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Föreläsning 3
VHDL och FPGA-programmering

Erik Agrell 2017-09-01
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En field-programmable gate array (FPGA) består av…
• massor av logikgrindar
• massor av minnesceller (RAM)
• nät av ledningar (interconnects)
• massor av spänningsstyrda kopplingar mellan ledningar
• samt i de mer avancerade modellerna:

– multiplikatorer
– processorer (Power PC)
– AD/DA-omvandlare
– faslåsta slingor (phase-locked loop, PLL)
– m.m.

1. FPGA-teknik
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• Grindarna realiseras som en liten tabell (look-up table, LUT)
• Kan ses som ett Karnaugh-diagram
• Kan realisera alla tänkbara grindar
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Logikelement

• Kombinationen av grind (LUT) och vippa kallas
logikelement (LE)

• Storleken hos FPGAer mäts i antal LE

(förenklad bild – ett LE innehåller normalt även andra komponenter)
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Cyclone är lågprismodellen

Finns nu i version V

Från ca 300 kr/styck

Labbets FPGA
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FPGA-kretsens interna layout
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Specialiserat klocknät
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Kretsens pinnar

Att koppla in- och
utsignaler till rätt

pinnar är en viktig
del av syntesen
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VHDL

Parallell VHDL Sekventiell VHDL

SynkronAsynkron

✓

✓ idag!

2. Synkron VHDL
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Parallell VHDL:

• I architecture, utanför
processer

• All exekveras samtidigt, 
ordningen är oväsentlig

• Signaltilldelning med <=

• with

Sekventiell VHDL:

• Sker i processer

• Allt exekveras sekventiellt
inom processer

• Alla processer exekveras
samtidigt

• Variabeltilldelning med :=

• if, case
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• Kod som står inom
process( ) ... end process

är sekventiell VHDL

• Kod som står inom
if rising_edge( ) then ... end if

eller liknande är synkron (klockad) VHDL
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Synkron VHDL är en sorts sekventiell VHDL, där 
processen aktiveras av klockan

process(clk)
begin

if rising_edge(clk) then

end if;
end process;

Sensitivitetslista

... Trigga på positiv
klockflank

Från F2:
• I processens sensitivitetslista ingår de signaler som 

skall påverka processens igångsättning vid simulering.

• Sensitivitetslistan ignoreras vid syntes
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library ieee;
use ieee.std_logic_1164.all;

entity shift_register is
port (
clk: in std_logic;
x: in std_logic;
y: out std_logic);

end entity;

architecture arch of shift_register is
signal r0, r1, r2, r3: std_logic;

begin
r0 <= x;
y <= r0 xor r1 xor r2 xor r3;

process(clk)
begin

if rising_edge(clk) then
r1 <= r0;
r2 <= r1;
r3 <= r2;

end if;
end process;

end architecture;

Exempel: shift-register

Vanligt fel:
if clk='1' then

Varför är det fel?
Demo

Dessa tre rader innebär inte
r3 <= r0
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library ieee;
use ieee.std_logic_1164.all;

entity shift_register is
port (
clk: in std_logic;
x: in std_logic;
y: out std_logic);

end entity;

architecture arch of shift_register is
signal r: std_logic_vector(3 downto 0);

begin
r(0) <= x;
y <= r(0) xor r(1) xor r(2) xor r(3);

process(clk)
begin

if rising_edge(clk) then
r(3 downto 1) <= r(2 downto 0);

end if;
end process;

end architecture;

… eller implementerat med en vektor

Shiftregister kan också
implementeras med 

inbyggda operationer
sll, srl, rol, ror, …
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Mer om vektorer

• Om alla bitar skall vara samma kan man skriva

vilket betyder detsamma som f <= "00000000"

f <= ( others => '0')

• Jämförelser kan göras binärt eller som heltal:

if x=8 then
if x="1000" then

• Vektorer kan i ModelSim kan anges binärt, decimalt eller hexadecimalt:

force x 2#1111
force x 10#15
force x 16#F
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Med tillägget i biblioteket

use ieee.std_logic_unsigned.all;

kan heltalsberäkningar utföras

Exempel:

f <= x + 5;

Om f och x är av typen std_logic_vector(3 downto 0)
och x är "0001" (heltalet 1), så blir f "0110" (heltalet 6)

Heltalsberäkningar
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Problem: Antag att en snabb klocka

skall styra en långsam process –

hur implementerar man det?

