

z3

x1x0

x2x1

Figur 14.4h

x1x0

x2

00 11 1001

0

1

0

0

001

0 00

z4

x2x1x0

Figur 14.4i

x1x0

x2

00 11 1001

0

1

1

0

000

0 00

z5

x2x1x0

Figur 14.4j

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 5

 14.4 forts.

Vi får kopplingen i Figur 14.4k

14.5 Vi skriver VHDLK-kod för trafikljuset i Exempel 14.3

-- ex_14_5.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY ex14_5 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 carew:IN STD_LOGIC;
 z:OUT STD_LOGIC_VECTOR(5 DOWNTO 0));
END ex14_5;

ARCHITECTURE arch_ex14_5 OF ex14_5 IS
 TYPE state_type IS (GNS,YNS,RNSEW1,GEW,YEW,RNSEW2);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
BEGIN

1

& & &

carew

≥1 ≥1 & &

& &

≥1 & &

D
QQ

D
QQ

D
QQ

z0 z1 z2 z3 z4 z5

clock

Figur 14.4k

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 6

 14.5 forts.

 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=GNS;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,carew)
 BEGIN
 CASE state_signal IS
 WHEN GNS =>
 IF carew = '1' THEN
 next_state_signal <= YNS;
 ELSE
 next_state_signal <= GNS;
 END IF;
 WHEN YNS =>
 next_state_signal <= RNSEW1;
 WHEN RNSEW1 =>
 next_state_signal <= GEW;
 WHEN GEW =>
 next_state_signal <= YEW;
 WHEN YEW =>
 next_state_signal <= RNSEW2;
 WHEN RNSEW2 =>
 next_state_signal <= GNS;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,carew)
 BEGIN
 CASE state_signal IS
 WHEN GNS =>
 z <= "100001";
 WHEN YNS =>
 z <= "010001";
 WHEN RNSEW1 =>
 z <= "001001";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 7

 14.5 forts.
 WHEN GEW =>
 z <= "001100";
 WHEN YEW =>
 z <= "001010";
 WHEN RNSEW2 =>
 z <= "001001";
 END CASE;
 END PROCESS assignment_proc;
END arch_ex14_5;

Och simulerar med en do-fil

-- ex_14_5.do
restart -f -nowave
view signals wave
add wave Clock Resetn carew state_signal
add wave next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force carew 0
force Resetn 0
run 225ns
force Resetn 1
force carew 1
run 100ns
force carew 0
run 600ns
force carew 1
run 100ns
force carew 0
run 600ns

14.6 Vi gör en liten modifiering av till-
ståndsgrafen i Uppgift 14.2, dvs
Figur 14.2a respektive Figur
14.6b och får Figur 14.6a. Vad
som inte framgår av uppgiften är
vad som skall hända om det finns
bilar i båda riktningarna men vi
antar att carew har prioritet i
tillstånd GNS medan carens har
prioritet i GEW.
Vi uppdaterar tillståndstabellen,
Figur 14.6b

GNS YNS

GEWYEW

-

carew=0

Out=100 001

-

Out=010 001

Out=001 100Out=001 010

carns=0

carns=1

carew=1

Figur 14.6a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 8

 14.6 forts.

14.7 Vi gör samma typ av till-
ståndstilldelning som i
Exempel 14.4 och låter
bara en variabel ändra
tillstånd i varje över-
gång, Figur 14.7a.
Vi ställer upp Kar-
naughdiagram, vi har
fyra insignaler och be-
höver fyra-variablers di-
agram för tillstånden, Figur 14.7b-c, och två-variablers diagram för utsignalerna, Figur
14.7d-i.

 Next state
 carew/carsn

State 00 01 10 11 Out
GNS GNS GNS YNS YNS 100 001
YNS GEW GEW GEW GEW 010 001
GEW GEW YEW GEW YEW 001 100
YEW GNS GNS GNS GNS 001 010

Figur 14.6b

 Next state
 carew/carsn

State 00 01 10 11 Out
x1x0 y1y0 y1y0 y1y0 y1y0 z5z4z3z2z1z0
00 00 00 01 01 100 001
01 11 11 11 11 010 001
11 11 10 11 10 001 100
10 00 00 00 00 001 010

Figur 14.7a

0 110

carew/carsn
00 11 1001

00

11

10

01
x1x0

1 010

1 111

0 000

y0

x0carew carsn

x1carew

x1x0

x0carew carsn

Figur 14.7b

0 010

carew/carsn
00 11 1001

00

11

10

01
x1x0

1 111

1 111

0 000

y1

x0

x1carew carsn

Figur 14.7c

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 9

 14.7 forts.

