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Errors using inadequate data are much less than those using no data at all

—attributed to Charles Babbage (1791–1871)
Designer of the “difference machine” –

the first programmable computing machine and
predecessor to modern computers

15.1 Introduction

A look back at much of what we did with transmission lines reveals that perhaps the dominant feature in all our

calculations is the use of the reflection coefficient. The reflection coefficient was used to find the conditions on the line, to

calculate the line impedance, and to calculate the standing wave ratio. Voltage, current, and power were all related to the

reflection coefficient. The reflection coefficient, in turn, was defined in terms of the load and line impedances (or any

equivalent load impedances such as at a discontinuity). You may also recall, perhaps with some fondness, the

complicated calculations which required, in addition to the use of complex variables, the use of trigonometric, harmonic

and hyperbolic functions. Thus, the following proposition: Build a graphical chart (or an equivalent computer program)

capable of representing the reflection coefficient as well as load impedances in some general fashion and you have a

simple method of designing transmission line circuits without the need to perform rather tedious calculations. This has

been accomplished in a rather general tool called the Smith chart. The Smith chart is a chart of normalized impedances

(or admittances) in the reflection coefficient plane. As such, it allows calculations of all parameters related to transmission

lines as well as impedances in open space, circuits, and the like. Although the Smith chart is rather old, it is a common

design tool in electromagnetics. Some measuring instruments such as network analyzers actually use a Smith chart to

display conditions on lines and networks. Naturally, any chart can also be implemented in a computer program, and the

Smith chart has, but we must first understand how it works before we can use it either on paper or on the screen. A

computerized Smith chart can then be used to analyze conditions on lines. The examples provided here are solved using

graphical tools and a printed Smith chart, rather than the computer program, to emphasize the techniques and

approximations involved although some of the numerical results listed were obtained with a computerized Smith chart

(smith-chart.m) available with this text (see page xi).

The Smith chart is an impedance chart. As such it does not provide for direct calculations of voltages, currents, or power.

Nevertheless, it is a useful tool in the calculation of voltages and currents as well as power since it provides important

information such as the generalized reflection coefficient, standing wave ratio, and the location of voltage and current

maxima and minima. With the information available from the Smith chart, the formulas developed in Chapter 14 can then

be used to obtain the required values or conditions.
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15.2 The Smith Chart1

To better understand the Smith chart and to gain some insight in its use, we will “build” a Smith chart, gradually, based on

the definitions of the reflection coefficient. Then, after all aspects of the chart are understood, we will use the chart in a

number of examples to show its utility. In the process, we will also define a number of transmission line circuits for which the

Smith chart is commonly used. Consider the circuit in Figure 15.1. The line impedance is real and equals Z0, but the load is a

complex impedance ZL ¼ RL + jXL, where RL is the load resistance and XL the load reactance. The reflection coefficient [see

Eqs. (14.91) and (14.92)] may be written in one of two forms. The first is a rectangular form (i.e., written in complex

variables):

ΓL ¼ ZL � Z0

ZL þ Z0

¼ RL � Z0ð Þ þ jXL

RL þ Z0ð Þ þ jXL
¼ Γr þ jΓi ð15:1Þ

The reflection coefficient is not modified by normalizing the numerator and denominator by Z0:

ΓL ¼ ZL � Z0ð Þ=Z0

ZL þ Z0ð Þ=Z0

¼ RL=Z0 � 1ð Þ þ jXL=Z0

RL=Z0 þ 1ð Þ þ jXL=Z0

¼ r � 1ð Þ þ jx

r þ 1ð Þ þ jx
¼ Γr þ jΓi ð15:2Þ

To obtain this result, we substituted r ¼ RL/Z0 and x ¼ XL/Z0 as the normalized resistance and reactance. For much of the

remainder of this chapter, we will drop the specific notation for load partly to simplify notation but mostly because the

magnitude of the reflection coefficient remains constant along the line and, therefore, the results we obtain apply equally

well for any impedance on the line (see Figure 15.2). In the latter case, the generalized reflection coefficient is obtained and

this can be written in exactly the same form as Eq. (15.1) or (15.2) by replacing ZL with Z(z). Equation (15.2) defines a

complex plane for the reflection coefficient as shown in Figure 15.3a. Any normalized impedance (load impedance or line

impedance) is represented by a point on this diagram.

The second form of the reflection coefficient is the polar form. This may be written as

ΓL ¼ ��Γ��e jθΓ ¼ ��Γ�� cosθΓ þ jsinθΓð Þ ð15:3Þ

where θΓ is the phase angle of the load reflection coefficient as discussed in Section 14.7.1. For a given magnitude of the

reflection coefficient, the phase angle defines a point on the circle of radius |ΓL|. Thus, since |ΓL| � 1, only that section of the

rectangular diagram enclosed by the circle of radius 1 is used, as shown in Figure 15.3b. The polar form is more convenient

to use than the rectangular form, but we will, for the moment, retain both.

Z0=R0
ΓL

ZL=RL+jXL

Figure 15.1 A simple transmission line used to introduce the Smith chart

z

Zline=Rline+jXline

Zline

ZlineΓ(z)

Z0ZL

Figure 15.2 Use of an

equivalent transmission line

to describe the line

impedance at a distance z
from the load

1 The Smith chart was introduced by Phillip H. Smith in January 1939. Smith developed the chart as an aid in calculation and called it a

“transmission line calculator.” In spite of its age, the chart is as useful as ever as a standard tool in analysis either in its printed form, slide-rule

form, or, more recently, as computer programs and instrument displays.
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We now go back to the rectangular representation and calculate the real and imaginary parts of the reflection coefficient in

terms of the normalized impedance. The starting point is Eq. (15.2):

Γr þ jΓi ¼ r � 1ð Þ þ jx

r þ 1ð Þ þ jx
ð15:4Þ

Cross-multiplying gives

r þ 1ð ÞΓr � Γixþ jΓi r þ 1ð Þ þ jxΓr ¼ r � 1ð Þ þ jx ð15:5Þ

Separating the real and imaginary parts and rearranging terms, we get two equations:

Γr � 1ð Þr � Γix ¼ � Γr þ 1ð Þ ð15:6Þ

Γir þ Γr � 1ð Þx ¼ �Γi ð15:7Þ

We now write two equations: one for r and one for x, by first eliminating x and then, separately, r.

From Eq. (15.7) we write

x ¼ �Γi r þ 1ð Þ
Γr � 1

ð15:8Þ

Substituting this into Eq. (15.6) we get

Γr � 1ð Þr þ Γi
2 r þ 1ð Þ
Γr � 1

¼ � Γr þ 1ð Þ ð15:9Þ

Multiplying both sides by Γr � 1 and rearranging terms, this gives

After rearranging terms, this gives

Γ2
r r þ 1ð Þ � 2Γrr þ Γ2

i r þ 1ð Þ ¼ 1� r ð15:10Þ

Dividing by the common term (r + 1),

Γ2
r �

2Γrr

r þ 1ð Þ þ Γ2
i ¼

1� r

r þ 1ð Þ ð15:11Þ

Adding r2/(r + 1)2 to both sides of the equation and rearranging terms, we get

Γr � r

r þ 1

� �2

þ Γ2
i ¼

1

r þ 1ð Þ2 ð15:12Þ

Repeating the process, we now eliminate r in Eq. (15.7) by first writing from Eq. (15.6):

r ¼ � Γr þ 1ð Þ � Γix

Γr � 1ð Þ ð15:13Þ

(0,0)

a b

(0,0)

+1

+1−1

−1

Γi Γi

Γr ΓrΓr=−1 Γr=1

Γi=1

Γi=−1

θΓ

.
Figure 15.3 The complex

plane representation of the

reflection coefficient.

(a) In rectangular form.

(b) In polar form
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Substituting this back into Eq. (15.7),

Γi
Γr þ 1ð Þ � Γix

Γr � 1
þ Γr � 1ð Þx ¼ �Γi ð15:14Þ

Multiplying both sides of Eq. (15.14) by Γr � 1 and rearranging terms we get

Γr � 1ð Þ2xþ Γ2
i x� 2Γi ¼ 0 ð15:15Þ

The equation now is divided by x:

Γr � 1ð Þ2 þ Γ2
i � 2Γi

1

x

� �
¼ 0 ð15:16Þ

To bring this into a useful form, we add 1/x2 to both sides of the equation:

Γr � 1ð Þ2 þ Γ2
i � 2Γi

1

x

� �
þ 1

x

� �2

¼ 1

x

� �2

ð15:17Þ

Rearranging terms we get

Γr � 1ð Þ2 þ Γi � 1

x

� �2

¼ 1

x

� �2

ð15:18Þ

Both Eqs. (15.12) and (15.18) describe circles in the complex Γ plane.

Equation (15.12) is the equation of a circle, with its center at Γr ¼ r/(r + 1), Γi ¼ 0 and radius 1/(r + 1). The center of

the circle is on the real axis and can be anywhere between Γr ¼ 0 for r ¼ 0 and Γr ¼ 1 for r ! 1. For example, for r ¼ 1,

the center of the circle is at Γr ¼ 0.5 and its radius equals 0.5. A number of these circles are drawn in Figure 15.4a. The

larger the normalized resistance, the smaller the circle. All circles pass through Γr ¼ 1, Γi ¼ 0. The normalized resistance r
can only be positive. Should there ever be a need to describe normalized impedances with negative real part, these must be

multiplied by �1 before analysis using the Smith chart can commence.

From Eq. (15.18), we obtain a second set of circles for x. Since x can be positive or negative, the circles are centered at

Γr ¼ 1, Γi ¼ 1/x for positive values of x and at Γr ¼ 1, Γi ¼ �1/x for x negative. These circles are shown in Figure 15.4b

for a number of values of the normalized reactance x. Figure 15.5 shows the r and x circles on the Γ plane, truncated at the

circle jΓj ¼ 1. This is the basic Smith chart. A number of properties of the two sets of circles are immediately apparent:

(1) The circles are loci of constant r or constant x.
(2) x and r circles are orthogonal to each other.

(3) There is an infinite number of circles for r and for x.

(4) All circles pass through the point Γr ¼ 1, Γi ¼ 0.

