

ENM061 - Power Electronic Converters

7.5 ECTS, 2017

Mebtu Beza

mebtu.beza@chalmers.se

Chalmers University of Technology
Department of Electrical Engineering
Division of Electric Power Engineering

Lecture outline

Temperature control and component lifetime

- Component lifetime
- The mechanisms of heat transfer
- The origin of losses
- Thermal resistance - steady-state processes
- Heat sinks and how to select a proper size
- Thermal Impedance – dynamic processes
- Summary

Learning outcomes

- Fourier components and total harmonic distortion (THD) for basic waveforms.
- Operating principles of the most common active components (e.g. diode, thyristor, IGBT, and MOSFET) and passive components (e.g. capacitors, transformers and inductors).
- Operation of a pulse width modulation (PWM), the purpose of controlling the desired quantity and the need for a controller circuit within the power electronic converter.
- Analysis of ideal DC/DC converters (e.g. buck, boost, buck-boost, flyback, the forward, the push-pull, half-bridge and full-bridge converters) in CCM and DCM operation.
- Operating principles of single-phase and three-phase AC/DC inverters with different modulation strategies (e.g. PWM and square wave operation).
- Operation of multilevel converters (e.g. NPC, flying capacitor and MMC topologies) using current and voltage waveform analysis. Pros and Cons of the converter in terms of harmonics and losses.
- Operation of single- and three-phase diode rectifiers operating with voltage-stiff and current-stiff DC-side. Investigating the impact of line impedance within the converter circuit for current commutation.
- Operation of single- and three-phase thyristor rectifiers operating with a current-stiff DC-side and the impact of line impedance for current commutation. Investigating the use of 6/12-pulse configurations.
- Loss calculation in passive and active components. Evaluating the temperature rise in the active components and choosing an appropriate heat-sink.**
- Identify simple power electronic converter schematics. Recognizing the different parts in a physical circuit on which basic wave-shape and efficiency measurements is performed.
- Utilizing the software Cadence PSpice to simulate basic power electronic circuits and the practical labs to have a firsthand experience of how real DC/DC converters operate.

Why Control Component Temperature?

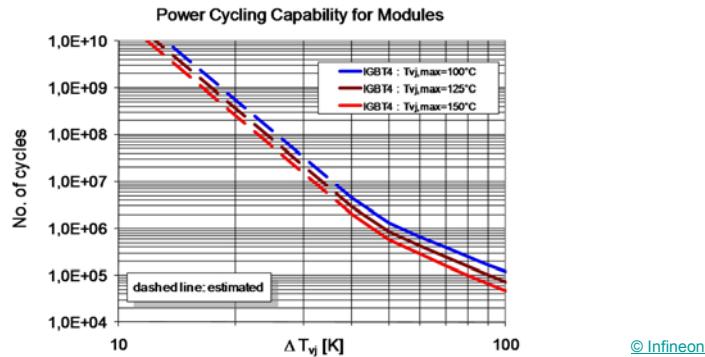
- All components (capacitors, inductors, transformers, semiconductor devices and circuits have maximum operating temperatures specified by manufacturers.
 - Component reliability decreases with increasing temperature. Semiconductor failure rate doubles for every 10 - 15 °C increase in temperature above 50 °C
- High operating temperature has undesirable effects on components.

Capacitors

- Significant increase in electrolyte evaporation rate with an increase in temperature and this shortens lifetime.