Vi får kopplingen i Figur 14.7j

1

0

1

0

x0

x1

0 1

0

1

z0

x1

Figur 14.7d

0

1

0

0

x0

x1

0 1

0

1

z1

x1x0

Figur 14.7e

0

0

0

1

x0

x1

0 1

0

1

z2

x1x0

Figur 14.7f

0

1

0

1

x0

x1

0 1

0

1

z3

x1

Figur 14.7g

0

0

1

0

x0

x1

0 1

0

1

z4

x1x0

Figur 14.7h

1

0

0

0

x0

x1

0 1

0

1

z5

x1x0

Figur 14.7i

1

& &

carsn

≥1

D
QQ

D
QQ

z0 z1 z2 z3 z4 z5
clock

1

carew

& &&

≥1

& & & &

Figur 14.7j

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 10

14.8 Vi skriver VHDL-kod

-- ex_14_8.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY ex_14_8 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 carew:IN STD_LOGIC;
 carsn:IN STD_LOGIC;
 z:OUT STD_LOGIC_VECTOR(5 DOWNTO 0));
END ex_14_8;

ARCHITECTURE arch_ex14_8 OF ex_14_8 IS
 TYPE state_type IS (GNS,YNS,GEW,YEW);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 BEGIN
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=GNS;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,carew)
 BEGIN
 CASE state_signal IS
 WHEN GNS =>
 IF carew = '1' THEN
 next_state_signal <= YNS;
 ELSE
 next_state_signal <= GNS;
 END IF;
 WHEN YNS =>
 next_state_signal <= GEW;
 WHEN GEW =>
 IF carsn= '1' THEN
 next_state_signal <= YEW;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 11

 14.8 forts.
 ELSE
 next_state_signal <= GEW;
 END IF;
 WHEN YEW =>
 next_state_signal <= GNS;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,carew)
 BEGIN
 CASE state_signal IS
 WHEN GNS =>
 z <= "100001";
 WHEN YNS =>
 z <= "010001";
 WHEN GEW =>
 z <= "001100";
 WHEN YEW =>
 z <= "001010";
 END CASE;
 END PROCESS assignment_proc;
END arch_ex14_8;

Vi simulerar med en do-fil

-- ex_14_8.do
restart -f -nowave
view signals wave
add wave Clock Resetn carew carsn
add wave state_signal next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force carew 0
force carsn 0
force Resetn 0
run 225ns
force Resetn 1
force carew 1
run 100ns
force carew 0
run 600ns
force carew 1
run 100ns
force carew 0

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 12

 14.8 forts.

force carsn 1
run 600ns
force carsn 0
run 600ns

14.9 Vi gör en liten modifiering av till-
ståndsgrafen i Uppgift 14.2, dvs Fi-
gur 14.2a respektive Figur 14.6b
och får Figur 14.9a.
Vi uppdaterar tillståndstabellen,
Figur 14.9b

14.10 Vi gör samma typ av tillståndstilldelning som
i Exempel 14.4 och låter bara en variabel
ändra tillstånd i varje övergång, Figur
14.10a.
Vi ställer upp Karnaughdiagram, vi har fyra
insignaler och behöver tre-variablers dia-
gram för tillstånden, Figur 14.10b-c, och två
variablers diagram för utsignalerna, Figur
14.7d-i. Utsignallogiken förändras inte från
Exempel 14.7.

GNS YNS

GEWYEW

-

carew=0

Out=100 001

-

Out=010 001

Out=001 100Out=001 010

carew=1

carew=0

carew=1

Figur 14.9a

 Next state
 carew

State 0 1 Out
GNS GNS YNS 100 001
YNS GEW GEW 010 001
GEW YEW GEW 001 100
YEW GNS GNS 001 010

Figur 14.9b

 Next state
 carew

State 0 1 Out
x1x0 y1y0 y1y0 z5z4z3z2z1z0
00 00 01 100 001
01 11 11 010 001
11 10 11 001 100
10 00 00 001 010

Figur 14.10a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 13

14.10 forts.

Vi får kopplingen i Figur 14.10d

14.11 Vi skriver VHDL-kod

-- ex_14_11.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY ex_14_11 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 carew:IN STD_LOGIC;
 z:OUT STD_LOGIC_VECTOR(5 DOWNTO 0));
END ex_14_11;

