
SSY011 Elektriska system, ht 2017 F3 1/44

Föreläsning 3
VHDL och FPGA-programmering

Erik Agrell 2017-09-01

Innehåll:
1. FPGA-teknik
2. Synkron VHDL

3. Labkortet DE1
4. Mjukvaran Quartus

Bilder av E. Agrell, A. Linde, A. Crayvenn, S. Farinam, C. Fougstedt

SSY011 Elektriska system, ht 2017 F3 2/44

En field-programmable gate array (FPGA) består av…
• massor av logikgrindar
• massor av minnesceller (RAM)
• nät av ledningar (interconnects)
• massor av spänningsstyrda kopplingar mellan ledningar
• samt i de mer avancerade modellerna:

– multiplikatorer
– processorer (Power PC)
– AD/DA-omvandlare
– faslåsta slingor (phase-locked loop, PLL)
– m.m.

1. FPGA-teknik

SSY011 Elektriska system, ht 2017 F3 3/44

• Grindarna realiseras som en liten tabell (look-up table, LUT)
• Kan ses som ett Karnaugh-diagram
• Kan realisera alla tänkbara grindar

G4 G3

00

01

11

10

00 01 11 10
G2 G1

G4

G3

G2

G1

Grindarna i en FPGA

f f
0 1 0 1

0 1 0 1

1 1 1 1

0 1 0 1

SSY011 Elektriska system, ht 2017 F3 4/44

G1

G3

0
0
1
0

1
1
1
1

G2
0
0
1
0

1
1
1
1G4 CLK Q

Logikelement

• Kombinationen av grind (LUT) och vippa kallas
logikelement (LE)

• Storleken hos FPGAer mäts i antal LE

(förenklad bild – ett LE innehåller normalt även andra komponenter)

SSY011 Elektriska system, ht 2017 F3 5/44Cyclone IIs LE

SSY011 Elektriska system, ht 2017 F3 6/44

Cyclone är lågprismodellen

Finns nu i version V

Från ca 300 kr/styck

Labbets FPGA

SSY011 Elektriska system, ht 2017 F3 7/44

FPGA-kretsens interna layout

SSY011 Elektriska system, ht 2017 F3 8/44

Specialiserat klocknät

SSY011 Elektriska system, ht 2017 F3 9/44

Kretsens pinnar

Att koppla in- och
utsignaler till rätt

pinnar är en viktig
del av syntesen

SSY011 Elektriska system, ht 2017 F3 10/44

VHDL

Parallell VHDL Sekventiell VHDL

SynkronAsynkron

✓

✓ idag!

2. Synkron VHDL

SSY011 Elektriska system, ht 2017 F3 11/44

Parallell VHDL:

• I architecture, utanför
processer

• All exekveras samtidigt,
ordningen är oväsentlig

• Signaltilldelning med <=

• with

Sekventiell VHDL:

• Sker i processer

• Allt exekveras sekventiellt
inom processer

• Alla processer exekveras
samtidigt

• Variabeltilldelning med :=

• if, case

SSY011 Elektriska system, ht 2017 F3 12/44

• Kod som står inom
process() ... end process

är sekventiell VHDL

• Kod som står inom
if rising_edge() then ... end if

eller liknande är synkron (klockad) VHDL

SSY011 Elektriska system, ht 2017 F3 13/44

Synkron VHDL är en sorts sekventiell VHDL, där
processen aktiveras av klockan

process(clk)
begin

if rising_edge(clk) then

end if;
end process;

Sensitivitetslista

... Trigga på positiv
klockflank

Från F2:
• I processens sensitivitetslista ingår de signaler som

skall påverka processens igångsättning vid simulering.

