

Thermocouple: what if the reference temperature is not 0 °C?

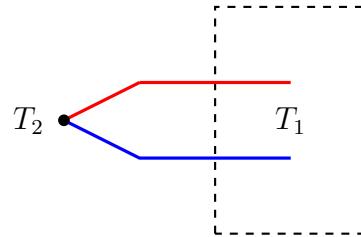
Giuseppe Durisi

As explained in the lecture, in Appendix B of the book the values of $E_{AB}(T_2 \rightarrow T_1)$ for the case $T_1 = 0^\circ\text{C}$ are tabulated. But what shall we do when $T_1 \neq 0^\circ\text{C}$?

In the book, it is suggested to use a linear approximation for $E_{AB}(T_2 \rightarrow T_1)$, which—as we shall see—may introduce significant errors. Specifically, the book suggests to use that

$$E_{AB}(T_2 \rightarrow T_1) \approx E_{AB}(T_2 - T_1 \rightarrow 0^\circ\text{C}) \quad (1)$$

I marked this approximation in red because **it must not be used in this course**. The method we will use is instead exact and consists of the following steps. Note that


$$E_{AB}(T_2 \rightarrow T_1) = E_A(T_2 \rightarrow T_1) - E_B(T_2 \rightarrow T_1) \quad (2)$$

$$= E_A(T_2 \rightarrow 0^\circ\text{C}) + E_A(0^\circ\text{C} \rightarrow T_1) - E_B(T_2 \rightarrow 0^\circ\text{C}) - E_B(0^\circ\text{C} \rightarrow T_1) \quad (3)$$

$$= E_{AB}(T_2 \rightarrow 0^\circ\text{C}) - E_{AB}(T_1 \rightarrow 0^\circ\text{C}). \quad (4)$$

Note now that both $E_{AB}(T_2 \rightarrow 0^\circ\text{C})$ and $E_{AB}(T_1 \rightarrow 0^\circ\text{C})$ can be found in the table in Appendix B. Hence, we can compute $E_{AB}(T_2 \rightarrow T_1)$ exactly.

Example: Consider the thermocouple in the figure and assume that the reference junction is at $T_1 = 25^\circ\text{C}$ and that the tension at the output of the thermocouple is $U = -1.51\text{ mV}$. We use the

formula we have just derived:

$$U = E_{AB}(T_2 \rightarrow T_1) = E_{AB}(T_2 \rightarrow 0^\circ\text{C}) - E_{AB}(T_1 \rightarrow 0^\circ\text{C}). \quad (5)$$

Furthermore, we read from the table that $E_{AB}(T_1 \rightarrow 0^\circ\text{C}) = 0.992 \text{ mV}$ when $T_1 = 25^\circ\text{C}$. Hence,

$$E_{AB}(T_2 \rightarrow 0^\circ\text{C}) = U + E_{AB}(T_1 \rightarrow 0^\circ\text{C}) \quad (6)$$

$$= -1.51 \text{ mV} + 0.992 \text{ mV} = -0.518 \text{ mV}. \quad (7)$$

Using the table, we discover that $T_2 \approx -14^\circ\text{C}$.

Using instead the approximation (1) of the book, we would obtain from the table that $T_2 - T_1 = -41^\circ\text{C}$, and, hence, $T_2 = -16^\circ\text{C}$.

Corrections to solutions (appendix A of the book): As a consequence of the approximation used in the book, some of the solutions to the book problems reported in Appendix A of the book are erroneous. These are the updated solutions of the problems affected by the incorrect approximation.

Problem	Corrected solution
2.21b	251 °C
2.22	5.914 mV
2.25	267 °C