x1x0

carew

00 11 1001

0

1

0

1

001

1 01

y0

carew x0

x1x0

carew x1

Figur 14.10b

x1x0

carew

00 11 1001

0

1

0

0

011

1 01

y1

x0

Figur 14.10c

& &

≥1

D
QQ

D
QQ

z0 z1 z2 z3 z4 z5
clock

carew

& & & & &

Figur 14.10d

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 14

14.11 forts.
ARCHITECTURE arch_ex_14_11 OF ex_14_11 IS
 TYPE state_type IS (GNS,YNS,GEW,YEW);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 BEGIN
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=GNS;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,carew)
 BEGIN
 CASE state_signal IS
 WHEN GNS =>
 IF carew = '1' THEN
 next_state_signal <= YNS;
 ELSE
 next_state_signal <= GNS;
 END IF;
 WHEN YNS =>
 next_state_signal <= GEW;
 WHEN GEW =>
 IF carew= '1' THEN
 next_state_signal <= GEW;
 ELSE
 next_state_signal <= YEW;
 END IF;
 WHEN YEW =>
 next_state_signal <= GNS;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,carew)
 BEGIN
 CASE state_signal IS
 WHEN GNS =>
 z <= "100001";

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 15

14.11 forts.
 WHEN YNS =>
 z <= "010001";
 WHEN GEW =>
 z <= "001100";
 WHEN YEW =>
 z <= "001010";
 END CASE;
 END PROCESS assignment_proc;
END arch_ex_14_11;

och simulerar med en do-fil

-- ex_14_11.do
restart -f -nowave
view signals wave
add wave Clock Resetn carew
add wave state_signal next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force carew 0
force Resetn 0
run 225ns
force Resetn 1
force carew 1
run 100ns
force carew 0
run 600ns
force carew 1
run 600ns
force carew 0
run 600ns

14.12 Vi utgår från tillståndsgra-

fen i Figur 14.9, sidan 312,
som vi upprepar i Figur
14.12a

R
0

1
1

2
0

3
0

arst

4
0

5
0

M
1

L
0

a

aa

a

a

a

- -

-

-

a

Figur 14.12a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 16

14.12 forts.

För att utöka räknecykeln till sex klockpulser så får vi lägga in et extra tillstånd i kedjan
R – S3. Vi får också korrigera vägarna då en puls saknas eller är sen. Vi får Figur 14.12b

Vi tecknar tillståndstabell, Figur 14.12c

14.13 Vi har tillståndsgrafen i Figur 14.9, sidan 312, som vi upprepar i Figur 14.13a

 a
State 0 1 z

R R S1 0
S1 S2 S2 1
S2 S3 S3 0
S3 S4 S4 0
S4 S5 S5 0
S5 S5 S1 0
S6 M S1 0
M S2 L 1
L S2 S2 0

Fi 14 13b

R
0

1
1

3
0

4
0

arst

5
0

6
0

M
1

L
0

a

a

a

a

- -

-

-

a
2
0

-

a

a

Figur 14.12b

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 17

14.13 forts.

Vi tecknar tillståndstabell, Figur 14.13b

14.14 Vi ska nu göra om tillståndstabellen i Figur 14.13b med, Figur 14.14a.

Vi har tyvärr fyra diagonaler kvar där mer än en variabel byter värde. Vi kan nog inte
eliminera det utan att dela upp tillstånd.

R
0

1
1

2
0

3
0

arst

4
0

5
0

M
1

L
0

a

aa

a

a

a

- -

-

-

a

Figur 14.13a

 a
State 0 1 z

R R S1 0
S1 S2 S2 1
S2 S3 S3 0
S3 S4 S4 0
S4 S5 S1 0
S5 M S1 0
M S2 L 1
L S2 S2 0

Figur 14.13b

 a
State 0 1
x2x1x0 y2y1y0 y2y1y0 z

000 000 001 0
001 011 011 1
011 010 010 0
010 110 110 0
110 111 001 0
111 101 001 0
101 011 100 1
100 011 011 0

Figur 14.14a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 18

14.15 Vi ska nu använda en annan uppsättning tillstånds-

variabler, Figur 14.15a.
Vi skall ta fram de logiska uttrycken och använder
Karnaughdiagram. För tillstånden så har vi fyra va-
riabler så vi behöver fyra-variablers Karnughdia-
gram, Figur 14.15b-d medan vi behöver ett tre-
variablers diagram för utsignalen, Figur 14.15e

𝑦𝑦0 = 𝑥𝑥0 ∙ 𝑎𝑎 + 𝑥𝑥2��� ∙ 𝑥𝑥1 ∙ 𝑥𝑥0��� + 𝑥𝑥2 ∙ 𝑥𝑥1��� ∙ 𝑎𝑎 + 𝑥𝑥2 ∙ 𝑥𝑥1��� ∙ 𝑥𝑥0���

𝑦𝑦1 = 𝑥𝑥2��� ∙ 𝑥𝑥1��� ∙ 𝑥𝑥0 + 𝑥𝑥1 ∙ 𝑥𝑥0��� + 𝑥𝑥2 ∙ 𝑥𝑥1 + 𝑥𝑥2 ∙ 𝑥𝑥0 ∙ 𝑎𝑎�

𝑦𝑦2 = 𝑥𝑥2��� ∙ 𝑥𝑥1 ∙ 𝑥𝑥0 + 𝑥𝑥2 ∙ 𝑥𝑥1 ∙ 𝑥𝑥0��� ∙ 𝑎𝑎 + 𝑥𝑥2 ∙ 𝑥𝑥1��� ∙ 𝑎𝑎�

𝑧𝑧 = 𝑥𝑥2��� ∙ 𝑥𝑥1��� ∙ 𝑥𝑥0 + 𝑥𝑥2 ∙ 𝑥𝑥1 ∙ 𝑥𝑥0���

 a
State 0 1
x2x1x0 y2y1y0 y2y1y0 z

000 000 001 0
001 010 010 1
010 011 011 0
011 100 100 0
100 101 001 0
101 110 001 0
110 010 111 1
111 010 010 0

Figur 14.15a

0 000

x0a
00 11 1001

00

11

10

01
x2x1

0 001

0 110

1 100

y2

x2x1x0

x2x1a

x2x1x0a

Figur 14.15d

0 001

x0a
00 11 1001

00

11

10

01
x2x1

0 001

1 001

1 011

y0

x0a

x2x1x0

x2x1x0

x2x1a

Figur 14.15d

0 110

x0a
00 11 1001

00

11

10

01
x2x1

1 111

1 001

0 100

y1

x2x1

x1x0

x2x1x0

x2x0a

Figur 14.15d

x1x0

x2

00 11 1001

0

1

0

0

001

0 10

z

x2x1x0

x2x1x0

Figur 14.15d

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 19

14.16 Vi ska nu göra en one-
hot tillståndstilldel-
ning av FSM:n från Ex-
empel 14.12. Vi har
åtta tillstånd så vi be-
höver åtta tillstånds-
variabler samt en vari-
abel för utsignalen. Vi
får Figur 14.16a.
Vi kan inte söka en bra
lösning på detta utan
att använda optime-
ringsverktyg.

14.17 Vi har tillståndstabellen för trafikljuset från Ta-
bell 14.4, sida 311 som vi upprepar i Figur
14.17a.
Vi inför tillståndskodning, Figur 14.17b.
För tillstånden har vi tre variabler varför vi be-
höver tre-variablers Karnaughdiagram, Figur
14.17c-d, medan utsignalerna bestäms av bara
två variabler så där behöver vi två-variablers
Karnaughdigram, Figur 14.17e-j.

 a
State 0 1

x7x6x5x4x3x2x1x0 y7y6y5y4y3y2y1y0 y7y6y5y4y3y2y1y0 z
00000001 00000001 00000010 0
00000010 00000100 00000100 1
00000100 00001000 00001000 0
00001000 00010000 00010000 0
00010000 00100000 00000010 0
00100000 01000000 00000010 0
01000000 00000100 10000000 1
10000000 00000100 00000100 0

Figur 14.16a

 Next state
 carew

State 0 1 Out
GNS GNS YNS 100 001
YNS GEW GEW 010 001
GEW YEW YEW 001 100
YEW GNS GNS 001 010

Figur 14.17a

 Next state
 carew

State 0 1 Out
x1x0 y1y0 y1y0 z5z4z3z2z1y0
00 00 01 100 001
01 10 10 010 001
10 11 11 001 100
11 00 00 001 010

Figur 14.17a

x1x0

carew

00 11 1001

0

1

0

1

100

0 10

y0

x0carew

x1x0

Figur 14.17c

x1x0

carew

00 11 1001

0

1

0

0

101

1 10

y0

x1x0

x1x0

Figur 14.17d

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 20

14.17 forts.