(5) The circles for x and �x are images of each other, reflected about the real axis.

(6) The center of the chart is at Γr ¼ 0, Γi ¼ 0.

(7) The intersections of the r circles with the real axis, for r ¼ r0 and r ¼ 1/r0, occur at points symmetric about the center

of the chart (Γr ¼ 0, Γi ¼ 0).

(8) The intersections of the x circles with the outer circle (|Γ| ¼ 1) for x ¼ x0 and x ¼ 1/x0 occur at points symmetrically

opposite each other.

(9) The intersection of any r circle with any x circle represents a normalized impedance point.

(10) The real part of the normalized impedance, r, can only be positive but x can be negative or positive.

The chart as described above is an impedance chart since we defined all points in terms of normalized impedance. We will

see how to use the chart as an admittance chart later.

In addition to the properties of the r and x circles given above, we note the following:

(1) The point Γr ¼ 1, Γi ¼ 0 (rightmost point in Figure 15.5) represents r ¼ 1, x ¼ 1. This is the impedance of an open

transmission line. This point is therefore the open circuit point.
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(2) The diametrically opposite point, at Γr ¼ �1, Γi ¼ 0 represents r ¼ 0, x ¼ 0. This is the impedance of a short circuit

and is called the short circuit point.

(3) The outer circle represents |Γ| ¼ 1. The center of the diagram represents |Γ| ¼ 0. Any circle centered at the center of the

diagram (Γr ¼ 0, Γi ¼ 0) with radius a is a circle on which the magnitude of the reflection coefficient is constant,

jΓj ¼ a. Moreover, if we take the intersection between any r and x circles, the distance between this point to the center of
the diagram is the magnitude of the reflection coefficient for this normalized impedance. A circle drawn through this

point represents the generalized reflection coefficient at different locations on the line for this normalized load

impedance. The intersection of the reflection coefficient circle with r and x circles represents line impedances at various

locations. These aspects of the use of transmission lines are shown in Figure 15.5. For example, point A represents an

impedance rA + jxA and point B represents an impedance rB + jxB, but the magnitude of the reflection coefficient is the

same. This will later be used to calculate the line impedance as well as voltages and currents on the line.

(4) Any point on the chart represents a normalized impedance, say, z ¼ r + jx. The admittance of this point is y ¼1/

(r + jx) ¼ (r � jx)/(r2 + x2). The admittance point corresponding to an impedance point lies on the reflection coeffi-

cient circle that passes through the impedance point, diametrically opposite to the impedance point. Thus, if we mark a

normalized impedance as z and draw the reflection coefficient circle through point z, this circle passes through the

admittance point y ¼ 1/z. The admittance point y is found by passing a line through z and the center of the diagram.

r=0 r=0.2r=0.5 r=1

a b

r=2 r=5

Γr=0
Γr=1
Γi=0

r=∞

|Γ |=1

Γr=1
Γi=0

Γr=−1
Γi=0

x=0

x=0.2

x=0.5
x=1

x=2

x=5

x=−5

x=−2
x=−1

x=−0.5

x=−0.2

|Γ |=1

Γr=0,Γi=1

Γr=0,Γi=−1

Figure 15.4 The basic components of the Smith chart. (a) Circles of constant values of r. (b) Circles of constant

values of x or �x

A

B

|Γ |
Γr

Figure 15.5 The Smith chart. A normalized impedance is a point on the Smith chart defined by the intersection of a circle

of constant normalized resistance r and a circle of constant normalized reactance x
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The intersection of this line with the reflection coefficient circle is point y. These steps are shown in Figure 15.6a.

These considerations will later be used to calculate admittances instead of impedances.

The Smith chart also provides for calculation of phase angles and lengths of transmission lines. For this purpose, the

Smith chart is equipped with a number of scales, marked on the outer periphery of the diagram. These are defined as follows:

(1) For a given impedance, a point on the chart is found. The distance from the center of the chart to the point is the

magnitude of the line reflection coefficient. If the line connecting the center of the chart with the impedance point is

continued until it intersects the outer (Γ ¼ 1) circle, the location of intersection gives the phase angle of the reflection

coefficient in degrees. This is the first set of values given on the circumference of the Smith chart and is shown in

Figure 15.6b. Note that the open circuit point has zero phase angle (Γ ¼ þ1) and the short circuit point has either a 180�

or�180� phase angle. The difference is in the sign of the imaginary part of the load impedance (below or above the real

axis). Intermediate points will vary in phase depending on the distance from the load. For example, for point A in

Figure 15.6b, the phase angle of the reflection coefficient is 104�, whereas for point B it is �120�.
(2) We recall that the distance between a point of maximum voltage and a point of minimum voltage was found to be λ/4 in

Section 14.7.3. In particular, the impedance of a shorted transmission line changes from zero to infinity (or negative

infinity) if we move a distance λ/4 from the short. Thus, the distance between the short circuit and open circuit points is

λ/4. This fact is indicated on the outer circle of the chart, starting at the short circuit point. Since the short (or any other

load) can be anywhere on a line, we may wish to move either toward the generator or toward the load to evaluate the line

behavior. These two possibilities are indicated with arrows showing the direction toward load and toward generator

(Figure 15.7). Although the distance is marked from the short circuit point, the distance is always relative: if a point is

given at any location on the chart, movement on the chart, a distance λ/4 represents half the circumference of the chart.

(3) The direction toward the generator is the clockwise direction. If we wish to calculate the line impedance starting from

the load, we move in the clockwise direction toward the generator. If, on the other hand, we wish to calculate the line

impedance starting from the generator going toward the load or, starting at the load and going away from the generator,

we must move in the counterclockwise direction and use the appropriate distance charts (see Figure 15.7).

(4) The whole Smith chart encompasses one-half wavelength. This, of course, is due to the fact that all conditions on lines

repeat at intervals of λ/2 regardless of loading or any other effect that may happen on the line. If we need to analyze lines

longer that λ/2, we simply move around the chart as many half-wavelengths as are necessary. Only the remainder length

(length beyond any integer numbers of half-wavelengths) needs to be analyzed.

The Smith chart also allows for the calculation of standing wave ratios. The standing wave ratio is calculated from the

reflection coefficient as

SWR ¼ 1þ Γj j
1� Γj j dimensionless½ � ð15:19Þ

We note that the circle of radius |Γ| intersects the positive real axis at x ¼ 0. At this point, the normalized impedance is

equal to r and the reflection coefficient is given as Γ ¼ (r � 1)/(r + 1). Substituting this into the relation for SWR, we get

SWR ¼ r ð15:20Þ

A
|Γ |

A'

z

y=1/z

A |Γ |

B
|Γ |=0

θ1=104º

θ2=−120º

−180º
180º

a b

0º

Figure 15.6 (a)

Normalized impedance,

reflection coefficient, and

normalized admittance. (b)

Indication of phase angle of

the reflection coefficient on

the Smith chart
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Thus, the standing wave ratio equals the value of normalized resistance at the location of intersection of the reflection

coefficient circle and the real axis, right of the center of the Smith chart. From property (7) above, the intersection of the

reflection coefficient circle with the real axis, left of the center of the chart, is at point 1/r. Thus, this point gives the value
1/SWR. The two points are shown for the reflection coefficient in Figure 15.7.

Now that we discussed the individual parts making up the Smith chart, it is time to put it all together. The result is the

Smith chart shown in Figure 15.8. You will immediately recognize the r and x circles as well as the scales discussed. There

are, however, a number of other scales given at the bottom of the chart as well as a number of indications on the chart itself

which we have not discussed. These have to do with losses on the line (which we have neglected) and the use of the chart as

an admittance rather than impedance chart (which we will take up later).

Although the chart is relatively simple, it contains considerable information and can be used in many different ways and

for purposes other than transmission lines. To see how the chart is used, we will discuss next a number of applications of the

Smith chart to design of transmission lines. Because the chart gives numerical data, the examples must also be numerical,

but, in general, the equations in the previous chapter can also be used for this purpose. The main difference in the Smith chart

solution and the analytic solution is that the Smith chart uses normalized impedances, whereas in analytic calculations, we

tend to use the actual values of the impedance. Also, because it is a graphical chart, the results are approximate and depend

on our ability to accurately read the values off the chart. The Smith chart is available commercially as a paper chart as well as

computer software. The advantage of a software-based Smith chart is that calculations are exact in addition to the ease of

analysis and display of results.

Example 15.1 Calculation of Line Conditions The_Smith_Chart.m

A long line with characteristic impedance Z0 ¼ 50 Ω operates at 1 GHz. The speed of propagation on the line is c and

load impedance is 75 + j100 Ω. Find:

(a) The reflection coefficient at the load.

(b) The reflection coefficient at a distance of 20 m from the load toward the generator.

(c) Input impedance at 20 m from the load.

(d) The standing wave ratio on the line.

(e) Locations of the first voltage maximum and first voltage minimum from the load.

Solution:

(a) (1) Normalize the load impedance: zl ¼ (75 + j100)/50 ¼ 1.5 + j2. Enter this on the Smith chart at the intersection of

the resistance circle equal to 1.5 and reactance circle equal to 2. This is point P2 in Figure 15.9.

SWR

1/SWR

of Γ !
Psc Poc

phase angle

 t
ow

ar
d g

enerator 

tow
ard  load

Figure 15.7 Directions on the Smith chart and indication of SWR. The distance between short and open circuit points is λ/4
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(2) With center at origin (point P1), draw a circle that passes through point P2. This circle is the reflection coefficient

circle and gives jΓj anywhere on the line. Measure the length of the radius (distance between P1 and P2) and divide

by the radius of the Smith chart’s outer circle (distance between P1 and P2

0
). This gives the magnitude of the

reflection coefficient. In this case, jΓj ¼ 0.6439.

Note: The radius of the Smith chart should be equal to 1, but to facilitate reading, the size is often different, thus the

need to calculate the magnitude of the reflection coefficient.