Magnetic Components

- Losses (at constant power input) increase above 100°C
- Winding insulation (lacquer or varnish) degrades above 100°C

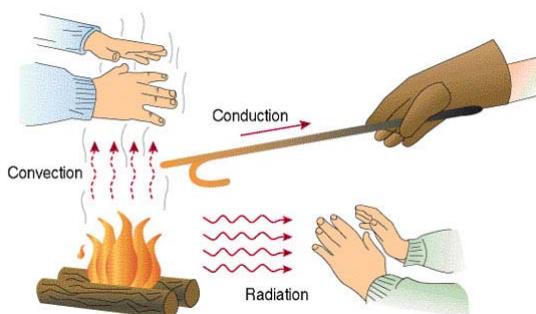

Semconductors

- Unequal power sharing in parallel/series devices.
- Reduction in breakdown voltage in some devices.
- Increase in leakage currents

Lifetime of Active Components

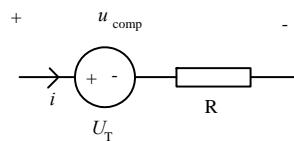
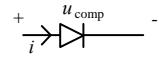
- Due to mechanical stress, the maximum allowed number of thermal cycles are often specified for an IGBT power module
- The cycling capability depends on the temperature swing (ΔT_{vj}) and the maximum component temperature ($T_{vj, \max}$)

Lifetime of Passive Components


- Capacitors:
 - Dielectric breakdown due to overvoltage or aging of the dielectric (when the breakdown voltage falls below operating voltage)
 - Electrode materials migrating across the dielectric, forming conductive paths
 - Increase of dissipation factor due to contamination of capacitor materials
 - Electrolyte contamination from moisture corroding the electrodes, leading to capacitance loss and shorts
- Inductors:
 - Mainly mechanical stress due to thermal cycling
 - Also, insulation breakdown in the windings due to thermal hot-spots may occur

Temperature Control Methods

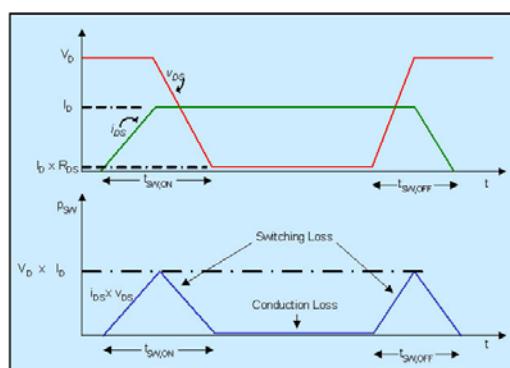
- Control voltages and current through components
 - Snubbers may be required for semiconductor devices
- Maximize heat transfer via convection and radiation from components
 - Short heat flow paths and large component surface area
- Use of heat sinks for temperature-critical components
 - Proper design for adequate air flow so that heat sinks dissipate heat to the ambient.



Mechanisms of Heat Transfer Three Fundamental Principles

- Radiation
- Convection
- Conduction

The Origin of Losses - Conduction

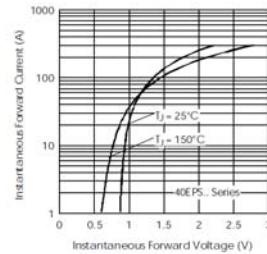
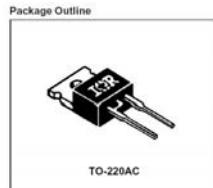
Steady-state is assumed
for all calculations!


$$u_{comp}(t) = U_T + Ri(t)$$

$$P_{on} = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{T} \int_0^T u_{comp}(t)i(t) dt = \frac{1}{T} \int_0^T (U_T i(t) + R i(t)^2) dt = U_T I_{AVG} + R I_{rms}^2$$

$$I_{AVG} = \frac{1}{T} \int_0^T i(t) dt \quad I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2 dt}$$

The Origin of Losses – Switching



- A high voltage and current at the same time gives rise to switching losses (see simplified MOSFET switching event below)

Practical Applications

A Switch Diode in TO-220 Package

- Depending on the type and application, both the forward voltage drop (V_F) and the forward resistance can be specified in the diode datasheet