Vi får kopplingen i Figur 14.17k

1

0

1

0

x0

x1

0 1

0

1

z0

x1

Figur 14.17e

0

0

0

1

x0

x1

0 1

0

1

z1

x1x0

Figur 14.17f

0

1

0

0

x0

x1

0 1

0

1

z2

x1x0

Figur 14.17g

0

1

0

1

x0

x1

0 1

0

1

z3

x1

Figur 14.17h

0

0

1

0

x0

x1

0 1

0

1

z4

x1x0

Figur 14.17i

1

0

0

0

x0

x1

0 1

0

1

z5
x1x0

Figur 14.17j

&
carew

≥1

D
QQ

D
QQ

z0 z1 z2 z3 z4 z5

clock

& & &&

≥1
& & &

Figur 14.17k

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 21

14.18 Om vi tar med alla even-
tualiteter, även att både
a och b är höga så får vi
Figur 14.18a

och vi får tillståndstabellen i Figur 4.18b

14.19 Vi skriver VHDL-kod

-- ex_14_19.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

S0
0

S1
0

S2
0

S3
0

rst

S8
1

S7
1

S6
0

S5
0

S4
0

input = ab

00
01
11

01

10

10

01
11

00

00

10
11

01

00

10
11

10

00

01
11

10

00

00

01
11

10

10

00
00

01
11

01
11

01
10
11

Figur 14.18

 Next state
 ab

State 00 01 10 11 UL
S0 S0 S0 S1 S0 0
S1 S2 S0 S1 S0 0
S2 S2 S3 S0 S0 0
S3 S4 S3 S0 S0 0
S4 S4 S0 S5 S0 0
S5 S6 S0 S5 S0 0
S6 S6 S0 S7 S0 0
S7 S8 S0 S7 S0 1
S8 S8 S0 S0 S0 1

Figur 14.18b

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 22

14.19 forts.

ENTITY ex_14_19 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 a:IN STD_LOGIC;
 b:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END ex_14_19;

ARCHITECTURE arch_ex_14_19 OF ex_14_19 IS
 TYPE state_type IS (S0,S1,S2,S3,S4,S5,S6,S7,S8);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 SIGNAL ab:STD_LOGIC_VECTOR(1 DOWNTO 0);
 BEGIN
 ab <= a & b;

 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=S0;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,a,b)
 BEGIN
 CASE state_signal IS
 WHEN S0 =>
 IF ab = "00" THEN
 next_state_signal <= S0;
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S1 =>
 IF ab = "00" THEN
 next_state_signal <= S2;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 23

14.19 forts.
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S2 =>
 IF ab = "00" THEN
 next_state_signal <= S2;
 ELSIF ab = "01" THEN
 next_state_signal <= S3;
 ELSIF ab = "10" THEN
 next_state_signal <= S0;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S3 =>
 IF ab = "00" THEN
 next_state_signal <= S4;
 ELSIF ab = "01" THEN
 next_state_signal <= S3;
 ELSIF ab = "10" THEN
 next_state_signal <= S0;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S4 =>
 IF ab = "00" THEN
 next_state_signal <= S4;
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S5;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S5 =>
 IF ab = "00" THEN
 next_state_signal <= S6;
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S5;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 24

14.19 forts.
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S6 =>
 IF ab = "00" THEN
 next_state_signal <= S6;
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S7;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S7 =>
 IF ab = "00" THEN
 next_state_signal <= S8;
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S7;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S8 =>
 IF ab = "00" THEN
 next_state_signal <= S8;
 ELSIF ab = "01" THEN
 next_state_signal <= S0;
 ELSIF ab = "10" THEN
 next_state_signal <= S0;
 ELSE
 next_state_signal <= S0;
 END IF;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,a,b)
 BEGIN
 CASE state_signal IS
 WHEN S7 =>
 z <= '1';
 WHEN S8 =>
 z <= '1';

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 25

14.19 forts.
 WHEN OTHERS =>
 z <= '0';
 END CASE;
 END PROCESS assignment_proc;
END arch_ex_14_19;

och simulerar med en do-fil

-- ex_14_19.do
restart -f -nowave
view signals wave
add wave Clock Resetn a b
add wave state_signal next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force a 0
force b 0
force Resetn 0
run 225ns
force Resetn 1
force a 1
run 100ns
force a 0
run 100ns
force b 1
run 100ns
force b 0
run 100ns
force a 1
run 100ns
force a 0
run 100ns
force a 1
run 100ns
force a 0
run 100ns
force b 1
run 100ns
force b 0
run 100ns
force a 1
run 100ns
force a 0
run 100ns
force b 1

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 26

14.19 forts.

run 100ns
force a 1
run 200ns

14.20 Vi ritar en tillståndsgraf, Figur 14.20a

S15
10

S0
00

S1
00

S2
00

rst

S14
00

S13
00

S12
00

S11
00

S3
00

input = nickel,dime
0010 10

001000

output = thing,change S4
00

S5
00

S6
00

1000 00

S7
00

S10
00

S9
00

S8
00100010

S16
11

5 10 15

20

253035

40

45

10

0010

01

01

00
00

01
01

01 01

01
01

00 0010
10
01 00

10
01 00

10
01

0010
01

10
01

000010
01

00

01

10
01

Figur 14.20a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 27

14.20 forts.

och ställer upp tillståndsta-
bell, Figur 4.20b. Vi uteläm-
nar alternativet att båda in-
signalerna skulle varahöga
dåt inte kan inträffa. I VHDL-
koden låter vi i det fallet
FSM:n gå tillbaka till starttil-
ståndet.