(3) Draw a straight line between P1 and P2 and extend it to the periphery of the chart to point P2

0
. The angle (in degrees,

on the periphery) is the phase angle of the reflection coefficient at the load. In this case, it is 37.3�. Alternatively, read
the “wavelength toward generator” circle. This is equal to 0.198 at point P2

0
. To calculate the angle, subtract this

value from the value on the real axis (open circuit point) and multiply by 4π: (0.25 � 0.198) � 4π ¼ 0.208π
radians or 37.3�. Thus, the answer to (a) is
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ΓL ¼
��ΓL

��ejθr¼0:6439ej0:208π ¼ 0:6439∠37:3�

(b) To calculate the reflection coefficient at 20 m from the load, moving toward the generator, we first calculate the

wavelength because the chart can only accommodate wavelengths:

λ ¼ c

f
¼ 3� 108

109
¼ 0:3 m½ �

Since the circumference of the Smith chart represents 0.5λ (or 0.15 m), the 20 m distance represent

(20/0.15) ¼ 133.3334 half-wavelengths. Thus, we move around the reflection coefficient circle toward the generator

133 times, starting at P2. This puts us exactly where we started (at point P2). The remainder is one-third of a

half-wavelength or λ/6 (0.167λ).
We now move from point P2 along the reflection coefficient circle, a distance of 0.167 wavelengths toward the

generator to point P3. Connecting this point with the center of the chart and with the circumference gives the intersection

with the reflection coefficient circle at P3 and with the circumference at P3

0
. This point gives the phase angle of the

reflection coefficient as �82.7�.Thus the reflection coefficient at 20 m from the load is

Γ ¼ 0:6439∠� 82:7� :

(c) The input impedance 20 m from the load is represented at point P3. The normalized input impedance is

z l ¼ 20mð Þ ¼ 0:468� j1:02

Multiplying by the characteristic line impedance (Z0 ¼ 50 Ω), we get the actual line impedance as

Z l ¼ 20mð Þ ¼ 23:4� j51:1 Ω½ �:

(d) The reflection coefficient circle intersects the real axis at point P4. At this point, r ¼ 4.62. This is the standing wave

ratio: SWR ¼ 4.62. At point P5 (on the other side of the reflection coefficient circle) r ¼ 1/SWR ¼ 0.217. At point P4,

the line impedance is real and maximum and equals Zmax ¼ Z0 � 4.62 ¼ 230.8 Ω ¼ At point P5, the impedance is

minimum and real and equals Zmin ¼ Z0/4.62 ¼ 10.83 Ω.
(e) Location of maximum voltage is on the real axis at the same point where SWR ¼ 4.76 since, at this point, the line

impedance is maximum (and real). Thus, moving from point P2 to the positive real axis, we reach a voltage maximum:

the distance is the difference in wavelengths between point Poc and point P2 or lmax ¼ 0.25λ � 0.198λ ¼ 0.052λ from
the load. The voltage minimum is a quarter-wavelength away (where 1/SWR ¼ 0.21) at point P5 or lmin ¼ 0.302λ
from the load. In terms of actual distance the first maximum occurs at a distance of 0.052 � 0.3 ¼ 0.0156 m, or 15.6 mm

from the load. The first minimum occurs at 0.302 � 0.3 ¼ 0.0906 m or 90.6 mm from the load.

15.3 The Smith Chart as an Admittance Chart

We mentioned earlier that the Smith chart may be used as an admittance chart. In Figure 15.6a, we showed that for any

given normalized impedance, the admittance is found by locating the normalized impedance point z ¼ r + jx on the Smith

chart, drawing the reflection coefficient circle, and then drawing a straight line that passes through the impedance point, the

center of the chart, and then intersects the reflection coefficient circle, again, on a point diametrically opposite the impedance

point, at point y. This point represents the normalized admittance of the load. Any normalized impedance may be converted

into its equivalent admittance using this simple step.

In addition to this, we note that an infinite normalized impedance (open circuit point on the impedance Smith chart)

represents infinite admittance on the admittance Smith chart. Similarly, the short circuit point on the impedance Smith chart

represents zero admittance on the admittance Smith chart (see Figure 15.10).
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The admittance may be written in terms of the impedance at point z as

y ¼ 1

r þ jx
¼ r

r2 þ x2
� j

x

r2 þ x2
¼ g� jb ð15:21Þ

Since we use the same chart, the constant resistance circles now become constant conductance circles, and the constant

reactance circles become constant susceptance circles. All other aspects of the chart, including phase angles, distances, etc.,

remain unchanged.

The use of the Smith chart as an admittance chart is shown in Figure 15.10, in comparison with the impedance chart.

Example 15.2 The_Smith_Chart.m

A load, such as an antenna, of impedance ZL ¼ 50 � j100 Ω is connected to a lossless transmission line with

characteristic impedance Z0 ¼ 100 Ω. The line operates at 300 MHz and the speed of propagation on the line is 0.8c:

(a) Calculate the input admittance a distance 2.5 m from the load.

(b) Calculate the input impedance a distance 2.5 m from the load.

(c) Suppose the load is shorted accidentally. What is the input admittance at the same point?

Solution: To calculate the input admittance, we first calculate the wavelength on the line. The load is then located on the

impedance chart and the admittance is found on the reflection coefficient circle. Then, we move toward the generator a

distance 2.5 m (in wavelengths, of course) to find the normalized input admittance. The admittance is found by multiplying

with the characteristic admittance of the line. The input impedance can be found from the input admittance by finding the

diametrically opposite point on the reflection coefficient circle.

(a) The normalized load impedance is

zL ¼ 50� j100

100
¼ 0:5� j1

This is marked on the chart as point P2 in Figure 15.11. The reflection coefficient circle is drawn around

point P1, with a radius equal to the distance between P2 and P1. The admittance point is P3. The normalized load

admittance is

yL ¼ 0:4þ j0:8

The wavelength on the line is λ ¼ 0.8c/f ¼ 2.4 � 108/3 � 108 ¼ 0.8 m. The given distance represents

2.5/0.8 ¼ 3.125 wavelengths. To find the input admittance, we move from the load admittance point toward

the generator a distance of 0.125λ (the three wavelengths mean simply moving six times around the chart to get to

constant resistance
[constant conductance]

SC (zero impedance)
[SC (zero admittance)]

constant reactance
[constant susceptance]

OC (infinite impedance)
[OC (infinite admittance)]

Figure 15.10 Relations

between the impedance and

admittance Smith charts.

Descriptions in square
brackets are for the
admittance chart
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the initial point). Moving from point P3

0
a distance 0.125λ brings us to point P4

0
(0.114λ + 0.125λ ¼ 0.239λ).

Connecting this point with P1 intersects the reflection coefficient circle at point P4. The normalized input line

admittance is

yin ¼ 4:0þ j1:0

The input line admittance is the normalized input line admittance above multiplied by the characteristic line admittance,

which equals 0.01:

Yin ¼ 0:04þ j0:01 1=Ω½ �:

0.1

0.1

0.
1

0.2

0.2

0.
2

0.3

0.3

0.
3

0.4

0.4

0.
4

0.5
0.5

0.
5

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
8

0.
8

0.
8

0.
9

0.
9

0.
9

1.
0

1.
0

1.
0

1.
2

1.
2

1.
2

1.
4

1.
4

1.
4

1.
6

1.
6

1.
6

1.8
1.8

1.
8

2.0
2.0

2.
0

3.0

3.0
3.

0

4.0

4.0
4.

0

5.0

5.0
5.

0

10

10
10

20

20
20

50

50
50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0
1.0

20
−20

30
−30

40
−40

50

−50

60

−60

70

−70

80

−80

90

−90

100

−100

110

−110

120

−120

130

−130

14
0

−1
40

15
0

−1
50

16
0

−1
60

17
0

−1
70

18
0

±

90
-9

0
85

-8
5

80
-8

0

75
-7

5

70
-7

0

65
-6

5

60
-6

0

55
-5

5

50
-5

0

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.
04

0.
04

0.
05

0.
05

0.0
6

0.0
6

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18
0.19

0.19
0.2

0.2
0.21

0.21
0.22

0.22
0.23

0.23
0.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31
0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.4
4

0.4
4

0.
45

0.
45

0.
46

0.
46

0.
47

0.
47

0.
48

0.
48

0.
49

0.
49

0.
0

0.
0

A
N

G
LE

O
F

TR
A

N
SM

ISSIO
N

C
O

EFFIC
IEN

T
IN

D
EG

R
EES

A
N

G
LE

O
F

R
EFLEC

T
IO

N
C

O
E

FFIC
IEN

T
IN

D
EG

R
EES

ó
>

W
A

V
EL

EN
G

TH
S

TO
W

A
R

D
G

EN
ER

A
TO

R
ó

>
<ó

W
A

V
EL

EN
G

TH
S

TO
W

A
R

D
LO

A
D

<ó

Psc

Poc

P2

P3

P'2

P'3

P4

P5

P1

P'4

P7

P8

0.125λ

0.
12

5λ

Figure 15.11 Use of the Smith chart as an admittance chart (Example 15.2)
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(b) The normalized input impedance is found by locating point P5, which is the diametrically opposite point to P4, on the

reflection coefficient circle. The normalized line impedance at this point is 0.235 � j0.059. The line impedance is found

by multiplying this normalized impedance by the characteristic impedance of the line:

Zin ¼ 23:5� j5:9 Ω½ �:

(c) If the load is shorted, the load impedance is zero and the line admittance is infinite. This is represented at point Poc on the

admittance chart. From here, we move 0.125 wavelengths toward the generator on the outer circle, since for shorted

loads, |Γ| ¼ 1. This point is shown as P7. The normalized input line admittance is �j1. The line admittance is, therefore,

�j0.01 (line impedance is j100, at point P8).

15.4 Impedance Matching and the Smith Chart

15.4.1 Impedance Matching

When connecting a transmission line to a generator, a load, or another transmission line, the impedances are, in general,

mismatched and the result is a reflection coefficient at the load, generator, or discontinuity, which, in turn, generates standing

waves on the line. The effect of this reflection was discussed at some length in Chapter 14. It is often necessary to match

a transmission line to a load or to a generator, for the purpose of eliminating standing waves on the line. Similarly, if a

discontinuity exists, such as the connection of an unmatched line section, it is often necessary to eliminate this mismatch

before the line can be used. The result of mismatch on a line can be disastrous: large amounts of reactive power may travel

along the line which can easily damage circuitry, especially generators.