• Sensitivitetslistan ignoreras vid syntes

SSY011 Elektriska system, ht 2017 F3 14/44

library ieee;
use ieee.std_logic_1164.all;

entity shift_register is
port (
clk: in std_logic;
x: in std_logic;
y: out std_logic);

end entity;

architecture arch of shift_register is
signal r0, r1, r2, r3: std_logic;

begin
r0 <= x;
y <= r0 xor r1 xor r2 xor r3;

process(clk)
begin

if rising_edge(clk) then
r1 <= r0;
r2 <= r1;
r3 <= r2;

end if;
end process;

end architecture;

Exempel: shift-register

Vanligt fel:
if clk='1' then

Varför är det fel?
Demo

Dessa tre rader innebär inte
r3 <= r0

SSY011 Elektriska system, ht 2017 F3 15/44

library ieee;
use ieee.std_logic_1164.all;

entity shift_register is
port (
clk: in std_logic;
x: in std_logic;
y: out std_logic);

end entity;

architecture arch of shift_register is
signal r: std_logic_vector(3 downto 0);

begin
r(0) <= x;
y <= r(0) xor r(1) xor r(2) xor r(3);

process(clk)
begin

if rising_edge(clk) then
r(3 downto 1) <= r(2 downto 0);

end if;
end process;

end architecture;

… eller implementerat med en vektor

Shiftregister kan också
implementeras med

inbyggda operationer
sll, srl, rol, ror, …

SSY011 Elektriska system, ht 2017 F3 16/44

Mer om vektorer

• Om alla bitar skall vara samma kan man skriva

vilket betyder detsamma som f <= "00000000"

f <= (others => '0')

• Jämförelser kan göras binärt eller som heltal:

if x=8 then
if x="1000" then

• Vektorer kan i ModelSim kan anges binärt, decimalt eller hexadecimalt:

force x 2#1111
force x 10#15
force x 16#F

SSY011 Elektriska system, ht 2017 F3 17/44

Med tillägget i biblioteket

use ieee.std_logic_unsigned.all;

kan heltalsberäkningar utföras

Exempel:

f <= x + 5;

Om f och x är av typen std_logic_vector(3 downto 0)
och x är "0001" (heltalet 1), så blir f "0110" (heltalet 6)

Heltalsberäkningar

SSY011 Elektriska system, ht 2017 F3 18/44

Problem: Antag att en snabb klocka

skall styra en långsam process –

hur implementerar man det?

Klockning av processer

Lösning: Man skapar en triggsignal genom att dela ned
klocksignalen med en räknare

SSY011 Elektriska system, ht 2017 F3 19/44

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity timer is
port (
clk50: in std_logic;
squarewave: out std_logic);

end entity;

architecture arch of timer is
signal counter: std_logic_vector(26 downto 0);

begin
process(clk50)
begin

if rising_edge(clk50) then
counter <= counter + 1;

end if;
end process;
squarewave <= counter(26);

end architecture;

Exempel: räknare

Nytt bibliotek

Demo?
Nja, inte än...

Heltalssummering,
börjar om vid 0 när
summan går i taket

Vi har en 50 MHz klocka (clk50) och vill skapa en långsammare signal:

SSY011 Elektriska system, ht 2017 F3 20/44

Initialisering av variabler

Problem: Föregående VHDL-kod kan inte simuleras, eftersom
counter aldrig initialiseras. När strömmen slås på till ett
chip, har alla minnesenheter (register) slumpmässigt innehåll.

Lösning: Inför en reset-signal.

Varning: VHDL-syntaxen tillåter att signaler och
variabler ges initial-värden, men dessa används
bara vid simulering, inte syntes. Undvik!

SSY011 Elektriska system, ht 2017 F3 21/44

reset-signalen kollas
utanför den klockade
delen av processen

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity timer is
port (
clk50: in std_logic;

reset: in std_logic;
squarewave: out std_logic);

end entity;

architecture arch of timer is
signal counter: std_logic_vector(26 downto 0);

begin
process(clk50,reset)
begin

if reset='1' then
counter <= (others => '0');

elsif rising_edge(clk50) then
counter <= counter + 1;

end if;
end process;
squarewave <= counter(26);

end architecture;

Räknare med asynkron reset

reset-signal

reset-signalen måste ingå i
sensitivitetslistan. (Vad händer annars?)