Electrical Specifications

Parameters	20ETF...	Units	Conditions
V_{FM} Max. Forward Voltage Drop	1.3	V	@ 20A, $T_j = 25^\circ\text{C}$
r_f Forward slope resistance	12.5	mΩ	
$V_{F(TO)}$ Threshold voltage	0.9	V	$T_j = 150^\circ\text{C}$
I_{RM} Max. Reverse Leakage Current	0.1	mA	$T_j = 25^\circ\text{C}$
	5.0		$T_j = 150^\circ\text{C}$
			$V_R = \text{rated } V_{RRM}$

ENM061 – 2017

Lecture 17 – 10/25

Practical Applications

A MOSFET in TO-220 Package

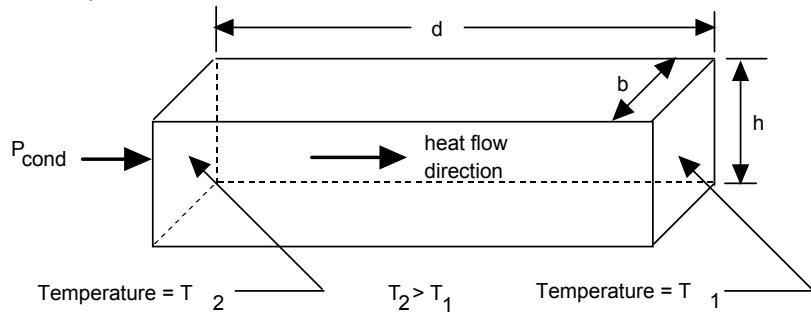
- For a MOSFET, the most important parameter $R_{DS(on)}$ is specified.
- The switching losses are determined by the switching times and depend on the operating conditions.

BUZ10
N - CHANNEL 50V - 0.06Ω - 23A TO-220
STripFET™ MOSFET

ON (*)

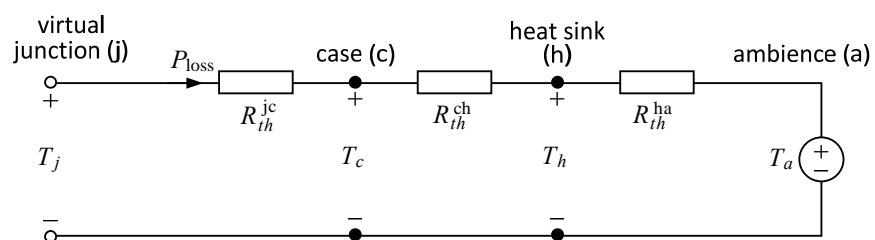
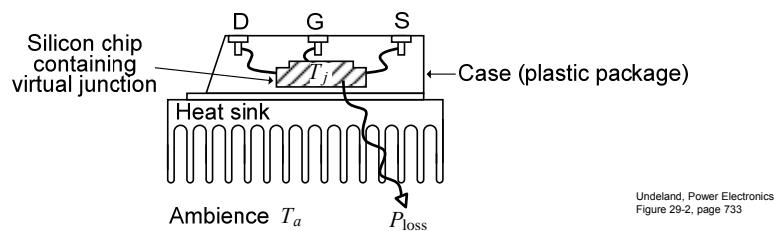
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 1 \text{ mA}$	2.1	3	4	V
$R_{DS(on)}$	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}$ $I_D = 14 \text{ A}$		0.06	0.07	Ω

SWITCHING


Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$	Turn-on Time	$V_{DD} = 30 \text{ V}$ $I_D = 10 \text{ A}$		20		ns
t_r	Rise Time	$R_{GS} = 4.7 \text{ Ω}$ $V_{GS} = 10 \text{ V}$		45		ns
$t_{d(off)}$	Turn-off Delay Time			48		ns
t_f	Fall Time			10		ns