Klockning av processer

Lösning: Man skapar en triggsignal genom att dela ned
klocksignalen med en räknare
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library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity timer is
port (
clk50: in std_logic;
squarewave: out std_logic);

end entity;

architecture arch of timer is
signal counter: std_logic_vector(26 downto 0);

begin
process(clk50)
begin

if rising_edge(clk50) then
counter <= counter + 1;

end if;
end process;
squarewave <= counter(26);

end architecture;

Exempel: räknare

Nytt bibliotek

Demo?
Nja, inte än...

Heltalssummering, 
börjar om vid 0 när
summan går i taket

Vi har en 50 MHz klocka (clk50) och vill skapa en långsammare signal:
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Initialisering av variabler

Problem: Föregående VHDL-kod kan inte simuleras, eftersom
counter aldrig initialiseras. När strömmen slås på till ett
chip, har alla minnesenheter (register) slumpmässigt innehåll.

Lösning: Inför en reset-signal.

Varning: VHDL-syntaxen tillåter att signaler och
variabler ges initial-värden, men dessa används
bara vid simulering, inte syntes. Undvik!
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reset-signalen kollas
utanför den klockade
delen av processen

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity timer is
port (
clk50: in std_logic;

reset: in std_logic;
squarewave: out std_logic);

end entity;

architecture arch of timer is
signal counter: std_logic_vector(26 downto 0);

begin
process(clk50,reset)
begin

if reset='1' then
counter <= (others => '0');

elsif rising_edge(clk50) then
counter <= counter + 1;

end if;
end process;
squarewave <= counter(26);

end architecture;

Räknare med asynkron reset

reset-signal

reset-signalen måste ingå i
sensitivitetslistan. (Vad händer annars?)
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lägre värde för att
underlätta demon

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity timer is
port (
clk50: in std_logic;
reset: in std_logic;
squarewave: out std_logic);

end entity;

architecture arch of timer is
signal counter: std_logic_vector(3 downto 0);

begin

process(clk50)
begin

if rising_edge(clk50) then
if reset='1' then

counter <= (others => '0');
else

counter <= counter + 1;
end if;

end if;
end process;
squarewave <= counter(3);

end architecture;

Räknare med synkron reset

reset-signalen kollas
inuti den klockade
delen av processen

reset-signalen behöver inte
ingå i sensitivitetslistan

Demo?
OK!
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Räknare med andra frekvenser

Problem: Föregående VHDL-kod kan endast dela ned
frekvenser med en tvåpotens

Lösning: En mer flexibel räknare fås genom att nollställa
counter när den uppnått ett visst värde

Undvik olikhetsjämförelser, som
kostar mycket hårdvara.

SSY011 Elektriska system, ht 2017 F3 24/44

clk

trig

Vilken periodtid?

process(clk, reset)
begin

if reset='1' then
counter <= (others => '0');

elsif rising_edge(clk) then
if counter=4 then

trig <= '1';
counter <= (others => '0');

else
trig <= '0';
counter <= counter+1;

end if;
end if;

end process;

1. Skapa ”trig”:

process(...)
begin

if rising_edge(clk) then
if trig='1' then

...

end if;
end if;

end process;

2. Använd ”trig”:

Svar:5

Digitala triggsignaler
(kallas även ”aktiveringssignal” eller ”enable”)
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Var rädd om klockan

• Synkron elektronik förutsätter att kretsarna klockas exakt
samtidigt

• Syntesverktygen implementerar därför klockan separat
från andra signaler

• Stör inte klockans funktion!
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Exempel på olämplig klockning

• Misstag 1: Kombinera inte rising_edge med andra villkor.

if rising_edge(clk) and (...) then

kan införa små fördröjningar som hindrar komponenterna från
att klockas samtidigt.

• Misstag 2: Använd inte rising_edge på användar-
definierade signaler.

if rising_edge(trig) then

där trig definierades i bild 24, hindrar syntesverktyget
från att använda FPGAns specialiserade klocknät.
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3. Labkortet DE1
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Input/output
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Pinn-konfigurering

De flesta av FPGA-kretsens
pinnar sitter ihop med DE1-
kortets kringutrustning:

• omkopplare

• tryckknappar

• LED-arrayer

• 7-segmentsdisplay

• klocksignaler

• …

Vid FPGA-programmering måste man definiera vilka pinnar på kretsen
som hör till vilka signaler i FPGA-koden. Det kallas ”pinn-konfigurering”.
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Exempel på pinnar

(ur DE1 User Manual, kap 4)
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Egna pinn-tabeller

• För återkommande projekt gör
man gärna en pinn-tabell i en 
separat fil

• Hemsidans tabell
”Fixed_DE1_pin_assignments”
är en bra utgångspunkt
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4. Mjukvaran Quartus

Används för syntes av VHDL, 
d.v.s.

