SSYO011 - ELECTRICAL SYSTEMS

Laboratory Report

Authors:
John CROFT Andreas JOHANSSON

19930814-7959 19960813-8872

October 24, 2017

N

CHALMERS

Laboratory Report John Croft

October 24, 2017 Andreas Johansson
Contents
Summary 2
1 Introduction 3
2 Subsystems 4
2.1 Counter/Clock Generation L 4
22 D/A converter 6
2.2.1 Calculating component values 6
2.2.2 Test & Verification 8
23 A/Dconverter 10
2.4 Sample and hold 14
2.5 Serial transmitter 16
2.6 Serial Receiver e 18
2.7 Audio Amplifier 21
2.7.1 Characterising the signal amplifier. 21
2.7.2 Characterising the power amplifier 22
2.8 LPfilter 25
3 Test and Verification 27
4 Conclusion 30
5 Reflection 31
5.1 Preparatory work 31
5.2 Equipmento 31
5.3 Teamwork 31
5.4 Guidance 31
Appendix 32
VHDL Code e 32
Schematics e 41

Page 1

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Summary

This laboratory report presents the design, construction, testing and verification of a digital
audio transfer system. The system is composed of a transmitter and a receiver, which are
themselves composed of a number of subsystems. The chief component of the system was an
FPGA, which primarily was used to serve as a digital control unit. The design is modular and
each individual subsystem is presented in detail in this report.

The system succeeded in its primary goal of transmitting and receiving audio using the
RS-232 protocoll, though failed to meet all of the set specifications, especially the bandwidth
criteria, which was far below the expected range. Despite this, the system was eminently usable
for transmitting speech.

Page 2

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

1 Introduction

The goal of this laboratory assignment is to design, construct, test and characterize a digi-
tal audio transmission system. The system as a whole consists of many different component
subsystems, as summarized in the block diagram in figure 1.

The design revolves around the use of the Altera DE1 evelopment board and the FPGA
(Field Programmable Gate Array) it houses. The FPGA is programmed using VHDL ((Very
High Speed Integrated Circuit) Hardware Description Language) in order to generate timings,
to implement combinational and sequential gate-level logic and especially in order to construct
finite-state machines as will be discussed later on in this report. The remaining electrical
subsytems are constructed using discrete components on a prototyping breadboard. The fre-
quencies in this system are low enough that the use of a prototyping board should result in any
expected behaviour.

. s====AD mmmmmmmmm e ———— N
SANDARE ! _ :
! 1
! D/A " 1
! Vo . !
I < 1
! 1
| CP .
1 1 CcpP
o . Ly
omparator 1
mikrofon- 1 P V " V
o 1 _ 1
forstarkare : D SAR > Parallfell
t) > > »| LP- S : >+ Q 1 till seriell Dy,
. | -
Viic varnp filter Vip Vsu i '

e A L 4 b
B T T
CP sampel-timer
T
CP 4’5 bit-timer | b

CPZi
effekt-
MOTTAGARE V forstarkare
seriell till D/A .| LP- >
Dy parallell Voo LAilter | v, Vimp2

Figure 1: Block diagram of the complete audio transmission system.

YYVY

Functionally, the system should be capable of receiving audio within the 20-12000Hz fre-
quency range, digitize it and transmit it via a serial link using the RS-232 communication
protocol to a receiver (using the exact same hardware) that then converts the digital data back
to analog information and outputs it as standard ’line level” audio.

In order to realize this relatively simple functionality in practice, the subsystems required
included signal amplifiers, power amplifiers (class AB), 4th order LP-filters, Sample & Hold
circuits, DACs (Digital to Analog converters) and ADCs (Analog to Digital converters). Most
of these subsystems were controlled by timed sequential and combinational networks on the
FPGA.

Page 3

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2 Subsystems

This section will explain each subsystem in detail including its design specification, implemen-
tation in hardware and software and subsequent testing and verification.

Hardware designs are constrained to standard values, E12 for resistors and E6 for capacitors
and component value calculations will take this into account.s

Figures and code may be edited to remove elements that are not strictly relevant to the
function of the subsystem at hand. Complete schematics and code can be found in the Ap-
pendix.

2.1 Counter/Clock Generation

As seen in the block diagram in figure 1, clock signals control most of the subsystems and it is
thus vital to the functionality of the system as a whole that they are sufficiently accurate and,
in the case of subsystems that use both clocks, synchronized (ie. without drift relative to each
other).

Two clock signals, the sample-clock and bit-rate-clock or T and T}, respectively are generated
by the FPGA, based on its internal 50MHz clock. Ty has a frequency 24kHz and duty-cycle
of 5% whereas T}, has a frequency of 240kHz and a duty cycle of 20ns (ie. a single clock-
pulse). These particular frequencies are chosen in order to satisfy the Shannon-Nyquist sampling
theorem which states that the sampling frequency, fs, must be twice that of the sampled signal’s
frequency, f. Furthermore, the generated clock frequencies must be within 5% of that of the
receiver’s, as required by the RS-232 protocol.

The timings for these clock-signals are generated using two internally clocked registers that
are incremented on each internal clock-pulse until they match preset values, whereupon the
output signals change and/or the counters are reset.

Code Snippet 1 shows an implementation of the clock generators, albeit at lower frequencies
than in the specification (though with the correct ratios) in order to aid in debugging.

Proper timings could be verified directly using an oscilloscope. The results from the imple-
mentation in Code Snippet 1 are shown in table 1.

Table 1: Generated clock timings.

Signal T s T b
Amplitude | 3.3V 3.3V
Period, T | 1.042 ms | ~25 ns
Frequency | 960 Hz 9598 Hz
Pulswidth
(at [V]/2)

52 us 18 ns

Page 4

© 0 N o oA W N =

NONON N NN NN NN R R e e s e e e
© 0 N o O A ® RN = O © 0 N O Uk W N = O

30
31
32
33
34
35
36
37
38
39
40

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Code Snippet 1: Counter

architecture arch of clock_gen is

signal cnt_Ts : std_logic_vector(15 downto 0);
signal cnt_Tb : std_logic_vector(13 downto 0);
begin
proc_Ts: process(CLOCK_50, reset) -- (960 Hz)
begin

if reset='0' then --Clear counter and pull clock output LOW.
cnt_Ts <= (others => '0');
clk_Ts <= '0';
elsif rising_edge(CLOCK_50) then
if cnt_Ts = 49475 then -- at 95/ of period set clock output HIGH.
clk_Ts <= '1"';
cnt_Ts <= cnt_Ts + 1;
elsif clk_Ts = 52079 then -- at end of period (note: (52079 + 1)*20ns => 960Hz).

clk_ Ts <= '0'; -- set clock output LOW and reset counter.
cnt_Ts <= (others => '0');
else
cnt_Ts <= cnt_Ts + 1;
end if;
end if;

end process;

proc_Tb: process(CLOCK_50,reset) -- (9600 Hz)
begin
if reset='0' then -- --Clear counter and pull clock output LOW.

cnt_Tb <= (others => '0');
clk_Tb <= '0';
elsif rising_edge(CLOCK_50) then
if cnt_Tb = (5207 - 1) then -- 1 clock-cycle before period end, set clock output
— HIGH.
clk_Tb <= '1';
cnt_Tb <= cnt_Tb + 1;
elsif cnt_Tb = 5207 then -- end of period, set clock output LOW.
clk_Tb <= '0';
cnt_Tb <= (others => '0');
else
cnt_Tb <= cnt_Tb + 1;
end if;
end if;
end process;
end architecture;

Page 5

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2.2 D/A converter

The primary function of the D/A converter (or DAC) is to receive a digital parallel byte (0-255)
and output a corresponding analog voltage (-5V to +5V). Furthermore, it should perform the
conversion faster than the nominal sample-rate of the system, 12kHz.