A transmission line is matched to a load if the load impedance is equal to the characteristic impedance. Similarly, if the

line impedance is equal to the generator impedance, the two are matched. To match a load to a line (or a generator for that

matter), a matching network is connected between the line and the load, as shown in Figure 15.12.

The location of the matching network depends on the application. If we wish to reduce the standing waves on the line, the

matching network should be located as closely as possible to the mismatched impedance. If, however, the line can operate

with standing waves, then a more convenient location, at some distance away, can be found. The latter approach is possible

since all conditions on the line repeat at intervals of λ/2. Thus, if a matching network has been designed to be located at a

given point on the line, the network can now be moved a distance λ/2 without affecting the line conditions.

There are two types of impedance matching networks that are particularly useful. One is the so-called stub matching,

which makes use of properties of shorted (or open) transmission lines. In this type of network, the impedance on the line is

altered by connecting shorted or open transmission lines in parallel or in series with the line to adjust the impedance. The

second method of impedance matching is based on the properties of transformers. In effect, we build a transformer which

then can match two impedances in a manner similar to that discussed in Section 10.7.1.

The following sections discuss these methods and develop the relations required to design matching networks. We use the

Smith chart in the design of matching networks for two reasons: First, in many cases, the design is greatly simplified by

the use of the Smith chart. Second, and more importantly, the Smith chart is routinely used for this type of application.

Vg

Zg

Zg
Z0

Z0

Z0

a b c

Z0
Z0

Z0

ZL

ZL

Z1

Z1

Figure 15.12 Matching networks at (a) generator side, (b) load side, (c) arbitrary location on the line
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15.4.2 Stub Matching

The idea of stub matching is to connect open- or short-circuited sections of transmission lines, either in parallel or in series

with the transmission line as shown in Figure 15.13. The impedance of the stub and/or location on the line is chosen such

that the combined impedance of line and stubs is equal to the characteristic impedance of the line. The details of design of the

stubs for the three methods in Figure 15.13 are discussed next.

Consider first the matching network in Figure 15.13a. Assuming a characteristic impedance Z0 (or admittance Y0) and a

line admittance Y0 + jB0, at a distance d1 from the load, the two can be matched by adding a stub in parallel, at distance d1
from the load, such that the admittance of the stub is �jB0. The distance d1 defines the imaginary part of the line admittance

from Eq. (14.102). l1 is then that length of the shorted transmission line stub that cancels the imaginary part of the line

admittance at the location of the stub. The choice of l1 and d1 is not unique, but any practical combination that satisfies the

above conditions can be used.

Although a single stub may be used to match any load (except for a purely imaginary load) to any line which has real

characteristic impedance, sometimes the physical conditions of the line do not allow perfect matching with a single stub

because of physical constraints. In such cases, two stubs, at two fixed locations, may be used. This method is similar to the

single stub method, but now we must design the lengths l1 and l2 whereas d1 and d2 are fixed as shown in Figure 15.13b.

In the series matching method in Figure 15.13c, the idea is the same as in single stub matching: we must choose a stub

length l1 and place it a distance d1 from the load so that the sum of the line impedance at that point with that of the stub

equals Z0.

To summarize, in the single stub matching method, we choose the length and position of the stub. In the double stub

matching method, we choose the lengths of two stubs whereas their positions are fixed and often prescribed by the device

being matched. It is also possible to match loads and other devices by more than two stubs, but we will not discuss these here.

15.4.2.1 Single Stub Matching
The idea of single stub matching relies on the fact that the line impedance varies along the line and a parallel or series stub

changes only the reactive part of the line impedance. To see how this is accomplished, consider a load impedance

ZL ¼ RL + jXL connected on a line of characteristic impedance Z0. For the load to be matched, its impedance must be

changed so that ZL
0 ¼ Z0. This is done as follows:

(1) Move along the line from the load (Figure 15.13a) and find a point at which Z(z) ¼ Z0 + jX(z). Note that Z0 does not

have to be real, but in most cases, it will be.

(2) At this point (a distance d1 from the load), connect a shorted or open transmission line of length l1 such that the term

jX(z) cancels. As a result, the line sees a total impedance equal to Z0 and the new load (which now is the whole line

section to the right of the location of the stub) is matched.

These steps are implemented with the use of the Smith chart with the following differences:

(1) The impedance is first normalized to conform with the requirements of the Smith chart.

(2) If the stub is connected in parallel (Figure 15.13a), it is easier to work with admittances. Therefore, the normalized load

admittance is first located on the chart.

(3) If the stub is connected in series (Figure 15.13c), it is easier to work with normalized impedances.

The stubs will be assumed to have the same characteristic impedance as the line, but this is not a necessary condition.

The following two examples show the steps and details involved in parallel and series single stub matching.

d1 d1

d1

d2

l1l1

Z0

a b c

Z0
Z0

jZ1jZ1 jZ1
jZ2

R
L +

jX
L

R
L +

jX
L

R
L +

jX
L

l1l2

. .

.

..

.

.

.

Figure 15.13 (a) Single stub matching. (b) Double stub matching. (c) Series stub matching
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Example 15.3 Application: Single Parallel Stub Matching at an Antenna The_Smith_Chart.m

An antenna operates at a wavelength of 2 m and is designed with an impedance of 75Ω. However, because of mistakes

in design, the antenna is badly mismatched. The measured impedance after installation is 15 + j60 Ω. The antenna is
connected to a 75 Ω line as shown in Figure 15.14. Calculate:

(a) The required shorted stub and its location on the line to match the antenna to the line. The line and stub have the

same characteristic impedance.

(b) The shortest required open circuit stub that will accomplish the same purpose as the short circuit stub in (a).

Solution: First, we find a location on the line at which the real part of the line admittance is equal to the characteristic

admittance of the line; that is, find Z(d1) such that Y (d1) ¼ Y0 + jB(d1). Now, we connect a shorted stub in parallel with the

line at this point and of a length such that the imaginary part of the line admittance is canceled. The open circuit stub in (b) is

placed at the same location and its length is that of the short circuit stub � λ/4.

(a) In this case, it is simpler to use the Smith chart as an admittance chart. To do so, we first calculate the normalized load

impedance:

zL ¼ 15þ j60

75
¼ 0:2þ j0:8:

(1) We mark this point as P2 on the Smith chart in Figure 15.15, using the chart as an impedance chart. The reflection

coefficient circle is now drawn around the center of the chart, with the radius equal to the distance between P2

and P1.

(2) To find the load admittance, we draw a straight line from P2 through P1 and extend this line to the periphery of the

chart. The line intersects the reflection coefficient circle at point P3. This point is the normalized load admittance:

yL ¼ 0:294� j1:176:

(3) As we move around the reflection coefficient circle, the line admittance changes. To match the load, we must find the

location at which the real part of the line admittance equals the characteristic admittance. Since we are working

with normalized admittances, this happens when Re{yL} ¼ 1. This happens at the locations at which the

reflection coefficient circle intersects the circle g ¼ 1. The two possible points are P4 and P5. The line admittance

at these points is

At P4,

ya ¼ 1þ j2:53

at P5,

yb ¼ 1� j2:53

Each one of these points provides one possible solution.

ZL=15+j60 ΩZ0=75 Ω
Z
0 =75 Ω

d1

l1

Figure 15.14 Mismatched

antenna connected to a line

and a stub designed to match

the antenna to the line
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(4) Solution No. 1: Point P4. The distance d1 for this solution is the distance traveled from point P3 to point P4, on the

reflection coefficient circle. The distance in wavelengths is the difference in readings between point P3

0
and P4

0

moving from P3

0
to P4

0
toward the generator. First, we move a distance of 0.5λ – 0.358λ ¼ 0.142λ up to the short

circuit point. Then, we move an additional 0.198λ to point P4

0
. The total distance is d1a ¼ 0.142λ + 0.198λ ¼ 0.34λ.

The normalized line susceptance at this point is 2.6. The stub must, therefore, have a normalized susceptance of

�2.6. This point is shown as point P4

00
. The length of the stub is the distance from the open circuit point Poc (infinite

admittance) to point P4

00
(moving toward the generator). This is l1a ¼ 0.308λ � 0.25λ ¼ 0.058λ. Thus, the first

possible solution is

d1a ¼ 0:337, l1a ¼ 0:058 λ½ �
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Figure 15.15 Smith chart for Example 15.3
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Since we know the wavelength (λ ¼ 2 m), we can write the solution in actual lengths:

d1a ¼ 0:674, l1a ¼ 0:116 m½ �:

(5) Solution No. 2. Point P5. The distance d1 at this point is the distance between points P3 and P5. Again, we move a

distance of 0.142λ up to the short circuit point and then a distance of 0.302λ from the short circuit point to point P5.

Thus, d1b ¼ 0.444λ. The line susceptance at P5 is �2.6. The stub susceptance must be +2.6. This is marked as point

P5

00
. The distance from Poc to point P5

00
, moving toward the generator, is l1b ¼ 0.25λ + 0.192λ ¼ 0.442λ. The second

solution is therefore

d1b ¼ 0:444λ, l1b ¼ 0:442 λ½ � or d1b ¼ 0:888, l1b ¼ 0:884 m½ �:

(b) Because an open line behaves as a shorted line at a distance of λ/4 from the short, the lines in (a) can be replaced by open

circuit lines by either shortening the stubs by λ/4 or lengthening them by λ/4. Taking in each case the shortest possible

stub length (lengthening l1a and shortening l1b), the solutions for open circuit stubs are

d1a ¼ 0:337 λ ¼ 0:674 m½ �, l1a ¼ 0:308 λ ¼ 0:616 m½ �
d1b ¼ 0:444 λ ¼ 0:888 m½ �, l1b ¼ 0:192 λ ¼ 0:384 m½ � :

Exercise 15.1 Suppose that in Example 15.3, part (a), it is not physically possible to connect the stub at either

location found. The nearest location at which a stub may be connected is 1 m from the load:

(a) What are the solutions for d1 and l1?
(b) Are these solutions unique?