• kompilera VHDL

• pinn-konfigurering

• tanka ned kod till FPGAn
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Cyclone II
EP2C20F484C7

Arbetsgång

Processen 
beskrivs i lab-

PM, Lab 1
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Quartus-varningar

Quartus genererar många varningar vid kompilering!

• 15–20 varningar är normalt även för små, felfria program

• De flesta är ofarliga, t.ex. om timing och kapacitanser

• Några är viktiga, t.ex. om pinntilldelning som saknas och
om ”latchar”

Latch = minneselement, D-vippa
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library ieee;
use ieee.std_logic_1164.all;

entity switch is
port (

KEY: in std_logic; 
SW: in std_logic;
LED: out std_logic);

end entity;

architecture arch of switch is
begin

process(SW, KEY)
begin

if KEY='1' then 
LED <= SW;

end if;
end process; 

end architecture;

Exempel på en ”latch”
Någon ville ha en krets som kopplar omkopplaren SW till lysdioden
LED varje gång man trycker på knappen KEY. Vad blev fel?
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Vad Quartus säger…

Warning (10631): VHDL Process Statement warning at 
switch.vhd(12): inferring latch(es) for signal or 
variable "LED", which holds its previous value in 
one or more paths through the process

…och vad Quartus menar:

Du har otilldelade utsignaler.
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process(SW, KEY)
begin

LED <= '0'
if KEY='1' then 

LED <= SW;
end if;

end process;

Lösningar

process(SW, KEY)
begin

if KEY='1' then 
LED <= SW;

else
LED <= '0';

end if;
end process;

Metod 1 (else): Metod 2 (default-tilldelning):

Först måste man bestämma sig för vad som skall hända när
knappen inte är nedtryckt.
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-- T-flipflop: change output
-- value if t=1
library ieee;
use ieee.std_logic_1164.all;

entity Tvippa is port (
t: in std_logic;
clk, reset: in std_logic;
q: out std_logic);

end entity;

Om en utsignal i synkron VHDL 
inte tilldelas ett värde, behålls 
värdet från förra klockcykeln

Ibland kan man vilja skapa en ”latch” avsiktligt i synkron VHDL 
genom att inte täcka alla alternativ. Det kallas då implicit minne.

architecture arch of Tvippa is
signal s: std_logic;

begin
process(clk,reset)
begin

if reset='1' then
s <= '0';

elsif rising_edge(clk) then
if t='1' then

s <= not s;
end if;

end if;
end process;
q <= s;

end architecture;

Implicit minne
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Veckosammanfattning

Efter den här veckan behärskar ni…

• VHDLs grunder
§ bibliotek, entitet och arkitektur
§ in- och ut-signaler
§ signaltilldelning med <=
§ vektorer
§ heltalsaddition

• Parallell VHDL (utanför process)
§ grindnivå (and, or, not)
§ interna signaler
§ with
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• Sekventiell VHDL (innanför process)
§ sensitivitetslista
§ variabler
§ if och case
§ asynkron VHDL (utanför if rising_edge( ))
§ synkron VHDL (innanför if rising_edge( ))
§ reset-signaler (asynkron och synkron)

• Simulering med ModelSim



SSY011 Elektriska system, ht 2017 F3 43/44

Labinformation

• Anmäl er till labgrupper (de som inte redan gjort det)

• De som anmält sig ensamma får gärna bilda par

• Lab-PM för lab 1 finns på hemsidan

• Obligatoriska förberedelseuppgifter före varje lab

• Man måste ha löst alla förberedelseuppgifterna före
labben, men det måste inte vara 100% rätt.

• Båda personerna i gruppen skall kunna redovisa
förberedelseuppgifterna.
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Läs & lös

Läs:

• Kompendiet ”Kretskonstruktion med VHDL”, avsnitt 4–
5 och 10

• Lab-PM för lab 1

Lös:

• Förberedelseuppgifter till lab 1 (måste vara gjorda före
labben)