The DAC subsystem consists of two active components: an integrated DAC chip with
a parallel byte input and a corresponding analog output current and a current to voltage
converter (transimpedance amplifier). The characteristics of these components are determined
by auxiliary passive components which must be calculated according to the desired operation
mode.

__A[B.1] +15V
vee
T U1
M DAC0BOB_DIP
A8 5) 14
A8 O VREF+
A7 617 7 vReF-fi5
A6 7156
A5 8 AS 10 4
AL ol
A3 105 compen[LE
A2 11,
[T Cc1
Nz p—
100nF
—15V
GND

Figure 2: DAC subsystem.

2.2.1 Calculating component values

Several design constraints had to be observed when calculating the component values (refer to
the circuit diagram in figure 2 for component, current and node names and values):

[} 114 ~ 2mA

[IRs ~ 21’I1A

I7ener > 10mA in order to stabilize the zener voltage, VRgr.

IR, < 20mA in order to protect Rs.

Vpa should range from -5V to 5V.

Page 6

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

First, Ry may be calculated based on the fact that I14 ~ 2mA

R, = oA ImA 2.7k (1)

Rs5 can then be calculated, as the currents at Vygr are known. First we let I,per > 10mA

15V - 5.6V

Fs < 10mA + 2mA + 2mA

= 6710 ~ 5609 (2)

then we pick the nearest lower standard value resistor in order to allow for marginally more
current than we originally calculated.

Here we deviate slightly from the specification and calculate Ry for a non-bipolar DAC with
a range from 0 to 10 V. This is important, as it temporarily eliminates R5 while allowing us
to examine the characteristics of the subsystem at the same voltage range. The ’conversion’
formula for the DAC IC (DAC0808) is as follows

A
Ii=Ty—
4= huses ©

, where A is the digital input to the DACO0808 (ie. 0-255). With some quick circuit analysis we
can quickly determine the equation for R, as

R, 256

Ry =Vpa - Vegr A (4)

Letting Vpa = Vpayax = 10V and A = Ayax = 255 gives
Ry = 48400 ~ 4.8k2 = 4.7k 4+ 10012

From here, it is relatively easy to determine a formula for R5 in much the same manner, being
mindful of the fact that we are moving the operating point to a level at which the DAC is
bipolar. Vp4 can now be expresed as

Vpa =1z Ry
= (I — I5)Ry
A
= ([yg — — I) -
(14 256 5) R2
_ (VREF A VREF
_< R, 256 Rs) F (5)

If we let A and Vpa take on their extreme values (ie. £5V) we get

Ry = 5374Q ~ 5.38k) = 4.7k + 6802

Page 7

[

0o N O o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2.2.2 Test & Verification

The DAC was tested in its non-bipolar state in which the output range is between approx.
0V and 10V. Constant digital test inputs where used and the corresponding outputs where
measured as well as theoretically calculated, as shown in table 2.

Table 2: Measuring the analog output in relation to the digital input.

Digital Input | Theoretical Measured
(decimal) Analog Output | Analog Output
0 0 0

16 0.622 0.635

32 1.244 1.271

64 2.488 2.547

128 4.977 5.094

255 9.916 10.140

In order to test the linear as well as the step-response (or slew-rate) of the DAC, the
FPGA was programmed to output a parallel digital signal in such a way that would result in
a sawtooth wave on the output. The code implementation is shown in code snippet 2. The
program increments or decrements a parallel byte at a rate determined by the generated bit-
rate clock, implemented in chapter 2.1, but configured to run at 100 Hz. This byte is then
outputted over the DE1’s GPIO header to the DACO0808 IC. Whether this value increases or
decreases depends on the state of a toggle switch, SW9. This allows control over whether the
sawtooth signal and the ’step’ at the transition between periods is rising or falling.

Code Snippet 2: Counter

-- Process: proc_bin_cnt
-- Description: 100Hz binary counter.
-- Increments or decrements depending on the state of SW9.
== Creates a sawtooth pattern by allowing bin_cnt to over/underflow.
-- Input(s) : CLOCK_50, SW9, reset
-- Output(s):
-- Internal Signals: bin_cnt
proc_bin_cnt: process(CLOCK_50, reset)
begin
if reset='0' then
bin_cnt <= (others => '0');
elsif rising_edge(CLOCK_50) then
if clk_Tb_buff='1' and SW9='1' then -- if toggle switch HIGH...
bin_cnt <= bin_cnt + 1; -- count up.
elsif clk_Tb_buff='1"' and SW9='0' then -- else count down.
bin_cnt <= bin_cnt - 1;
end if;
end if;
end process;
end arch;

Page 8

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

256

00 = 2.56s and a measured

The resulting sawtooth signal has a theoretical period length of
period length of approximately 2.60s.

Cursor

Cursor 1
-1.000s
10.8V

[@B 5.00v] M 500ms
[Please wait....

Figure 3: 2.6Hz sawtooth signal generated by the FPGA.

Having ascertained the accuracy of sawtooth generator, the frequency was changed to 9600
Hz in order to examine the ’slew rate’ of the DAC, that is, how quickly the output Vpu
responds to a change on the digital input. This was measured on the ’step’-transitions under
two conditions: with and without the inclusion of Cy (see figure 2).

With Cs :SR =11.3Vps!
Without €, :SR =6.1Vps~!

The step response resulted in rather significant ringing however, as seen in figure 4, which
effectively limits the bandwidth. The maximum frequency of the DAC can then be estimated
(on the presumptions that the output signal is allowed to settle before each transition, and that
the fall time is similar in length).

1
Jarax = rise-time + fall-time 200kHz (6)

This may seem as though it fails to meet the required bandwidth of 240 kHz, but under
normal conditions the input will not jump between it’s extreme values and so it will not be
limited.

Page 9

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

[@B 2.00v][M 500ns
[Please wait....

Figure 4: Ringing on the DAC output during a large ‘step’ in the input signal.

2.3 A/D converter

The function of the ADC (Analog to Digital Converter) is to convert an analog signal of 5V
to an 8 bit digital representation (ie. 0-255). The ADC contains three main components: an
FPGA implementation of a SAR (Successive Approximation Register) state-machine, a DAC
(previously introduced in chapter 2.2) and a comparator based on the LM311 IC. The full
circuit is shown in figure 5.

DC_(Analog. to Digital converter)

Al8..1]

.
=

3V3

{2 e—{100] G 7k—o

vee

ut 3

”‘T R1 ©7

g oacosos_orp o
hs O VREF+[LA 2.7k
A7 VREF-fE2 R1

4
GN

o

10

A
A3 coMPEN[LE
n2
c1
|
100nF
o
- 15V

Figure 5: ADC circuit diagram. To the left is the FPGA’s GPIO connector, in the middle is
the DAC subcircuit and to the right is the voltage comparator.