Answer 1 m ¼ 0.5λ. The solutions are:

(a) d1a ¼ 0:337þ 0:5ð Þ λ ¼ 1:674 m½ �, l1a ¼ 0:442 λ ¼ 0:884 m½ �
d1b ¼ 0:444þ 0:5ð Þ λ ¼ 1:888 m½ �, l1b ¼ 0:058 λ ¼ 0:116 m½ � :

(b) No. The addition of any integer number of half-wavelengths to d1 or l1 or both is also acceptable solutions.

Example 15.4 Application: Series Stub Matching at an Antenna The_Smith_Chart.m

Consider again the transmission line and load in Example 15.3. The load has an impedance of 15 + j60 Ω and the line

impedance is 75 Ω, as shown in Figure 15.14. However, now it is required to match the load using a shorted, series

stub similar to that shown in Figure 15.13c. Calculate the required length of a series shorted circuit stub and its

distance from the load to match the antenna to the line. The line and stub have the same characteristic impedance.

Solution: The solution is similar to that in Example 15.3. To match the load, we seek a location d1 and a stub length l1 as

shown in Figure 15.13c. Since the stub’s reactance is in series with the line impedance at d1, the sum of the line impedance

and stub reactance must be equal to the line resistance. Therefore, we should now use the Smith chart as an impedance chart.

We move a distance d1 from the load at which location the normalized line impedance is zl (d1) ¼ 1 + jx. Then, we find a

stub length l1 such that zs (l1) ¼ �jx. The sum of the two gives the correct match at d1.

(1) The normalized load impedance is zL ¼ 0.2 + j0.8. This is marked at point P2 (Figure 15.16).
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(2) Now, we move toward the generator on the reflection coefficient circle until we intersect the r ¼ 1 circle at points P3 and

P4. Connection of P1 to P3 and P1 to P4 and extending the lines to the circumference gives points P3

0
and P4

0
· Each of these

is a possible solution.

(3) Solution No. 1: The distance between P3

0
and P2

0
is the first possible solution for d1. In this case, we moved a distance

d1a ¼ 0.198λ � 0.109λ ¼ 0.089λ.
The normalized line reactance at point P3 is j2.53. The stub length must be such that its normalized input impedance

is � j2.53. This required impedance is marked as point P3

00
. The distance between the short circuit point Psc and P3

00
moving

toward the generator is the stub length necessary. This distance is 0.31λ. Thus, the first solution (with λ ¼ 2 m) is

d1a ¼ 0:087 λ ¼ 0:174 m½ �, l1a ¼ 0:31 λ ¼ 0:62 m½ �:

(4) Solution No. 2: This occurs at point P4. The distance d1 now is the distance between point P4

0
and P2

0
or

d1b ¼ 0.31λ � 0.109λ ¼ 0.201 λ.
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Figure 15.16 Smith chart for Example 15.4
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The normalized line reactance at point P4 is �j2.53. The stub normalized impedance must be +j2.53. This impedance

is marked at point P4

00
· The distance l1b is the distance between the short circuit point to point P4

00
: l1b ¼ 0.190λ.

The second solution is therefore

d1b ¼ 0:201 λ ¼ 0:402 m½ �, l1b ¼ 0:190 λ ¼ 0:38 m½ �

Either solution is correct, but perhaps in practical terms, the closest stub to the load (solution no. 1) may be chosen.

15.4.2.2 Double Stub Matching
As mentioned earlier, double stub matching takes a different approach than single stub matching. There are now two stubs at

fixed locations d1 and d2, as shown in Figure 15.13b. Matching is achieved by adjusting the two stub lengths l1 and l2. To

see how this is accomplished, it is best to look at the process in reverse. Suppose that we have already accomplished

matching. From the results for single stub matching, we know that when the load is matched, we must be on a point on the

unit circle (g ¼ 1). In fact, we know that there will be two points at which matching can be accomplished, but, for clarity,

only point P1 is shown in Figure 15.17. The point shown represents the load impedance at a distance d1 + d2 from the load.

Now, we move from P1 toward the load a distance d2. For any of the points on the unit circle, this means moving on its

reflection coefficient circle. The locus of all points on the unit circle, moved toward the load a distance d2, is a shifted unit

circle, as shown in Figure 15.17. This shifted unit circle represents the equivalent load impedance at a distance d1 from the

load (this equivalent load impedance is due to the line impedance and the stub at this point). Point P1

0
is the equivalent

impedance at the location of stub (2) corresponding to the matched point P1. Stub (1) only adds a susceptance to the line

admittance. Therefore, to get to the load admittance point, we must first remove this susceptance by moving along the circles

of constant conductance. This brings us to point P1

00
marked on the chart in Figure 15.17. In addition we must move a

distance d1 from P1

0
toward the load (not shown on the chart). Note, also, that the difference in susceptance between points P1

0

and P1

00
is the susceptance stub (1) must add to the line whereas the susceptance of stub (2) is the imaginary part of the

admittance at point P1.

Of course, when matching a load, we will start with the load impedance, but the above process is more instructive because

it explains the need for the shifted unit circle and what the contribution of each stub is. In effect, we may say that the purpose

of the first stub (the stub closer to the load) is to modify the line susceptance so that the second stub can then take the line

admittance to the unit circle. The following two examples show the steps and the details of double stub matching.

Example 15.5 Double Stub Matching The_Smith_Chart.m

A line with characteristic impedance Z0 ¼ 300 Ω and load impedance ZL ¼ 150 + j225 Ω is given. Design a double

stub matching network such that the two stubs are 0.1λ apart as shown in Figure 15.18.
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Figure 15.17 Smith chart for Example 15.4
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Solution: After calculating the normalized load impedance, we draw the reflection coefficient circle and find the

normalized load admittance since, as with the single stub, the Smith chart is used as an admittance chart. In the single

stub case, matching consisted of finding the intersection of the reflection coefficient circle with the g ¼ 1 circle. The same

principle is used here, but the actual matching is at the second stub from the load (stub (2)) since we want to match the load to

the line. Thus, stub (1) is represented by its own unit circle, which is shifted a distance 0.1λ from the g ¼ 1 circle toward the

load. Now, we start at the load (P3) and move from the admittance point on the constant conductance circle at the load until

we intersect the unit circle for stub (1). The intersection points represent the reflection coefficients of the combined load and

stub (1). The combined impedance of the load and stub represent a new, modified load with a stub a distance 0.1λ away,

toward the generator. This modified line is a load with a single stub; therefore, its treatment is the same as for the single stub

matching in that the length of the stub is chosen to cancel the susceptance for each of the two stubs possible at the load. Stubs

(1) and (2) refer to the notation used in Figures 15.13b and 15.18, with stub (1) at the load.

(1) The normalized load impedance (without stubs) is zL ¼ 0.5 + j0.75 and is shown at point P2 in Figure 15.19. The

normalized load admittance is at point P3 and is yL ¼ 0.615 � j0.923.

(2) In preparation for the calculation of the stubs, we draw the two unit circles. The unit circle for stub (2) is the g ¼ 1 circle

of the chart. The unit circle for stub (1) is the same circle, shifted toward the load a distance of 0.1λ, as shown in

Figure 15.19.

(3) Now, we add the stub at the load. The stub’s impedance is purely imaginary. Therefore, it can only change the

susceptance of the combined stub and load while the conductance remains the same. To find the combined admittance

on the unit circle for stub (1), we move on the constant conductance circle, starting from P3 (load admittance). This path

is shown (gray line) in Figure 15.19. The path intersects unit circle (1) at two points, marked P4 and P5. The admittances

at P4 and P5 are

yP4 ¼ 0:615þ j0:192, yP5 ¼ 0:615þ j2:56:

(4) In moving from the load admittance point P3 to points P4 and P5, the change in admittance is only due to the susceptance

contributed by stub (1). Subtracting the load admittance from the admittances at points P4 and P5 gives the susceptance

stub (1) must contribute to the impedance at these points:

At P4:

y1a ¼ yP4 � yL ¼ 0:615þ j0:192� 0:615þ j0:923 ¼ j1:115

At P5:

y1b ¼ yP5 � yL ¼ 0:615þ j2:56� 0:615þ j0:923 ¼ j3:483

These two values are shown at points P4

00
and P5

00
· The possible stub lengths are found by moving from the short

circuit admittance point (Poc) toward the generator, to points P4

00
and P5

00
· For point P4, the susceptance of the stub must

be 1.115. Starting at Poc and moving, in turn, to point P4

00
and P5

00
(always toward the generator) gives the two possible

lengths for stub (1):

l1a ¼ 0:25λþ 0:133λ ¼ 0:383 λ at P
00
4

� �
l1b ¼ 0:25λþ 0:205λ ¼ 0:455 λ at P

00
5

� � :

l1

0.1λ

ZLZ0=300 Ω

l2

(1)(2)
ZL=150+j225 Ω

Figure 15.18 A load

impedance matched to the

line with two stubs
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(5) Now, we consider the admittances at P4 and P5 as the new load admittances as shown in Figure 15.20. From here on, we

treat the problem as a single stub matching for each of these admittances and with the distance between load and stub

(2) known and equal to 0.1λ. We start with yP4 and use Figure 15.21, on which the unit circle has been marked. We draw

the reflection coefficient circle for the admittance yP4. As we move on the reflection coefficient circle, starting at P4,

toward the generator, and move 0.1λ, we intersect the unit circle at point P6. Although we cut the unit circle at another

point, symmetrically located about the real axis, this intersection cannot be used since the stub must be a distance 0.1λ
from the load. At P6, the line admittance is 1 + j0.55. Thus, the stub must have admittance � j0.55 so that the line

susceptance is canceled at the location of stub (2). The latter is marked as point P6

00
· The stub length that will accomplish

this is the distance between the short circuit point and P6

00
· This is

l2a ¼ 0:42λ� 0:25λ ¼ 0:17 λ
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Figure 15.19 Smith chart for the line in Figure 15.18
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y0

y0

l2

0.1λ

y' (yp4 or yp5)

(1)
(2)

Figure 15.20 The

equivalent condition at the

location of stub (2) after the

load and stub (1) in

Figure 15.18 were taken

into account
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Figure 15.21 Smith chart for the line in Figure 15.20
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Similarly, for point P5, we draw the reflection coefficient circle and move 0.1λ toward the generator, to point P7. The line

admittance at P7 is 1 � j3.4. The required stub admittance is +j3.4, which is marked as point P7

00
· The stub length is the

distance between Poc and this point:

l2b ¼ 0:25λþ 0:203λ ¼ 0:453 λ

Therefore, the two possible solutions are

l1 ¼ 0:383 λ, l2 ¼ 0:17λ or l1 ¼ 0:455 λ, l2 ¼ 0:453 λ:

Example 15.6 The_Smith_Chart.m

A transmission line and load are given in Figure 15.22a. It is required to calculate the lengths of the stubs so that the

load is matched to the line.