 Next state
 Nickel/dime

State 00 01 10 11 thing change
S0 S0 S3 S1 - 0 0
S1 S2 S0 S1 - 0 0
S2 S2 S5 S3 - 0 0
S3 S4 S3 S3 - 0 0
S4 S4 S7 S5 - 0 0
S5 S6 S5 S5 - 0 0
S6 S6 S9 S7 - 0 0
S7 S8 S7 S7 - 0 0
S8 S8 S11 S9 - 0 0
S9 S10 S9 S9 - 0 0

S10 S10 S13 S11 - 0 0
S11 S12 S11 S11 - 0 0
S12 S12 S15 S13 - 0 0
S13 S14 S13 S13 - 0 0
S14 S14 S16 S15 - 0 0
S15 S0 S15 S15 - 1 0
S16 S0 S16 S0 0 1

Figur 14.20b

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 28

14.21 17 tillstånd så vi behöver 5 tillståndsvariabler

Lösningen blir rätt komplicerad med många variabler så vi utelämnar den här

14.22 Vi får VHDL-koden

-- ex_14_22.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY ex_14_22 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 nickel:IN STD_LOGIC;
 dime:IN STD_LOGIC;
 z:OUT STD_LOGIC;
 change:OUT STD_LOGIC);
END ex_14_22;

 Next state
 Nickel/dime

State 00 01 10 11 thing change
00000 00000 00011 00001 - 0 0
00001 00010 00000 00001 - 0 0
00010 00010 00101 00011 - 0 0
00011 00100 00011 00011 - 0 0
00100 00100 00111 00101 - 0 0
00101 00110 00101 00101 - 0 0
00110 00110 01001 00111 - 0 0
00111 01000 00111 00111 - 0 0
01000 01000 01011 01001 - 0 0
01001 01010 01001 01001 - 0 0
01010 01010 01101 01011 - 0 0
01011 01100 01011 01011 - 0 0
01100 01100 01111 01101 - 0 0
01101 01110 01101 01101 - 0 0
01110 01110 10000 01111 - 0 0
01111 00000 01111 01111 - 1 0
10000 00000 10000 00000 0 1

Figur 14.20a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 29

14.22 forts.
ARCHITECTURE arch_ex_14_22 OF ex_14_22 IS
 TYPE state_type IS

(S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,
 S10,S11,S12,S13,S14,S15,S16);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 SIGNAL nickel_dime_signal:STD_LOGIC_VECTOR(1

DOWNTO 0);
 SIGNAL value:NATURAL RANGE 0 TO 45:=0;
 BEGIN
 nickel_dime_signal <= nickel & dime;

 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=S0;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,nickel,dime)
 BEGIN
 CASE state_signal IS
 WHEN S0 =>
 value <= 0;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S3;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S1 =>
 value <= 5;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S2;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S0;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 30

14.22 forts.
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S2 =>
 value <= 5;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S2;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S5;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S3;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S3 =>
 value <= 10;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S4;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S3;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S3;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S4 =>
 value <= 10;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S4;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S7;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S5;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S5 =>
 value <= 15;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S6;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S5;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 31

14.22 forts.
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S5;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S6 =>
 value <= 15;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S6;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S9;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S7;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S7 =>
 value <= 20;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S8;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S7;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S7;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S8 =>
 value <= 20;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S8;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S11;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S9;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S9 =>
 value <= 25;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S10;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S9;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 32

14.22 forts.
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S9;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S10 =>
 value <= 25;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S10;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S13;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S11;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S11 =>
 value <= 30;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S12;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S11;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S11;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S12 =>
 value <= 30;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S12;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S15;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S13;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S13 =>
 value <= 35;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S14;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S13;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 33

14.22 forts.
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S13;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S14 =>
 value <= 35;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S14;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S16;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S15;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S15 =>
 value <= 40;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S15;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S15;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S16 =>
 value <= 45;
 IF nickel_dime_signal = "00" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_signal = "01" THEN
 next_state_signal <= S16;
 ELSIF nickel_dime_signal = "10" THEN
 next_state_signal <= S0;
 ELSE
 next_state_signal <= S0;
 END IF;
 END CASE;
 END PROCESS stateflow_proc;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 34

14.22 forts.
 assignment_proc:
 PROCESS(state_signal,nickel,dime)
 BEGIN
 CASE state_signal IS
 WHEN S15 =>
 z <= '1';
 change <= '0';
 WHEN S16 =>
 z <= '1';
 change <= '1';
 WHEN OTHERS =>
 z <= '0';
 change <= '0';
 END CASE;

 END PROCESS assignment_proc;
END arch_ex_14_22;

Som vi simulerar med en do-fil

-- ex_14_20.do
restart -f -nowave
view signals wave
add wave Clock Resetn nickel dime
add wave state_signal next_state_signal z change
add wave -radix unsigned value
force Clock 0 0, 1 50ns -repeat 100ns
force nickel 0
force dime 0
force Resetn 0
run 225ns
force Resetn 1
#1 dime = 10
force dime 1
run 100ns
force dime 0
run 100ns
#1+1 dime = 20
force dime 1
run 100ns
force dime 0
run 100ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 35

14.22 forts.