PEEREERRPRE

T T T T T T rTrrrrrrrrrTroTT

3

e

i

NTN
O |~
=

N

N

>

R
GND
3fvee

W
<
W

p0 0 0 0 00 090°.0.0°90.0°940°690

T

I3

Kk

3

2}
o
o
o

The system can be thought of as having the SAR as its main component and the DAC
in series with the comparator as a feedback signal. This feedback signal is labeled ’D’ in the
circuit diagram.

The functional principle of the ADC can be described with the help of both the circuit
diagram and the SAR state-machine diagram in figure 6. The signal to be converted is inputted
on Vgg.

Page 10

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

To start a conversion the SAR receives a Ty pulse. It then sets its parallel output (A1-A8 in
the circuit diagram) to (10000000), ie. half of the maximum range of the DAC. This value is
converted by the DAC to an analog voltage and passed on to the comparator, where it compared
to the input signal. If the input signal exceeds the signal generated by the SAR, 'D’ is pulled
HIGH in logic terms, else LOW. The SAR will then store this value of D’ in the MSB position
of its eventual converted digital output.

Qr<=D Qe <=D 5<D

<=1 <=1 <=1
=1 Qs Qs Q4 Qi <=D
Q<= (10000000 Qs <="1
start —>

PARALLEL <= @ 5 <=

Q2 <="1

Qo <=D Q1 <=D Q2<=D

Qo <=1 Q<=1

Figure 6: Finite state-machine describing the SAR’s function.

Next, the SAR sets the MSB-1 of its parallel output HIGH, while keeping the previous
value of the MSB, and the process repeats, doing so for each bit until the complete digital byte
representation is determined.

The way in which this successive approximation takes place is perhaps best seen on a time-
graph such as in figure 9.

Cursor

[Please wait....

Figure 7: ADC successively converging on 1.9V. Note: the ADC wused in this image is not
bipolar!

The VDHL implementation of the SAR below shows how the SAR solves bits with a case
structure by saving the current state and moving to the next state. In this process there

Page 11

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

are three input signals state,SAR and Q. "Q" is the signal which will provide changes to the
output voltage and "state" continues the bitlow by incrementing by 1 after each set bit. If
VpA approximation higher than sampled signal, D is set LOW, and thus also Q(n). When the
voltage has converged the state will move to stop and loop back into the idle state and wait for
the next TS signal..

Code Snippet 3: SAR Implementation as a VHDL Process

proc_SAR_comb : process(CLOCK_50,reset)
begin
if reset='0' then
state <= IDLE;
SAR_result <= (others => '1');
elsif rising_edge(CLOCK_50) then
if clk_Ts='1' then
Q <= "10000000"; -- MSB set, first approxzimation ts half of mazimum value.
state <= SAR7; -- Switch to next state in sequence.
elsif clk_Tb='1' then
case state is

when SAR7 =>
Q(7) <= D; -- If V_DA approzimation higher than sampled signal,
-- D 2s set LOW, and thus also {(n).
Q(6) <= '1'; -- Add 1/4 of mazimum value to approzimation,

-- and so on for subsequent states.
nextState <= SAR6;
when SAR6 =>
Q(6) <= D;
Q(5) <= '1';
nextState <= SAR5;

-- (truncated)

when STOP =>
nextState <= IDLE; -- wait for mnext Ts trigger.
SAR_result <= Q;
when IDLE | U =>
-- do nmothing
end case;
end if;
end if;
end process;

The A/D converter consists of an LM311 chip which is used to compare voltage sources
from D/A aswell as the sample and hold circuit. The input sources are compared to create a
digitalized source of power through recursive comparisons of the voltage from a D/A converter
with the desired analog signal. The LM311 chip uses three state logic which consists of a
logical zero and a high impedance state "Z". When the sample and hold circuit outputs a
greater voltage than the DAC, the SAR will interpret the signal as a logical one and increase

Page 12

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

the digital voltage output.

Vout = 0 : VSH > Vpa
Vout = Z: VSH < Vpa

Table 3: DC inputs and corresponding ADC output.

’ Analog DC Input [V] \ Theoretical Digital Output \ Measured Digital Output ‘

-5 00000000 00000011
-2 01001101 01001111
-1 01100111 01101111
0 10000000 10000001
1 10011010 10011111
2 10110010 10110101
) 11111111 11111111

The testing provided a table which showed that the conversion displayed rounding errors.
The ADC rounding error was calculated to be about 0.4 procent off target value as a worst
case scenario, which may or may not be acceptable depending on the application.

The ADC converts with is restrained by a delay which is the creating a maxiumum bitratio.
The theroetical delay was calculated in the simulation below. The delay was calculated to
around 800 ns.

1(11)

5.0V 1.1mA
4.5V 1.0mA
4.0V 0.9mA
3.5V 0.8mA
3.0V 0.7mA

0.6mA
25v 0.5mA
2.0V 0.4mA
1.5V 0.3mA
1.0V 0.2mA
0.5V 0.1mA
0.0V 0.0mA

208.4us 208.8us 209.2us 209.6us 210.0ps 210.4ps 210.8us 211.2us 211.6ps 212.0us 212.4ps

Figure 8: @->D falling edge

To be able to calculate the ADC maximum bitratio the delay of the ADC has to be known.
The delay can be interpreted as the fall time of the Q) signal until the stability of the D signal.
With this we can then equate the bit transfer to be the frequency differential of these signals.
By triggering the oscilloscope on a negative flank on the signal Q, the delay could be calculated
to 850 ns. With this delay the maximum bit ratio could then be calculated to be 1.18 Mb/s.

Page 13

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Cursor

Cursor 2
270.0ns

[@B 2.00v

[Please wait....

Figure 9: Q->D falling edge

2.4 Sample and hold

In order for the ADC to accurately convert an analog voltage, it must be held constant for the
duration of the conversion. A S/H (Sample & Hold) circuit uses an external control signal (in
this case the sample-clock, T}) to either sample or 'hold’; that is, keep the voltage constant.

The S/H achieves this behaviour by allowing the voltage over its capacitor (see figure 10)
to vary with the input signal during ’sample’ mode.

Figure 10: S/H circuit. The 10nF capacitor is responsible for ’holding’ the sampled voltage.

The circuit used in this project uses the purpose-designed IC LF398 which has the following
two states

le : — 1.4
{Sampe Ve — V> 1.4V, (8)

Hold : Vs — V7 <14V

Page 14

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Using this relationship and considering that the FPGA uses LVTTL (ie. 3.3V logic), setting
Vz = GND and Vg = T (the sample clock) gives us the required behaviour. The fact that T
has a 5% duty cycle means that there is always enough time for the capacitor to reach the level
of the input signal before it is "held’.

A comparison between the input and output signals from the S/H can be seen in figure 11,
while the input signal is a triangle wave of an arbitrary frequency, the output samples the input
and holds it constant with a frequency of 960Hz.

M Pos: 0.000s

AAANAAAANNAAANANANANANAAN NS

' Y ' Y ' Y ' Y Y ' ' VoV ' ' Y Y ' Landscape

][M 5.00ms J(Ext 80.0mV 960.073Hz |
Sep 26, 2017, 2114

Figure 11: The input signal (blue) is a triangle wave that gets periodically sampled by the S/H.
The resulting output signal (yellow) is held between samples.