Solution: The steps in the solution are as follows:

(1) First, we normalize the load impedance:

zL ¼ ZL

Z0

¼ 60þ j75

50
¼ 1:2þ j1:5

This is marked as point P2 in Figure 15.23. The reflection coefficient circle can now be drawn. The point opposite P2 is

P3. This is the load admittance:

yL ¼ 0:325� j0:406:

(2) The line admittance at the location of the first stub is found by moving from point P3 toward the generator a distance of

0.2λ. This brings us to point P4. The admittance at P4 (without the stub) is

yp4 ¼ 0:56þ j0:94

that is, the normalized line impedance at the location of stub (1), before the stub is added, is

z
0
L ¼ z

00
P5 ¼ 0:47� j0:78

Note: This is at point P5, which is the opposite point to point P4. Since P4 represents the normalized admittance, P5

represents the normalized impedance. Now the line and stubs appear as in Figure 15.22b. The new load admittance yL
0

is marked as P4 in Figure 15.24.

stub 1stub 2stub 1stub 2

Z
L =

60+
j75 Ω

ZL Z'
L

Z0 Z0 Z0Z0

Z0=50 Ω Z0=50 Ω

l2

0.2λ8.35
a b

λ 8.35λ

l1 l1l2

Figure 15.22 (a) The double stub matching network for Example 15.6. (b) Equivalent network after the load impedance

has been moved to the location of stub (1)
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Figure 15.23 Smith chart for the configuration in Figure 15.22a. Calculation of the equivalent load impedance at the

location of stub (1)
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(3) The distance between the two stubs is 8.35λ. Stub (2) is calculated to match the line. Stub (1) must be calculated for a

unit circle (g ¼ 1) that has been moved toward the load a distance of 8.35λ. Figure 15.24 shows the actual unit circle

and the shifted circle after moving it 8.35λ toward the load (i.e., from stub (1) to stub (2)). Note that this is the same as

moving the circle 0.35λ toward the load.

Now, we move on the conductance circle that passes through point P4 (g ¼ 0.56) until the shifted unit circle is

intersected at points P5 and P6. The g ¼ 0.56 circle is shown as a gray line.

(4) The normalized admittances at point P5 and P6 are

yP5 ¼ 0:56þ j0:01, yP6 ¼ 0:56� j1:463
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Figure 15.24 Smith chart for Example 15.6 (continuation)
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To find the length of stub (1), we argue as follows: moving from P4 to P5 or P6, we have changed the imaginary part of

admittance only. This change is

From P4 to P5:

y1a ¼ yP5 � yP4 ¼ 0:56þ j0:01ð Þ � 0:56þ j0:94ð Þ ¼ �j0:95

From P4 to P6:

y1b ¼ yP6 � yP4 ¼ 0:56� j1:463ð Þ � 0:56þ j0:98ð Þ ¼ �j2:43

The admittances y1a and y1b are the admittances added to the load by the two possible choices for stub (1). The two

admittances required are shown as points P5

00
and P6

00
. Thus, the length of stub (1) is the distance between the short circuit

point and P5

00
or P6

00
. For y1a(P5), the input stub admittance must be equal to –j0.95. We move from the infinite admittance

point (point Poc on the chart), toward the generator, on the outer circle of the Smith chart up to point P5

00
. The total

distance traveled is the length of the stub:

l1a ¼ 0:38λ� 0:25λ ¼ 0:13 λ

Similarly, the stub admittance for point P6 is y1b ¼ �j2.43. The stub length is the distance between Poc and P6

00
:

l1b ¼ 0:31λ� 0:25λ ¼ 0:06 λ:

(5) For each one of these solutions, we have an equivalent admittance point: P5 and P6. The problem now is that of an

equivalent admittance yP5 or yP6, and a single stub a distance 8.35λ toward the generator. To avoid confusion, we use the
new chart in Figure 15.25. Points P5 and P6 as well as the unit circle for stub (2) are shown. We now draw the reflection

coefficient circles for each of these two admittance points starting with point P5. From P5, we move 0.35λ toward the

generator. This intersects the unit circle at point P5

00
. The line admittance at this point (before connecting stub (2)) is

1 � j0.56. The admittance of the stub must be +j0.56, a value shown at point P7. The length of stub (2) corresponding to

the point is the distance between Poc and P7, moving toward the generator:

l2a ¼ 0:25λþ 0:082 ¼ 0:332 λ

Starting with point P6 and moving 0.35λ toward the generator, we reach point P6

00
. The line admittance at this point is

1 + j2.2. The stub admittance must be –j2.2, shown at point P8. The stub length is therefore

l2b ¼ 0:322λ� 0:25λ ¼ 0:072 λ

The two possible solutions are therefore

l1a ¼ 0:13λ, l1b ¼ 0:06λ or l2a ¼ 0:332 λ, l2b ¼ 0:072λ
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Figure 15.25 Smith chart for Example 15.6 (continuation)
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Exercise 15.2 In Figure 15.26, the load impedance is 0.2λ from the first stub (stub (1)) and the distance between

the two stubs is 0.1λ. Calculate the lengths of the two stubs to match the load to the line.

Answer l1a ¼ 0.257 λ, l1b ¼ 0.104 λ or l2a ¼ 0.424 λ, l2b ¼ 0.461 λ.

15.5 Quarter-Wavelength Transformer Matching

Stub matching, in effect, is capable of removing a mismatch for any load (except a purely reactive load), but it is not an

impedance transformer. If different lines must be matched, a transmission line transformer can be used, as in Figure 15.27.

From Eq. (14.102), the line impedance Zin of a lossless transmission line of characteristic impedance Z0, at a distance z0,

from the load may be viewed as the input impedance of the line section between z0 and the load:

Zin ¼ Z0

ZLcosβz0 þ jZ0 sinβz0½ �
Z0cosβz0 þ jZLsinβz0½ � Ω½ � ð15:22Þ

Now, suppose we chose a transmission line section, with characteristic impedance Zt, cut it so it is λ/4 long, and connect
it to a load impedance Zl. Setting z0 ¼ λ/4 and βz0 ¼ βλ/4 ¼ (2π/λ)(λ/4) ¼ π/2 and replacing Zl by Zl and Z0 by Zt in

Eq. (15.22), we get for the input impedance of the λ/4 section

Zin ¼ Zt

Zlcos
π

2
þ jZt sin

π

2

h i

Ztcos
π

2
þ jZl sin

π

2

h i ¼ Z2
t

Zl
Ω½ � ð15:23Þ

Referring now to Figure 15.27, where Zl is the line impedance at a distance d from the load, we get the condition for

matching using the quarter-wavelength transformer shown:

Zt ¼
ffiffiffiffiffiffiffiffiffiffi
ZinZl

p
Ω½ � ð15:24Þ

Thus, two different transmission lines or any two impedances may be matched, provided a transformer of proper

characteristic impedance Zt can be found. The quarter-wavelength transformer is normally connected at a point of maximum

or minimum voltage since the line impedance is real at that point. The line impedance at a point of minimum voltage is

ZL

Z0 Z0l1

0.2λ

Z0=300 Ω

0.1λ

l2

(1)(2)

ZL=150+j225 Ω

Figure 15.26

d

ZL

Zg

Z0
Zin Zt

λ /4

ZlVg

Figure 15.27 A quarter-

wavelength transformer

located at distance

d from load
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Zl ¼ Z0

SWR
Ω½ � ð15:25Þ

where Z0 is the characteristic impedance of the line, and the standing wave ratio on the line is given as

SWR ¼ 1þ ��ΓL

��
1� ��ΓL

�� ð15:26Þ

The location of the minimum voltage on the line for a general load is at a distance [see Eqs. (14.122) and (14.123)]

dmin ¼ λ

4π
θΓ þ πð Þ þ n

λ

2
λ½ � ð15:27Þ

from the load, where n is any integer, including zero. For a resistively loaded line, the location of minimum voltage is either

at the load (if RL < Z0) or at a distance λ/4 (if RL > Z0). Thus, the transformer can be located at any of the points in

Eq. (15.27). If the characteristic line impedance is Z0, the characteristic impedance of a transformer located at a point of

minimum voltage must be

Zt ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffi
1

SWR

r
Ω½ � ð15:28Þ

Similarly, if the transformer is located at a point of maximum voltage [by moving it a quarter-wavelength in either

direction of any of the points in Eq. (15.27)], the characteristic impedance of the transformer for matching is

Zt ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffi
SWR

p
Ω½ � ð15:29Þ

How can we use the Smith chart to design a quarter-wavelength transformer and, therefore, match two lines or a line and a

load? First, we note that two parameters are important in this design. The first is the standing wave ratio SWR. The second is

the location of the minimum (or maximum) voltage on the line. For any given load, these are obtainable from the Smith

chart. Once the SWR and location of minimum or maximum are found, the transformer impedance is found from Eq. (15.28)

or (15.29), depending on where the transformer is placed. The following examples discuss the design sequence.

Example 15.7 Application: Matching of Two Different Lines A student has found out that he/she is out of money

and cannot pay his/her cable TV bill. He/she decides to cancel the service and go back to the old rooftop antenna.

However, the TV input is 75Ω, while the cable coming down from the antenna is 300Ω. Design a matching network to

match the two lines assuming that the antenna is matched to the 300 Ω line and the TV is matched to the 75 Ω line.

Where should the matching network be placed?