#1+1+1 dime = 30
force dime 1
run 100ns
force dime 0
run 100ns
#1+1+1+1 dime = 40
force dime 1
run 100ns
force dime 0
run 100ns
#10
force dime 1
run 100ns
force dime 0
run 100ns
#15
force nickel 1
run 100ns
force nickel 0
run 100ns
#25
force dime 1
run 100ns
force dime 0
run 100ns
#35
force dime 1
run 100ns
force dime 0
run 100ns
#45
force dime 1
run 100ns
force dime 0
run 100ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 36

14.23 Vi ritar en tillståndsgraf, Figur 14.23a

S15
10

S0
00

S1
00

S2
00

rst

S14
00

S13
00

S12
00

S11
00

S3
00

input = nickel,dime

output = thing,change

S4
00

S5
00

S6
00

S7
00

S10
00

S9
00

S8
00

S16
01

5 10 15

20

253035

40

45

010

000

100
010

S19
11

S18
01

S17
01

6055

50

001

001

100 000 100 000 100 000

100

000

000 100100100 000000

100

001

001

001

001

010

010

010

010
010

010

000 100 000 000
100
010 000

100
010

000
000100

010
001

000000

100
010

--

100
010
001

100
010
001

100
010
001

Figur 14.23a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 37

14.23 forts.

Vi ställer upp tillståndstabell

14.24 Vi skriver VHDL-kod

-- ex_14_24.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

 Next state
 Nickel/dime/quarter

State 000 001 010 100 011 101 110 111 thing change
S0 S0 S9 S3 S1 - - - - 0 0
S1 S2 S1 S1 S1 - - - - 0 0
S2 S2 S11 S5 S3 - - - - 0 0
S3 S4 S3 S3 S3 - - - - 0 0
S4 S4 S13 S7 S5 - - - - 0 0
S5 S6 S5 S5 S5 - - - - 0 0
S6 S6 S15 S9 S7 - - - - 0 0
S7 S8 S7 S7 S7 - - - - 0 0
S8 S8 S19 S11 S9 - - - - 0 0
S9 S10 S9 S9 S9 - - - - 0 0

S10 S10 S18 S13 S11 - - - - 0 0
S11 S12 S11 S11 S11 - - - - 0 0
S12 S12 S17 S15 S13 - - - - 0 0
S13 S14 S13 S13 S13 - - - - 0 0
S14 S14 S16 S19 S15 - - - - 0 0
S15 S0 S15 S15 S15 - - - - 1 0
S16 S17 S17 S17 S17 - - - - 0 1
S17 S18 S18 S18 S18 - - - - 0 1
S18 S19 S19 S19 S19 - - - - 0 1
S19 S0 S0 S0 S0 - - - - 1 1

Figur 14.23b

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 38

14.24 forts.

ENTITY ex_14_24 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 nickel:IN STD_LOGIC;
 dime:IN STD_LOGIC;
 quarter:IN STD_LOGIC;
 z:OUT STD_LOGIC;
 change:OUT STD_LOGIC);
END ex_14_24;

ARCHITECTURE arch_ex_14_24 OF ex_14_24 IS
 TYPE state_type IS (S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,
 10,S11,S12,S13,S14,S15,S16,S17,S18,S19);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 SIGNAL nickel_dime_quarter_signal:
 STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL value:NATURAL RANGE 0 TO 60:=0;
 BEGIN
 nickel_dime_quarter_signal <=
 nickel & dime & quarter;

 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=S0;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,nickel,dime)
 BEGIN
 CASE state_signal IS
 WHEN S0 =>
 value <= 0;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S9;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 39

14.24 forts.
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S3;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S1 =>
 value <= 5;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S2;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S1;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S1;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S2 =>
 value <= 5;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S2;
 ELSIF nickel_dime_quarter_signal = "001"
 THEN
 next_state_signal <= S11;
 ELSIF nickel_dime_quarter_signal = "010"
 THEN
 next_state_signal <= S5;
 ELSIF nickel_dime_quarter_signal = "100"
 THEN
 next_state_signal <= S3;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S3 =>
 value <= 10;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S4;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S3;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S3;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 40