Page 15

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2.5 Serial transmitter

The serial transmitter is implemented in software using a shift register and makes use of the
DE1’s onboard RS-232 port to translate between logic and the RS-232 specified voltage levels,
which in the DE1’s implementation range between +8V (-8V being logic 0’ and +8V being
logic '17).

The data to be transmitted is the parallel byte 'Q’, generated be the ADC in chapter 2.3.
The serial transmitter completes the byte with a START bit (logic ’0’) before the LSB and a
STOP bit (logic '1’) after the MSB, according to the RS-232 protocol, before transmitting the
complete 10-bit packet LSB first. When idling, the transmitter outputs a continuous STOP
bit.

The serial transmitter’s operation is triggered by a Ty pulse and each individual bit is then
sent upon receiving a 7j pulse.

Code Snippet 4: Shift Register

proc_shift_register: process(CLOCK_50, reset)

begin
if reset='1l' then
SR <= (others => '1'); -- Init. SR with STOP bits.
elsif rising_edge(CLOCK_50) then
if SR_start='1' then -- Shift Register activated?
if clk_Ts='1l' then
SR <= SAR_result & '0'; -- Load Shift Register with DATA & START bit.
elsif clk_Tb='1"' then
SR <= '1' & SR(8 downto 1); -- Shift data right, Shift in STOP bit.
end if;
end if;
end if;

end process;

serial <= SR(0); -- Sertal output from LSB of Shift Register

Code snippet 4 shows a VHDL process implementing the serial transmitter. SR’ is the
contents of the shift register, ie. the complete packet to be sent, 'SAR_ result’ is an intermediate
register to hold contents of Q (Q itself cannot be used as the ADC and serial transmitter
operate in parallel, and Q would then change before it was fully sent!). 'SR_ start’ is simply a
flag indicating whether at least one ADC conversion has taken place, so that the transmitter
under no circumstances transmits undefined data.

As seen in the code, a positive T signal reads the data to be sent into the shift register
prepended by a START bit. A positive T} signal then causes the shift register to logical shift
right while also shifting in a STOP bit from the left (that is, in the MSB position). The LSB
of the shift register is continuously outputted on the serial link. Eventually the shift register
will contain and therefore output only STOP bits, which will be interpreted by the receiver as
a complete transmission (or otherwise serve to synchronize the transmitter and receiver, see
the next chapter).

The serial transmitter was tested by allowing the ADC to convert a known external DC voltage,
and transmitting the resulting byte to a PC-based receiver. On a successful transmission the

Page 16

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

PC interpreted the information as an ASCII character, which was then compared to both the
theoretical digital value of the input signal as well as the result of the conversion in the ADC,
which was outputted directly to 8 debug LEDs by the FPGA.

Page 17

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2.6 Serial Receiver

The serial receiver (hereafter R,) should be able to asynchronously interpret an incoming stream
of serial bits as data packets according to the RS-232 protocol, and output the encapsulated
data as a parallel byte. It is in this sense a serial to parallel converter, the opposite of the serial
transmitter (hereafter 7,) in 2.5. Also in accordance with the RS-232 protocol, the R, should be
able to automatically synchronise itself to the 7, (using clock recovery /symbol synchronization)
and compensate for both clock drift (the frequencies of T, and R, do not exactly match) and
triggering a read at the wrong position in a packet (block synchronisation).

The receiver is implemented in software and utilizes the DE1’s onboard serial port. To im-
plement the functionality described above, a state machine (of type Mealy) is used as described
in figure 12.

Qo <= serial Q1 <= serial Q2 <= serial
START >® >@ > Sz
U U Q3 <= serial

serial ='1'

serial =0’
parallel <= Q

serial ='1’ Q4 <= serial
parallel <= Q S7)< - ®< - Ss -
Q7 <= serial U Qe <= serial Qs <= serial

Figure 12: Finite state-machine describing an 8-bit serial to parallel RS-232 receiver.

The receiver initializes in the STOP state where it is assumed that it is receiving STOP-bits
(’1’) and waits for a START-bit, indicating the start of a packet, before transitioning to the
START state. It then successively transitions from the START state to the S7 state at a rate
determined by an internally generated sample-clock, reading a bit from the packet at each tran-
sition. Once at the S7 state, it awaits a STOP-bit while still sampling with the same frequency.
By synchronously waiting until this STOP bit is received, the position in the packet where the
next read will start is moved, effectively resulting in block synchronization. Once the STOP-bit
is received it transitions back to the STOP state and awaits the next START-bit. However,
unlike previously, it will start the next read immediately (asynchronously) upon receiving the
START-bit. This results in clock drift compensation as the R, and T, are essentially resyn-
chronised on each new start, and any drift in the relative timings is nullified.

The code implementation of the state machine is shown in code snippet 5. In keeping with
the model of a Mealy machine, the state machine is implemented as two processes: a syn-
chronous and an asynchronous/combinational part. The combinational part handles the logic
that determines outputs and state changes, whereas the synchronous part handles timings and
synchronously latches the combinational logic.

Also note that the synchronous process reads or 'samples’ each data bit in the middle of its
period in order to get the most reliable reading.

Code Snippet 5: Serial Receiver

Page 18

[

© W N O s W N

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Laboratory Report

John Croft

October 24, 2017 Andreas Johansson
proc_Rx_sync : process(CLOCK_50, reset) -- Synchromnous process.
begin

if reset='0' then
state <= STOP;
Q <= (others => '0');
cnt <= (others => '0');
elsif rising_edge(CLOCK_50) then
cnt <= cnt + 1;

if (state = STOP AND serial = '1') then -- If state %s STOP and receiving
— STOP-bits...

cnt <= (others => '0'); -- ...reset counter and await START. (Block

— synchrontization)
elsif cnt = 103 then -- At half of period T, sample data and transition to

— next state.
state <= next_state;
Q <= next_Q;
parallel <= next_parallel;

elsif cnt = 207 then -- At full period T, reset counter.
cnt <= (others => '0');
end if;
end if;

end process;

proc_Rx_comb : process(state, serial, Q) -- Combinational process.
begin
next_Q <= Q;
case state is

when STOP =>
next_state <= START;

when START =>
next_state <= SO;
next_Q(0) <= serial;

when SO =>
next_state <= S1;
next_Q(1) <= serial;

...... -- continuing for {2-6

when S6 =>
next_state <= S7;
next_Q(7) <= serial;

when S7 =>
next_parallel <= Q;
if serial='0' then -- If serzal is NOT STOP-bit ...

next_state <= S7; -- ... do nothing. (Drift compensation)
else -- If sertal is STOP-bit...

next_state <= STOP; -- transition to STOP state.
end if;

when others =>
-- undefined state
next_state <= STOP;
end case;
end process;

The serial receiver was tested by linking it to a PC-based serial transmitter and configuring

Page 19

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

both for 9600 buad. ASCII characters where then sent from the PC and the resulting parallel
byte on the receivers output was directly displayed by the FPGA using 8 LEDs. The test
results can be seen in the table below.