SSY011 Elektriska system, ht 2017 F3 22/44

lägre värde för att
underlätta demon

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity timer is
port (
clk50: in std_logic;
reset: in std_logic;
squarewave: out std_logic);

end entity;

architecture arch of timer is
signal counter: std_logic_vector(3 downto 0);

begin

process(clk50)
begin

if rising_edge(clk50) then
if reset='1' then

counter <= (others => '0');
else

counter <= counter + 1;
end if;

end if;
end process;
squarewave <= counter(3);

end architecture;

Räknare med synkron reset

reset-signalen kollas
inuti den klockade
delen av processen

reset-signalen behöver inte
ingå i sensitivitetslistan

Demo?
OK!

SSY011 Elektriska system, ht 2017 F3 23/44

Räknare med andra frekvenser

Problem: Föregående VHDL-kod kan endast dela ned
frekvenser med en tvåpotens

Lösning: En mer flexibel räknare fås genom att nollställa
counter när den uppnått ett visst värde

Undvik olikhetsjämförelser, som
kostar mycket hårdvara.

SSY011 Elektriska system, ht 2017 F3 24/44

clk

trig

Vilken periodtid?

process(clk, reset)
begin

if reset='1' then
counter <= (others => '0');

elsif rising_edge(clk) then
if counter=4 then

trig <= '1';
counter <= (others => '0');

else
trig <= '0';
counter <= counter+1;

end if;
end if;

end process;

1. Skapa ”trig”:

process(...)
begin

if rising_edge(clk) then
if trig='1' then

...

end if;
end if;

end process;

2. Använd ”trig”:

Svar:5

Digitala triggsignaler
(kallas även ”aktiveringssignal” eller ”enable”)

SSY011 Elektriska system, ht 2017 F3 25/44

Var rädd om klockan

• Synkron elektronik förutsätter att kretsarna klockas exakt
samtidigt

• Syntesverktygen implementerar därför klockan separat
från andra signaler

• Stör inte klockans funktion!

SSY011 Elektriska system, ht 2017 F3 26/44

Exempel på olämplig klockning

• Misstag 1: Kombinera inte rising_edge med andra villkor.

if rising_edge(clk) and (...) then

kan införa små fördröjningar som hindrar komponenterna från
att klockas samtidigt.

• Misstag 2: Använd inte rising_edge på användar-
definierade signaler.

if rising_edge(trig) then

där trig definierades i bild 24, hindrar syntesverktyget
från att använda FPGAns specialiserade klocknät.

SSY011 Elektriska system, ht 2017 F3 27/44

3. Labkortet DE1

SSY011 Elektriska system, ht 2017 F3 28/44

SSY011 Elektriska system, ht 2017 F3 29/44

Input/output

SSY011 Elektriska system, ht 2017 F3 30/44

SSY011 Elektriska system, ht 2017 F3 31/44

Pinn-konfigurering

De flesta av FPGA-kretsens
pinnar sitter ihop med DE1-
kortets kringutrustning:

• omkopplare

• tryckknappar

• LED-arrayer

• 7-segmentsdisplay

• klocksignaler

• …

Vid FPGA-programmering måste man definiera vilka pinnar på kretsen
som hör till vilka signaler i FPGA-koden. Det kallas ”pinn-konfigurering”.

SSY011 Elektriska system, ht 2017 F3 32/44

Exempel på pinnar

(ur DE1 User Manual, kap 4)

SSY011 Elektriska system, ht 2017 F3 33/44

Egna pinn-tabeller

• För återkommande projekt gör
man gärna en pinn-tabell i en
separat fil

• Hemsidans tabell
”Fixed_DE1_pin_assignments”
är en bra utgångspunkt

SSY011 Elektriska system, ht 2017 F3 34/44

4. Mjukvaran Quartus

Används för syntes av VHDL,
d.v.s.

• kompilera VHDL

• pinn-konfigurering

• tanka ned kod till FPGAn

SSY011 Elektriska system, ht 2017 F3 35/44

Cyclone II
EP2C20F484C7

Arbetsgång

Processen
beskrivs i lab-

PM, Lab 1

SSY011 Elektriska system, ht 2017 F3 36/44

Quartus-varningar

Quartus genererar många varningar vid kompilering!