Solution: A quarter-wavelength transformer can be used, although, because TV reception is in a range of frequencies, the

lines will only be matched at the frequency at which the transformer is exactly one-quarter wavelength. The characteristic

impedance of the transformer must be

Zt ¼
ffiffiffiffiffiffiffiffiffiffi
ZinZl

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75� 300

p
¼ 150 Ω½ �

The transformer may be placed anywhere between the antenna and TV because one line is matched to the TV and the

second to the antenna and, therefore, the impedance anywhere on each line equals its characteristic impedance. The only

important point is that the line between the transformer and the TV must be a 75Ω line, and between the transformer and the

antenna the line must be a 300 Ω line (Figure 15.28).
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Example 15.8. Matching a Load to a Line The_Smith_Chart.m

A load ZL ¼ 45 � j60Ω is connected to a line with characteristic impedance Z0 ¼ 50Ω. Design a quarter-wavelength
transformer to match the load to the line. It is required to connect the transformer as close to the load as possible. Find

the required characteristic impedance of the transformer and its location.

Solution: There are two methods to solve this problem. The most obvious is to use Eqs. (15.22) through (15.29). The

second is to use the Smith chart instead. We will do both, starting with the Smith chart method.

Method A: The Smith Chart

(1) Find the normalized impedance of the load and mark it on an impedance Smith chart. The normalized load impedance is

zL ¼ (45 � j60)/50 ¼ 0.9 � j1.2 (point P2 in Figure 15.29).

(2) Find the first extremum in impedance from the load (minimum or maximum). This is done by moving on the reflection

coefficient circle, toward the generator, from point P2, until the real axis of the chart is met. This happens at point P3 at a

point of minimum impedance and is a distance of 0.5λ � 0.336λ ¼ 0.164λ from the load. At point P3, the value on the

axis is 1/SWR ¼ 0.3. Thus, SWR ¼ 3.33.

(3) From Eq. (15.28), the characteristic impedance of the transformer is

Zt ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffi
1

SWR

r
¼ 50

ffiffiffiffiffiffiffi
0:3

p
¼ 27:39 Ω½ �:

Method B: Direct Calculation First, we find the load reflection coefficient, its magnitude, and its phase angle:

ΓL ¼ ZL � Z0

ZL þ Z0

¼ 45� j60� 50

45� j60þ 50
¼ �5� j60

95� j60
¼ 0:2475� j0:475

��ΓL

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2475ð Þ2 þ 0:475ð Þ2

q
¼ 0:536

θL ¼ tan �1 �j0:475

0:2475
¼ �62:48� ! θL ¼ �1:09 rad½ �

The standing wave ratio is

SWR ¼ 1þ ��ΓL

��
1� ��ΓL

�� ¼ 1þ 0:536

1� 0:536
¼ 3:310

The location of the first minimum from the load [n ¼ 0 in Eq. (15.27)] is

dmin ¼ λ

4π
θL þ πð Þ ¼ λ

4π
�1:09þ πð Þ ¼ 0:163 λ

TV
75Ω

λ/4 transformer
150Ω 300Ω75Ω

λ/4 antennaFigure 15.28 A quarter-

wavelength transformer

used to match two different

transmission lines
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The transformer’s intrinsic impedance is

Zt ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffi
1

SWR

r
¼ 50

ffiffiffiffiffiffiffiffiffiffiffi
1

3:310

r
¼ 27:48 Ω½ �

Note that the two solutions are not identical although they are close. This, of course, is due to the nature of the chart: the

precision depends on accuracy of reading the values on the chart. Much of this difficulty is solved with computerized Smith

charts since these charts use the actual mathematical relations involved.
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Figure 15.29 Smith chart for Example 15.8
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Exercise 15.3 Find the location and characteristic impedance of the quarter-wavelength transformer in Example

15.8 if the transformer is connected at the first voltage maximum.

Answer d ¼ 0.414λ, Zt ¼ 90.97 [Ω].

15.6 Experiments

Experiment 1 (Demonstrates: Matching Using Shorted Stubs) Take a 2–3 m length of a 300 Ω transmission line: You can

use an antenna downwire (two-conductor flat cable) or a simple two-conductor wire such as the wires used to connect speakers.

Leave one end open and connect the other end in parallel to the antenna lugs on your TV while the external antenna is

connected as well, and tune a low-frequency channel (VHF channel 2 has a frequency of 54–60 MHz; channel 3, 60–66 MHz;

channel 4, 66–73 MHz). With a needle, short the line by piercing through the insulation at different locations on the wire. Note

the locations of the short that produce the best and worst receptions. Measure the distance between two peaks and two minima

in reception. What can you say about these locations? Can you relate this distance with the frequency received?

Note: Do not perform this experiment on amplified antenna systems or cable TV connections: only on TVs with portable,

passive antennas.

Experiment 2 (Demonstrates: Matching Using Open Stubs) Repeat experiment 1 by cutting small sections from the free

end of the transmission line. Cut only about 1 cm at a time and make sure that the conductors are not shorted after cutting.

15.7 Summary

The Smith chart is a common tool in transmission line calculations and design. It is based on the properties of the load and

generalized reflection coefficient. Because of that it allows calculation of impedances, SWR, magnitudes and phase of the

reflection coefficient, as well as other conditions. The Smith chart does not calculate voltages and currents but can be used as

an aid in their calculation.

Smith Chart We assume a lossless line with real characteristic impedance Z0 (but these are not necessary conditions).

Given a load impedance ZL ¼ R + jX and load reflection coefficient ΓL the Smith chart defines circles of normalized real and

imaginary values, r, x so that the normalized load impedance is z ¼ (R + jX)/Z0 ¼ r + jx (see Figure 15.4). The circles are

defined as follows:

Γr � r

r þ 1

� �2

þ Γ2
i ¼

1

r þ 1ð Þ2 15:12ð Þ Γr þ 1ð Þ2 þ Γi � 1

x

� �2

¼ 1

x

� �2

ð15:18Þ

Properties

(1) The circles are loci of constant r or constant x.

(2) x and r circles are orthogonal to each other.

(3) All circles pass through the point Γr ¼ 1, Γi ¼ 0.

(4) The circles for x and �x are images of each other, reflected about the real axis.

(5) The center of the chart is at Γr ¼ 0, Γi ¼ 0.

(6) The intersections of the r circles with the real axis, for r ¼ r0 and r ¼ 1/r0, occur at points symmetric about the center

of the chart (Γr ¼ 0, Γi ¼ 0).

(7) The intersections of the x circles with the outer circle (|Γ| ¼ 1) for x ¼ x0 and x ¼ 1/x0 occur at points symmetrically

opposite each other.
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(8) The intersection of any r circle with any x circle represents a normalized impedance point.

(9) The point Γr ¼ 1, Γi ¼ 0 (rightmost point in Figure 15.7) represents infinite impedance (r ¼ 1, x ¼ 1); hence, it is

called the open circuit point.

(10) The diametrically opposite point, at Γr ¼ �1, Γi ¼ 0, represents zero impedance (r ¼ 0, x ¼ 0); hence, it is the short

circuit point.

(11) The outer circle represents |Γ| ¼ 1. The center of the diagram represents |Γ| ¼ 0.

(12) Any circle centered at the center of the diagram (Γr ¼ 0, Γi ¼ 0) with radius a is a circle on which the magnitude of the

reflection coefficient is constant, |Γ| ¼ a.

(13) A circle drawn through a point representing a normalized load impedance describes the reflection coefficient at

different locations on the line (generalized reflection coefficient).

(14) Any point on the chart represents a normalized impedance, z ¼ r + jx. The admittance of this point is y ¼ (r � jx)/

(r2 + x2). The admittance point corresponding to an impedance point lies on the reflection coefficient circle that passes

through the impedance point, diametrically opposite of the impedance point (Figure 15.6a).

(15) Motion toward the generator—clockwise. Toward the load—counterclockwise.

(16) Motion around the chart changes the phase but not the magnitude of the reflection coefficient [Eq. (14.99)].

(17) A full circle represents λ/2.
(18) All distances on the Smith chart are in wavelengths, phases are in degrees.

A common use of the Smith chart is for purposes of impedance matching.

Stub Matching Stub matching uses the admittance chart for parallel stubs, impedance chart for series stub. The sequence

for parallel stub matching is as follows (see Figure 15.13):

(1) A shorted (sometimes open) stub, typically of the same characteristic impedance as the line, is placed at a distance d1
from the load in parallel with the line.

(2) Normalize the load impedance and place the normalized value on the chart. Draw the reflection coefficient circle through

that point (P2).

(3) Find the normalized admittance by drawing a line from P2 through the center of the chart until it intersects the reflection

coefficient circle on the opposite side (P3).

(4) Identify the points at which the reflection coefficient circle intersects the r ¼ 1 circle.

(5) Find the length of the stub, l1, which when connected in parallel to the line at a distance d1 from the load cancels the

imaginary part of the normalized admittance (susceptance) at the two points in (4). This provides two possible solutions.

(6) The length of the shorted stub is found by starting from the point of infinite admittance on the chart and moving

clockwise until the desired susceptance is found.

(7) Use of open stubs is possible with the appropriate change in (5) and (6) (see Example 15.3).

(8) Series stub matching follows the same process but step (3) is skipped, and all steps are done in terms of impedance rather

than admittance (see Example 15.4).

Double Stub Matching

(1) In this method, two shorted stubs are placed on the line, at any desired location (typically at the load or close to it). The

distance between the two stubs is fixed (Figure 15.13b).

(2) Draw a unit circle, shifted from the r ¼ 1 circle toward the load (counterclockwise) a distance in wavelengths equal to

the distance between the two stubs (Figure 15.17)

(3) Place the normalized load impedance on the chart and draw the reflection coefficient circle.

(4) The normalized load admittance is found diagonally opposite the impedance point.

(5) If the load is not at the stub (i.e., if d1 6¼ 0) move along the reflection coefficient circle a distance d1 to the starting point
(see Example 15.6).

(6) Move on the constant conductance circle from the load admittance point toward the generator until the shifted unit circle

is intersected at two possible points. The difference in susceptance between the two points is due to stub (1).

(7) Find the length l1 of the stub that will add the necessary susceptance at that point as indicated in (6). There are two

possible solutions.