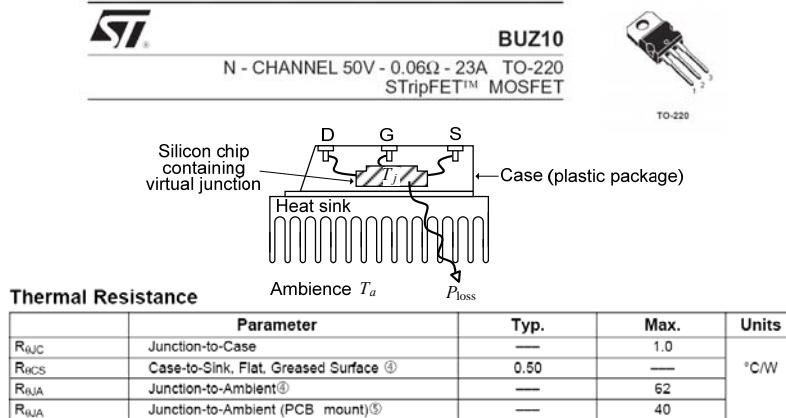
ENM061 – 2017

Lecture 17 – 11/25



Thermal Model of a Semiconductor in Steady-State

- The most important form of heat flow for cooling of electronic components is conduction

$$P_{cond} = \frac{\lambda b h}{d} (T_2 - T_1) \Rightarrow \Delta T = P_{cond} \frac{d}{\lambda b h} = P_{cond} R_{th}$$


Thermal Model of a Semiconductor in Steady-State

Practical Applications

A MOSFET in TO-220 Package

- The thermal performance is determined by the thermal resistance of the components which in turn depends on the mounting conditions

Heat Sinks – Selection Criteria

- Choice of heat sink depends on required thermal resistance, $R_{\theta sa}$, which is determined by several factors.
 - Maximum power, P_{diss} , dissipated in the component on the heat sink.
 - Component's maximum internal temperature, $T_{j,max}$
 - Component's junction-to-case thermal resistance, $R_{\theta jc}$.
 - Maximum ambient temperature, $T_{a,max}$.
- $R_{\theta sa} = \{T_{j,max} - T_{a,max}\}/P_{diss} - R_{\theta jc}$
 - P_{diss} and $T_{a,max}$ determined by particular application.
 - $T_{j,max}$ and $R_{\theta jc}$ set by component manufacturer.

Heat Sinks – Datasheet Values

- In the datasheet for the heat sink, the thermal resistance at a specific power dissipation is specified
- The given figure also assume no forced convection and correct mounting/direction.

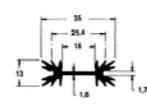
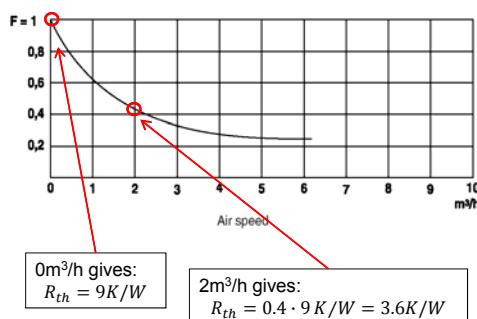
TO220 heatsink

Thermal resistance: 16 °C/W at 5 W

Mfr. Aavid

Heatsink with spring-loaded (no screws), four point clamp to package.
Black matt anodised aluminium

TO220, TOP3 heatsink

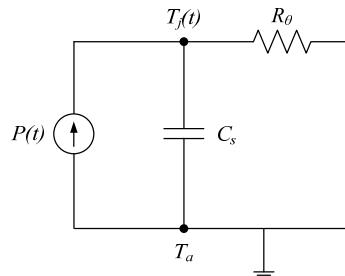


Mfr. Aavid
Heatsink with spring-loaded clamp to package for easier installation.
Includes solder pin to attach the heatsink.