• 15–20 varningar är normalt även för små, felfria program

• De flesta är ofarliga, t.ex. om timing och kapacitanser

• Några är viktiga, t.ex. om pinntilldelning som saknas och
om ”latchar”

Latch = minneselement, D-vippa

SSY011 Elektriska system, ht 2017 F3 37/44

library ieee;
use ieee.std_logic_1164.all;

entity switch is
port (

KEY: in std_logic;
SW: in std_logic;
LED: out std_logic);

end entity;

architecture arch of switch is
begin

process(SW, KEY)
begin

if KEY='1' then
LED <= SW;

end if;
end process;

end architecture;

Exempel på en ”latch”
Någon ville ha en krets som kopplar omkopplaren SW till lysdioden
LED varje gång man trycker på knappen KEY. Vad blev fel?

SSY011 Elektriska system, ht 2017 F3 38/44

Vad Quartus säger…

Warning (10631): VHDL Process Statement warning at
switch.vhd(12): inferring latch(es) for signal or
variable "LED", which holds its previous value in
one or more paths through the process

…och vad Quartus menar:

Du har otilldelade utsignaler.

SSY011 Elektriska system, ht 2017 F3 39/44

process(SW, KEY)
begin

LED <= '0'
if KEY='1' then

LED <= SW;
end if;

end process;

Lösningar

process(SW, KEY)
begin

if KEY='1' then
LED <= SW;

else
LED <= '0';

end if;
end process;

Metod 1 (else): Metod 2 (default-tilldelning):

Först måste man bestämma sig för vad som skall hända när
knappen inte är nedtryckt.

SSY011 Elektriska system, ht 2017 F3 40/44

-- T-flipflop: change output
-- value if t=1
library ieee;
use ieee.std_logic_1164.all;

entity Tvippa is port (
t: in std_logic;
clk, reset: in std_logic;
q: out std_logic);

end entity;

Om en utsignal i synkron VHDL
inte tilldelas ett värde, behålls
värdet från förra klockcykeln

Ibland kan man vilja skapa en ”latch” avsiktligt i synkron VHDL
genom att inte täcka alla alternativ. Det kallas då implicit minne.

architecture arch of Tvippa is
signal s: std_logic;

begin
process(clk,reset)
begin

if reset='1' then
s <= '0';

elsif rising_edge(clk) then
if t='1' then

s <= not s;
end if;

end if;
end process;
q <= s;

end architecture;

Implicit minne

SSY011 Elektriska system, ht 2017 F3 41/44

Veckosammanfattning

Efter den här veckan behärskar ni…

• VHDLs grunder
§ bibliotek, entitet och arkitektur
§ in- och ut-signaler
§ signaltilldelning med <=
§ vektorer
§ heltalsaddition

• Parallell VHDL (utanför process)
§ grindnivå (and, or, not)
§ interna signaler
§ with

SSY011 Elektriska system, ht 2017 F3 42/44

• Sekventiell VHDL (innanför process)
§ sensitivitetslista
§ variabler
§ if och case
§ asynkron VHDL (utanför if rising_edge())
§ synkron VHDL (innanför if rising_edge())
§ reset-signaler (asynkron och synkron)

• Simulering med ModelSim

SSY011 Elektriska system, ht 2017 F3 43/44

Labinformation

• Anmäl er till labgrupper (de som inte redan gjort det)

• De som anmält sig ensamma får gärna bilda par

• Lab-PM för lab 1 finns på hemsidan

• Obligatoriska förberedelseuppgifter före varje lab

• Man måste ha löst alla förberedelseuppgifterna före
labben, men det måste inte vara 100% rätt.

• Båda personerna i gruppen skall kunna redovisa
förberedelseuppgifterna.

SSY011 Elektriska system, ht 2017 F3 44/44

Läs & lös

Läs:

• Kompendiet ”Kretskonstruktion med VHDL”, avsnitt 4–
5 och 10

• Lab-PM för lab 1

Lös:

• Förberedelseuppgifter till lab 1 (måste vara gjorda före
labben)

