

Demonstration 5

Equations used from previous lectures

Steady state

The average voltage over an inductor $V_L = 0$

The average current through a capacitor $I_c = 0$

Buck-boost and flyback converter

Continuous conduction mode (CCM)

$$I_L \geq \Delta i_L / 2$$

Discontinuous conduction mode (DCM)

$$I_L < \Delta i_L / 2$$

Ideal transformer

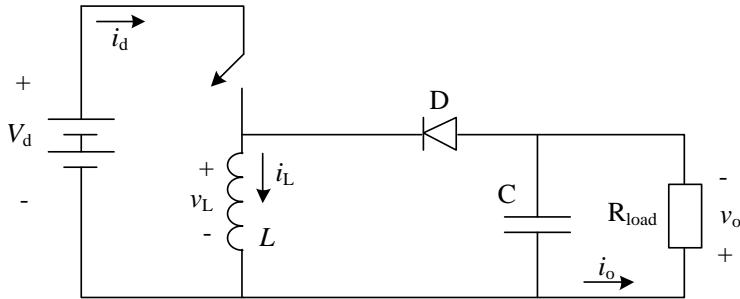
$$v = N \frac{d\phi}{dt} = L_m \frac{di_m}{dt}$$

$$v_1 : v_2 = N_1 : N_2$$

$$v_1 i_1 = v_2 i_2$$

Energy stored in an inductor

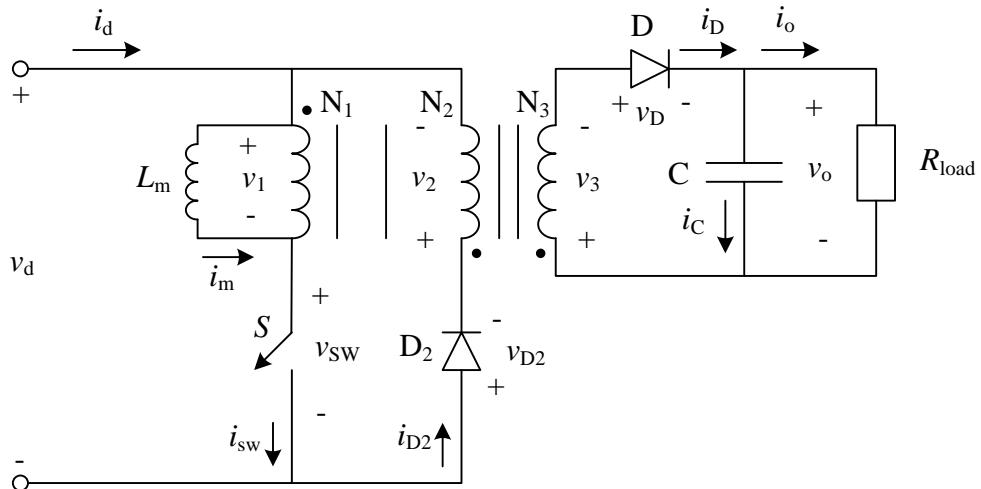
$$W = \frac{1}{2} L i^2$$


Literature: Undeland book Chapter 7, Chapter 10

Tutorial exercises

Problem 1

For a Buck-boost converter calculate the voltage ripple (Δv_o).


$$V_d = 12V \quad V_o = 15V \quad f_{sw} = 20kHz \quad C = 470\mu F$$

$$I_o = 2.5A \quad L = 350\mu H$$

The converter is operating in steady state and the output voltage is considered to be a pure DC-voltage.

Problem 2 (P10-2 in Undeland book)

A flyback converter, with a protective winding (N_2), has a turn ratio ($N_1:N_2:N_3$) equal to (1:0.5:1).

For DCM, Derive the voltage transfer ratio V_o/V_d in terms of the load resistance R_{load} , switching frequency (f_{sw}) transformer inductance (L_m) and duty ratio (D).

Extra problems based on problem 2

- 2.1. In the previous case $R_{load} = R_1, V_o = 0.5V_d, D = 0.3$. What happens if the load is changed to $R_{load} = 16R_1$ while the input voltage and the duty ratio are kept constant?
- 2.2. Draw the waveforms for the no load case, with $D = 0.3$.
- 2.3. In what way does winding N_2 and diode D_2 limit the duty ratio in steady state?
- 2.4. Calculate when the flyback converter changes from DCM to CCM, assume that $V_o < 2V_d$.

Self-study exercises

From Undeland book:
P10-3, P10-4