Type	Thermal resistance °C/W	Height mm	Stock number	Price / items 1- 25- 100-
1 Buy! 5332B 220	9.0 at 6 W	50.8	75-612-93	4.87 3.60 2.77

Heat Sinks – The Effect of Forced Convection on a Heat Sink

- As the speed of the surrounding air increases, the thermal resistance of the heat sink decreases

TO220, TOP3 heatsink



Mfr. Aavid
Heatsink with spring-loaded clamp to package for easier installation.
Includes solder pin to attach the heatsink.

Type	Thermal resistance °C/W	Height mm	Stock number	Price / items 1- 25- 100-
1 Buy! 5332B 220	9.0 at 6 W	50.8	75-612-93	4.87 3.60 2.77

Transient Thermal Impedance

- For transient events, the heat capacity per volume (C_v) of the material also needs to be considered.
- An approximate solution of the time-dependent heat diffusion equations can be obtained from the electric circuit analogy below.
- For a step input power,

$$C_v = \frac{dQ}{dT} \Rightarrow C_s = C_v A d$$

$$T_j = P_o R_\theta [t / \tau_\theta]^{1/2} + T_a$$

$$\tau_\theta = \pi R_\theta C_s / 4$$

Undeland, Power Electronics
Figure 29-3, page 734

ENM061 – 2017

Lecture 17 – 18/25

Transient Thermal Impedance Thermal Time-Dependent Impedance

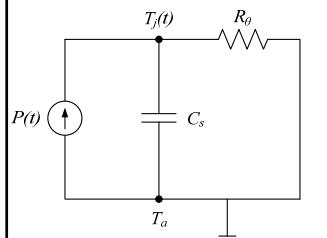
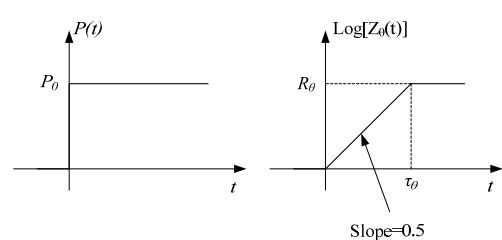
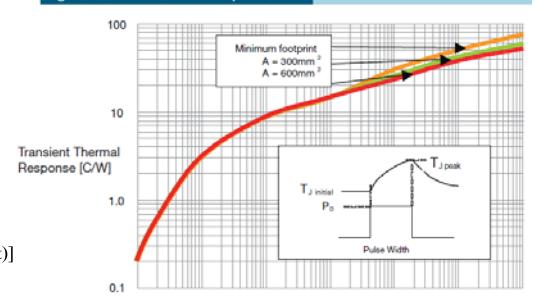
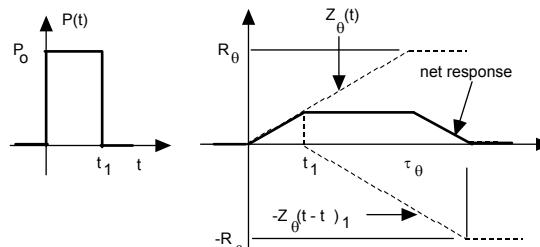
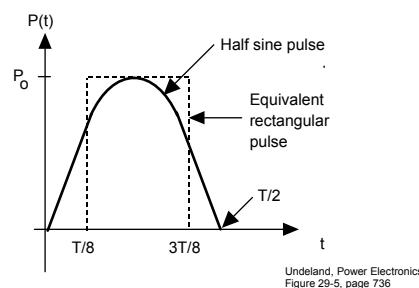