Table 4: Sent ASCII characters and resulting bit-patterns and voltages D/A conversion. Note
that the recewver’s DAC is bipolar at this stage.

’ ASCII-character \ Received bit-pattern \

Measured Analog Output V| ‘

P 01010000 1.95
? 00111111 22,62
a 10000110 0.17
! 00100001 ~3,80
= 01011101 2,70
A 01000001 2,54

Page 20

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2.7 Audio Amplifier

There are two audio amplifiers in the system: the transmitter has a signal amplifier for the
microphone and the receiver has a power amplifier for the speaker. The difference is that
the signal amplifier increases the amplitude of the microphone’s signal to match the range of
the ADC (ie. +5V), whereas the power amplifier increases the amount of power that can be
delivered to the load without substantially changing the amplitude.

2.7.1 Characterising the signal amplifier

The microphone and signal amplifier subcircuit is shown in figure 13.

Microphane Amplifier _______

Ok Vref
R?

>
Ln
~i
. L +

c

o o© !

|§ 3/ U7A :

N 5 > 1 Vamp:
21 1
-=

i Microphone

§ MK?

Figure 13: An analog signal is generated by the microphone and amplified by the OP-amp on
the right.

In order to calculate the input impedance Z;, of the signal amplifier from the perspective
of the microphone, the small signal circuit must be considered. If we let the microphone act as
a current source, short any external voltage sources and consider the OP-amp ideal (in that it
draws no current on its comparator inputs), then

_ 10kS2 - 100k€2
10k + 100k
Since this result differs from the specification’s 2k, the sensitivity of the microphone will be
affected and must be recalculated.

Since the microphone’s specification gives a typical sensitivity of -39dB V Pa~! @ 2k() input
impedance, we can express this as an effective (RMS) voltage

i = 9090.99) (9)

Uegpr =1V -10% = 0.0112V (10)
in order to calculate a current at the specifications input impedance

_ Ugp 00112V
=7y 2kQ

I = 5.61pA (11)

Page 21

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

but at this current with the new input impedance (remember, the microphone can be seen as
a current source) the effective voltage is

Uet = ZiNpew * Legr = 9090.9Q2 - 5.61pA = 0.051V (12)

giving the new sensitivity

0.051V
1V

20log<) — —925.8dBV Pa~! (13)

It is now possible to calculate the maximum soundpressure that the system can receive
before the transduced signal exceeds the range of the ADC, and clipping occurs.

If the amplification of the non-inverting amplifier in figure 13 is Ay = 11 and the maxi-
mum amplitud after amplification is |Vmy|max = 5V, then then maximum microphone signal
amplitude is

% 0.455V
Unic = 11 =0.455 = 20log< 1“[2/) — _9.85dBV Pa! (14)

at 9090.9¢2 input impedance.
Taking the difference between the microphone’s maximum output as defined above, and the
nominal output yields

—9.85dBV — —25.8dBV Pa™! = 15.95dBV (15)
which can then be directly added to the nominal SPL (ie. 1 Pa = 94dB SPL).
94 + 15.95 = 109.95dB SPL (16)
to get the maximum allowed sound pressure.

Several characteristics were best calculated using SPICE such as the DC operating point,
lower cutoff frequency and the amplification of the non-inverting amplifier (using a better
mathematical model than the assumed ideal one). The results of these simulations follow in
the table below.

Table 5: SPICE simulation of microphone amplifier.

DC Operating Point [V] | Cutoff Frequency [Hz| | Gain
3.08 6.6 10.96

2.7.2 Characterising the power amplifier

The power amplifier circuit is shown in figure 14. The total gain of the amplifier is simple
to compute with the approximation that the CMOS amplifier stage has no gain and that the
capacitor can be approximated by a short. This leaves two potential dividers with a non-
inverting amplifier in between them, also acting as a convenient buffer.

1kQ/ /47kO 33k + 10kQ + 1002 209

Thus Ay = . ,
B AU T 10k 1 1kQ/ /47RO 10kQ2 20Q + 47Q)

=0.115 (17)

Page 22

Laboratory Report John Croft

October 24, 2017 Andreas Johansson
Pawer AmpUfier .
>
0
—
> +
4
Q1
= + BC337
2 ® LS1
= 5 Speaker

V_LP2 =51
R14

c7

R15
| 1k |
R16
Exia

[10k |
R17

GD Speaker Input Impedance
typ: 20 ohm

Figure 14: The power amplifier shown here consists of several cascaded stages. From right to
left: a potential divider, a passive HP-filter, a non-inverting amplifier, a CMOS amplifier and
another potential divider in which the speaker completes the divider.

The maximum SPL that a typical speaker with sensitivity of 100 dB SPL/mW can generate
with a 5V AC input can now be calculated.

2
5V.0.115
\/5)
8.26mW

thus the maximum sound pressure level is

100dB SPL/mW + 9.17dB SPL/mW = 109.17dB SPL/mW

Page 23

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

SPICE was used to simulate a few remaining characteristics and to confirm the gain calcu-
lation, with the results presented in the following table.

Table 6: SPICE simulation of power amplifier. NOTE: power amplification is Poutyax

Pinyrax

Power Amplification | Lower Cutoff Freq. [Hz| | Upper Cutoff Freq. [kHz| | Gain
8 7 172.9 0.115

The power amplifier was tested in practise, which resulted in the gain/frequency curve seen
in figure 15.

Measured Gain vs. Freq. for Power Amplifier
0,16
0,14
0,12 /
0,1

0,08

/_,-

Gain

0,06
0,04
0,02

1 10 100 1000 10000
Frequency [Hz]

Figure 15: Measured Gain vs. Freq. for Power Amplifier. Note the attenuation below 10 Hz.

Page 24

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

2.8 LP filter

The system itself is required to inherit a maxium frequency of 12 kilo hertz. To fit the re-
quirement the circuit is required to contain a Low Pass filter. The LP filter is designed and
calculated as a fourth order butterworth filter.

The equation of a general fourth order butterworth filter:

1
Hy =
1+ 2.613a + 3.414a? + 2.613a® + a*

(20)

The LP filter simply put, is set to cutoff at the a targeted frequency. The butterworth filter
is set to be built in sallenkey filter structure.

Vin — /M W |_i> oVout

Figure 16: A general LP sallenkey filter

By cascading two second order sallen-key filter structures, the butterworth equation splits
into two second order butterworth filters

1
H, = 21
(14 0.765a 4+ a?) = (1 + 1.848a + a?) 21)
To calculate the components for the sallenkey filter which can be equated to the butterworth

filter:

1 1
= 22
(1 + axr + a2) (1 + (Rl + RQ)CQ + RleClc’Q) ()
a—§— S*0.765 S *0.765 (23)
Cw F.x2m 12000 % 27
Calculating The first sallenkey filter as the first part of the butterworth filter:
1 B 1 (24)
(1 + 0.765a + &2) N (1 + (Rl + RQ)CQ + RleCng)
Let C2 be equal to InF and assuming that the resistor are equal
2R = & => R = 507502 (25)
12000 % 2wk Cy
With three known components we can calculate the last capacitor
SQ
2R => (] =6.8nF (26)

- 12000 * 27 * Cy * R2

Page 25

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

With the first filter calculated, computing the second filter can be used the same method-
ology, inserting the second part of the buttworth filter equation we get:
S 9%1.848 S % 1.848
_2_2F _ 2 (27)

a J—

w F.x2m 12000 * 27

Let C2 = 1.5nF and R1=R2 => gives 820012 and C2 = 1,72 nF which can be rounded to
1.5 nF. With all the components solved they create the schematic:

LoTTA ARG IA

2.1k 2.1k
11,8k 3.3k 1,8k
R? ?

