Hand-In Assignment 2 John Croft
September 20, 2017 19930814-7959

1 Moore Diagram

The personal bit-pattern to be detected by the state-machine in this assignment is (1001101)5. This is interpreted
as MSB — LSB by convention, and since the RS/EIA-232 standard dictates that LSB be transmitted first, the
bit sequence will be in the 'reverse’ order (ie. first 1, then 0, then 1 etc...).

A moore machine’s outputs are defined by its current state while its inputs define the state-transitions. In
this case there is only one input and one output, the current bit being detected and a green indicator LED
respectively. The LED will remain LOW until a complete bit-sequence is detected whereupon it is set HIGH.

The state-machine should be able to handle the overlap of two correct sequences, although in this case the
only possible overlap is that of the ’1’s that bookend the sequence, drastically reducing the complexity. To
clarify, the only valid overlapping sequence is [101100|1|011001| with the shared ’1’ in the middle.

The final diagram with the behaviour described is shown below.

Page 1

© 0 N o oA W N R

@ o oo g g G o oot ot R A R A R R R R R R W W W W W W W W W WNNNNNNNNNNR B B e e e e s e
O © ® 9 O Oh ® R OO KOO Oh ® MR, OO XN OR ®N R O ©® N0 ORE N R O ©® N0 O kA ® NP O

Hand-In Assignment 2 John Croft
September 20, 2017 19930814-7959

2 VHDL Implementation

To implement the Moore-machine above, a CASE/IF structure was used to determine the current state and
subsequently transition state depending on the data input.

Clocking on an external signal (a pushbutton on the DE1 board) required additional circuitry in order
to detect a rising edge without using the FPGA’s internal rising edge(CLOCK) command, which may cause
timing instabilities if used in this manner.

library ieee;
use ieee.STD_LOGIC_1164.all;

entity serial_pattern_match is

port (CLOCK_50 : in std_logic; -- 50MHz internal clock.

btn : in std_logic; -- Manual clock signal using ezternal PUSHBUTTON's rising edge. Inverted LOGIC.
reset : in std_logic; -- RESET signal tied to external PUSHBUTTON. Inverted LOGIC.

data : in std_logic; -- Current DATA bit set using ezxternal switch.

LEDG7 : out std_logic; -- Indicates successful pattern detection when HIGH.
LEDR : out std_logic_vector(7 downto 0)); -- Indicates current STATE

end entity;

architecture rtl of serial_pattern_match is

begin

type stateType is (U,Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0); -- 8 states are needed to implement the Moore-machine.
signal state : stateType;
signal prevBtn : std_logic; -- Used to detect rising edge on 'bin'.

-- Since we can't edge-trigger directly on a non-internal-clock signal,
-- we use a synchronous flip-flop to detect if a rising edge has occured since last internal-clock cycle.

-- Process: proc_moore_machine
-- Description: Moore-machine implementation of algorithm detecting a specific pattern in a data-stream.
-- Pattern is (in chronological order ->): 1011001.

-- Input(s) : CLOCK_50, btn, reset, data
-- Output(s) : LEDG7, LEDR
-- Internal Signals : state, prevBtn

proc_moore_machine:process(CLOCK_50, reset)
begin
if reset = '0' then -- asynchronous reset.
state <= Q0; -- load inital state.
LEDR <= (others => '0'); -- set all indicator LEDs LOW.
LEDG7 <= '0';
elsif (prevBtn = 'O' AND btn = '1') then -- if 7rising_edge(btn) then
case state is
when Q0 =>
LEDR <= "00000001";
if data = '1l' then
state <= Q1;
LEDR <= "00000010";
else
-- stay in current state.
end if;
when Q1 =>
if data = 'O' then
state <= Q2;
LEDR <= "00000100";
else
-- stay in current state.
end if;
when Q2 =>
if data = '1' then
state <= Q3;
LEDR <= "00001000";
else
state <= QO;
end if;
when Q3 =>
if data = '1' then

Page 2

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Hand-In Assignment 2
September 20, 2017

John Croft
19930814-7959

end if;
end process;

state <= Q4;
LEDR <= "00010000";

else
state <= Q2;
end if;
when Q4 =>
if data = '1' then
state <= Q1;
else
state <= Q5;
LEDR <= "00100000";
end if;
when Q5 =>
if data = '1' then
state <= Q1;
else
state <= Q6;
LEDR <= "01000000";
end if;
when Q6 =>
if data = '1' then
state <= Q7;
LEDR <= "10000000";
LEDG7 <= '1'; -- Transition to last state means full sequence detected!
else
state <= QO0;
end if;
when Q7 =>
if data = '1' then
state <= Q1;
LEDG7 <= '0';
LEDR <= "00000010";
else
state <= Q2;
LEDG7 <= '0';
LEDR <= "00000100";
end if;
when others => -- when 'U’
-- do nothing

end case;

-- Process: proc_rising_edge_detect
-- Description: Saves last PUSHBUTTON state.
Allows detection of state change through comparison with current state.

-- Input(s)

: bin

-- Internal Signals : prevBtn

proc_rising_edge_detect:process(CLOCK_50)

begin

if rising_edge(CLOCK_50) then

end if;
end process;
end architecture;

prevBtn <= btn;

Page 3

John Croft
19930814-7959

Hand-In Assignment 2
September 20, 2017

3 VHDL Simulation

The above VHDL code was simulated and tested using the following input bitstream:

2 overlapping patterns 1 pattern

——— —
10010 1011001011001 100001111011001

where bits are read in from left to right.
The results of this can be seen in figure 1, which shows the various state transitions in the Moore-machine
as well as an indication of the three successful pattern matches on signal LEDG7.

4 fserial_pattern_match/reset
. feerial_pattern_match/LEDGT7

4 fserial_pattern_match/btn
4 [fserial_pattern_match/data

Jeerial_pattern_match/state

4 Jserial_pattern_match/reset
. fserial_pattern_match/LEDG7

4 fserial_pattern_match/bin

4 fserial_pattern_match/data

jserial_pattern_match/state

Figure 1: VHDL code simulation in modelsim. Note that irrelevant signals have been omitted.

4 Pin Table for DE1

Name Location DE1 Name
CLOCK_50 PIN L1 CLOCK_50
data PIN L22 SWI0]

btn PIN_R22 KEY[O]
reset PIN_T21 KEY[3]
LEDG7 PIN Y21 LEDG[7]
LEDR[7] PIN_U18 LEDR[7]
LEDRI[6] PIN Y18 LEDRI[6]
LEDR[5] PIN_V19 LEDR[5]
LEDR[4] PIN T18 LEDR[4]
LEDR[3] PIN_Y19 LEDR[3]
LEDR[2] PIN_U19 LEDR[2]
LEDR[1] PIN_R19 LEDR[1]
LEDR[O] PIN_R20 LEDR[O]

Page 4