Figure 9—Transient thermal response curve


ENM061 – 2017

Lecture 17 – 19/25

Transient Thermal Impedance Thermal Time-Dependent Impedance

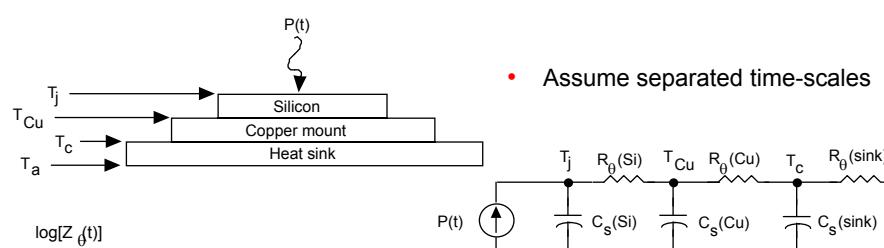

- Symbolic response for a rectangular power dissipation pulse

$$P(t) = P_0 \{ u(t) - u(t - t_1) \}.$$

- $T_j(t) = P_0 \{ Z_0(t) - Z_0(t - t_1) \}$

$$P(t) = P_0 \{ u(t - T/8) - u(t - 3T/8) \}$$

- Symbolic solution for half sine power dissipation pulse.


- $P(t) = P_0 \{ u(t - T/8) - u(t - 3T/8) \}$
area under the two curves identical
- $T_j(t) = P_0 \{ Z_0(t - T/8) - Z_0(t - 3T/8) \}$

ENM061 – 2017

Lecture 17 – 20/25

Transient Thermal Impedance Multiple Layers

- Assume separated time-scales

 $\log[Z_\theta(t)]$ $R_\theta(Si) + R_\theta(Cu) + R_\theta(sink)$ $R_\theta(Si) + R_\theta(Cu)$ $R_\theta(Si)$ $\tau_\theta(Si)$ $R_\theta(Cu)$ $\tau_\theta(Cu)$ $R_\theta(sink)$ $\tau_\theta(sink)$ $\log(t)$ Undeland, Power Electronics
Figure 29-4, page 736

ENM061 – 2017

Lecture 17 – 21/25

CHALMERS

Transient Thermal Impedance GTO-Example

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
Thermal resistance junction to case	$R_{th(jc)}$	Double side cooled			12	K/kW
	$R_{th(jc)A}$	Anode side cooled			22	K/kW
	$R_{th(jc)C}$	Cathode side cooled			27	K/kW
Thermal resistance case to heatsink (Double side cooled)	$R_{th(ch)}$	Single side cooled			6	K/kW
	$R_{th(ch)}$	Double side cooled			3	K/kW

Analytical function for transient thermal impedance:

$$Z_{thJC}(t) = \sum_{i=1}^n R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
R_i (K/kW)	5.400	4.500	1.700	0.400
τ_i (s)	1.2000	0.1700	0.0100	0.0010

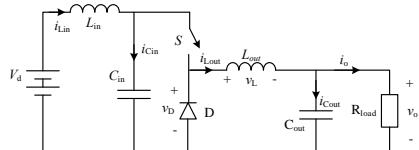
Fig. 1 Transient thermal impedance, junction to case.

ENM061 – 2017

Lecture 17 – 22/25

CHALMERS

Tutorial 12


Realistic active and passive components

- Efficiency calculation
- MOSFET temperature with and without heat sink
- Efficiency comparison with linear power supply where $V_{FET} = V_d - V_o$. How does the loss impact on the cooling of the transistor?

ENM061 – 2017

Lecture 17 – 23/25

PSpice 7

Nominal values	
Source voltage (V_d)	15V
Output Inductance (L)	2.2μH
Output Capacitance (C)	150μF
Load Resistance (R_{load})	2Ω
Switching frequency (f_{sw})	300kHz
Duty ratio steady state (D)	0.667

- Current waveforms through the input and output filters
- Origins of losses in the passive and active components
- What is the impact of switching frequency and diode type on efficiency
- Junction temperature, impact of heat sink thermal resistance/impedance

Summary

- Component lifetime
- Mechanism of heat transfer
- Origin of heat - switching and conduction losses
- Thermal resistance and the concept of thermal impedance
- Heat sinks and cooling mechanisms
- Learning outcome:
 - ❖ Loss calculation in passive and active components. Evaluating the temperature rise in the active components and choosing an appropriate heat-sink.