(8) Now consider each of the two points found in (7) as a load to the line. Repeat the process for single stub matching for

each point to find the two possible solutions for l2.
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Notes

(1) Single stub matching guarantees a match for any line and any load except a purely imaginary load.

(2) Double stub matching does not guarantee a solution for all conditions, but it is often more practical because the matching

section can be prefabricated and included with the load (such as an antenna).

(3) Adding any number of half-wavelengths to any stub or to the position of a stub on the line has no effect on the matching

conditions.

(4) Matching in transmission lines means the two impedances are equal. It does not mean maximum power transfer, which

requires conjugate matching.

λ/4 Transformer (Figure 15.27) A section of transmission line, λ/4 in length loaded with an impedance Zl, has input

impedance:

Zin ¼ Z2
t =Zl Ω½ � ð15:16Þ

We place this section at a distance d from the load so that Zl at the location of the transformer is real (maximum or

minimum voltage point on the line). To ensure matching, select the characteristic impedance of the transformer section, Zt so
that

Zt ¼
ffiffiffiffiffiffiffiffiffiffi
ZinZl

p
Ω½ � ð15:24Þ

In practical terms, the λ/4 transformer is placed at the location of voltage maximum or voltage minimum:

At the maximum impedance point

Zt ¼ Z0

ffiffiffiffiffiffiffiffiffiffi
SWR

p
Ω½ � ð15:29Þ

At the minimum impedance point

Zt ¼ Z0=
ffiffiffiffiffiffiffiffiffiffi
SWR

p
Ω½ � ð15:28Þ

Any number of half-wavelengths may be added to the transformer length or to the location of the transformer without

change in the matching conditions.

Problems

General Design Using the Smith Chart

15.1 Line Properties Using the Smith Chart. A long line with characteristic impedance Z0 ¼ 100 Ω operates at 1 GHz.

The speed of propagation on the line is c [m/s] and the load impedance is 260 + j180 Ω. Find:

(a) The reflection coefficient at the load.

(b) The reflection coefficient at a distance of 20 m from the load toward the generator.

(c) Standing wave ratio.

(d) Input impedance at 20 m from the load.

(e) Location of the first voltage maximum and first voltage minimum from the load.

15.2 Calculation of Voltage/Current Along Transmission Lines. A transmission line with a characteristic impedance of

100 Ω and a load of 50 – j50 Ω is connected to a matched generator. The line is very long and the voltage measured at

the load is 50 V. Calculate using the Smith chart:

(a) Maximum voltage on the line (magnitude only).

(b) Minimum voltage on the line (magnitude only).

(c) Location of maxima and minima of voltage on the line (starting from the load).
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15.3 Impedance of Composite Line. A transmission line is made of two segments, each 1 m long (Figure 15.30). Calculate

the input impedance of the combined line using a Smith chart if the speed of propagation on line (1) is 3 � 108 m/s and

on line (2) 1 � 108 m/s. The lines operate at 300 MHz.

1 m 1 m

Z1=50 Ω Z2=100 Ω ZL=50+j50 Ω

Figure 15.30

15.4 Line Properties. A lossless transmission line has characteristic impedance Z0 ¼ 300Ω, is 6.3 wavelengths long, and is
terminated in a load impedance ZL ¼ 35 + j25 Ω. Find:

(a) The input impedance on the line.

(b) The standing wave ratio on the main line.

(c) If the load current is 1 A, calculate the input power to the line.

15.5 Line Properties. A lossless transmission line has characteristic impedance Z0 ¼ 50 Ω and its input impedance is

50 � j25 Ω. The line operates at a wavelength of 0.45 m and is 3.85 m long. Calculate:

(a) The load impedance connected to the line.

(b) The location of the voltage minima and maxima on the line, starting from the load.

(c) The reflection coefficient at the load (magnitude and angle) and the standing wave ratio on the line.

15.6 Application: Design of Transmission Lines. It is required to design a load of 75 � j50 Ω to simulate a device

operating at 100 MHz. It is proposed using a section of a 50 Ω line and connecting to its end a lumped resistance R [Ω].
The line’s phase velocity is c/3 [m/s].

(a) Calculate the length of line and the required resistance R that will accomplish this.

(b) Is the solution unique? Explain and find all possible solutions if the solution is not unique.

15.7 Line Properties Using the Smith Chart. An unknown load is connected to a 75 Ω lossless transmission line. To find

the load, two measurements are performed: (1) The location of the first voltage minimum is found at 0.18 λ from the

load. (2) The SWR is measured as 2.5. Find using the Smith chart:

(a) The load impedance.

(b) The load reflection coefficient (magnitude and angle).

Stub Matching

15.8 SWR on Line. The transmission line in Figure 15.31 is given. A general load (ZL ¼ Z0 + jXL [Ω]) is connected as

shown in Figure 15.31. The shorted section is made of a different line with a different characteristic impedance Z1 [Ω].

(a) Assuming the generator is matched, calculate the standing wave ratio on the line.

(b) What must be the length of the shorted line to ensure matching of the load (no reflection). Are there any other

conditions that must be satisfied for this to happen?

d

Z0

Z1

ZL=Z0+jXL

Figure 15.31
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15.9 Matching with Shorted/Open Loads. The transmission line network in Figure 15.32 is given. The shorted transmis-

sion line and the open transmission line are part of the network. Show that no stub network will match the two line

sections to the main line.

A

A

Z0=50 Ω

0.2λ

0.2λ

Z1=50 Ω

Z
2=100 Ω

Figure 15.32

15.10 Application: Series Stub Matching. A transmission line of characteristic impedance Z0 ¼ 50 Ω is loaded with an

impedance ZL ¼ 100 + j80Ω (Figure 15.33). An open transmission line is connected in series with the line as shown.

The open line has the same characteristic impedance. Find the length of the open line and the location (closest to the

load) it should be inserted to match the load to the line.

Z0=50 Ω

Z
0 =

50 Ω d1

d2

ZL=100+j80 Ω

Figure 15.33

15.11 Application: Single Stub Matching. A transmission line is loaded as in Figure 15.34. If the wavelength on the line

equals 5 m, find a shorted parallel stub (location and length of stub) placed to the left of points A–A to match the load

to the line.

Z0=50 Ω

A

A 1 m

ZL2=50+j50 ΩZL1=j50 Ω

Figure 15.34

15.12 Application: Series Stub Matching. A load is connected to a transmission line as shown in Figure 15.35. It is

required to match the load to the line (which has a characteristic impedance of 75Ω). Find the location and length of a
stub to match the line. The stub is open as shown in Figure 15.35.

stub

A

A'

d2

d1

Z0=75 Ω

Z0

ZL=50+j70 Ω

Figure 15.35
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15.13 Application: Single Stub Matching. A 75 Ω TV cable is used to connect to a TV. The load is matched to the line

(Figure 15.36a). A second TV must be connected 10 m from the first TV, again with a matched section of the same

cable (Figure 15.36b). Assuming the phase velocity on the line is c/2 [m/s], calculate:

(a) The reflection coefficient at the location of connection of the two lines.

(b) The standing wave ratio on the main line.

(c) Design a single stub (its location to the left of the discontinuity and its length) to match the line for TV channel 3

(63 MHz). Use the same line impedance for the stubs.

(d) For the design in (c) calculate the reflection coefficient to the left of the stub for channel 2 (57 MHz). What is your

conclusion from this calculation as far as stub matching across a range of frequencies?

Z0=75 Ω

a b
10 m

12 m

75 Ω
75 Ω

75 Ω
Z0=75 Ω

Figure 15.36

15.14 Application: Double StubMatching. Two stubs are used on a transmission line as shown in Figure 15.37. Calculate

stub lengths d1 and d2 (in wavelengths) to match the load to the line. Is this arrangement of stubs a good

arrangement? Why?

Z0

stub 1stub 2

0.25λ0.25λ

Z0

ZL=50+j100 ΩZ0=100 Ω
R2+jX2

d1d2

Figure 15.37

15.15 Application: Double Stub Matching. An antenna has an impedance of 68 + j100 Ω. The antenna needs to be

connected to a 75 Ω line. Because the antenna goes on a mast, the design engineer decided to fabricate a matching

section as shown in Figure 15.38. The matching section is then hoisted and connected to the antenna during

installation. At the required frequency, the section is 0.3 λ and the two stubs are made of the same line. Calculate

the lengths of the stubs, if the antenna is connected at A � A.

Z0

0.3λ

Z0

75 Ω
A

A

68+j100 Ω

d2 d1

Figure 15.38
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Transformer Matching

15.16 Application: λ/4 Transformer. Show that two lines with any characteristic (real) impedances Z1 [Ω] and Z2 [Ω] may

be matched with a quarter-wavelength line. What is the characteristic impedance of the matching section?

15.17 Application: 3λ/4 Transformer. A lossless transmission line with characteristic impedance Z0 [Ω] transfers power to
a load ZL [Ω] (real). To match the line, a matching section is connected as shown in Figure 15.39. At what distance d
(in wavelengths) from the load must the line be connected (minimum distance) and what must the characteristic

impedance of the matching section be?

d

Z0

Z1 Z2

Z0
ZLZc

3λ/4

Figure 15.39

15.18 Application: λ/4 Transformer. A transmission line is given as shown in Figure 15.40. If the characteristic

impedance of the quarter-wavelength transformer must be real, find the location of the transformer (distance d in

the figure, in wavelengths) and the intrinsic impedance of the transformer Zt [Ω].

d

λ/4

ZtZ0=50 Ω Z0=100 Ω ZL=50+j50 Ω
quarter
wavelength
transformer

Figure 15.40

15.19 Application: λ/4 Transformer. A two-wire transmission line has characteristic impedance of 300 Ω and connects to

an antenna. The line is long and the antenna has an impedance of 200 Ω and operates at a wavelength of 3.8 m. To

match the line and load, a quarter-wavelength transformer is connected on the line, but the location at which the

transformer may be connected is 10 m from the antenna or larger. Calculate:

(a) The closest location at which the transformer may be connected.

(b) For the result in (a), the characteristic impedance of the transformer section.

(c) The standing wave ratios on the sections of line between the transformer and antenna and between transformer

and generator.
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