R? R? R

Sallen—Key topology
L4th—order Butterworth
Cutoff freq. : 12kHz

Figure 17: Two sallenkey filters cascaded with calculated component values

Using the above component values, we can implement the filter in LTSpice, giving us the
following frequency response plot:

V(v_ut)

0dB
-10dB \
-20dB 75 %ﬁ‘(‘Hz;-'&\ﬂ‘BS‘ﬁQBEaB
-30dB
-40dB
-50dB
-60d
-70dB
-80dB
-90dB
-100d e

-110dB
1Hz 10Hz 100Hz 1KHz 10KHz 100KHz 1MHz

8

Figure 18: The frequency response curve for the 4th order LP-filter. The cuttoff frequency is
marked. Note that the attenuation reaches a mazximum and then decreases again.

The filter in practice functions as in the simulation wereas the cutoff frequency was located
between 11500-12000 Hz.

Page 26

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

3 Test and Verification

In order to examine the functionality of the system as a whole, verifying that it was up to
specification, an array of measurements were performed. To test both sides of the system,
without having to physically build both, we partnered with another lab group and designated
our system the receiver and theirs the transmitter.

The first step was to measure the maximum input amplitude that the system can withstand
before noticeable clipping occurs on the receiver output. This was done using a 1kHz sine wave
and was determined to be

UINMAX = 11Vpp

Figure 19: Noticeable clipping on the recewer. Vpa in Yellow, Voypo in Blue

Likewise, the minimum input amplitude that could be detected before the receiver output
was drowned out by noise was
Urnyn = 400mVpp

This gives the transmission a dynamic range of

11V
0.4mV

zozog() — 28.79dB

Page 27

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Secondly, the outputs from the LP-filters on either side were observed and compared, as
shown in figure 20.

Figure 20: The smooth lines in each image are the filter outputs. R, on top, T, below. Note
the high frequency components in the latter are not attenuated.

Continuing, the system’s bandwidth was examined by adjusting the input signal frequency
on the transmitter side at a 11Vpp amplitude. The cutoff frequencies where determined to
occur at 900Hz and 3900Hz.

Page 28

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

The systems resilience to partial transmission failure was also tested by grounding several of
the least significant bits on the transmitter side, thus reducing the resolution of the transmitted
data. It was unanimously decided by the group that a minimum of 5 bits of resolution is needed
to communicate, anything less was rendered completely unintelligible.

A working example of normal speech transmission at the full 8-bit resolution is illustrated
in figure 21.

. -.-'IP: 2.01(5‘ —

[M 500ms)i)

Figure 21: Input: "jag heter john"

Page 29

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

4 Conclusion

The fact that clipping occurs when U;y > £10Vpp is entirely expected due to the fact that
it exceeds the range of the ADC, indicating that the ADC itself fulfills its specification. In
reality, using a regular microphone such as the one the system was designed for (see chapter
2.7.1) would require an exceptionally loud noise before clipping occurred, unlikely to happen
under normal circumstances.

The presence of high frequency components on the receiver side of the system was unantic-
ipated and may contribute distortion. These components may be explained by examining the
frequency response of the filter used in figure 18. In the graph one can see how the attenuation
reaches a maximum before decreasing again, possibly allowing these high frequency components
through. The fact that a breadboard is used with no regards to potentially parasitic effects
may also contribute.

An area in which the system clearly did not live up to its specification was in the bandwidth.
Whereas the specified bandwidth was 20-12000Hz, the actual measured bandwidth was 900-
3900Hz, despite the individual subsystems (on the receiver side) performing as required. As
we were partnered with another group for the final system test, we cannot account for the
performance of the transmitter. An adequate explanation for this poor performance may require
further testing of the individual subsystems on both sides of the transmission.

Nevertheless, this bandwidth was sufficient for regular speech, which was described as sound-
ing "like an ordinary telephone". Decreasing the resolution of the sent data, however, quickly
resulted in a loss of intelligibility.

On the whole, despite the presence of some undesirable characteristics, the system is em-
inently functional when used to transmit spoken audio. All the various subsystems have had
their individual performances tested and verified and since there is no inherent bandwidth lim-
iting factor, improving the system’s characteristics may simply be a matter of debugging the
electrical circuit.

Page 30

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

5 Reflection

5.1 Preparatory work

The preparatory work required a large time commitment which in all likelihood exceeded the
recommended 95 hours. The assignments were often, however, self explanatory and was easily
reflected on what was happening inside of the laboratory.

5.2 Equipment

There were a few time consuming issues with the laboratory equipment that usually turned out
to be trivial:

e The oscilloscopes can’t seem to differentiate between amplitude and peak-to-peak mea-
surements.

e The bench-top power supplies are current limited and due to inexperience a sudden drop
in voltage (due to the current limiting kicking in) was interpreted as a short circuit.

e The passives (resistors especially) had very large tolerances which made it difficult to
build the theoretical designs with any precision.

e The handheld DMMs cannot seem to adjust to an amplitude-varying AC signal, unlike
the benchtop DMMs.

5.3 Teamwork

Teamwork in the preparation assignment was hardly divided since both had to understand and
explain the meaning of the laboratory work. Inside of the laboratory the teamwork was divided
into one working on coding the FPGA-chip and the other one setting up the new circuits on
the breadboard. Then together solve the assignments or troubleshooting the new part of the
system.

5.4 Guidance

The guidance was sufficient and wasn’t over exaggerated thus leaving the students to solve the
problems with some minor hints.

Page 31

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Appendix

VHDL Code

Page 32

John Croft
Andreas Johansson

Laboratory Report
October 24, 2017

Code Snippet 6: Complete Transmitter Program

-- ADC (Analog voltage in, parallel byte out) with Shift Register serial output.

16
17
18

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

-- ADC based on SAR (Successtive Approzimation Register) with feedback through DAC and
— subsequent comparator.

-- The SAR is a state machine that is initialised by a sample-pulse (clk_Ts) whereby it

— sets the MSB of its parallel output HIGH and the rest LOW,

-- this is fed into the DAC which outputs an analog voltage corresponding to the input (te.
— "10000000" in -> Vmaz/2 out),
-- this voltage ©s fed into the comparator and compared with the external input signal. If
— 1t 1S higher than the input signal then the comparator's output is LOW, else HIGH.
-- The SAR then uses this information to set the MSB HIGH or LOW before moving onto Bit

— mn-1. State changes in the SAR are triggered by a bit-rate pulse (clk_Tb).

-- Parallel to sertal shift register. LSB out first.
-- Shift register must conform to RS/EIA-232 standard and therefore uses 1 START, 1 STOP
— and 8 DATA bits.
-- START s logtical LOW (voltage HIGH), STOP is logical HIGH (voltage LOW). There should a

< positive flank between STOP and START, seen from oscilloscope.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Tx_FINAL is

port(CLOCK_50 in std_logic; -- 50MHz internal clock.
reset : in std_logic; -- resets and/or initializes clocked elements.
< Asynchronous.
D_async : in std_logic; -- 2nput from external

end entity;

— (asynchronous) comparator.

