

Demonstration 6

Equations used from previous lectures

Steady state

The average voltage over an inductor $V_L = 0$

The average current through a capacitor $I_c = 0$

Step down and forward converter

Continuous conduction mode (CCM)

$$I_L \geq \Delta i_L/2$$

Discontinuous conduction mode (DCM)

$$I_L < \Delta i_L/2$$

Energy stored in an inductor

$$W = \frac{1}{2} L i^2$$

Fourier analysis

$$g(\theta) = f(t), \theta = \omega t$$

$$g(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\theta) + b_n \sin(n\theta)]$$

$$a_n = \frac{1}{\pi} \int_{\theta_0}^{\theta_0+2\pi} g(\theta) \cos(n\theta) d\theta \quad n = 0, 1, 2, 3, \dots$$

$$b_n = \frac{1}{\pi} \int_{\theta_0}^{\theta_0+2\pi} g(\theta) \sin(n\theta) d\theta \quad n = 1, 2, 3, \dots$$

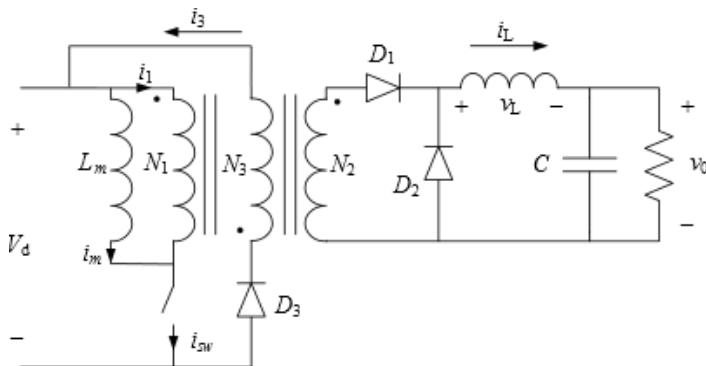
Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_h and b_h
Even	$f(-t) = f(t)$	$b_h = 0 \quad a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$
Odd	$f(-t) = -f(t)$	$a_h = 0 \quad b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$
Half-wave	$f(t) = -f(t + \frac{1}{2}T)$	$a_h = b_h = 0 \text{ for even } h$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t) \text{ for odd } h$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t) \text{ for odd } h$
Even quarter-wave	Even and half-wave	$b_h = 0 \text{ for all } h$ $a_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(h\omega t) d(\omega t) & \text{for odd } h \\ 0 & \text{for even } h \end{cases}$
Odd quarter-wave	Odd and half-wave	$a_h = 0 \text{ for all } h$ $b_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \sin(h\omega t) d(\omega t) & \text{for odd } h \\ 0 & \text{for even } h \end{cases}$

Literature: Undeland book Chapter 7, Chapter 10

Tutorial exercises

Problem 1 Forward converter



$$N_1 : N_3 : N_2 = 1 : 1 : 1$$

$$V_d = 50V$$

$$D = 0.4V \quad L_m = 22\mu H$$

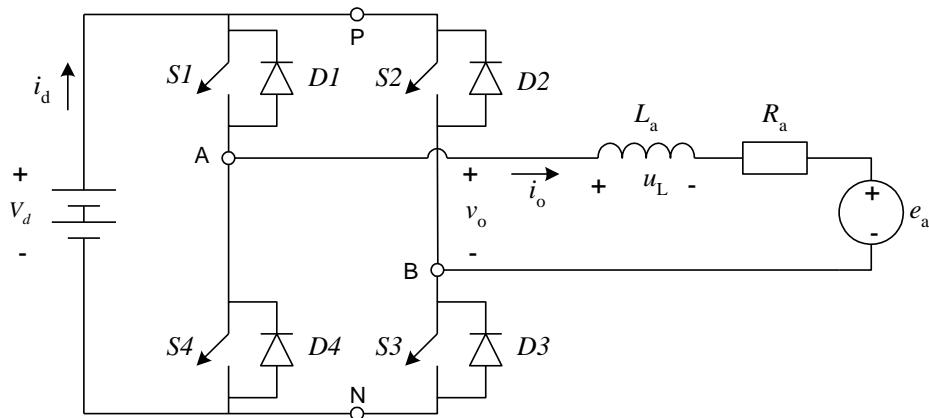
$$C = 470\mu F \quad f = 200kHz$$

$$R_{load} = 1\Omega \quad L_{out} = 7.5\mu H$$

- 1.1. Derive an expression for the ratio of the input and output voltage.
- 1.2. Plot the currents through all three diodes and the switch.
- 1.3. Calculate the power that is circulating to magnetize the transformer.
- 1.4. Derive an expression for the maximum allowed duty cycle.
- 1.5. Assume that each winding consists of 10 turns, $N_1 = N_2 = 10$, and calculate the maximum number of turns in the third winding, N_3 , when the duty cycle is adjusted to achieve an output voltage of 30V.

Problem 2 (P7-18 in Undeland book)

In a full-bridge DC/DC converter using PWM bipolar voltage switching, $v_{control} = 0.5\hat{V}_{tri}$. Obtain V_o and I_o in terms of given V_d and I_o . Assume $i_o \cong I_o$.



By Fourier analysis, calculate the amplitude of the switching-frequency harmonics in the output voltage (v_o) and in the input current (i_d).

Self-study exercises

From Undeland book:
P7-19, P7-22, P10-5, P10-6, P10-7