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Solution of demonstration 1 
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Figure 1 Waveform 1 (Figure P3-3 a in Undeland book) 

 

 

 

Problem 1 (P3-3 in Undeland book) 
 

For the functions in figures below, calculate the average value and RMS-value of the 

fundamental and the harmonic frequency components.  

 

Solution 
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From the figure we see that )(g  is odd, )()(   gg  which gives that 0na  for all n.  

The function is also half-wave, )()(   gg , which gives that bn = 0 for all even n.  
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0nb                          for n=2, 4, 6… (even) 
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For odd n: 
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The average of the function is the half DC-component: 
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The RMS-value of the harmonics 
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Problem 2 (P3-4 in Undeland book) 

 

In the waveforms of figures below, A=10. 

 

(a) Calculate the RMS-value for the functions with Fourier series. 

(b) Calculate the RMS-value for the functions with the RMS definition. 

 

Solution 
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Applied to our case, where 𝑎0 = 𝑎𝑛 = 0 and the expression for 𝑏𝑛only is valid for 𝑛 = 𝑜𝑑𝑑:  
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Problem 3 (P3-5 in Undeland book) 
 

(a) Calculate the ratio of the fundamental frequency component to the total RMS-value. 

(b) Calculate the ratio of the distortion component to the total RMS-value.  

(c) Calculate the total harmonic distortion (THD) of the functions. 

(c) Calculate the ratio of the average value to the total RMS-value.  

 

Solution 

(a)  9.0
22

22

,1






A

A

G

G

rms

rms
 

(b) 435.0
10

)10.
22

(10 22
2

,1

2











rms

rmsrms

rms

dis

G

GG

G

G
 

(c) %31.48
9

35.4
100100%

,1


rms

dis

G

G
THD  

(d) 0
rms

av

G

G
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10
82

4 2

 A
A

Grms







ENM061 Power Electronic Converters  Dept. Of Electric Power Engineering 
Demonstration 1 Solution– HT2017   Chalmers University of Technology 

   

 

 

h(t)

t

A

DT T

f(t)

 
Figure 2 Waveform 2 (Figure P3-3 g in Undeland book) 

 

 

Problem 1 (P3-3 in Undeland book) 
 

For the functions in figures below, calculate the average value and RMS-value of the 

fundamental and the harmonic frequency components.  

 

Solution 

 

According to the task we shall calculate the average and the RMS-value of the fundamental and 

the harmonics of the function )(th . But since the angle of the fundamental and the harmonics 

is not asked for, we start by defining a new starting point of the function and thereby obtaining 

the new even function )(tf  for which the Fourier series is calculated. The error that is 

introduced by redefining the starting point is only related to the phase of the components.  

 

The function becomes even, hence can the an and bn component be calculated as: 
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The average of the function is 
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Problem 2 (P3-4 in Undeland book) 

 

In the waveforms of figures below, A=10. 

 

(a) Calculate the RMS-value for the functions with Fourier series. 

(b) Calculate the RMS-value for the functions with the RMS definition. 

 

Solution 
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Applied to our case, where 𝑏𝑛 = 0 
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Problem 3 (P3-5 in Undeland book) 
 

(a) Calculate the ratio of the fundamental frequency component to the total RMS-value. 

(b) Calculate the ratio of the distortion component to the total RMS-value.  

(c) Calculate the total harmonic distortion (THD) of the functions. 

(c) Calculate the ratio of the average value to the total RMS-value.  

 

Solution 
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Problem 4 (P3-7 in Undeland book) 

 

A three-phase inductive load is supplied from a voltage source with 𝑉𝑝ℎ𝑎𝑠𝑒 = 120𝑉. The load 

draws 10kW with a power factor of 0.85 (lagging).  

 

(a) Calculate the RMS-value of the phase currents and the magnitude of the phase impedance.  

(b) Draw a phasor diagram.  

 

Solution 

 

(a)  3-phase system 𝑉𝑝ℎ𝑎𝑠𝑒 = 120𝑉 (RMS), 𝑃 = 10𝑊 at 0.85 PF (lagging).  

 

Power factor angle: 𝜑 = arccos(0.85) = 31.8°. 
 

𝑃 = 3 ∙ 𝐼𝑝ℎ𝑎𝑠𝑒 ∙ 𝑉𝑝ℎ𝑎𝑠𝑒 ∙ cos(𝜑) 
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𝑃

3 ∙ 𝑉𝑝ℎ𝑎𝑠𝑒 ∙ cos(𝜑)
=

10𝑘𝑊

3 ∙ 120𝑉 ∙ 0.85
= 32.7𝐴 

 

|𝑍| = |
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𝐼𝑝ℎ𝑎𝑠𝑒
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= 3.7Ω 
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Problem 5 (Extra three-phase problem) 

 

A three-phase load is consists of three identical impedances 𝑍̅𝐿 = 33.3 + 𝑗10Ω/𝑝ℎ𝑎𝑠𝑒 

connected in Y. The load is connected to a symmetric three-phase 400V grid.  

 

(a) Calculate the current in each phase.  

(b) Calculate the active and reactive power.  

(c) A capacitor, 31.8µF, is connected in parallel with the load, calculate the new active and 

reactive power. 

 

Solution 

 

(a)  The circuit can be drawn as: 

 
 

The load is symmetrical and can hence be drawn as an equivalent y-phase: 

  

 
 

The voltage source in the equivalent y-phase is 

is equal to the phase-voltage. In the graph to the  

right, the relation between phase voltages and  

main voltages is described. Note that there will be  

a 30º difference, but since the phase voltage is used 

as reference phase, this phase difference does not  

contribute to the results.  
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The current in each phase can be calculated as: 

 

𝐼𝑓 =
𝑉𝑓

𝑅 + 𝑗𝜔𝐿
=

231𝑉∠0°

(33.3 + 𝑗10)Ω
= 6.64𝐴∠−16.7° 

 

The effective value of the current in each phase will be the same due to the symmetrical load. 

 

(b) The complex apparent power can be calculated with help of the phase votlage and phase 

current: 

 

𝑆3−𝑝ℎ𝑎𝑠𝑒 = 3 ∙ 𝑉𝑓 ∙ 𝐼𝑓
∗
= 3 ∙ 231𝑉∠0° ∙ 6.64𝐴∠16.7° = 4600𝑉𝐴∠16.7° = 

            = 4400𝑊 + 𝑗1300𝑉𝐴𝑟 
 

Note that since both P and Q are positive, the load consumes both active (4400W) and reactive 

(1300VAr) power.  

 

(c) The new total complex impedance can be calculated as: 

 

𝑍𝑡𝑜𝑡 = (33.3 + 𝑗10)Ω  //  
1

𝑗2 ∙ 𝜋 ∙ 50 ∙ 31.8𝜇𝐹
Ω = (36.2 − 𝑗2.29)Ω = 36.3Ω∠−3.62° 

 

The same phase voltage is applied over the new complex load.  

 

𝐼𝑓 =
𝑉𝑓

𝑍𝑡𝑜𝑡

=
231𝑉∠0°

(36.2 − 𝑗2.29)Ω
= 6.37𝐴∠3.62° 

 

The new total apparent power now becomes: 

 

𝑆3−𝑝ℎ𝑎𝑠𝑒 = 3 ∙ 𝑉𝑓 ∙ 𝐼𝑓
∗
= 3 ∙ 231𝑉∠0° ∙ 6.37𝐴∠−3.62° = 4415𝑉𝐴∠−3.6° =

= 4400𝑊 − 𝑗279𝑉𝐴𝑟 
 

Note that the active power is the same, but the reactive power has been lowered.  