Q : buffer std_logic_vector(7 downto 0); -- parallel output from

— SAR.

clk_Ts : buffer std_logic; -- Generated 'sample-rate'’
— clock.

clk_Tb : buffer std_logic; -- Generated 'bit-rate’

— clock.

LEDR : out std_logic_vector(7 downto 0); -- SAR output display on
— LEDs.

serial : out std_logic); -- Serial data out.

— EIA-232.

Page 33

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62

63

64

65

66
67
68
69
70
71

72
73
74
75
76
7
78
79
80
81
82
83
84
85

constant clk_Ts_CONST : integer := 2079; -- (Clock-gen constants. Determines frequency.
constant clk_Ts_bperc_CONST : integer := 1975; -- 57 duty cycle on Ts.
constant clk_Tb_CONST : integer := 207;

type StateType is (U,IDLE,SAR7,SAR6,SAR5,SAR4,SAR3,SAR2,5AR1,SARO,STOP); -- Enumerated
< machine states. U used in simulation only.
signal state : StateType;

signal D_semisync : std_logic;

signal D : std_logic;

signal cnt_Ts : std_logic_vector(11l downto 0);

signal cnt_Tb : std_logic_vector(7 downto 0);

signal SR : std_logic_vector(8 downto 0); -- shift register containing 8 DATA

— bits & 1 START bait. ((MSB -> LSB) & START).
-- STOP bits are shifted in, so
— space need not be allocated
— for them specifically.
signal SAR_result : std_logic_vector(7 downto 0); -- Holds the SAR output after a
— completed converstion. Multiple processes use this result (at different times) and
< so a separate signal s needed.
signal SR_start : std_logic; -- Has ADC completed at least once? Prevents SR
— from outputting undefined values before first SAR conversion.

serial <= SR(0); -- Serial output from LSB of Shift Register (in accordance with
— EIA-232).

-- Process: proc_SAR
-- Description: SAR (successive approzimation register) state machine.
-- State sequence: IDLE -> SAR7 -> ... -> SARO -> STOP -> IDLEO
-- Input(s) : CLOCK_50, clk_Tb, clk_Ts, reset, D
-- Output(s): (, LEDR
-- Internal Signals: state, SAR_result, SR_start
proc_SAR : process(CLOCK_50,reset)
begin
if reset='0' then -- CHECK WHETHER RESET IS INVERTED!
state <= IDLE;
LEDR <= (others => '0');

Page 34

86
87
88
89
90
91

92
93
94
95
96

97

98

99
100
101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137

Laboratory Report
October 24, 2017

John Croft

Andreas Johansson

SAR_result <= (others => '1');

SR_start <= '0';

if clk_Ts='1' then

Q <= "10000000";

— wvalue.
state <= SAR7;

elsif clk_Tb='1' then

case state is

elsif rising_edge(CLOCK_50) then

-- MSB set, first approxzimation is half of mazimum

-- Switch to next state in sequence.

when SAR7 =>
Q(7) <= D;

— stignal, D is set LOW, and thus also {(n).

Q) <= '1';

state <= SAR6;

when SAR6 =>

Q(6) <= D;

Q(s) <= '1';

state <= SAR5;
when SAR5 =>

Q(5) <= D;

Q4) <= '1';

state <= SAR4;
when SAR4 =>

Q(4) <= D;

Q(3) <= '1';

state <= SAR3;
when SAR3 =>

Q(3) <= D;

Q(2) <= '1';

state <= SAR2;
when SAR2 =>

Q(2) <= D;

Q1) <= '"1';

state <= SAR1;
when SAR1 =>

Q(1) <= D;

Qo) <= '1';

state <= SARO;
when SARO =>

Q(0) <= D;

state <= STOP;
when STOP =>

state <= IDLE;

LEDR <= Q;

SAR_result <= Q;
SR_start <= '1';

when IDLE | U =>
-- do nmothing

end case;

end if;

end if;
end process;

-- If V_DA approzimation higher than sampled

-- Add 1/4 of mazimum value to approzimation, and
— so on for subsequent states.

-- Loop back to IDLE state,

-- Indicate converion value.

until next Ts trigger.

-- Farst digital conversion completed, shift
— register mow active.

Page 35

138
139
140

141

142
143
144
145
146
147
148
149

151
152
153
154

156
157
158
159

161

162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

-- Process: proc_comparator_read
-- Description: Makes the asynchronous comparator output (signal D) synchronous in
— order to mitigate metastability issues.
-- Does this by sychronously reading D into an intermediate flip-flop,
— 'D_semisync’'.
-- Input(s) : D_async
-- Output(s): D
-- Internal Signals: D_semisync
proc_comparator_read : process(CLOCK_50)
begin
if rising_edge(CLOCK_50) then
D_semisync <= D_async;
D <= D_semisync;
end if;
end process;

-- Process: proc_Ts

-- Description: Generates the sample-rate clock, clk_Ts
-- Input(s) : CLOCK_50, reset

-- Output(s): clk_Ts

-- Internal Signals: cnt_Ts

proc_Ts: process(CLOCK_50,reset) -- reset ts asynchronous, and so process must be
— sensitive to t!
begin
if reset='0' then -- CHECK IF LOGIC INVERTED!
cnt_Ts <= (others => '0'); --Clear counter and pull clock output low.

clk_Ts <= '0';
elsif rising_edge(CLOCK_50) then
if cnt_Ts = clk_Ts_bperc_CONST then
clk_Ts <= '1"';
cnt_Ts <= cnt_Ts + 1;
elsif cnt_Ts = clk_Ts_CONST then
clk_Ts <= '0';
cnt_Ts <= (others => '0');
else
cnt_Ts <= cnt_Ts + 1;
end if;
end if;
end process;

-- Process: proc_Tb

-- Description: Generates the bit-rate clock, clk_Tb

-- Input(s) : CLOCK_50, reset

-- Output(s): clk_Tb

-- Internal Signals: cnt_Tb,

proc_Tb: process(CLOCK_50,reset)

begin

if reset='0' then -- CHECK IF LOGIC INVERTED!

cnt_Tb <= (others => '0'); --Clear counter and pull clock output low.
clk_Tb <= '0';

Page 36

191
192
193
194
195
196
197
198
199
200
201
202
203
204

206
207
208
209
210
211
212
213
214
215
216
217
218

219
220

221
222
223
224
225

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

elsif rising_edge(CLOCK_50) then
if cnt_Tb = (clk_Tb_CONST - 1) then

clk_Tb <= '1';

cnt_Tb <= cnt_Tb + 1;
elsif cnt_Tb = clk_Tb_CONST then

clk_Tb <= '0';

cnt_Tb <= (others => '0');

else

cnt_Tb <= cnt_Tb + 1;

end if;
end if;
end process;

-- Process: proc_shift_register
-- Description: Parallel in -> serial out, LSB first.
-- Input(s) : CLOCK_50, reset, @,

-- Output(s): serial

clk_Ts, clk_Tb

-- Internal Signals: SR, SAR_result, SR_start

proc_shift_register: process(CLOCK_50, reset)

begin

if reset='0' then
SR <= (others => '1'); --
elsif rising_edge(CLOCK_50) then

if SR_start='1'
if clk_Ts='1"
SR <= SAR_result & '0';

—

SR <=

s
end if;
end if;
end if;
end process;
end architecture;

then

then

Init. SR with STOP bits.