14.24 forts.
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S3;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S4 =>
 value <= 10;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S4;
 ELSIF nickel_dime_quarter_signal = "001"
 THEN
 next_state_signal <= S13;
 ELSIF nickel_dime_quarter_signal = "010"
 THEN
 next_state_signal <= S7;
 ELSIF nickel_dime_quarter_signal = "100"
 THEN
 next_state_signal <= S5;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S5 =>
 value <= 15;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S6;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S5;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S5;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S5;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S6 =>
 value <= 15;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S6;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S15;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S9;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S7;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 41

14.24 forts.
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S7 =>
 value <= 20;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S8;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S7;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S7;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S7;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S8 =>
 value <= 20;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S8;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S19;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S11;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S9;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S9 =>
 value <= 25;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S10;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S9;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S9;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S9;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S10 =>
 value <= 25;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 42

14.24 forts.
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S10;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S18;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S13;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S11;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S11 =>
 value <= 30;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S12;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S11;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S11;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S11;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S12 =>
 value <= 30;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S12;
 ELSIF nickel_dime_quarter_signal = "001"
 THEN
 next_state_signal <= S17;
 ELSIF nickel_dime_quarter_signal = "010"
 THEN
 next_state_signal <= S15;
 ELSIF nickel_dime_quarter_signal = "100"
 THEN
 next_state_signal <= S13;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S13 =>
 value <= 35;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S14;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 43

 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S13;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S13;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S13;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S14 =>
 value <= 35;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S14;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S16;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S19;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S15;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S15 =>
 value <= 40;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S15;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S15;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S15;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S16 =>
 value <= 60;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S17;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S17;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S17;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S17;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 44

14.24 forts.
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S17 =>
 value <= 55;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S18;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S18;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S18;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S18;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S18 =>
 value <= 50;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S19;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S19;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S19;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S19;
 ELSE
 next_state_signal <= S0;
 END IF;
 WHEN S19 =>
 value <= 45;
 IF nickel_dime_quarter_signal = "000" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_quarter_signal = "001" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_quarter_signal = "010" THEN
 next_state_signal <= S0;
 ELSIF nickel_dime_quarter_signal = "100" THEN
 next_state_signal <= S0;
 ELSE
 next_state_signal <= S0;
 END IF;
 END CASE;
 END PROCESS stateflow_proc;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 45

14.24 forts.

 assignment_proc:
 PROCESS(state_signal,nickel,dime)
 BEGIN
 CASE state_signal IS
 WHEN S15 =>
 z <= '1';
 change <= '0';
 WHEN S16 =>
 z <= '0';
 change <= '1';
 WHEN S17 =>
 z <= '0';
 change <= '1';
 WHEN S18 =>
 z <= '0';
 change <= '1';
 WHEN S19 =>
 z <= '1';
 change <= '1';
 WHEN OTHERS =>
 z <= '0';
 change <= '0';
 END CASE;
 END PROCESS assignment_proc;
END arch_ex_14_24;

Och vi simulerar med en do-fil som inte är heltäckande

-- ex_14_24.do
restart -f -nowave
view signals wave
add wave Clock Resetn nickel dime quarter
add wave state_signal next_state_signal z change
add wave -radix unsigned value
force Clock 0 0, 1 50ns -repeat 100ns
force nickel 0
force dime 0
force quarter 0
force Resetn 0
run 225ns
force Resetn 1

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 46

14.24 forts.

#1 dime = 10
force dime 1
run 100ns
force dime 0
run 100ns
#1+1 dime = 20
force dime 1
run 100ns
force dime 0
run 100ns
#1+1+1 dime = 30
force dime 1
run 100ns
force dime 0
run 100ns
#1+1+1+1 dime = 40
force dime 1
run 100ns
force dime 0
run 100ns
#5
force nickel 1
run 100ns
force nickel 0
run 100ns
#10
force nickel 1
run 100ns
force nickel 0
run 100ns
#15
force nickel 1
run 100ns
force nickel 0
run 100ns
#20
force nickel 1
run 100ns
force nickel 0
run 100ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 14

Sida 47

14.24 forts.

#25
force nickel 1
run 100ns
force nickel 0
run 100ns
#30
force nickel 1
run 100ns
force nickel 0
run 100ns
#35
force nickel 1
run 100ns
force nickel 0
run 100ns
#40
force nickel 1
run 100ns
force nickel 0
run 100ns
force quarter 1
run 100ns
force quarter 0
run 100ns
force quarter 1
run 100ns
force quarter 0
run 400ns

14.25 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

14.26 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

14.27 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

14.28 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

14.29 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

14.30 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

14.31 Lösningen utelämnas nu den blir så komplicerad att vi ändå inte kan gå igenom den