((MSB..LSB) & START).
elsif clk_Tb='1l' then
'1'" & SR(8 downto 1);

bit.

-- Shift Register activated?

-- Load Shift Register with DATA & START bit

-- Shaft data right, Shift in STOP

Page 37

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Code Snippet 7: Complete Receiver Program

(SN I V]

(=)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

44
45
46
47
48
49

-- RS-232 receiver.

-- Works at 12 kbaud.

-- Uses 'clock recovery' to synchronize timing.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity Rx_FINAL is

port(reset, CLOCK_50 : in std_logic;
serial_async : in std_logic;

DTx : out std_logic);
end entity;

architecture arch of Rx_FINAL is

-- Serial in.
parallel : buffer std_logic_vector(7 downto 0);
LEDR : out std_logic_vector(7 downto 0);

signal cnt : std_logic_vector(7 downto 0);

signal Q, next_Q : std_logic_vector(7 downto 0);
signal next_parallel : std_logic_vector(7 downto 0);

signal serial_semisync, serial

type stateType is (U,STOP,START,S0,S1,S2,S3,54,55,S6,57);

std_logic;

signal state, next_state : stateType;

begin

LEDR <= parallel;
DTx <= serial;

-- Process: proc_Rz_sync

-- Description: Synchronous part of serial->parallel Mealy machine.

-- Input(s) : reset, CLOCK_50,
-- Output(s): parallel

serial

(Symbolsynkronisering)

-- Internal Signals: cnt, state, next_state, next_parallel, §, next_{

Page 38

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
7
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

proc_Rx_sync : process(CLOCK_50, reset)
begin
if reset='0' then
state <= STOP;
Q <= (others => '0');
cnt <= (others => '0');
elsif rising_edge(CLOCK_50) then
cnt <= cnt + 1;
if (state = STOP AND serial = '1') then
cnt <= (others => '0');

elsif cnt = 103 then
state <= next_state;
Q <= next_Q;
parallel <= next_parallel;
elsif cnt = 207 then
cnt <= (others => '0');
end if;
end if;
end process;

-- Process: proc_Rz_comb

-- Description: Combinational part of serial->parallel Mealy machine.

-- Input(s)
-- Output(s):

-- Internal Signals: state, next_state, next_parallel,

proc_Rx_comb : process(state, serial, Q)
begin
next_Q <= Q;
case state is
when STOP =>
next_state <= START;
when START =>
next_state <= SO;
next_Q(0) <= serial;
when SO =>
next_state <= S1;
next_Q(1) <= serial;
when S1 =>
next_state <= S52;
next_Q(2) <= serial;
when S2 =>
next_state <= S3;
next_Q(3) <= serial;
when S3 =>
next_state <= S54;
next_Q(4) <= serial;
when S4 =>
next_state <= S5;
next_Q(5) <= serial;

Page 39

serial, S(n)

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130
131
132

134
135
136
137

139
140

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

when S5 =>
next_state <= S6;
next_Q(6) <= serial;
when S6 =>
next_state <= S7;
next_Q(7) <= serial;
when S7 =>
next_parallel <= Q;
if serial='0' then
next_state <= S7;
else

next_state <= STOP;

end if;
when others =>
-- undefined state
next_state <= STOP;
end case;
end process;

ewpage

-- Process: proc_serial_read

-- Description: Makes the asynchronous input signal synchronous
== in order to mitigate metastability tssues.

== Does this by sychronously reading the signal into
-- an intermediate flip-flop.

-- Input(s) : sertal_async

-- Output(s): serial

-- Internal Signals: serial_semisync

proc_serial_read : process(serial_async,

begin
if rising_edge(CLOCK_50) then

serial_semisync <= serial_async;

serial <= serial_semisync;
end if;
end process;
end architecture;

CLOCK_50)

Page 40

Laboratory Report John Croft
October 24, 2017 Andreas Johansson

Schematics

Page 41

Zy 9%edq

AC(Digital ta_Analag.converter)

A[1..8] A[8..1]

©
<

vCC

O—=
o

R10

¢—{100] L 7k—o

T U1
"l DACoBOB_DIP

MERBEER MM

il R1Z > Ri3
%AB O VREF + 14 -
\Lﬁw VREF— - !
6 The o I TL072
\A5 8. 10 21
Na4 o, > 1 VDA
%23 [NAS 10fis coupenfts 3l
22 a2 11f,5 U3A
x21] NAaL 12l 2w ©
3V3 29 s c1 GND
><31 o M| -
« 100nF *
33 ‘
51
>
39 GND D
G I
V_DA
| P—Filter Rx Power_Amplifier
5.1k 5.1k Q1
VDA o T ok Be3s7
R1 R2 R4 V LP2 Speaker

Sallen—Key topology
4th—order Butterworth
Cutoff freq. : 12kHz

GD Speaker Input Impedance bt
typ: 20 ohm !

LP2

Figure 22: Serial receiver

L10Z ‘¥ 1090300
110doy] A103eI0qR]

UOSSURTO[SBAIPUY

1J010) uyor

eF o8ed

DC. (Analog. to_Digital converter)

Microphane/power. Amplifier.

MK?
Microphone

“—
[
s
>
=
[=)
|
+

[1..8] Al8..1] +15V
- LM311
- Vin+ > Vin— : Z
i Vin+ < Vin-= : 0V
= vee l*
U1
] 'QT DAC0808_DIP L«}é;k >
T [\A8 5lis Syper |t
a \‘%—3-/&7 ~ VREF-
] NA A I TL072
. 5 8l 10 ZD\
i \Ag 190A4 P . i 1 N DA
7 A3 100, COMPEN
] 2112 = uaa V_SH
= 1 124 2w &
3v3] 2y o A
- o M) ~
100nF +
q
—15V
GND
| P-Eilter Tx Sample & Hold. ...
> ﬁ
Q (=3
3 o
+ O
: - 1k v Lp
I 1ng 3R3?k 1ng

N
GND

Sallen—Key topology
4th—order Butterworth
Cutoff freq. : 12kHz

> ©
o »
~ —
.
|
,
B2k B2k 51U
R? R? & 7 LP
=
e <[TL072
>
[Te]
1,5nF ‘T'
GND

Figure 23: Serial transmatter

L10Z ‘¥ 1090300
110doy A103eI0qRT

UOSSURTO[SBAIPUY

oD utor

	Summary
	Introduction
	Subsystems
	Counter/Clock Generation
	D/A converter
	Calculating component values
	Test & Verification

	A/D converter
	Sample and hold
	Serial transmitter
	Serial Receiver
	Audio Amplifier
	Characterising the signal amplifier
	Characterising the power amplifier

	LP filter

	Test and Verification
	Conclusion
	Reflection
	Preparatory work
	Equipment
	Teamwork
	Guidance

	Appendix
	VHDL Code
	Schematics

